151
|
ten Broeke T, Wubbolts R, Stoorvogel W. MHC class II antigen presentation by dendritic cells regulated through endosomal sorting. Cold Spring Harb Perspect Biol 2013; 5:a016873. [PMID: 24296169 DOI: 10.1101/cshperspect.a016873] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
For the initiation of adaptive immune responses, dendritic cells present antigenic peptides in association with major histocompatibility complex class II (MHCII) to naïve CD4(+) T lymphocytes. In this review, we discuss how antigen presentation is regulated through intracellular processing and trafficking of MHCII. Newly synthesized MHCII is chaperoned by the invariant chain to endosomes, where peptides from endocytosed pathogens can bind. In nonactivated dendritic cells, peptide-loaded MHCII is ubiquitinated and consequently sorted by the ESCRT machinery to intraluminal vesicles of multivesicular bodies, ultimately leading to lysosomal degradation. Ubiquitination of newly synthesized MHCII is blocked when dendritic cells are activated, now allowing its transfer to the cell surface. This mode of regulation for MHCII is a prime example of how molecular processing and sorting at multivesicular bodies can determine the expression of signaling receptors at the plasma membrane.
Collapse
Affiliation(s)
- Toine ten Broeke
- Utrecht University, Faculty of Veterinary Medicine, Department of Biochemistry and Cell Biology, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | | | | |
Collapse
|
152
|
Cho KJ, Roche PA. Regulation of MHC Class II-Peptide Complex Expression by Ubiquitination. Front Immunol 2013; 4:369. [PMID: 24312092 PMCID: PMC3826109 DOI: 10.3389/fimmu.2013.00369] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/28/2013] [Indexed: 01/13/2023] Open
Abstract
MHC class II (MHC-II) molecules are present on antigen presenting cells (APCs) and these molecules function by binding antigenic peptides and presenting these peptides to antigen-specific CD4+ T cells. APCs continuously generate and degrade MHC-II molecules, and ubiquitination of MHC-II has recently been shown to be a key regulator of MHC-II expression in dendritic cells (DCs). In this mini-review we will examine the mechanism by which the E3 ubiquitin ligase March-I regulates MHC-II expression on APCs and will discuss the functional consequences of altering MHC-II ubiquitination.
Collapse
Affiliation(s)
- Kyung-Jin Cho
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA
| | | |
Collapse
|
153
|
Wagner CS, Grotzke J, Cresswell P. Intracellular regulation of cross-presentation during dendritic cell maturation. PLoS One 2013; 8:e76801. [PMID: 24098562 PMCID: PMC3789698 DOI: 10.1371/journal.pone.0076801] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/03/2013] [Indexed: 11/19/2022] Open
Abstract
We have investigated the effect of different maturation stimuli on the ability of mature dendritic cells (DCs) to cross-present newly acquired particulate antigens. Cross-presentation was impaired in DCs matured by treatment with TNF-α, CpG and LPS, but was less affected upon CD40L-induced maturation. The difference could not be explained by decreased antigen uptake or translocation into the cytosol, but decreased cross-presentation ability did correlate with increased phagosomal/lysosomal acidification. Nevertheless, intra-phagosomal degradation of OVA was not increased in matured samples, suggesting that decreasing phagosomal pH may also regulate cross-presentation by a mechanism other than enhancing degradation.
Collapse
Affiliation(s)
- Claudia S. Wagner
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Jeff Grotzke
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Peter Cresswell
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
154
|
Iliev DB, Hansen T, Jørgensen SM, Krasnov A, Jørgensen JB. CpG- and LPS-activated MAPK signaling in in vitro cultured salmon (Salmo salar) mononuclear phagocytes. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1079-1085. [PMID: 23872471 DOI: 10.1016/j.fsi.2013.07.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/25/2013] [Accepted: 07/09/2013] [Indexed: 06/02/2023]
Abstract
The Mitogen-activated protein kinases (MAPK) are involved in transmitting intracellular signals downstream of diverse cell surface receptors and mediate the response to ligands such as growth factors, hormones and cytokines. In addition, MAPK are critically involved in the innate immune response to pathogen-derived substances, commonly referred to as pathogen-associated molecular patterns (PAMPs), such as bacterial lipopolysaccharide (LPS) and bacterial DNA rich in CpG dinucleotides. Currently, a great deal of knowledge is available about the involvement of MAPK in the innate immune response to PAMPs in mammals; however, little is known about the role of the different MAPK classes in the immune response to PAMPs in lower vertebrates. In the current study, p38 phosphorylation was induced by CpG oligonucleotides (ODNs) and LPS in primary salmon mononuclear phagocytes. Pre-treatment of the cells with a p38 inhibitor (SB203580) blocked the PAMP-induced p38 activity and suppressed the upregulation of most of the CpG- and LPS-induced transcripts highlighting the role of this kinase in the salmon innate immune response to PAMPs. In contrast to p38, the phosphorylation of extracellular signal-regulated kinase (ERK), a MAPK involved primarily in response to mitogens, was high in resting cells and, surprisingly, incubation with both CpG and control ODNs downregulated the phospho-ERK levels independently of p38 activation. The basal phospho-ERK level and the CpG-inducible p38 phosphorylation were greatly influenced by the length of in vitro incubation. The basal phospho-ERK level increased gradually throughout a 5-day culture period and was PI3K-dependent as demonstrated by its sensitivity to Wortmannin suggesting it is influenced by growth factors. Overall these data indicate that both basal and PAMP-induced activity of MAPKs might be greatly influenced by the differentiation status of salmon mononuclear phagocytes.
Collapse
Affiliation(s)
- Dimitar B Iliev
- The Norwegian College of Fishery Science, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | | | |
Collapse
|
155
|
Affiliation(s)
- Jonathan C Kagan
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
156
|
Berg-Larsen A, Landsverk OJB, Progida C, Gregers TF, Bakke O. Differential regulation of Rab GTPase expression in monocyte-derived dendritic cells upon lipopolysaccharide activation: a correlation to maturation-dependent functional properties. PLoS One 2013; 8:e73538. [PMID: 24039975 PMCID: PMC3764041 DOI: 10.1371/journal.pone.0073538] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 07/21/2013] [Indexed: 12/25/2022] Open
Abstract
The regulation of Rab expression to modulate cellular function has recently been proposed. Dendritic cells are a prototypic example of cells that drastically alter their function in response to environmental cues by reducing endocytosis, secreting cytokines, changing surface protein repertoires and altering morphology and migration. This is not a binary event, but is subject to fluctuations through the activation process, termed maturation. Consequently, DCs transiently increase endocytosis and production of major histocompatibility complex class II molecules, and secrete inflammatory cytokines in infected tissues before migrating to secondary lymph nodes and releasing T cell polarizing factors. All these cellular processes rely on intracellular membrane transport, which is regulated by Rab family GTPases and their diverse effectors. Here we examine how the Rabs likely to be involved in these functions are regulated throughout DC maturation. We find that Rab expression is altered upon lipopolysaccharide-induced activation, and discuss how this correlates to the reported functions of these cells during maturation.
Collapse
Affiliation(s)
- Axel Berg-Larsen
- Centre for Immune Regulation, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ole J. B. Landsverk
- Centre for Immune Regulation, Department of Biosciences, University of Oslo, Oslo, Norway
- * E-mail:
| | - Cinzia Progida
- Centre for Immune Regulation, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Tone F. Gregers
- Centre for Immune Regulation, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Oddmund Bakke
- Centre for Immune Regulation, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
157
|
Barrio L, Saez de Guinoa J, Carrasco YR. TLR4 Signaling Shapes B Cell Dynamics via MyD88-Dependent Pathways and Rac GTPases. THE JOURNAL OF IMMUNOLOGY 2013; 191:3867-75. [DOI: 10.4049/jimmunol.1301623] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
158
|
Park J, Wu CT, Bryers JD. Chemokine programming dendritic cell antigen response: part I - select chemokine programming of antigen uptake even after maturation. Immunology 2013; 139:72-87. [PMID: 23278719 DOI: 10.1111/imm.12056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/17/2012] [Accepted: 12/19/2012] [Indexed: 01/14/2023] Open
Abstract
Here, we report on the successful programming of dendritic cells (DCs) using selectively applied mixtures of chemokines as a novel protocol for engineering vaccine efficiency. Antigen internalization by DCs is a pivotal step in antigen uptake/presentation for bridging innate and adaptive immunity and in exogenous gene delivery used in vaccine strategies. Contrary to most approaches to improve vaccine efficiency, active enhancement of antigen internalization by DCs as a vaccine strategy has been less studied because DCs naturally down-regulate antigen internalization upon maturation. Whereas chemokines are mainly known as signal proteins that induce leucocyte chemotaxis, very little research has been carried out to identify any additional effects of chemokines on DCs following maturation. Here, immature DCs are pre-treated with select chemokines before intentional maturation using lipopolysaccharide (LPS). When pre-treated with a mixture of CCL3 and CCL19 in a 7 : 3 ratio, then matured with LPS, chemokine pre-treated DCs exhibited 36% higher antigen uptake capacity than immature DCs and 27% higher antigen-processing capacity than immature DCs treated only with LPS. Further, CCL3 : CCL19 (7 : 3) pre-treatment of DCs modulated MHC molecule expression and secretion of various cytokines of DCs. Collectively, DC programming was feasible using a specific chemokine combination and these results provide a novel strategy for enhancing DC-based vaccine efficiency. In Part II, we report on the phenotype changes and antigen presentation capacity of chemokine pre-treated murine bone marrow-derived DCs examined in long-term co-culture with antigen-specific CD4(+) T cells.
