151
|
Molina-Henao EH, Graffe MY, De La Cadena EP, Serrato IM, Correa A, Romero LV, Caicedo PA, Ocampo CB. Culturable microbial composition in the midgut of Aedes aegypti strains with different susceptibility to dengue-2 virus infection. Symbiosis 2019. [DOI: 10.1007/s13199-019-00646-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
152
|
Xiong W, Gao S, Mao J, Wei L, Xie J, Liu J, Bi J, Song X, Li B. CYP4BN6 and CYP6BQ11 mediate insecticide susceptibility and their expression is regulated by Latrophilin in Tribolium castaneum. PEST MANAGEMENT SCIENCE 2019; 75:2744-2755. [PMID: 30788896 DOI: 10.1002/ps.5384] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 02/01/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Many insect cytochrome P450 proteins (CYPs) are involved in the metabolic detoxification of exogenous compounds such as plant toxins and insecticides. Tribolium castaneum, the red flour beetle, is a major agricultural pest that damages stored grains and cereal products. With the completion of the sequencing of its genome, two T. castaneum species-specific CYP genes, CYP4BN6, and CYP6BQ11, were identified. However, it is unknown whether the functions of most CYPs are shared by TcCYP4BN6 and TcCYP6BQ11, and the upstream regulatory mechanism of these two CYPs remains elusive. RESULTS QRT-PCR analysis indicated that TcCYP4BN6 and TcCYP6BQ11 were both most highly expressed at the late pupal stage and were mainly observed in the head and gut, respectively, of adults. Moreover, the transcripts of these two CYPs were significantly induced by dichlorvos and carbofuran, and RNA interference (RNAi) targeting of each of them enhanced the susceptibility of beetles to these two insecticides. Intriguingly, knockdown of the latrophilin (lph) gene, which has been reported to be related to the insecticide susceptibility, reduced the expression of TcCYP4BN6 and TcCYP6BQ11 after insecticide treatment, suggesting that these two CYP genes are regulated by lph to participate in insecticide susceptibility in T. castaneum. CONCLUSION These results shed new light on the function and mechanism of CYP genes associated with insecticide susceptibility and could facilitate research on appropriate and sustainable pest control management. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenfeng Xiong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shanshan Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Jinjuan Mao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Luting Wei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jia Xie
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Juanjuan Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jingxiu Bi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaowen Song
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
153
|
Saavedra‐Rodriguez K, Campbell CL, Lenhart A, Penilla P, Lozano‐Fuentes S, Black WC. Exome-wide association of deltamethrin resistance in Aedes aegypti from Mexico. INSECT MOLECULAR BIOLOGY 2019; 28:591-604. [PMID: 30758862 PMCID: PMC6766855 DOI: 10.1111/imb.12575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Aedes aegypti is the major vector of a number of arboviruses that cause disease in humans. Without vaccines or pharmaceuticals, pyrethroid insecticides remain the major tool for public health protection. Pyrethroid resistance is now widespread. Replacement substitutions in the voltage-gated sodium channel (vgsc) that reduce the stability of pyrethroid binding account for most of the resistance, but metabolic mechanisms also inactivate pyrethroids. High-throughput sequencing and the A. aegypti L5 annotated physical map has allowed interrogation of the exome for genes and single-nucleotide polymorphisms associated with pyrethroid resistance. We exposed females of A. aegypti from Mexico to a deltamethrin discriminating dose to designate them as resistant (active after 1 h) or susceptible (knocked down with no recovery after 4 h). The vgsc on chromosome 3 had the highest association, followed by genes proximal to vgsc. We identified potential detoxification genes located singly (eg HPX8C) or within clusters in chromosome 2 [three esterase clusters, two of cytochrome P450 monooxygenases (CYP)] and chromosome 3 (one cluster of 16 CYP325 and seven CYP9 genes). Deltamethrin resistance in A. aegypti is associated with mutations in the vgsc gene and a large assortment of genes.
Collapse
Affiliation(s)
- K. Saavedra‐Rodriguez
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsCOUSA
| | - C. L. Campbell
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsCOUSA
| | - A. Lenhart
- Division of Parasitic Diseases and MalariaCenter for Global Health, Centers for Disease Control and PreventionAtlantaGAUSA
| | - P. Penilla
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsCOUSA
- Division of Parasitic Diseases and MalariaCenter for Global Health, Centers for Disease Control and PreventionAtlantaGAUSA
| | - S. Lozano‐Fuentes
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsCOUSA
| | - W. C. Black
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsCOUSA
| |
Collapse
|
154
|
Wang Y, White MM, Moncalvo JM. Diversification of the gut fungi Smittium and allies (Harpellales) co-occurred with the origin of complete metamorphosis of their symbiotic insect hosts (lower Diptera). Mol Phylogenet Evol 2019; 139:106550. [DOI: 10.1016/j.ympev.2019.106550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 05/30/2019] [Accepted: 06/28/2019] [Indexed: 01/26/2023]
|
155
|
Identification of Aethina tumida Kir Channels as Putative Targets of the Bee Venom Peptide Tertiapin Using Structure-Based Virtual Screening Methods. Toxins (Basel) 2019; 11:toxins11090546. [PMID: 31546848 PMCID: PMC6784217 DOI: 10.3390/toxins11090546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 11/16/2022] Open
Abstract
Venoms are comprised of diverse mixtures of proteins, peptides, and small molecules. Identifying individual venom components and their target(s) with mechanism of action is now attainable to understand comprehensively the effectiveness of venom cocktails and how they collectively function in the defense and predation of an organism. Here, structure-based computational methods were used with bioinformatics tools to screen and identify potential biological targets of tertiapin (TPN), a venom peptide from Apis mellifera (European honey bee). The small hive beetle (Aethina tumida (A. tumida)) is a natural predator of the honey bee colony and was found to possess multiple inwardly rectifying K+ (Kir) channel subunit genes from a genomic BLAST search analysis. Structure-based virtual screening of homology modelled A. tumida Kir (atKir) channels found TPN to interact with a docking profile and interface “footprint” equivalent to known TPN-sensitive mammalian Kir channels. The results support the hypothesis that atKir channels, and perhaps other insect Kir channels, are natural biological targets of TPN that help defend the bee colony from infestations by blocking K+ transport via atKir channels. From these in silico findings, this hypothesis can now be subsequently tested in vitro by validating atKir channel block as well as in vivo TPN toxicity towards A. tumida. This study highlights the utility and potential benefits of screening in virtual space for venom peptide interactions and their biological targets, which otherwise would not be feasible.