Collapse
Affiliation(s)
- Jaehyung Park
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
159
|
Jing J, Yang IV, Hui L, Patel JA, Evans CM, Prikeris R, Kobzik L, O'Connor BP, Schwartz DA. Role of macrophage receptor with collagenous structure in innate immune tolerance. THE JOURNAL OF IMMUNOLOGY 2013; 190:6360-7. [PMID: 23667110 DOI: 10.4049/jimmunol.1202942] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Macrophages play a key role in host defense against microbes, in part, through phagocytosis. Macrophage receptor with collagenous structure (MARCO) is a scavenger receptor on the cell surface of macrophages that mediates opsonin-independent phagocytosis. The goal of our study is to investigate the role of MARCO in LPS or lipotechoic acid-induced macrophage tolerance. Although it has been established that expression of MARCO and phagocytosis is increased in tolerant macrophages, the transcriptional regulation and biological role of MARCO in tolerant macrophages have not been investigated. In this study, we confirm that tolerized mouse bone marrow-derived macrophages (BMDM) selectively increase expression of MARCO (both transcript and cell surface receptor) and increase phagocytosis. We found that H3K4me3 dynamic modification of a promoter site of MARCO was increased in tolerized BMDM. Blocking methylation by treatment with 5-aza-2'-deoxycytidine resulted in reduced H3K4me3 binding in the promoter of MARCO, decreased expression of MARCO, and impaired phagocytosis in tolerized BMDM. However, 5-aza-2'-deoxycytidine had no effect on the inflammatory component of innate immune tolerance. In aggregate, we found that histone methylation was critical to MARCO expression and phagocytosis in tolerized macrophages, but did not affect the inflammatory component of innate immune tolerance.
Collapse
Affiliation(s)
- Jian Jing
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Ocaña-Morgner C, Götz A, Wahren C, Jessberger R. SWAP-70 restricts spontaneous maturation of dendritic cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:5545-58. [PMID: 23636062 DOI: 10.4049/jimmunol.1203095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Spontaneous maturation observed in dendritic cell (DC) cultures has been linked to their capacity to induce immune responses. Despite several recent studies, the mechanisms and signals triggering spontaneous maturation of DCs are largely unknown. We found that the absence of SWAP-70 causes spontaneous maturation of spleen- and bone marrow-derived DCs and, in vivo, of spleen-resident CD11c(+)CD11b(+)CD8α(-) DCs. Activation markers, cross-presentation of exogenous Ags, and activation of CD8(+) T cells are much increased in Swap-70(-/-) DCs. Spontaneous maturation of Swap-70(-/-) DCs depends on cell-cell contact and does not involve β-catenin signaling. SWAP-70 is known to regulate integrin activity. Signaling through the integrin CD11b (αM) subunit increases spontaneous maturation of wild-type (wt), but not of Swap-70(-/-) DCs. Signaling through the CD18 (β2) subunit decreases spontaneous maturation of wt and Swap-70(-/-) DCs. Constitutive activation of RhoA in Swap-70(-/-) DCs was determined as a key mechanism causing the increased spontaneous maturation. Inhibition of RhoA early, but not late, in the activation process reduces spontaneous maturation in Swap-70(-/-) DCs to wt levels. Inhibition of RhoA activation during CD11b integrin activation had a significant effect only in Swap-70(-/-) but not in wt DCs. Together, our data suggest that integrin-mediated spontaneous maturation of wt DCs does not depend on active RhoA, whereas the increase in spontaneous maturation of Swap-70(-/-) DCs is supported by integrin CD11b and by hyperactive RhoA. Thus, SWAP-70 deficiency reveals two pathways that contribute to spontaneous maturation of DCs.
Collapse
Affiliation(s)
- Carlos Ocaña-Morgner
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, D-01307 Dresden, Germany.
| | | | | | | |
Collapse
|
161
|
Abstract
The actin-binding protein filamins (FLNs) are major organizers of the actin cytoskeleton. They control the elasticity and stiffness of the actin network and provide connections with the extracellular microenvironment by anchoring transmembrane receptors to the actin filaments. Although numerous studies have revealed the importance of FLN levels, relatively little is known about the regulation of its stability in physiological relevant settings. Here, we show that the ASB2α cullin 5-ring E3 ubiquitin ligase is highly expressed in immature dendritic cells (DCs) and is down-regulated after DC maturation. We further demonstrate that FLNs are substrates of ASB2α in immature DCs and therefore are not stably expressed in these cells, whereas they exhibit high levels of expression in mature DCs. Using ASB2 conditional knockout mice, we show that ASB2α is a critical regulator of cell spreading and podosome rosette formation in immature DCs. Furthermore, we show that ASB2(-/-) immature DCs exhibit reduced matrix-degrading function leading to defective migration. Altogether, our results point to ASB2α and FLNs as newcomers in DC biology.
Collapse
|
162
|
Leone D. LAMP-2, a potential novel receptor on human monocytes derived dendritic cells (MDDC). Presse Med 2013. [DOI: 10.1016/j.lpm.2013.02.260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
163
|
Nierkens S, Tel J, Janssen E, Adema GJ. Antigen cross-presentation by dendritic cell subsets: one general or all sergeants? Trends Immunol 2013; 34:361-70. [PMID: 23540650 DOI: 10.1016/j.it.2013.02.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/17/2013] [Accepted: 02/21/2013] [Indexed: 12/27/2022]
Abstract
Antigen cross-presentation describes the process through which dendritic cells (DCs) acquire exogenous antigens for presentation on MHC class I molecules. The ability to cross-present has been thought of as a feature of specialized DC subsets. Emerging data, however, suggest that the cross-presenting ability of each DC subset is tuned by and dependent on several factors, such as DC location and activation status, and the type of antigen and inflammatory signals. Thus, we argue that capacity of cross-presentation is not an exclusive trait of one or several distinct DC subtypes, but rather a common feature of the DC family in both mice and humans. Understanding DC subset activation and antigen-presentation pathways might yield improved tools and targets to exploit the unique cross-presenting capacity of DCs in immunotherapy.
Collapse
Affiliation(s)
- Stefan Nierkens
- Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Tumor Immunology Laboratory, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
164
|
Götz A, Jessberger R. Dendritic cell podosome dynamics does not depend on the F-actin regulator SWAP-70. PLoS One 2013; 8:e60642. [PMID: 23544157 PMCID: PMC3609734 DOI: 10.1371/journal.pone.0060642] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/01/2013] [Indexed: 01/02/2023] Open
Abstract
In addition to classical adhesion structures like filopodia or focal adhesions, dendritic cells similar to macrophages and osteoclasts assemble highly dynamic F-actin structures called podosomes. They are involved in cellular processes such as extracellular matrix degradation, bone resorption by osteoclasts, and trans-cellular diapedesis of lymphocytes. Besides adhesion and migration, podosomes enable dendritic cells to degrade connective tissue by matrix metalloproteinases. SWAP-70 interacts with RhoGTPases and F-actin and regulates migration of dendritic cells. SWAP-70 deficient osteoclasts are impaired in F-actin-ring formation and bone resorption. In the present study, we demonstrate that SWAP-70 is not required for podosome formation and F-actin turnover in dendritic cells. Furthermore, we found that toll-like receptor 4 ligand induced podosome disassembly and podosome-mediated matrix degradation is not affected by SWAP-70 in dendritic cells. Thus, podosome formation and function in dendritic cells is independent of SWAP-70.
Collapse
Affiliation(s)
- Anne Götz
- Faculty of Medicine Carl Gustav Carus, Institute of Physiological Chemistry, Dresden University of Technology, Dresden, Germany
| | - Rolf Jessberger
- Faculty of Medicine Carl Gustav Carus, Institute of Physiological Chemistry, Dresden University of Technology, Dresden, Germany
| |
Collapse
|
165
|
Bosch B, Heipertz EL, Drake JR, Roche PA. Major histocompatibility complex (MHC) class II-peptide complexes arrive at the plasma membrane in cholesterol-rich microclusters. J Biol Chem 2013; 288:13236-42. [PMID: 23532855 DOI: 10.1074/jbc.m112.442640] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Antigen-specific CD4 T cells are activated by small numbers of antigenic peptide-MHC class II (pMHC-II) complexes on dendritic cells (DCs). RESULTS Newly generated pMHC-II complexes are present in small clusters on the DC surface. CONCLUSION pMHC-II clusters permit efficient T cell activation. SIGNIFICANCE The appearance of clustered pMHC-II reveals the organization of the T cell antigen receptor ligand on the DC surface. Dendritic cells (DCs) function by stimulating naive antigen-specific CD4 T cells to proliferate and secrete a variety of immunomodulatory factors. The ability to activate naive T cells comes from the capacity of DCs to internalize, degrade, and express peptide fragments of antigenic proteins on their surface bound to MHC class II molecules (MHC-II). Although DCs express tens of thousands of distinct MHC-II, very small amounts of specific peptide-MHC-II complexes are required to interact with and activate T cells. We now show that stimulatory MHC-II I-A(k)-HEL(46-61) complexes that move from intracellular antigen-processing compartments to the plasma membrane are not randomly distributed on the DC surface. Confocal immunofluorescence microscopy and quantitative immunoelectron microscopy reveal that the majority of newly generated MHC-II I-A(k)-HEL(46-61) complexes are expressed in sub-100-nm microclusters on the DC membrane. These microclusters are stabilized in cholesterol-containing microdomains, and cholesterol depletion inhibits the stability of these clusters as well as the ability of the DCs to function as antigen-presenting cells. These results demonstrate that specific cohorts of peptide-MHC-II complexes expressed on the DC surface are present in cholesterol-dependent microclusters and that cluster integrity is important for antigen-specific naive CD4 T cell activation by DCs.
Collapse
Affiliation(s)
- Berta Bosch
- Experimental Immunology Branch, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
166
|
Matsushima H, Geng S, Lu R, Okamoto T, Yao Y, Mayuzumi N, Kotol PF, Chojnacki BJ, Miyazaki T, Gallo RL, Takashima A. Neutrophil differentiation into a unique hybrid population exhibiting dual phenotype and functionality of neutrophils and dendritic cells. Blood 2013; 121:1677-89. [PMID: 23305731 PMCID: PMC3591793 DOI: 10.1182/blood-2012-07-445189] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 12/20/2012] [Indexed: 12/13/2022] Open
Abstract
Neutrophils have been reported to acquire surface expression of MHC class II and co-stimulatory molecules as well as T-cell stimulatory activities when cultured with selected cytokines. However, cellular identity of those unusual neutrophils showing antigen presenting cell (APC)-like features still remains elusive. Here we show that both immature and mature neutrophils purified from mouse bone marrow differentiate into a previously unrecognized "hybrid" population showing dual properties of both neutrophils and dendritic cells (DCs) when cultured with granulocyte macrophage-colony-stimulating factor but not with other tested growth factors. The resulting hybrid cells express markers of both neutrophils (Ly6G, CXCR2, and 7/4) and DCs (CD11c, MHC II, CD80, and CD86). They also exhibit several properties typically reserved for DCs, including dendritic morphology, probing motion, podosome formation, production of interleukin-12 and other cytokines, and presentation of various forms of foreign protein antigens to naïve CD4 T cells. Importantly, they retain intrinsic abilities of neutrophils to capture exogenous material, extrude neutrophil extracellular traps, and kill bacteria via cathelicidin production. Not only do our results reinforce the notion that neutrophils can acquire APC-like properties, they also unveil a unique differentiation pathway of neutrophils into neutrophil-DC hybrids that can participate in both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Hironori Matsushima
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Abstract
Dendritic cells (DCs) are specialized sentinels responsible for coordinating adaptive immunity. This function is dependent upon coupled sensitivity to environmental signs of inflammation and infection to cellular maturation-the programmed alteration of DC phenotype and function to enhance immune cell activation. Although DCs are thus well equipped to respond to pathogens, maturation triggers are not unique to infection. Given that immune cells are exquisitely sensitive to the biological functions of DCs, we now appreciate that multiple layers of suppression are required to restrict the environmental sensitivity, cellular maturation, and even life span of DCs to prevent aberrant immune activation during the steady state. At the same time, steady-state DCs are not quiescent but rather perform key functions that support homeostasis of numerous cell types. Here we review these functions and molecular mechanisms of suppression that control steady-state DC maturation. Corruption of these steady-state operatives has diverse immunological consequences and pinpoints DCs as potent drivers of autoimmune and inflammatory disease.
Collapse
Affiliation(s)
- Gianna Elena Hammer
- Department of Medicine, University of California, San Francisco, California 94143
| | - Averil Ma
- Department of Medicine, University of California, San Francisco, California 94143
| |
Collapse
|
168
|
Abstract
T cell recognition of antigen-presenting cells depends on their expression of a spectrum of peptides bound to major histocompatibility complex class I (MHC-I) and class II (MHC-II) molecules. Conversion of antigens from pathogens or transformed cells into MHC-I- and MHC-II-bound peptides is critical for mounting protective T cell responses, and similar processing of self proteins is necessary to establish and maintain tolerance. Cells use a variety of mechanisms to acquire protein antigens, from translation in the cytosol to variations on the theme of endocytosis, and to degrade them once acquired. In this review, we highlight the aspects of MHC-I and MHC-II biosynthesis and assembly that have evolved to intersect these pathways and sample the peptides that are produced.
Collapse
Affiliation(s)
- Janice S Blum
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | |
Collapse
|
169
|
Sánchez-Barrena MJ, Vallis Y, Clatworthy MR, Doherty GJ, Veprintsev DB, Evans PR, McMahon HT. Bin2 is a membrane sculpting N-BAR protein that influences leucocyte podosomes, motility and phagocytosis. PLoS One 2012; 7:e52401. [PMID: 23285027 PMCID: PMC3527510 DOI: 10.1371/journal.pone.0052401] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/16/2012] [Indexed: 12/14/2022] Open
Abstract
Cell motility, adhesion and phagocytosis are controlled by actin and membrane remodelling processes. Bridging integrator-2 (Bin2) also called Breast cancer-associated protein 1 (BRAP1) is a predicted N-BAR domain containing protein with unknown function that is highly expressed in leucocytic cells. In the present study we solved the structure of Bin2 BAR domain and studied its membrane binding and bending properties in vitro and in vivo. Live-cell imaging experiments showed that Bin2 is associated with actin rich structures on the plasma membrane, where it was targeted through its N-BAR domain. Pull-down experiments and immunoprecipitations showed that Bin2 C-terminus bound SH3 domain containing proteins such as Endophilin A2 and α-PIX. siRNA of endogenous protein led to decreased cell migration, increased phagocytosis and reduced podosome density and dynamics. In contrast, overexpression of Bin2 led to decreased phagocytosis and increased podosome density and dynamics. We conclude that Bin2 is a membrane-sculpting protein that influences podosome formation, motility and phagocytosis in leucocytes. Further understanding of this protein may be key to understand the behaviour of leucocytes under physiological and pathological conditions.
Collapse
Affiliation(s)
| | - Yvonne Vallis
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Menna R. Clatworthy
- Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Gary J. Doherty
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | - Philip R. Evans
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Harvey T. McMahon
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- * E-mail: (HTM); (MJSB)
| |
Collapse
|
170
|
Coughlin MM, Bellini WJ, Rota PA. Contribution of dendritic cells to measles virus induced immunosuppression. Rev Med Virol 2012; 23:126-38. [DOI: 10.1002/rmv.1735] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 10/29/2012] [Accepted: 10/30/2012] [Indexed: 12/19/2022]
Affiliation(s)
- Melissa M. Coughlin
- Centers for Disease Control and Prevention, Measles, Mumps, Rubella and Herpesvirus Laboratory Branch; Atlanta GA USA
| | - William J. Bellini
- Centers for Disease Control and Prevention, Measles, Mumps, Rubella and Herpesvirus Laboratory Branch; Atlanta GA USA
| | - Paul A. Rota
- Centers for Disease Control and Prevention, Measles, Mumps, Rubella and Herpesvirus Laboratory Branch; Atlanta GA USA
| |
Collapse
|
171
|
Gurzell EA, Teague H, Harris M, Clinthorne J, Shaikh SR, Fenton JI. DHA-enriched fish oil targets B cell lipid microdomains and enhances ex vivo and in vivo B cell function. J Leukoc Biol 2012. [PMID: 23180828 DOI: 10.1189/jlb.0812394] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DHA is a n-3 LCPUFA in fish oil that generally suppresses T lymphocyte function. However, the effect of fish oil on B cell function remains relatively understudied. Given the important role of B cells in gut immunity and increasing human fish oil supplementation, we sought to determine whether DFO leads to enhanced B cell activation in the SMAD-/- colitis-prone mouse model, similar to that observed with C57BL/6 mice. This study tested the hypothesis that DHA from fish oil is incorporated into the B cell membrane to alter lipid microdomain clustering and enhance B cell function. Purified, splenic B cells from DFO-fed mice displayed increased DHA levels and diminished GM1 microdomain clustering. DFO enhanced LPS-induced B cell secretion of IL-6 and TNF-α and increased CD40 expression ex vivo compared with CON. Despite increased MHCII expression in the unstimulated ex vivo B cells from DFO-fed mice, we observed no difference in ex vivo OVA-FITC uptake in B cells from DFO or CON mice. In vivo, DFO increased lymphoid tissue B cell populations and surface markers of activation compared with CON. Finally, we investigated whether these ex vivo and in vivo observations were consistent with systemic changes. Indeed, DFO-fed mice had significantly higher plasma IL-5, IL-13, and IL-9 (Th2-biasing cytokines) and cecal IgA compared with CON. These results support the hypothesis and an emerging concept that fish oil enhances B cell function in vivo.