Collapse
|
156
|
|
157
|
Valdés López JF, Velilla PA, Urcuqui-Inchima S. Chikungunya Virus and Zika Virus, Two Different Viruses Examined with a Common Aim: Role of Pattern Recognition Receptors on the Inflammatory Response. J Interferon Cytokine Res 2019; 39:507-521. [DOI: 10.1089/jir.2019.0058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
| | - Paula Andrea Velilla
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
158
|
Wang X, Zhang Y, Qiao L, Chen B. Comparative analyses of simple sequence repeats (SSRs) in 23 mosquito species genomes: Identification, characterization and distribution (Diptera: Culicidae). INSECT SCIENCE 2019; 26:607-619. [PMID: 29484820 PMCID: PMC7379697 DOI: 10.1111/1744-7917.12577] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 01/20/2018] [Accepted: 01/24/2018] [Indexed: 05/28/2023]
Abstract
Simple sequence repeats (SSRs) exist in both eukaryotic and prokaryotic genomes and are the most popular genetic markers, but the SSRs of mosquito genomes are still not well understood. In this study, we identified and analyzed the SSRs in 23 mosquito species using Drosophila melanogaster as reference at the whole-genome level. The results show that SSR numbers (33 076-560 175/genome) and genome sizes (574.57-1342.21 Mb) are significantly positively correlated (R2 = 0.8992, P < 0.01), but the correlation in individual species varies in these mosquito species. In six types of SSR, mono- to trinucleotide SSRs are dominant with cumulative percentages of 95.14%-99.00% and densities of 195.65/Mb-787.51/Mb, whereas tetra- to hexanucleotide SSRs are rare with 1.12%-4.22% and 3.76/Mb-40.23/Mb. The (A/T)n, (AC/GT)n and (AGC/GCT)n are the most frequent motifs in mononucleotide, dinucleotide and trinucleotide SSRs, respectively, and the motif frequencies of tetra- to hexanucleotide SSRs appear to be species-specific. The 10-20 bp length of SSRs are dominant with the number of 110 561 ± 93 482 and the frequency of 87.25% ± 5.73% on average, and the number and frequency decline with the increase of length. Most SSRs (83.34% ± 7.72%) are located in intergenic regions, followed by intron regions (11.59% ± 5.59%), exon regions (3.74% ± 1.95%), and untranslated regions (1.32% ± 1.39%). The mono-, di- and trinucleotide SSRs are the main SSRs in both gene regions (98.55% ± 0.85%) and exon regions (99.27% ± 0.52%). An average of 42.52% of total genes contains SSRs, and the preference for SSR occurrence in different gene subcategories are species-specific. The study provides useful insights into the SSR diversity, characteristics and distribution in 23 mosquito species of genomes.
Collapse
Affiliation(s)
- Xiao‐Ting Wang
- Chongqing Key Laboratory of Vector Insects; Chongqing Key Laboratory of Animal Biology; Institute of Entomology and Molecular BiologyChongqing Normal UniversityChongqingChina
| | - Yu‐Juan Zhang
- Chongqing Key Laboratory of Vector Insects; Chongqing Key Laboratory of Animal Biology; Institute of Entomology and Molecular BiologyChongqing Normal UniversityChongqingChina
| | - Liang Qiao
- Chongqing Key Laboratory of Vector Insects; Chongqing Key Laboratory of Animal Biology; Institute of Entomology and Molecular BiologyChongqing Normal UniversityChongqingChina
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects; Chongqing Key Laboratory of Animal Biology; Institute of Entomology and Molecular BiologyChongqing Normal UniversityChongqingChina
| |
Collapse
|
159
|
Lule-Chávez AN, Avila EE, González-de-la-Vara LE, Salas-Marina MA, Ibarra JE. Detrimental Effects of Induced Antibodies on Aedes aegypti Reproduction. NEOTROPICAL ENTOMOLOGY 2019; 48:706-716. [PMID: 30941675 DOI: 10.1007/s13744-019-00678-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Aedes aegypti (Linnaeus) (Diptera: Culicidae) is the main vector of viruses causing dengue, chikungunya, Zika, and yellow fever, worldwide. This report focuses on immuno-blocking four critical proteins in the female mosquito when fed on blood containing antibodies against ferritin, transferrin, one amino acid transporter (NAAT1), and acetylcholinesterase (AchE). Peptides from these proteins were selected, synthetized, conjugated to carrier proteins, and used as antigens to immunize New Zealand rabbits. After rabbits were immunized, a minimum of 20 female mosquitos were fed on each rabbit, per replicate. No effect in their viability was observed after blood-feeding; however, the number of infertile females was 20% higher than the control when fed on AchE-immunized rabbits. The oviposition period was significantly longer in females fed on immunized rabbits than those fed on control (non-immunized) rabbits. Fecundity (eggs/female) of treated mosquitoes was significantly reduced (about 50%) in all four treatments, as compared with the control. Fertility (hatched larvae) was also significantly reduced in all four treatments, as compared with the control, being the effect on AchE and transferrin the highest, by reducing hatching between 70 and 80%. Survival to the adult stage of the hatched larvae showed no significant effect, as more than 95% survival was observed in all treatments, including the control. In conclusion, immuno-blocking of these four proteins caused detrimental effects on the mosquito reproduction, being the effect on AchE the most significant.
Collapse
Affiliation(s)
- A N Lule-Chávez
- Depto de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Gto., Mexico
| | - E E Avila
- Depto de Biología, Univ de Guanajuato, Guanajuato, Gto., Mexico
| | - L E González-de-la-Vara
- Depto de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Gto., Mexico
| | - M A Salas-Marina
- Depto de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Gto., Mexico
| | - J E Ibarra
- Depto de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Gto., Mexico.