Collapse
Affiliation(s)
- Eric A Gurzell
- Michigan State University, East Lansing, MI 48824-1224, USA.
| | | | | | | | | | | |
Collapse
|
172
|
Watson AM, Mylin LM, Thompson MM, Schell TD. Modification of a tumor antigen determinant to improve peptide/MHC stability is associated with increased immunogenicity and cross-priming a larger fraction of CD8+ T cells. THE JOURNAL OF IMMUNOLOGY 2012; 189:5549-60. [PMID: 23175697 DOI: 10.4049/jimmunol.1102221] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Altered peptide ligands (APLs) with enhanced binding to MHC class I can increase the CD8(+) T cell response to native Ags, including tumor Ags. In this study, we investigate the influence of peptide-MHC (pMHC) stability on recruitment of tumor Ag-specific CD8(+) T cells through cross-priming. Among the four known H-2(b)-restricted CD8(+) T cell determinants within SV40 large tumor Ag (TAg), the site V determinant ((489)QGINNLDNL(497)) forms relatively low-stability pMHC and is characteristically immunorecessive. Absence of detectable site V-specific CD8(+) T cells following immunization with wild-type TAg is due in part to inefficient cross-priming. We mutated nonanchor residues within the TAg site V determinant that increased pMHC stability but preserved recognition by both TCR-transgenic and polyclonal endogenous T cells. Using a novel approach to quantify the fraction of naive T cells triggered through cross-priming in vivo, we show that immunization with TAg variants expressing higher-stability determinants increased the fraction of site V-specific T cells cross-primed and effectively overcame the immunorecessive phenotype. In addition, using MHC class I tetramer-based enrichment, we demonstrate for the first time, to our knowledge, that endogenous site V-specific T cells are primed following wild-type TAg immunization despite their low initial frequency, but that the magnitude of T cell accumulation is enhanced following immunization with a site V variant TAg. Our results demonstrate that site V APLs cross-prime a higher fraction of available T cells, providing a potential mechanism for high-stability APLs to enhance immunogenicity and accumulation of T cells specific for the native determinant.
Collapse
Affiliation(s)
- Alan M Watson
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
173
|
Hopkins RA, Connolly JE. The specialized roles of immature and mature dendritic cells in antigen cross-presentation. Immunol Res 2012; 53:91-107. [PMID: 22450675 DOI: 10.1007/s12026-012-8300-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Exogenous antigen cross-presentation is integral to the stimulation of cytotoxic T-lymphocytes against viruses and tumors. Central to this process are dendritic cells (DCs), which specialize in cross-presentation. DCs may be considered to exist in two radically different states of activation, generally referred to as immature and mature. In each of these states, the cell has a series of separate and specialized abilities for the induction of T-cell immunity. In the immature state, the DC is adept in surveying the periphery, acquiring and storing antigen, but has a limited capacity for direct T-cell activation. During a brief and defined window of time following DC stimulation, nearly every aspect of antigen handling changes, as it transitions from an entity focused on protein preservation to one capable of efficient cross-presentation. It is this time period and the underlying molecular mechanisms active here, which form the core of our studies on cross-presentation.
Collapse
Affiliation(s)
- Richard A Hopkins
- Program in Translational Immunology, Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #03 Immunos, Biopolis, Singapore
| | | |
Collapse
|
174
|
Santander SP, Hernández JF, Barreto CC, Cifuentes B C, Masayuki A, M A, Moins-Teisserenc H, H MT, Fiorentino S. Immunomodulatory effects of aqueous and organic fractions from Petiveria alliacea on human dendritic cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 40:833-44. [PMID: 22809035 DOI: 10.1142/s0192415x12500620] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Petiveria alliacea is a plant traditionally known for its anti-inflammatory and anti-tumor activities; however, the molecular and cellular mechanisms of its immunomodulatory properties are still unknown. Dendritic cells (DC) promote adaptive immune response by activating T lymphocytes, inducing an effector response or tolerance depending on the DC differentiation level. Herein, we evaluated the immunomodulatory activity of aqueous and organic plant fractions from P. alliacea using human monocyte-derived dendritic cells. The phenotype, cytokine secretion and gene expression were estimated after treatment with the plant fractions. We found that P. alliacea aqueous fraction induced morphological changes and co-stimulatory expression of CD86, indicating partial DC maturation. In addition, pro-inflammatory cytokines such as IL-1β, IL-6, IL-8, IL-10, IL-12p70, and TNF-α were secreted. The fraction also increased NF-κB gene expression while down-regulating TGFβ gene expression. These results suggest that the aqueous fraction can induce partial DC activation, a situation that can be relevant in tolerance induction. It is important to state that the organic fraction by itself does not show any immunomodulatory activity. This study provides evidence for possible immunomodulatory activity of P. alliacea extracts which has been used in traditional medicine in Colombia.
Collapse
Affiliation(s)
- Sandra Paola Santander
- Immunology and Cellular Biology Group, Faculty of Sciences, Pontificia Universidad Javeriana Bogotá, Colombia
| | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Frøkiær H, Henningsen L, Metzdorff SB, Weiss G, Roller M, Flanagan J, Fromentin E, Ibarra A. Astragalus root and elderberry fruit extracts enhance the IFN-β stimulatory effects of Lactobacillus acidophilus in murine-derived dendritic cells. PLoS One 2012; 7:e47878. [PMID: 23118903 PMCID: PMC3484152 DOI: 10.1371/journal.pone.0047878] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 09/24/2012] [Indexed: 01/22/2023] Open
Abstract
Many foods and food components boost the immune system, but little data are available regarding the mechanisms by which they do. Bacterial strains have disparate effects in stimulating the immune system. Indendritic cells, the gram-negative bacteria Escherichia coli upregulates proinflammatory cytokines, whereas gram-positive Lactobacillus acidophilus induces a robust interferon (IFN)-β response. The immune-modulating effects of astragalus root and elderberry fruit extracts were examined in bone marrow-derived murine dendritic cells that were stimulated with L. acidophilus or E. coli. IFN-β and other cytokines were measured by ELISA and RT-PCR. Endocytosis of fluorescence-labeled dextran and L. acidophilus in the presence of elderberry fruit or astragalus root extract was evaluated in dendritic cells. Our results show that both extracts enhanced L. acidophilus-induced IFN-β production and slightly decreased the proinflammatory response to E. coli. The enhanced IFN-β production was associated with upregulation of toll-like receptor 3 and to a varying degree, the cytokines IL-12, IL-6, IL-1β and TNF-α. Both extracts increased endocytosis in immature dendritic cells, and only slightly influenced the viability of the cells. In conclusion, astragalus root and elderberry fruit extracts increase the IFN-β inducing activity of L. acidophilus in dendritic cells, suggesting that they may exert antiviral and immune-enhancing activity.
Collapse
Affiliation(s)
- Hanne Frøkiær
- Department of Veterinary Disease Biology, Copenhagen University, Frederiksberg, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Fairman P, Angel JB. The effect of human immunodeficiency virus-1 on monocyte-derived dendritic cell maturation and function. Clin Exp Immunol 2012; 170:101-13. [PMID: 22943206 PMCID: PMC3444722 DOI: 10.1111/j.1365-2249.2012.04628.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2012] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DC) are mediators of the adaptive immune response responsible for antigen presentation to naive T cells in secondary lymph organs. Human immunodeficiency virus (HIV-1) has been reported to inhibit the maturation of DC, but a clear link between maturation and function has not been elucidated. To understand further the effects of HIV-1 on DC maturation and function, we expanded upon previous investigations and assessed the effects of HIV-1 infection on the expression of surface molecules, carbohydrate endocytosis, antigen presentation and lipopolysaccharide (LPS) responsiveness over the course of maturation. In vitro infection with HIV-1 resulted in an increase in the expression of DC-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) as well as decreases in maturation-induced CCR7 and major histocompatibility complex (MHC)-II expression. Retention of endocytosis that normally occurs with DC maturation as well as inhibition of antigen presentation to CD8(+) T cells was also observed. Mitogen-activated protein kinase (MAPK) responsiveness to LPS as measured by phosphorylation of p38, c-Jun N-terminal kinase (JNK) and extracellular-regulated kinase (ERK)1/2 was not affected by HIV-1 infection. In summary, in-vitro HIV-1 impairs DC maturation, as defined by cell surface protein expression, with selective alterations in mature DC function. Understanding the mechanisms of DC dysfunction in HIV infection will provide further insight into HIV immune pathogenesis.
Collapse
Affiliation(s)
- P Fairman
- The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | | |
Collapse
|
177
|
Transient deficiency of dendritic cells results in lack of a merozoite surface protein 1-specific CD4 T cell response during peak Plasmodium chabaudi blood-stage infection. Infect Immun 2012; 80:4248-56. [PMID: 23006847 DOI: 10.1128/iai.00820-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Splenic dendritic cells are crucial for controlling the immune response to malaria by initiating a CD4 gamma interferon (IFN-γ) response early in a blood-stage infection, which contributes to parasite clearance as well as to acute-stage immunopathology. CD8(-) CD11c(high) dendritic cells have been described previously to be important antigen-presenting cells for induction of these CD4 T cell responses in the spleens of Plasmodium chabaudi-infected mice. However, when isolated during the period of maximum parasitemia and shortly thereafter, the dendritic cells transiently lose their ability to stimulate T cells, recovering only as the parasitemia is controlled. This loss of a CD4 T cell response is also observed in vivo during this part of the infection. CD4 T cells from a T cell receptor-transgenic mouse recognizing a peptide of merozoite surface protein 1 (MSP1) injected into BALB/c mice during peak parasitemia proliferate poorly, and very few cells produce IFN-γ and interleukin-2 (IL-2), compared with transgenic T cells injected earlier in the blood-stage infection. CD8(-) dendritic cells at day 10 can process and present peptides on major histocompatibility complex (MHC) class II with an efficiency similar to that of dendritic cells from earlier in infection. The failure of the day 10 dendritic cells to activate MSP1-specific CD4 T cells fully in vitro is associated with reduced expression of CD86 and lower production of IL-12 rather than with induction of inhibitory DC receptors or production of IL-10.