| |
Collapse
|
160
|
Caicedo PA, Serrato IM, Sim S, Dimopoulos G, Coatsworth H, Lowenberger C, Ocampo CB. Immune response-related genes associated to blocking midgut dengue virus infection in Aedes aegypti strains that differ in susceptibility. INSECT SCIENCE 2019; 26:635-648. [PMID: 29389079 DOI: 10.1111/1744-7917.12573] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/19/2017] [Accepted: 01/15/2018] [Indexed: 06/07/2023]
Abstract
Aedes (Stegomyia) aegypti, the principal global vector of dengue viruses, has differences in its susceptibility to dengue virus infection. We compared the global expression of genes in the midguts of Colombian Ae. aegypti dengue-susceptible (Cali-S) and dengue-refractory (Cali-MIB) field derived strains after ingesting either a sugarmeal, a bloodmeal, or a bloodmeal containing dengue virus serotype 2 (DENV-2). Microarray-based transcriptome analysis among treatments indicated a total of 4725 transcripts with differential expression between the two strains. Eleven genes were selected from different functional groups based on their significant up or down expression levels as well as reports in the literature suggesting they are associated with dengue virus elimination. We measured mRNA abundance of these 11 genes at 0, 8, 24, and 36 h postinfection using quantitative real time PCR (qPCR) to confirm the microarray results and assess any temporal patterns. Four genes were selected (Gram-negative binding protein-GNBP [AAEL009176], Niemann Pick Type-C2-NPC2 [AAEL015136], Keratinocyte lectin [AAEL009842], and Cathepsin-b [AAEL007585]) for knockdown experiments using RNA interference (RNAi) methodology to determine the phenotype (DENV-2 susceptible or refractory). Silencing GNBP, Cathepsin-b and Keratinocyte lectin reduced the percentage of mosquitoes with disseminated virus in the Cali-S strain to 8%, 20%, and 12% respectively compared with 96% in the controls. Silencing of NPC2 increased the percentage of mosquitos with disseminated virus infections in Cali-MIB to 66% compared with 35% in the controls. This study provides insight into genes that may contribute to the Cali-S susceptible and Cali-MIB refractory phenotypes in Ae. aegypti.
Collapse
Affiliation(s)
- Paola A Caicedo
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Idalba Mildred Serrato
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Shuzhen Sim
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Heather Coatsworth
- Department of Biological Sciences, Simon Fraser University, Burnaby, Canada
| | - Carl Lowenberger
- Department of Biological Sciences, Simon Fraser University, Burnaby, Canada
| | - Clara B Ocampo
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| |
Collapse
|
161
|
Garczynski SF, Hendrickson CA, Harper A, Unruh TR, Dhingra A, Ahn SJ, Choi MY. Neuropeptides and peptide hormones identified in codling moth, Cydia pomonella (Lepidoptera: Tortricidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 101:e21587. [PMID: 31271487 DOI: 10.1002/arch.21587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/19/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
The codling moth, Cydia pomonella, is a worldwide pest of pome fruits. Neuropeptides regulate most physiological functions in insects and represent new targets for the development of control agents. The only neuropeptides reported from the codling moth to date are the allatostatin A family peptides. To identify other neuropeptides and peptide hormones from codling moth, we analyzed head transcriptomes, identified 50 transcripts, and predicted 120 prepropeptides for the codling moth neuropeptides and peptide hormones. All transcripts were amplified, and these sequences were verified. One of the notable findings in this study is that diapause hormones (DHs) reported from Tortricid moths, including the codling moth, do not have the WFGPRL sequence in C-terminal ends in the pban genes. The C-terminal motif is critical to characterize insect DH peptides, and always conserved in pban/dh genes in Lepidoptera and many insect orders. Interestingly, the WFGPRL sequence was produced only from the capa gene in the codling moth. The allatostatin A-family encoding transcript predicted nine peptides, seven of which, as expected, are identical to those previously isolated from the moth. We also identified new codling moth orthologs of insect neuropeptides including CCHamides, allatostatin CC, RYamides, and natalisins. The information provided in this study will benefit future codling moth investigations using peptidoproteomics to determine peptide presence and functions.
Collapse
Affiliation(s)
| | | | - Artemus Harper
- Department of Horticulture, Washington State University, Pullman, Washington
| | - Thomas R Unruh
- Yakima Agricultural Research Laboratory, USDA-ARS, Wapato, Washington
| | - Amit Dhingra
- Department of Horticulture, Washington State University, Pullman, Washington
| | - Seung-Joon Ahn
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon
- Horticultural Crops Research Unit, USDA-ARS, Corvallis, Oregon
| | - Man-Yeon Choi
- Horticultural Crops Research Unit, USDA-ARS, Corvallis, Oregon
| |
Collapse
|
162
|
Henrique MO, Neto LS, Assis JB, Barros MS, Capurro ML, Lepique AP, Fonseca DM, Sá-Nunes A. Evaluation of inflammatory skin infiltrate following Aedes aegypti bites in sensitized and non-sensitized mice reveals saliva-dependent and immune-dependent phenotypes. Immunology 2019; 158:47-59. [PMID: 31315156 DOI: 10.1111/imm.13096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/12/2019] [Accepted: 06/12/2019] [Indexed: 12/19/2022] Open
Abstract
During probing and blood feeding, haematophagous mosquitoes inoculate a mixture of salivary molecules into their vertebrate hosts' skin. In addition to the anti-haemostatic and immunomodulatory activities, mosquito saliva also triggers acute inflammatory reactions, especially in sensitized hosts. Here, we characterize the oedema and the cellular infiltrate following Aedes aegypti mosquito bites in the skin of sensitized and non-sensitized BALB/c mice by flow cytometry. Ae. aegypti bites induced an increased oedema in the ears of both non-sensitized and salivary gland extract- (SGE-)sensitized mice, peaking at 6 hr and 24 hr after exposure, respectively. The quantification of the total cell number in the ears revealed that the cellular recruitment was more robust in SGE-sensitized mice than in non-sensitized mice, and the histological evaluation confirmed these findings. The immunophenotyping performed by flow cytometry revealed that mosquito bites were able to produce complex changes in cell populations present in the ears of non-sensitized and SGE-sensitized mice. When compared with steady-state ears, the leucocyte populations significantly recruited to the skin after mosquito bites in non-sensitized and sensitized mice were eosinophils, neutrophils, monocytes, inflammatory monocytes, mast cells, B-cells and CD4+ T-cells, each one with its specific kinetics. The changes in the absolute number of cells suggested two cell recruitment profiles: (i) a saliva-dependent migration; and (ii) a migration dependent on the immune status of the host. These findings suggest that mosquito bites influence the skin microenvironment by inducing differential cell migration, which is dependent on the degree of host sensitization to salivary molecules.