Collapse
|
178
|
Yang L, Feng D, Bi X, Stone RC, Barnes BJ. Monocytes from Irf5-/- mice have an intrinsic defect in their response to pristane-induced lupus. THE JOURNAL OF IMMUNOLOGY 2012; 189:3741-50. [PMID: 22933628 DOI: 10.4049/jimmunol.1201162] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The transcription factor IFN regulatory factor (IRF)5 has been identified as a human systemic lupus erythematosus (SLE) susceptibility gene by numerous joint linkage and genome-wide association studies. Although IRF5 expression is significantly elevated in primary blood cells of SLE patients, it is not yet known how IRF5 contributes to SLE pathogenesis. Recent data from mouse models of lupus indicate a critical role for IRF5 in the production of pathogenic autoantibodies and the expression of Th2 cytokines and type I IFN. In the present study, we examined the mechanisms by which loss of Irf5 protects mice from pristane-induced lupus at early time points of disease development. We demonstrate that Irf5 is required for Ly6C(hi) monocyte trafficking to the peritoneal cavity, which is thought to be one of the initial key events leading to lupus pathogenesis in this model. Chemotaxis assays using peritoneal lavage from pristane-injected Irf5(+/+) and Irf5(-/-) littermates support an intrinsic defect in Irf5(-/-) monocytes. We found the expression of chemokine receptors CXCR4 and CCR2 to be dysregulated on Irf5(-/-) monocytes and less responsive to their respective ligands, CXCL12 and CCL2. Bone marrow reconstitution experiments further supported an intrinsic defect in Irf5(-/-) monocytes because Irf5(+/+) monocytes were preferentially recruited to the peritoneal cavity in response to pristane. Taken together, these findings demonstrate an intrinsic role for IRF5 in the response of monocytes to pristane and their recruitment to the primary site of inflammation that is thought to trigger lupus onset in this experimental model of SLE.
Collapse
Affiliation(s)
- Lisong Yang
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA
| | | | | | | | | |
Collapse
|
179
|
Maaetoft-Udsen K, Vynne N, Heegaard PM, Gram L, Frøkiær H. Pseudoalteromonas strains are potent immunomodulators owing to low-stimulatory LPS. Innate Immun 2012; 19:160-73. [PMID: 22890545 DOI: 10.1177/1753425912455208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many species of marine bacteria elicit a weak immune response. In this study, the aim was to assess the immunomodulatory properties of Gram-negative Pseudoalteromonas strains compared with other marine Gram-negative bacteria and to identify the molecular cause of the immunomodulation. Using murine bone-marrow derived dendritic cells (DCs), it was found that Pseudoalteromonas strains induced low cytokine production and modest up-regulation of surface markers CD40 and CD86 compared with other marine bacteria and Escherichia coli LPS. Two strains, Ps. luteoviolacea and Ps. ruthenica, were further investigated with respect to their immunomodulatory properties in DCs. Both inhibited IL-12 and increased IL-10 production induced by E. coli LPS. LPS isolated from the two Pseudoalteromonas strains had characteristic lipid A bands in SDS-PAGE. Stimulation of HEK293 TLR4/MD2 cells with the isolated LPS confirmed the involvement of LPS and TLR4 and established Pseudoalteromonas LPS as TLR4 antagonists. The isolated LPS was active in the endotoxin limulus amoebocyte lysate assay and capable of inducing increased endocytosis in DCs. This study highlights that antagonistic LPS from Pseudoalteromonas strains has potential as a new candidate of therapeutic agent capable of modulating immune responses.
Collapse
Affiliation(s)
- Kristina Maaetoft-Udsen
- 1Department of Veterinary Disease Biology, Molecular Immunology, Faculty of Health, University of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
180
|
Wen CC, Chen HM, Yang NS. Developing Phytocompounds from Medicinal Plants as Immunomodulators. ADVANCES IN BOTANICAL RESEARCH 2012; 62:197-272. [PMID: 32300254 PMCID: PMC7150268 DOI: 10.1016/b978-0-12-394591-4.00004-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Imbalance or malfunction of the immune systems is associated with a range of chronic diseases including autoimmune diseases, allergies, cancers and others. Various innate and adaptive immune cells that are integrated in this complex networking system may represent promising targets for developing immunotherapeutics for treating specific immune diseases. A spectrum of phytochemicals have been isolated, characterized and modified for development and use as prevention or treatment of human diseases. Many cytotoxic drugs and antibiotics have been developed from phytocompounds, but the application of traditional or new medicinal plants for use as immunomodulators in treating immune diseases is still relatively limited. In this review, a selected group of medicinal herbs, their derived crude or fractionated phytoextracts and the specific phytochemicals/phytocompounds isolated from them, as well as categorized phytocompound groups with specific chemical structures are discussed in terms of their immunomodulatory bioactivities. We also assess their potential for future development as immunomodulatory or inflammation-regulatory therapeutics or agents. New experimental approaches for evaluating the immunomodulatory activities of candidate phytomedicines are also discussed.
Collapse
Affiliation(s)
- Chih-Chun Wen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Hui-Ming Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Department and Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Ning-Sun Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
181
|
Underhill DM, Goodridge HS. Information processing during phagocytosis. Nat Rev Immunol 2012; 12:492-502. [PMID: 22699831 DOI: 10.1038/nri3244] [Citation(s) in RCA: 408] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phagocytosis - the process by which macrophages, dendritic cells and other myeloid phagocytes internalize diverse particulate targets - is a key mechanism of innate immunity. The molecular and cellular events that underlie the binding of targets to a phagocyte and their engulfment into phagosomes have been extensively studied. More recent data suggest that the process of phagocytosis itself provides information to myeloid phagocytes about the nature of the targets they are engulfing and that this helps to tailor inflammatory responses. In this Review, we discuss how such information is acquired during phagocytosis and how it is processed to coordinate an immune response.
Collapse
Affiliation(s)
- David M Underhill
- Inflammatory Bowel & Immunobiology Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8,700 Beverly Boulevard, Los Angeles, California 90048, USA.
| | | |
Collapse
|
182
|
Kagan JC, Iwasaki A. Phagosome as the organelle linking innate and adaptive immunity. Traffic 2012; 13:1053-61. [PMID: 22577865 DOI: 10.1111/j.1600-0854.2012.01377.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/04/2012] [Accepted: 05/11/2012] [Indexed: 12/22/2022]
Abstract
The means by which phagocytosis and antimicrobial defense mechanisms are linked have expanded greatly in recent years. It is now clear that the process of phagocytosis does more than just degrade internalized microbes, but also helps coordinate the actions of the innate and adaptive immune system. This review will discuss the means by which Toll-like receptor signaling pathways are coordinated around the processes of phagocytosis, phagosome trafficking and autophagy and how these signaling pathways influence T-cell-mediated immunity. In this regard, we propose that at the subcellular level, phagosomes represent the smallest definable unit that links innate and adaptive immunity.
Collapse
Affiliation(s)
- Jonathan C Kagan
- Division of Gastroenterology, Harvard Medical School, Children's Hospital Boston, 300 Longwood Ave, Enders 649, Boston, MA 02115, USA.
| | | |
Collapse
|
183
|
Meraz IM, Melendez B, Gu J, Wong STC, Liu X, Andersson HA, Serda RE. Activation of the inflammasome and enhanced migration of microparticle-stimulated dendritic cells to the draining lymph node. Mol Pharm 2012; 9:2049-62. [PMID: 22680980 DOI: 10.1021/mp3001292] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Porous silicon microparticles presenting pathogen-associated molecular patterns mimic pathogens, enhancing internalization of the microparticles and activation of antigen presenting dendritic cells. We demonstrate abundant uptake of microparticles bound by the TLR-4 ligands LPS and MPL by murine bone marrow-derived dendritic cells (BMDC). Labeled microparticles induce concentration-dependent production of IL-1β, with inhibition by the caspase inhibitor Z-VAD-FMK supporting activation of the NLRP3-dependent inflammasome. Inoculation of BALB/c mice with ligand-bound microparticles induces a significant increase in circulating levels of IL-1β, TNF-α, and IL-6. Stimulation of BMDC with ligand-bound microparticles increases surface expression of costimulatory and MHC molecules, and enhances migration of BMDC to the draining lymph node. LPS-microparticles stimulate in vivo C57BL/6 BMDC and OT-1 transgenic T cell interactions in the presence of OVA SIINFEKL peptide in lymph nodes, with intact nodes imaged using two-photon microscopy. Formation of in vivo and in vitro immunological synapses between BMDC, loaded with OVA peptide and LPS-microparticles, and OT-1 T cells are presented, as well as elevated intracellular interferon gamma levels in CD8(+) T cells stimulated by BMDC carrying peptide-loaded microparticles. In short, ligand-bound microparticles enhance (1) phagocytosis of microparticles; (2) BMDC inflammasome activation and upregulation of costimulatory and MHC molecules; (3) cellular migration of BMDC to lymphatic tissue; and (4) cellular interactions leading to T cell activation in the presence of antigen.
Collapse
Affiliation(s)
- Ismail M Meraz
- Department of Nanomedicine and §Department of Systems Medicine and Bioengineering, The Methodist Hospital Research Institute , 6670 Bertner Avenue, Houston, Texas 77030, United States
| | | | | | | | | | | | | |
Collapse
|
184
|
Wagner CS, Grotzke JE, Cresswell P. Intracellular events regulating cross-presentation. Front Immunol 2012; 3:138. [PMID: 22675326 PMCID: PMC3366438 DOI: 10.3389/fimmu.2012.00138] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/14/2012] [Indexed: 01/07/2023] Open
Abstract
Cross-presentation plays a fundamental role in the induction of CD8-T cell immunity. However, although more than three decades have passed since its discovery, surprisingly little is known about the exact mechanisms involved. Here we give an overview of the components involved at different stages of this process. First, antigens must be internalized into the cross-presenting cell. The involvement of different receptors, method of antigen uptake, and nature of the antigen can influence intracellular trafficking and access to the cross-presentation pathway. Once antigens access the endocytic system, different requirements for endosomal/phagosomal processing arise, such as proteolysis and reduction of disulfide bonds. The majority of cross-presented peptides are generated by proteasomal degradation. Therefore, antigens must cross a membrane barrier in a manner analogous to the fate of misfolded proteins in the endoplasmic reticulum (ER) that are retrotranslocated into the cytosol for degradation. Indeed, some components of the ER-associated degradation machinery have been implicated in cross-presentation. Further complicating the matter, endosomal and phagosomal compartments have been suggested as alternative sites to the ER for loading of peptides on major histocompatibility complex class I molecules. Finally, the antigen presenting cells involved, particularly dendritic cell subsets and their state of maturation, influence the efficiency of cross-presentation.
Collapse
Affiliation(s)
- Claudia S Wagner
- Department of Immunobiology, Yale University Medical Center, New Haven, CT, USA
| | | | | |
Collapse
|
185
|
Szteyn K, Yang W, Schmid E, Lang F, Shumilina E. Lipopolysaccharide-sensitive H+ current in dendritic cells. Am J Physiol Cell Physiol 2012; 303:C204-12. [PMID: 22572846 DOI: 10.1152/ajpcell.00059.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dendritic cells (DCs) are the most potent antigen-presenting cells equipped to transport antigens from the periphery to lymphoid tissues and to present them to T cells. Ligation of Toll-like receptor 4 (TLR4), expressed on the DC surface, by lipopolysaccharides (LPS), elements of the Gram-negative bacteria outer wall, induces DC maturation. Initial steps of maturation include stimulation of antigen endocytosis and enhanced reactive oxygen species (ROS) production with eventual downregulation of endocytic capacity in fully matured DCs. ROS production depends on NADPH oxidase (NOX2), the activity of which requires continuous pH and charge compensation. The present study demonstrates, for the first time, the functional expression of voltage-gated proton (Hv1) channels in mouse bone marrow-derived DCs. In whole cell patch-clamp experiments, we recorded Zn(2+) (50 μM)-sensitive outwardly rectifying currents activated upon depolarization, which were highly selective for H(+), with the reversal potential shift of 38 mV per pH unit. The threshold voltage of activation (V(threshold)) was dependent on the pH gradient and was close to the empirically predicted V(threshold) for the Hv1 currents. LPS (1 μg/ml) had bimodal effects on Hv1 channels: acute LPS treatment increased Hv1 channel activity, whereas 24 h of LPS incubation significantly inhibited Hv1 currents and decreased ROS production. Activation of H(+) currents by acute application of LPS was abolished by PKC inhibitor GFX (10 nM). According to electron current measurements, acute LPS application was associated with increased NOX2 activity.
Collapse
Affiliation(s)
- Kalina Szteyn
- Department of Physiology, University of Tübingen, Germany
| | | | | | | | | |
Collapse
|
186
|
Lee WB, Kang JS, Yan JJ, Lee MS, Jeon BY, Cho SN, Kim YJ. Neutrophils Promote Mycobacterial Trehalose Dimycolate-Induced Lung Inflammation via the Mincle Pathway. PLoS Pathog 2012; 8:e1002614. [PMID: 22496642 PMCID: PMC3320589 DOI: 10.1371/journal.ppat.1002614] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 02/15/2012] [Indexed: 11/18/2022] Open
Abstract
Trehalose 6,6'-dimycolate (TDM), a cord factor of Mycobacterium tuberculosis (Mtb), is an important regulator of immune responses during Mtb infections. Macrophages recognize TDM through the Mincle receptor and initiate TDM-induced inflammatory responses, leading to lung granuloma formation. Although various immune cells are recruited to lung granulomas, the roles of other immune cells, especially during the initial process of TDM-induced inflammation, are not clear. In this study, Mincle signaling on neutrophils played an important role in TDM-induced lung inflammation by promoting adhesion and innate immune responses. Neutrophils were recruited during the early stage of lung inflammation following TDM-induced granuloma formation. Mincle expression on neutrophils was required for infiltration of TDM-challenged sites in a granuloma model induced by TDM-coated-beads. TDM-induced Mincle signaling on neutrophils increased cell adherence by enhancing F-actin polymerization and CD11b/CD18 surface expression. The TDM-induced effects were dependent on Src, Syk, and MAPK/ERK kinases (MEK). Moreover, coactivation of the Mincle and TLR2 pathways by TDM and Pam3CSK4 treatment synergistically induced CD11b/CD18 surface expression, reactive oxygen species, and TNFα production by neutrophils. These synergistically-enhanced immune responses correlated with the degree of Mincle expression on neutrophil surfaces. The physiological relevance of the Mincle-mediated anti-TDM immune response was confirmed by defective immune responses in Mincle⁻/⁻ mice upon aerosol infections with Mtb. Mincle-mutant mice had higher inflammation levels and mycobacterial loads than WT mice. Neutrophil depletion with anti-Ly6G antibody caused a reduction in IL-6 and monocyte chemotactic protein-1 expression upon TDM treatment, and reduced levels of immune cell recruitment during the initial stage of infection. These findings suggest a new role of Mincle signaling on neutrophils during anti-mycobacterial responses.
Collapse
MESH Headings
- Adjuvants, Immunologic/adverse effects
- Adjuvants, Immunologic/chemistry
- Adjuvants, Immunologic/pharmacology
- Animals
- CD11b Antigen/genetics
- CD11b Antigen/immunology
- CD11b Antigen/metabolism
- CD18 Antigens/genetics
- CD18 Antigens/immunology
- CD18 Antigens/metabolism
- Cord Factors/adverse effects
- Cord Factors/chemistry
- Cord Factors/pharmacology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/genetics
- Gene Expression Regulation/immunology
- Granuloma, Respiratory Tract/chemically induced
- Granuloma, Respiratory Tract/genetics
- Granuloma, Respiratory Tract/immunology
- Granuloma, Respiratory Tract/metabolism
- Granuloma, Respiratory Tract/pathology
- Lectins, C-Type/genetics
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Lung/immunology
- Lung/metabolism
- Lung/pathology
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Membrane Proteins/metabolism
- Mice
- Mice, Knockout
- Mycobacterium tuberculosis/chemistry
- Mycobacterium tuberculosis/metabolism
- Neutrophil Infiltration/drug effects
- Neutrophil Infiltration/genetics
- Neutrophil Infiltration/immunology
- Neutrophils/immunology
- Neutrophils/metabolism
- Neutrophils/pathology
- Pneumonia/chemically induced
- Pneumonia/genetics
- Pneumonia/immunology
- Pneumonia/metabolism
- Pneumonia/pathology
- Protein Kinases/genetics
- Protein Kinases/immunology
- Protein Kinases/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Signal Transduction/immunology
- Toll-Like Receptor 2/genetics
- Toll-Like Receptor 2/immunology
- Toll-Like Receptor 2/metabolism
- Tuberculosis, Pulmonary/genetics
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/metabolism
- Tuberculosis, Pulmonary/pathology
Collapse
Affiliation(s)
- Wook-Bin Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Ji-Seon Kang
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Ji-Jing Yan
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Myeong Sup Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Bo-Young Jeon
- Department of Microbiology and Institute of Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang-Nae Cho
- Department of Microbiology and Institute of Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Joon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
- Department of Integrated Omics for Biomedical Science, WCU Program of Graduate School, Yonsei University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
187
|
Compeer EB, Flinsenberg TWH, van der Grein SG, Boes M. Antigen processing and remodeling of the endosomal pathway: requirements for antigen cross-presentation. Front Immunol 2012; 3:37. [PMID: 22566920 PMCID: PMC3342355 DOI: 10.3389/fimmu.2012.00037] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 02/16/2012] [Indexed: 12/29/2022] Open
Abstract
Cross-presentation of endocytosed antigen as peptide/class I major histocompatibility complex complexes plays a central role in the elicitation of CD8+ T cell clones that mediate anti-viral and anti-tumor immune responses. While it has been clear that there are specific subsets of professional antigen presenting cells capable of antigen cross-presentation, identification of mechanisms involved is still ongoing. Especially amongst dendritic cells (DC), there are specialized subsets that are highly proficient at antigen cross-presentation. We here present a focused survey on the cell biological processes in the endosomal pathway that support antigen cross-presentation. This review highlights DC-intrinsic mechanisms that facilitate the cross-presentation of endocytosed antigen, including receptor-mediated uptake, maturation-induced endosomal sorting of membrane proteins, dynamic remodeling of endosomal structures and cell surface-directed endosomal trafficking. We will conclude with the description of pathogen-induced deviation of endosomal processing, and discuss how immune evasion strategies pertaining endosomal trafficking may preclude antigen cross-presentation.