Collapse
Affiliation(s)
- Maressa O Henrique
- Laboratório de Imunologia Experimental, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Leila S Neto
- Laboratório de Imunologia Experimental, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Josiane B Assis
- Laboratório de Imunologia Experimental, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Michele S Barros
- Laboratório de Imunologia Experimental, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Margareth L Capurro
- Laboratório de Mosquitos Geneticamente Modificados, Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Conselho Nacional de Desenvolvimento Científico e Tecnológico (INCT-EM/CNPq), Rio de Janeiro, RJ, Brazil
| | - Ana P Lepique
- Laboratório de Imunomodulação, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Denise M Fonseca
- Laboratório de Imunologia de Mucosas, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Anderson Sá-Nunes
- Laboratório de Imunologia Experimental, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Conselho Nacional de Desenvolvimento Científico e Tecnológico (INCT-EM/CNPq), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
163
|
Liu J, Swevers L, Kolliopoulou A, Smagghe G. Arboviruses and the Challenge to Establish Systemic and Persistent Infections in Competent Mosquito Vectors: The Interaction With the RNAi Mechanism. Front Physiol 2019; 10:890. [PMID: 31354527 PMCID: PMC6638189 DOI: 10.3389/fphys.2019.00890] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/27/2019] [Indexed: 12/15/2022] Open
Abstract
Arboviruses are capable to establish long-term persistent infections in mosquitoes that do not affect significantly the physiology of the insect vectors. Arbovirus infections are controlled by the RNAi machinery via the production of viral siRNAs and the formation of RISC complexes targeting viral genomes and mRNAs. Engineered arboviruses that contain cellular gene sequences can therefore be transformed to "viral silencing vectors" for studies of gene function in reverse genetics approaches. More specifically, "ideal" viral silencing vectors must be competent to induce robust RNAi effects while other interactions with the host immune system should be kept at a minimum to reduce non-specific effects. Because of their inconspicuous nature, arboviruses may approach the "ideal" viral silencing vectors in insects and it is therefore worthwhile to study the mechanisms by which the interactions with the RNAi machinery occur. In this review, an analysis is presented of the antiviral RNAi response in mosquito vectors with respect to the major types of arboviruses (alphaviruses, flaviviruses, bunyaviruses, and others). With respect to antiviral defense, the exo-RNAi pathway constitutes the major mechanism while the contribution of both miRNAs and viral piRNAs remains a contentious issue. However, additional mechanisms exist in mosquitoes that are capable to enhance or restrict the efficiency of viral silencing vectors such as the amplification of RNAi effects by DNA forms, the existence of incorporated viral elements in the genome and the induction of a non-specific systemic response by Dicer-2. Of significance is the observation that no major "viral suppressors of RNAi" (VSRs) seem to be encoded by arboviral genomes, indicating that relatively tight control of the activity of the RNA-dependent RNA polymerase (RdRp) may be sufficient to maintain the persistent character of arbovirus infections. Major strategies for improvement of viral silencing vectors therefore are proposed to involve engineering of VSRs and modifying of the properties of the RdRp. Because of safety issues (pathogen status), however, arbovirus-based silencing vectors are not well suited for practical applications, such as RNAi-based mosquito control. In that case, related mosquito-specific viruses that also establish persistent infections and may cause similar RNAi responses may represent a valuable alternative solution.
Collapse
Affiliation(s)
- Jisheng Liu
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Luc Swevers
- Institute of Biosciences and Applications, National Centre of Scientific Research “Demokritos”, Athens, Greece
| | - Anna Kolliopoulou
- Institute of Biosciences and Applications, National Centre of Scientific Research “Demokritos”, Athens, Greece
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
164
|
Houé V, Bonizzoni M, Failloux AB. Endogenous non-retroviral elements in genomes of Aedes mosquitoes and vector competence. Emerg Microbes Infect 2019; 8:542-555. [PMID: 30938223 PMCID: PMC6455143 DOI: 10.1080/22221751.2019.1599302] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent extensive (re)emergences of arthropod-borne viruses (arboviruses) such as chikungunya (CHIKV), zika (ZIKV) and dengue (DENV) viruses highlight the role of the epidemic vectors, Aedes aegypti and Aedes albopictus, in their spreading. Differences of vector competence to arboviruses highlight different virus/vector interactions. While both are highly competent to transmit CHIKV (Alphavirus,Togaviridae), only Ae. albopictus is considered as a secondary vector for DENV (Flavivirus, Flaviviridae). Among other factors such as environmental temperature, mosquito antiviral immunity and microbiota, the presence of non-retroviral integrated RNA virus sequences (NIRVS) in both mosquito genomes may modulate the vector competence. Here we review the current knowledge on these elements, highlighting the mechanisms by which they are produced and endogenized into Aedes genomes. Additionally, we describe their involvement in antiviral immunity as a stimulator of the RNA interference pathways and in some rare cases, as producer of viral-interfering proteins. Finally, we mention NIRVS as a tool for understanding virus/vector co-evolution. The recent discovery of endogenized elements shows that virus/vector interactions are more dynamic than previously thought, and genetic markers such as NIRVS could be one of the potential targets to reduce arbovirus transmission.
Collapse
Affiliation(s)
- Vincent Houé
- a Department of Virology, Arboviruses and Insect Vectors , Institut Pasteur , Paris , France.,b Collège Doctoral , Sorbonne Université , Paris , France
| | | | - Anna-Bella Failloux
- a Department of Virology, Arboviruses and Insect Vectors , Institut Pasteur , Paris , France
| |
Collapse
|
165
|
Russo AG, Kelly AG, Enosi Tuipulotu D, Tanaka MM, White PA. Novel insights into endogenous RNA viral elements in Ixodes scapularis and other arbovirus vector genomes. Virus Evol 2019; 5:vez010. [PMID: 31249694 PMCID: PMC6580184 DOI: 10.1093/ve/vez010] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Many emerging arboviruses are not transmitted by traditional mosquito vectors, but by lesser-studied arthropods such as ticks, midges, and sand flies. Small RNA (sRNA) silencing pathways are the main antiviral defence mechanism for arthropods, which lack adaptive immunity. Non-retroviral integrated RNA virus sequences (NIRVS) are one potential source of sRNAs which comprise these pathways. NIRVS are remnants of past germline RNA viral infections, where viral cDNA integrates into the host genome and is vertically transmitted. In Aedes mosquitoes, NIRVS are widespread and produce PIWI-interacting RNAs (piRNAs). These are hypothesised to target incoming viral transcripts to modulate viral titre, perhaps rendering the organism a more efficient arbovirus vector. To explore the NIRVS landscape in alternative arbovirus vectors, we validated the NIRVS landscape in Aedes spp. and then identified novel NIRVS in six medically relevant arthropods and also in Drosophila melanogaster. We identified novel NIRVS in Phlebotomus papatasi, Culicoides sonorensis, Rhipicephalus microplus, Anopheles gambiae, Culex quinquefasciatus, and Ixodes scapularis. Due to their unexpected abundance, we further characterised NIRVS in the blacklegged tick I. scapularis (n = 143). Interestingly, NIRVS are not enriched in R. microplus, another hard tick, suggesting this is an Ixodes-specific adaptation. I. scapularis NIRVS are enriched in bunya- and orthomyxo-like sequences, reflecting that ticks are a dominant host for these virus groups. Unlike in mosquitoes, I. scapularis NIRVS are more commonly derived from the non-structural region (replicase) of negative-sense viruses, as opposed to structural regions (e.g. glycoprotein). Like other arthropods, I. scapularis NIRVS preferentially integrate into genomic piRNA clusters, and serve as a template for primary piRNA production in the commonly used embryonic I. scapularis ISE6 cell line. Interestingly, we identified a two-fold enrichment of non-long terminal repeat (non-LTR) retrotransposons, in genomic proximity to NIRVS, contrasting with studeis in Ae. aegypti, where LTR retrotransposons are instead associated with NIRVS formation. We characterised NIRVS phylogeny and integration patterns in the important vector, I. scapularis, revealing they are distinct from those in Aedes spp. Future studies will explore the possible antiviral mechanism conferred by NIRVS to I. scapularis,which may help the transmission of pathogenic arboviruses. Finally, this study explored NIRVS as an untapped wealth of viral diversity in arthropods.