Collapse
Affiliation(s)
- Ewoud Bernardus Compeer
- Department of Pediatric Immunology, University Medical Center Utrecht/Wilhelmina Children's Hospital Utrecht, Netherlands
| | | | | | | |
Collapse
|
188
|
Simmons DP, Wearsch PA, Canaday DH, Meyerson HJ, Liu YC, Wang Y, Boom WH, Harding CV. Type I IFN drives a distinctive dendritic cell maturation phenotype that allows continued class II MHC synthesis and antigen processing. THE JOURNAL OF IMMUNOLOGY 2012; 188:3116-26. [PMID: 22371391 DOI: 10.4049/jimmunol.1101313] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Microbial molecules or cytokines can stimulate dendritic cell (DC) maturation, which involves DC migration to lymph nodes and enhanced presentation of Ag to launch T cell responses. Microbial TLR agonists are the most studied inducers of DC maturation, but type I IFN (IFN-I) also promotes DC maturation. In response to TLR stimulation, DC maturation involves a burst of Ag processing with enhanced expression of peptide-class II MHC complexes and costimulator molecules. Subsequently, class II MHC (MHC-II) synthesis and expression in intracellular vacuolar compartments is inhibited, decreasing Ag processing function. This limits presentation to a cohort of Ags kinetically associated with the maturation stimulus and excludes presentation of Ags subsequently experienced by the DC. In contrast, our studies show that IFN-I enhances DC expression of MHC-II and costimulatory molecules without a concomitant inhibition of subsequent MHC-II synthesis and Ag processing. Expression of mRNA for MHC-II and the transcription factor CIITA is inhibited in DCs treated with TLR agonists but maintained in cells treated with IFN-I. After stimulation with IFN-I, MHC-II expression is increased on the plasma membrane but is also maintained in intracellular vacuolar compartments, consistent with sustained Ag processing function. These findings suggest that IFN-I drives a distinctive DC maturation program that enhances Ag presentation to T cells without a shutdown of Ag processing, allowing continued sampling of Ags for presentation.
Collapse
Affiliation(s)
- Daimon P Simmons
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Barnaba V, Paroli M, Piconese S. The ambiguity in immunology. Front Immunol 2012; 3:18. [PMID: 22566903 PMCID: PMC3341998 DOI: 10.3389/fimmu.2012.00018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 02/02/2012] [Indexed: 01/07/2023] Open
Abstract
In the present article, we discuss the various ambiguous aspects of the immune system that render this complex biological network so highly flexible and able to defend the host from different external invaders. This ambiguity stems mainly from the property of the immune system to be both protective and harmful. Immunity cannot be fully protective without producing a certain degree of damage (immunopathology) to the host. The balance between protection and tissue damage is, therefore, critical for the establishment of immune homeostasis and protection. In this review, we will consider as ambiguous, various immunological tactics including: (a) the opposing functions driving immune responses, immune-regulation, and contra-regulation, as well as (b) the phenomenon of chronic immune activation as a result of a continuous cross-presentation of apoptotic T cells by dendritic cells. All these plans participate principally to maintain a state of chronic low-level inflammation during persisting infections, and ultimately to favor the species survival.
Collapse
Affiliation(s)
- Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma Rome, Italy
| | | | | |
Collapse
|
190
|
Ochiel DO, Rossoll RM, Schaefer TM, Wira CR. Effect of oestradiol and pathogen-associated molecular patterns on class II-mediated antigen presentation and immunomodulatory molecule expression in the mouse female reproductive tract. Immunology 2012; 135:51-62. [PMID: 22043860 DOI: 10.1111/j.1365-2567.2011.03512.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cells of the female reproductive tract (FRT) can present antigen to naive and memory T cells. However, the effects of oestrogen, known to modulate immune responses, on antigen presentation in the FRT remain undefined. In the present study, DO11.10 T-cell antigen receptor transgenic mice specific for the class II MHC-restricted ovalbumin (OVA) 323-339 peptide were used to study the effects of oestradiol and pathogen-associated molecular patterns on antigen presentation in the FRT. We report here that oestradiol inhibited antigen presentation of OVA by uterine epithelial cells, uterine stromal cells and vaginal cells to OVA-specific memory T cells. When ovariectomized animals were treated with oestradiol for 1 or 3 days, antigen presentation was decreased by 20-80%. In contrast, incubation with PAMP increased antigen presentation by epithelial cells (Pam(3)Cys), stromal cells (peptidoglycan, Pam(3)Cys) and vaginal cells (Pam(3)Cys). In contrast, CpG inhibited both stromal and vaginal cell antigen presentation. Analysis of mRNA expression by reverse transcription PCR indicated that oestradiol inhibited CD40, CD80 and class II in the uterus and CD40, CD86 and class II in the vagina. Expression in isolated uterine and vaginal cells paralleled that seen in whole tissues. In contrast, oestradiol increased polymeric immunoglobulin receptor mRNA expression in the uterus and decreased it in the vagina. These results indicate that antigen-presenting cells in the uterus and vagina are responsive to oestradiol, which inhibits antigen presentation and co-stimulatory molecule expression. Further, these findings suggest that antigen-presenting cells in the uterus and vagina respond to selected Toll-like receptor agonists with altered antigen presentation.
Collapse
Affiliation(s)
- Daniel O Ochiel
- Department of Physiology and Neurobiology, Dartmouth Medical School, Lebanon, NH 03756-0001, USA
| | | | | | | |
Collapse
|
191
|
Zanoni I, Ostuni R, Marek LR, Barresi S, Barbalat R, Barton GM, Granucci F, Kagan JC. CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell 2012; 147:868-80. [PMID: 22078883 DOI: 10.1016/j.cell.2011.09.051] [Citation(s) in RCA: 690] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 06/21/2011] [Accepted: 09/26/2011] [Indexed: 12/11/2022]
Abstract
The transport of Toll-like Receptors (TLRs) to various organelles has emerged as an essential means by which innate immunity is regulated. While most of our knowledge is restricted to regulators that promote the transport of newly synthesized receptors, the regulators that control TLR transport after microbial detection remain unknown. Here, we report that the plasma membrane localized Pattern Recognition Receptor (PRR) CD14 is required for the microbe-induced endocytosis of TLR4. In dendritic cells, this CD14-dependent endocytosis pathway is upregulated upon exposure to inflammatory mediators. We identify the tyrosine kinase Syk and its downstream effector PLCγ2 as important regulators of TLR4 endocytosis and signaling. These data establish that upon microbial detection, an upstream PRR (CD14) controls the trafficking and signaling functions of a downstream PRR (TLR4). This innate immune trafficking cascade illustrates how pathogen detection systems operate to induce both membrane transport and signal transduction.
Collapse
Affiliation(s)
- Ivan Zanoni
- Harvard Medical School and Division of Gastroenterology, Children's Hospital Boston, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
192
|
The Coxiella burnetii parasitophorous vacuole. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 984:141-69. [PMID: 22711631 DOI: 10.1007/978-94-007-4315-1_8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Coxiella burnetii is a bacterial intracellular parasite of eucaryotic cells that replicates within a membrane-bound compartment, or "parasitophorous vacuole" (PV). With the exception of human macrophages/monocytes, the consensus model of PV trafficking in host cells invokes endolysosomal maturation culminating in lysosome fusion. C. burnetii resists the degradative functions of the vacuole while at the same time exploiting the acidic pH for metabolic activation. While at first glance the mature PV resembles a large phagolysosome, an increasing body of evidence indicates the vacuole is in fact a specialized compartment that is actively modified by the pathogen. Adding to the complexity of PV biogenesis is new data showing vacuole engagement with autophagic and early secretory pathways. In this chapter, we review current knowledge of PV nature and development, and discuss disparate data related to the ultimate maturation state of PV harboring virulent or avirulent C. burnetii lipopolysaccharide phase variants in human mononuclear phagocytes.
Collapse
|
193
|
IFN-α enhances cross-presentation in human dendritic cells by modulating antigen survival, endocytic routing, and processing. Blood 2011; 119:1407-17. [PMID: 22184405 DOI: 10.1182/blood-2011-06-363564] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cross-presentation allows antigen-presenting cells to present exogenous antigens to CD8(+) T cells, playing an essential role in controlling infections and tumor development. IFN-α induces the rapid differentiation of human mono-cytes into dendritic cells, known as IFN-DCs, highly efficient in mediating cross-presentation, as well as the cross-priming of CD8(+) T cells. Here, we have investigated the mechanisms underlying the cross-presentation ability of IFN-DCs by studying the intracellular sorting of soluble ovalbumin and nonstructural-3 protein of hepatitis C virus. Our results demonstrate that, independently from the route and mechanism of antigen entry, IFN-DCs are extraordinarily competent in preserving internalized proteins from early degradation and in routing antigens toward the MHC class-I processing pathway, allowing long-lasting, cross-priming capacity. In IFN-DCs, both early and recycling endosomes function as key compartments for the storage of both antigens and MHC-class I molecules and for proteasome- and transporter-associated with Ag processing-dependent auxiliary cross-presentation pathways. Because IFN-DCs closely resemble human DCs naturally occurring in vivo in response to infections and other danger signals, these findings may have important implications for the design of vaccination strategies in neoplastic or chronic infectious diseases.
Collapse
|
194
|
Abstract
R-Ras is a member of the RAS superfamily of small GTP-binding proteins. The physiologic function of R-Ras has not been fully elucidated. We found that R-Ras is expressed by lymphoid and nonlymphoid tissues and drastically up-regulated when bone marrow progenitors are induced to differentiate into dendritic cells (DCs). To address the role of R-Ras in DC functions, we generated a R-Ras-deficient mouse strain. We found that tumors induced in Rras(-/-) mice formed with shorter latency and attained greater tumor volumes. This finding has prompted the investigation of a role for R-Ras in the immune system. Indeed, Rras(-/-) mice were impaired in their ability to prime allogeneic and antigen-specific T-cell responses. Rras(-/-) DCs expressed lower levels of surface MHC class II and CD86 in response to lipopolysaccharide compared with wild-type DCs. This was correlated with a reduced phosphorylation of p38 and Akt. Consistently, R-Ras-GTP level was increased within 10 minutes of lipopolysaccharide stimulation. Furthermore, Rras(-/-) DCs have attenuated capacity to spread on fibronectin and form stable immunologic synapses with T cells. Altogether, these findings provide the first demonstration of a role for R-Ras in cell-mediated immunity and further expand on the complexity of small G-protein signaling in DCs.
Collapse
|
195
|
Wagner CS, Cresswell P. TLR and nucleotide-binding oligomerization domain-like receptor signals differentially regulate exogenous antigen presentation. THE JOURNAL OF IMMUNOLOGY 2011; 188:686-93. [PMID: 22156493 DOI: 10.4049/jimmunol.1102214] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The effect of dendritic cell (DC) maturation on MHC class II-restricted Ag presentation is well studied, but less is known about the effects of DC maturation on MHC class I-restricted cross-presentation. We investigated the ability of mature DCs to present Ags from cells infected with HSV-1. Pretreatment with pure LPS increased cross-presentation in a manner dependent on both MyD88 and Toll/IL-1R domain-containing adaptor inducing IFN-β, whereas a similar dose of a less pure LPS preparation inhibited cross-presentation. The difference could not be attributed to differences in uptake or phenotypic maturation. The likely contaminant responsible for shutting down cross-presentation is peptidoglycan (PGN). Addition of PGN to pure LPS abrogated its ability to enhance cross-presentation. Direct activation of DCs with PGN inhibited cross-presentation through nucleotide-binding oligomerization domain-like receptor signaling. These results demonstrate that different maturation stimuli can have opposite impacts on the ability of DCs to cross-present viral Ags.
Collapse
Affiliation(s)
- Claudia S Wagner
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
196
|
Colbert JD, Matthews SP, Kos J, Watts C. Internalization of exogenous cystatin F supresses cysteine proteases and induces the accumulation of single-chain cathepsin L by multiple mechanisms. J Biol Chem 2011; 286:42082-42090. [PMID: 21956111 PMCID: PMC3234946 DOI: 10.1074/jbc.m111.253914] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 09/19/2011] [Indexed: 11/23/2022] Open
Abstract
Cystatin F is an unusual member of the cystatin family of protease inhibitors, which is made as an inactive dimer and becomes activated by proteolysis in the endo/lysosome pathway of the immune cells that produce it. However a proportion is secreted and can be taken up and activated by other cells. We show here that cystatin F acquired in this way induces a dramatic accumulation of the single-chain form of cathepsin L (CatL). Cystatin F was observed in the same cellular compartments as CatL and was tightly complexed with CatL as determined by co-precipitation studies. The observed accumulation of single-chain CatL was partly due to cystatin F-mediated inhibition of the putative single-chain to two-chain CatL convertase AEP/legumain and partly to general suppression of cathepsin activity. Thus, cystatin F stabilizes CatL leading to the dramatic accumulation of an inactive complex composed either of the single-chain or two-chain form depending on the capacity of cystatin F to inhibit AEP. Cross-transfer of cystatin F from one cell to another may therefore attenuate potentially harmful effects of excessive CatL activity while paradoxically, inducing accumulation of CatL protein. Finally, we confirmed earlier data (Beers, C., Honey, K., Fink, S., Forbush, K., and Rudensky, A. (2003) J. Exp. Med. 197, 169-179) showing a loss of CatL activity, but not of CatL protein, in macrophages activated with IFNγ. However, we found equivalent loss of CatL activity in wild type and cystatin F-null macrophages suggesting that an inhibitory activity other than cystatin F quenches CatL activity in activated macrophages.
Collapse
Affiliation(s)
- Jeff D Colbert
- Division of Cell Signaling and Immunology, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Stephen P Matthews
- Division of Cell Signaling and Immunology, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Janko Kos
- Faculty of Pharmacy, University of Ljubljana, Askerceva 7, 1000 Ljubljana, Slovenia
| | - Colin Watts
- Division of Cell Signaling and Immunology, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom.
| |
Collapse
|
197
|
Sutherland RM, Londrigan SL, Brady JL, Azher H, Carrington EM, Zhan Y, Vega-Ramos J, Villadangos JA, Lew AM. Shutdown of immunological priming and presentation after in vivo administration of adenovirus. Gene Ther 2011; 19:1095-100. [DOI: 10.1038/gt.2011.187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
198
|
Toll-like receptor 4 activation in cancer progression and therapy. Clin Dev Immunol 2011; 2011:609579. [PMID: 22110526 PMCID: PMC3216292 DOI: 10.1155/2011/609579] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 09/01/2011] [Indexed: 12/12/2022]
Abstract
Cancer immunotherapy has been the focus of intense research since the late 19th century when Coley observed that bacterial components can contribute to cancer regression by eliciting an antitumor immune response. Successful activation and maturation of tumor-specific immune cells is now known to be mediated by bacterial endotoxin, which activates Toll-like receptor 4 (TLR4). TLR4 is expressed on a variety of immune as well as tumor cells, but its activation can have opposing effects. While TLR4 activation can promote antitumor immunity, it can also result in increased tumor growth and immunosuppression. Nevertheless, TLR4 engagement by endotoxin as well as by endogenous ligands represents notable contribution to the outcome of different cancer treatments, such as radiation or chemotherapy. Further research of the role and mechanisms of TLR4 activation in cancer may provide novel antitumor vaccine adjuvants as well as TLR4 inhibitors that could prevent inflammation-induced carcinogenesis.
Collapse
|
199
|
Wenzel J, Held C, Palmisano R, Teufel S, David JP, Wittenberg T, Lang R. Measurement of TLR-Induced Macrophage Spreading by Automated Image Analysis: Differential Role of Myd88 and MAPK in Early and Late Responses. Front Physiol 2011; 2:71. [PMID: 22028692 PMCID: PMC3198511 DOI: 10.3389/fphys.2011.00071] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 09/21/2011] [Indexed: 11/22/2022] Open
Abstract
Sensing of infectious danger by toll-like receptors (TLRs) on macrophages causes not only a reprogramming of the transcriptome but also changes in the cytoskeleton important for cell spreading and motility. Since manual determination of cell contact areas from fluorescence micrographs is very time-consuming and prone to bias, we have developed and tested algorithms for automated measurement of macrophage spreading. The two-step method combines identification of cells by nuclear staining with DAPI and cell surface staining of the integrin CD11b. Automated image analysis correlated very well with manual annotation in resting macrophages and early after stimulation, whereas at later time points the automated cell segmentation algorithm and manual annotation showed slightly larger variation. The method was applied to investigate the impact of genetic or pharmacological inhibition of known TLR signaling components. Deficiency in the adapter protein Myd88 strongly reduced spreading activity at the late time points, but had no impact early after LPS-stimulation. A similar effect was observed upon pharmacological inhibition of MEK1, the kinase activating the mitogen-activated protein kinases (MAPK) ERK1/2, indicating that ERK1/2 mediates Myd88-dependent macrophages spreading. In contrast, macrophages lacking the MAPK p38 were impaired in the initial spreading response but responded normally 8–24 h after stimulation. The dichotomy of p38 and ERK1/2 MAPK effects on early and late macrophage spreading raises the question which of the respective substrate proteins mediate(s) cytoskeletal remodeling and spreading. The automated measurement of cell spreading described here increases the objectivity and greatly reduces the time required for such investigations and is therefore expected to facilitate larger throughput analysis of macrophage spreading, e.g., in siRNA knockdown screens.
Collapse
Affiliation(s)
- Jens Wenzel
- Immunology and Hygiene, Institute of Clinical Microbiology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
200
|
Kruth HS. Receptor-independent fluid-phase pinocytosis mechanisms for induction of foam cell formation with native low-density lipoprotein particles. Curr Opin Lipidol 2011; 22:386-93. [PMID: 21881499 PMCID: PMC4174540 DOI: 10.1097/mol.0b013e32834adadb] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW Because early findings indicated that native low-density lipoprotein (LDL) did not substantially increase macrophage cholesterol content during in-vitro incubations, investigators presumed that LDL must be modified in some way to trigger its uptake by the macrophage. The purpose of this review is to discuss recent findings showing that native unmodified LDL can induce massive macrophage cholesterol accumulation mimicking macrophage foam cell formation that occurs within atherosclerotic plaques. RECENT FINDINGS Macrophages that show high rates of fluid-phase pinocytosis also show similar high rates of uptake of native unmodified LDL through nonreceptor mediated uptake within both macropinosomes and micropinosomes. Nonsaturable fluid-phase uptake of LDL by macrophages converts the macrophages into foam cells. Different macrophage phenotypes demonstrate either constitutive fluid-phase pinocytosis or inducible fluid-phase pinocytosis. Fluid-phase pinocytosis has been demonstrated by macrophages within mouse atherosclerotic plaques indicating that this pathway contributes to plaque macrophage cholesterol accumulation. SUMMARY Contrary to what has been believed previously, macrophages can take up large amounts of native unmodified LDL by receptor-independent, fluid-phase pinocytosis converting these macrophages into foam cells. Thus, targeting macrophage fluid-phase pinocytosis should be considered when investigating strategies to limit macrophage cholesterol accumulation in atherosclerotic plaques.
Collapse
Affiliation(s)
- Howard S Kruth
- Section of Experimental Atherosclerosis, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland 20892-1422, USA.
| |
Collapse
|