Collapse
Affiliation(s)
- Alice G Russo
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew G Kelly
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Daniel Enosi Tuipulotu
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Mark M Tanaka
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Peter A White
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
166
|
Du J, Gao S, Tian Z, Guo Y, Kang D, Xing S, Zhang G, Liu G, Luo J, Chang H, Yin H. Transcriptome analysis of responses to bluetongue virus infection in Aedes albopictus cells. BMC Microbiol 2019; 19:121. [PMID: 31182015 PMCID: PMC6558886 DOI: 10.1186/s12866-019-1498-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/31/2019] [Indexed: 01/15/2023] Open
Abstract
Background Bluetongue virus (BTV) causes a disease among wild and domesticated ruminants which is not contagious, but which is transmitted by biting midges of the Culicoides species. BTV can induce an intense cytopathic effect (CPE) in mammalian cells after infection, although Culicoides- or mosquito-derived cell cultures cause non-lytic infection with BTV without CPE. However, little is known about the transcriptome changes in Aedes albopictus cells infected with BTV. Methods Transcriptome sequencing was used to identify the expression pattern of mRNA transcripts in A. albopictus cells infected with BTV, given the absence of the Culicoides genome sequence. Bioinformatics analyses were performed to examine the biological functions of the differentially expressed genes. Subsequently, quantitative reverse transcription–polymerase chain reaction was utilized to validate the sequencing data. Results In total, 51,850,205 raw reads were generated from the BTV infection group and 51,852,293 from the control group. A total of 5769 unigenes were common to both groups; only 779 unigenes existed exclusively in the infection group and 607 in the control group. In total, 380 differentially expressed genes were identified, 362 of which were up-regulated and 18 of which were down-regulated. Bioinformatics analyses revealed that the differentially expressed genes mainly participated in endocytosis, FoxO, MAPK, dorso-ventral axis formation, insulin resistance, Hippo, and JAK-STAT signaling pathways. Conclusion This study represents the first attempt to investigate transcriptome-wide dysregulation in A. albopictus cells infected with BTV. The understanding of BTV pathogenesis and virus–vector interaction will be improved by global transcriptome profiling. Electronic supplementary material The online version of this article (10.1186/s12866-019-1498-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junzheng Du
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China.
| | - Shandian Gao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Zhancheng Tian
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Yanni Guo
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Di Kang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Shanshan Xing
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Guorui Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Guangyuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Huiyun Chang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
| |
Collapse
|
167
|
|
168
|
Predicting aquatic development and mortality rates of Aedes aegypti. PLoS One 2019; 14:e0217199. [PMID: 31112566 PMCID: PMC6528993 DOI: 10.1371/journal.pone.0217199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 05/07/2019] [Indexed: 12/25/2022] Open
Abstract
Mosquito-borne pathogens continue to be a significant burden within human populations, with Aedes aegypti continuing to spread dengue, chikungunya, and Zika virus throughout the world. Using data from a previously conducted study, a linear regression model was constructed to predict the aquatic development rates based on the average temperature, temperature fluctuation range, and larval density. Additional experiments were conducted with different parameters of average temperature and larval density to validate the model. Using a paired t-test, the model predictions were compared to experimental data and showed that the prediction models were not significantly different for average pupation rate, adult emergence rate, and juvenile mortality rate. The models developed will be useful for modeling and estimating the upper limit of the number of Aedes aegypti in the environment under different temperature, diurnal temperature variations, and larval densities.
Collapse
|
169
|
Drukewitz SH, von Reumont BM. The Significance of Comparative Genomics in Modern Evolutionary Venomics. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00163] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
170
|
Lerat E, Casacuberta J, Chaparro C, Vieira C. On the Importance to Acknowledge Transposable Elements in Epigenomic Analyses. Genes (Basel) 2019; 10:genes10040258. [PMID: 30935103 PMCID: PMC6523952 DOI: 10.3390/genes10040258] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic genomes comprise a large proportion of repeated sequences, an important fraction of which are transposable elements (TEs). TEs are mobile elements that have a significant impact on genome evolution and on gene functioning. Although some TE insertions could provide adaptive advantages to species, transposition is a highly mutagenic event that has to be tightly controlled to ensure its viability. Genomes have evolved sophisticated mechanisms to control TE activity, the most important being epigenetic silencing. However, the epigenetic control of TEs can also affect genes located nearby that can become epigenetically regulated. It has been proposed that the combination of TE mobilization and the induced changes in the epigenetic landscape could allow a rapid phenotypic adaptation to global environmental changes. In this review, we argue the crucial need to take into account the repeated part of genomes when studying the global impact of epigenetic modifications on an organism. We emphasize more particularly why it is important to carefully consider TEs and what bioinformatic tools can be used to do so.
Collapse
Affiliation(s)
- Emmanuelle Lerat
- CNRS, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, UMR 5558, F-69622 Villeurbanne, France.
| | - Josep Casacuberta
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain.
| | - Cristian Chaparro
- CNRS, IHPE UMR 5244, University of Perpignan Via Domitia, IFREMER, University Montpellier, F-66860 Perpignan, France.
| | - Cristina Vieira
- CNRS, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, UMR 5558, F-69622 Villeurbanne, France.
| |
Collapse
|
171
|
Degner EC, Ahmed-Braimah YH, Borziak K, Wolfner MF, Harrington LC, Dorus S. Proteins, Transcripts, and Genetic Architecture of Seminal Fluid and Sperm in the Mosquito Aedes aegypti. Mol Cell Proteomics 2019; 18:S6-S22. [PMID: 30552291 PMCID: PMC6427228 DOI: 10.1074/mcp.ra118.001067] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/29/2018] [Indexed: 11/06/2022] Open
Abstract
The yellow fever mosquito, Aedes aegypti,, transmits several viruses causative of serious diseases, including dengue, Zika, and chikungunya. Some proposed efforts to control this vector involve manipulating reproduction to suppress wild populations or to replace them with disease-resistant mosquitoes. The design of such strategies requires an intimate knowledge of reproductive processes, yet our basic understanding of reproductive genetics in this vector remains largely incomplete. To accelerate future investigations, we have comprehensively catalogued sperm and seminal fluid proteins (SFPs) transferred to females in the ejaculate using tandem mass spectrometry. By excluding female-derived proteins using an isotopic labeling approach, we identified 870 sperm proteins and 280 SFPs. Functional composition analysis revealed parallels with known aspects of sperm biology and SFP function in other insects. To corroborate our proteome characterization, we also generated transcriptomes for testes and the male accessory glands-the primary contributors to Ae. aegypti, sperm and seminal fluid, respectively. Differential gene expression of accessory glands from virgin and mated males suggests that transcripts encoding proteins involved in protein translation are upregulated post-mating. Several SFP transcripts were also modulated after mating, but >90% remained unchanged. Finally, a significant enrichment of SFPs was observed on chromosome 1, which harbors the male sex determining locus in this species. Our study provides a comprehensive proteomic and transcriptomic characterization of ejaculate production and composition and thus provides a foundation for future investigations of Ae. aegypti, reproductive biology, from functional analysis of individual proteins to broader examination of reproductive processes.
Collapse
Affiliation(s)
- Ethan C Degner
- From the ‡Department of Entomology, Cornell University, Ithaca, New York
| | | | - Kirill Borziak
- Center for Reproductive Evolution, Syracuse University, Syracuse, New York
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York;.
| | - Laura C Harrington
- From the ‡Department of Entomology, Cornell University, Ithaca, New York;.
| | - Steve Dorus
- Center for Reproductive Evolution, Syracuse University, Syracuse, New York.
| |
Collapse
|
172
|
Lee Y, Schmidt H, Collier TC, Conner WR, Hanemaaijer MJ, Slatkin M, Marshall JM, Chiu JC, Smartt CT, Lanzaro GC, Mulligan FS, Cornel AJ. Genome-wide divergence among invasive populations of Aedes aegypti in California. BMC Genomics 2019; 20:204. [PMID: 30866822 PMCID: PMC6417271 DOI: 10.1186/s12864-019-5586-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/05/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND In the summer of 2013, Aedes aegypti Linnaeus was first detected in three cities in central California (Clovis, Madera and Menlo Park). It has now been detected in multiple locations in central and southern CA as far south as San Diego and Imperial Counties. A number of published reports suggest that CA populations have been established from multiple independent introductions. RESULTS Here we report the first population genomics analyses of Ae. aegypti based on individual, field collected whole genome sequences. We analyzed 46 Ae. aegypti genomes to establish genetic relationships among populations from sites in California, Florida and South Africa. Based on 4.65 million high quality biallelic SNPs, we identified 3 major genetic clusters within California; one that includes all sample sites in the southern part of the state (South of Tehachapi mountain range) plus the town of Exeter in central California and two additional clusters in central California. CONCLUSIONS A lack of concordance between mitochondrial and nuclear genealogies suggests that the three founding populations were polymorphic for two main mitochondrial haplotypes prior to being introduced to California. One of these has been lost in the Clovis populations, possibly by a founder effect. Genome-wide comparisons indicate extensive differentiation between genetic clusters. Our observations support recent introductions of Ae. aegypti into California from multiple, genetically diverged source populations. Our data reveal signs of hybridization among diverged populations within CA. Genetic markers identified in this study will be of great value in pursuing classical population genetic studies which require larger sample sizes.
Collapse
Affiliation(s)
- Yoosook Lee
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616 USA
| | - Hanno Schmidt
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616 USA
| | - Travis C. Collier
- Daniel K. Inouye US Pacific Basin Agricultural Research Center (PBARC), United States Department of Agriculture, Agricultural Research Service, Hilo, Hawaii USA
| | - William R. Conner
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California - Davis, Davis, CA 95616 USA
| | - Mark J. Hanemaaijer
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616 USA
| | - Montgomery Slatkin
- Department of Integrative Biology, University of California - Berkeley, Berkeley, CA 94720 USA
| | - John M. Marshall
- School of Public Health, University of California - Berkeley, Berkeley, CA 94720 USA
| | - Joanna C. Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California - Davis, Davis, CA 95616 USA
| | - Chelsea T. Smartt
- Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL 32962 USA
| | - Gregory C. Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616 USA
| | | | - Anthony J. Cornel
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California - Davis, Davis, CA 95616 USA
- Mosquito Control Research Laboratory, Kearney Agricultural Center, Department of Entomology and Nematology, University of California -, Davis, CA 95616 USA
| |
Collapse
|
173
|
Abstract
Zika virus infection and dengue and chikungunya fevers are emerging viral diseases that have become public health threats. Their aetiologic agents are transmitted by the bite of genus Aedes mosquitoes. Without effective therapies or vaccines, vector control is the main strategy for preventing the spread of these diseases. Increased insecticide resistance calls for biorational actions focused on control of the target vector population. The chitin required for larval survival structures is a good target for biorational control. Chitin synthases A and B (CHS) are enzymes in the chitin synthesis pathway. Double-stranded RNA (dsRNA)-mediated gene silencing (RNAi) achieves specific knockdown of target proteins. Our goal in this work, a new proposed RNAi-based bioinsecticide, was developed as a potential strategy for mosquito population control. DsRNA molecules that target five different regions in the CHSA and B transcript sequences were produced in vitro and in vivo through expression in E. coli HT115 and tested by direct addition to larval breeding water. Mature and immature larvae treated with dsRNA targeting CHS catalytic sites showed significantly decreased viability associated with a reduction in CHS transcript levels. The few larval and adult survivors displayed an altered morphology and chitin content. In association with diflubenzuron, this bioinsecticide exhibited insecticidal adjuvant properties.
Collapse
|
174
|
Kandel Y, Vulcan J, Rodriguez SD, Moore E, Chung HN, Mitra S, Cordova JJ, Martinez KJL, Moon AS, Kulkarni A, Ettestad P, Melman S, Xu J, Buenemann M, Hanley KA, Hansen IA. Widespread insecticide resistance in Aedes aegypti L. from New Mexico, U.S.A. PLoS One 2019; 14:e0212693. [PMID: 30794644 PMCID: PMC6386485 DOI: 10.1371/journal.pone.0212693] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/07/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Aedes aegypti mosquitoes are vectors of a variety of emerging viral pathogens, including yellow fever, dengue, chikungunya, and Zika virus. This species has established endemic populations in all cities across southern New Mexico sampled to date. Presently, control of Aedes-borne viruses relies on deployment of insecticides to suppress mosquito populations, but the evolution of insecticide resistance threatens the success of vector control programs. While insecticide resistance is quite common in Ae. aegypti field populations across much of the U.S., the resistance status of this species in populations from New Mexico has not previously been assessed. RESULTS First, we collected information on pesticide use in cities in southern New Mexico and found that the most commonly used active ingredients were pyrethroids. The use of insecticides with the same mode-of-action over multiple years is likely to promote the evolution of resistance. To determine if there was evidence of resistance in some cities in southern New Mexico, we collected Ae. aegypti from the same cities and established laboratory strains to assess resistance to pyrethroid insecticides and, for a subset of populations, to organophosphate insecticides. F2 or F4 generation mosquitoes were assessed for insecticide resistance using bottle test bioassays. The majority of the populations from New Mexico that we analyzed were resistant to the pyrethroids permethrin and deltamethrin. A notable exception to this trend were mosquitoes from Alamogordo, a city that did not report using pyrethroid insecticides for vector control. We screened individuals from each population for known knock down resistance (kdr) mutations via PCR and found a strong association between the presences of the F1534C kdr mutation in the para gene of Ae. aegypti (homologue to F1534C in Musca domestica L.) and pyrethroid resistance. CONCLUSION High-level pyrethroid resistance is common in Ae. aegypti from New Mexico and geographic variation in such resistance is likely associated with variation in usage of pyrethroids for vector control. Resistance monitoring and management is recommended in light of the potential for arbovirus outbreaks in this state. Also, alternative approaches to mosquito control that do not involve insecticides should be explored.
Collapse
Affiliation(s)
- Yashoda Kandel
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
| | - Julia Vulcan
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
| | - Stacy D. Rodriguez
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
| | - Emily Moore
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
| | - Hae-Na Chung
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
| | - Soumi Mitra
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
| | - Joel J. Cordova
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
| | - Kalli J. L. Martinez
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
| | - Alex S. Moon
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
| | - Aditi Kulkarni
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
| | - Paul Ettestad
- New Mexico Department of Health, Santa Fe, NM, United States of America
| | - Sandra Melman
- New Mexico Department of Health, Santa Fe, NM, United States of America
| | - Jiannong Xu
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
| | - Michaela Buenemann
- Department of Geography, New Mexico State University, Las Cruces, NM, United States of America
| | - Kathryn A. Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
| | - Immo A. Hansen
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
- * E-mail:
| |
Collapse
|
175
|
Huang ZY, Bian G, Xi Z, Xie X. Genes important for survival or reproduction in Varroa destructor identified by RNAi. INSECT SCIENCE 2019; 26:68-75. [PMID: 28748595 DOI: 10.1111/1744-7917.12513] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
The Varroa mite, (Varroa destructor), is the worst threat to honey bee health worldwide. To explore the possibility of using RNA interference to control this pest, we determined the effects of knocking down various genes on Varroa mite survival and reproduction. Double-stranded RNA (dsRNA) of six candidate genes (Da, Pros26S, RpL8, RpL11, RpP0 and RpS13) were synthesized and each injected into Varroa mites, then mite survival and reproduction were assessed. Injection of dsRNA for Da (Daughterless) and Pros26S (Gene for proteasome 26S subunit adenosine triphosphatase) caused a significant reduction in mite survival, with 3.57% ± 1.94% and 30.03% ± 11.43% mites surviving at 72 h post-injection (hpi), respectively. Control mites injected with green fluorescent protein (GFP)-dsRNA showed survival rates of 81.95% ± 5.03% and 82.36 ± 2.81%, respectively. Injections of dsRNA for four other genes (RpL8, RpL11, RpP0 and RpS13) did not affect survival significantly, enabling us to assess their effect on Varroa mite reproduction. The number of female offspring per mite was significantly reduced for mites injected with dsRNA of each of these four genes compared to their GFP-dsRNA controls. Knockdown of the target genes was verified by real-time polymerase chain reaction for two genes important for reproduction (RpL8, RpL11) and one gene important for survival (Pros26S). In conclusion, through RNA interference, we have discovered two genes important for mite survival and four genes important for mite reproduction. These genes could be explored as possible targets for the control of Varroa destructor in the future.
Collapse
Affiliation(s)
- Zachary Y Huang
- Department of Entomology, Michigan State University, East Lansing, MI, USA
- Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA
| | - Guowu Bian
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Zhiyong Xi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Xianbing Xie
- Department of Laboratory Animal Science, Nanchang University, Nanchang, Jiangxi, China
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
176
|
Genome-Wide Transcriptome Profiling Reveals Genes Associated with Meiotic Drive System of Aedes aegypti. INSECTS 2019; 10:insects10010025. [PMID: 30634571 PMCID: PMC6358845 DOI: 10.3390/insects10010025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 11/17/2022]
Abstract
Aedes aegypti is an important mosquito vector of several arboviruses, including dengue, yellow fever, Zika, and Chikungunya, which cause significant human morbidity and mortality globally. In certain populations of this mosquito, a native meiotic drive system causes abnormal spermatogenesis that results in highly male-biased progenies from some matings. Although the basic genetics and cytogenetics of the drive mechanism were elucidated, very little is known on a transcriptome level about how the meiotic drive phenotype is expressed in individual males. To address this question, we conducted a whole-genome microarray expression study of testes from a meiotic-drive-carrying strain (T37) in comparison with testes from a non-drive-carrying strain (RED). Based on bioinformatics analyses of the microarray data, we identified 209 genes associated with the meiotic drive phenotype that were significantly differentially expressed between the two strains. K-means cluster analysis revealed nine clusters, in which genes upregulated in T37 testes were assigned to five clusters and genes downregulated in T37 testes were assigned to four clusters. Our data further revealed that genes related to protein translation, phosphorylation, and binding, as well as to G-protein-coupled receptor (GPCR) and peptidase activities, are differentially upregulated in testes from males with the meiotic drive genotype. Based on pathway analysis of these differentially expressed genes, it was observed that the glycosylphosphatidylinositol (GPI)-anchor biosynthesis pathway may play a role in the meiotic drive system. Overall, this investigation enhances our understanding of whole-genome gene expression associated with the meiotic drive system in Ae. aegypti.
Collapse
|
177
|
Identification and characterization of a mosquito-specific eggshell organizing factor in Aedes aegypti mosquitoes. PLoS Biol 2019; 17:e3000068. [PMID: 30620728 PMCID: PMC6324781 DOI: 10.1371/journal.pbio.3000068] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/29/2018] [Indexed: 12/17/2022] Open
Abstract
Mosquito-borne diseases are responsible for several million human deaths annually around the world. One approach to controlling mosquito populations is to disrupt molecular processes or antagonize novel metabolic targets required for the production of viable eggs. To this end, we focused our efforts on identifying proteins required for completion of embryonic development that are mosquito selective and represent potential targets for vector control. We performed bioinformatic analyses to identify putative protein-coding sequences that are specific to mosquito genomes. Systematic RNA interference (RNAi) screening of 40 mosquito-specific genes was performed by injecting double-stranded RNA (dsRNA) into female Aedes aegypti mosquitoes. This experimental approach led to the identification of eggshell organizing factor 1 (EOF1, AAEL012336), which plays an essential role in the formation and melanization of the eggshell. Eggs deposited by EOF1-deficient mosquitoes have nonmelanized fragile eggshells, and all embryos are nonviable. Scanning electron microscopy (SEM) analysis identified that exochorionic eggshell structures are strongly affected in EOF1-deficient mosquitoes. EOF1 is a potential novel target, to our knowledge, for exploring the identification and development of mosquito-selective and biosafe small-molecule inhibitors. An RNAi functional screen of 40 Aedes aegypti genes specific to the mosquito lineage helped to identify EOF1, a protein that plays an essential role in mosquito eggshell formation and melanization. Mosquito-borne pathogens infect millions of people worldwide, and the rise in insecticide resistance is exacerbating this problem. A new generation of environmentally safe insecticides will be essential to control insecticide-resistant mosquitoes. One potential route to such novel insecticide targets is the identification of proteins specifically needed for mosquito reproduction. Female mosquitoes feed on blood to produce eggs, which are covered with an eggshell; using RNA interference screening of mosquito-specific genes in Aedes aegypti (the mosquito that transmits yellow fever), we identified the eggshell organizing factor 1 (EOF1) protein that plays an essential role in eggshell melanization and embryonic development. Nearly 100% of eggs laid by EOF1-deficient females had a defective eggshell and were not viable. Bleach assays on eggs further confirmed that mosquito-specific EOF1 is required for embryonic development in A. aegypti. Additional experiments revealed that EOF1 also plays an essential role in eggshell formation in Aedes albopictus (the tiger mosquito, a carrier of Zika virus and dengue fever). We hypothesize that EOF1 has evolved within the Culicidae family to effect eggshell formation and therefore maximize egg survival. The results provide new insights, to our knowledge, into mosquito egg maturation and eggshell synthesis and could lead to key advances in the field of mosquito vector control.
Collapse
|
178
|
Ruzzante L, Reijnders MJ, Waterhouse RM. Of Genes and Genomes: Mosquito Evolution and Diversity. Trends Parasitol 2019; 35:32-51. [DOI: 10.1016/j.pt.2018.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/07/2018] [Accepted: 10/08/2018] [Indexed: 12/16/2022]
|
179
|
Abstract
Advances in long read and long range sequencing technologies have enabled chromosome length resolution for de novo genome assemblies even in the absence of complementary resources such as physical maps. Herein, I introduce a few methods for quality control and discuss potential pitfalls when assembling insect genomes with long reads.
Collapse
Affiliation(s)
- Surya Saha
- Sol Genomics Network, Boyce Thompson Institute, Ithaca, NY, USA.
| |
Collapse
|
180
|
Wahedi A, Gäde G, Paluzzi JP. Insight Into Mosquito GnRH-Related Neuropeptide Receptor Specificity Revealed Through Analysis of Naturally Occurring and Synthetic Analogs of This Neuropeptide Family. Front Endocrinol (Lausanne) 2019; 10:742. [PMID: 31736879 PMCID: PMC6838013 DOI: 10.3389/fendo.2019.00742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/14/2019] [Indexed: 12/22/2022] Open
Abstract
Adipokinetic hormone (AKH), corazonin (CRZ), and the AKH/CRZ-related peptide (ACP) are neuropeptides considered homologous to the vertebrate gonadotropin-releasing hormone (GnRH). All three Aedes aegypti GnRH-related neuropeptide receptors have been characterized and functionally deorphanized. Individually they exhibit high specificity for their native ligands, prompting us to investigate the contribution of ligand structures in conferring receptor specificity for two of these receptors. Here, we designed a series of analogs based on the native ACP sequence and screened them using a heterologous system to identify critical residues required for ACP receptor (ACPR) activation. Analogs lacking the carboxy-terminal amidation, replacing aromatics, as well as truncated analogs were either completely inactive or had very low activities on ACPR. The polar threonine (position 3) and the blocked amino-terminal pyroglutamate are also critical, whereas ACP analogs with alanine substitutions at position 2 (valine), 5 (serine), 6 (arginine), and 7 (aspartate) were less detrimental including the substitution of charged residues. Replacing asparagine (position 9) with an alanine resulted in a 5-fold more active analog. A naturally-occurring ACP analog, with a conserved substitution in position two, was well tolerated yet displayed significantly reduced activity compared to the native mosquito ACP peptide. Chain length contributes to ligand selectivity in this system, since the endogenous octapeptide Aedae-AKH does not activate the ACPR whereas AKH decapeptides show low albeit significant activity. Similarly, we utilized this in vitro heterologous assay approach against an A. aegypti AKH receptor (AKHR-IA) testing carefully selected naturally-occurring AKH analogs from other insects to determine how substitutions of specific residues in the AKH ligand influence AKHR-IA activation. AKH analogs having single substitutions compared to Aedae-AKH revealed position 7 (either serine or asparagine) was well tolerated or had slightly improved activation whereas changes to position 6 (proline) compromised receptor activation by nearly 10-fold. Substitution of position 3 (threonine) or analogs with combinations of substitutions were quite detrimental with a significant decrease in AKHR-IA activation. Collectively, these results advance our understanding of how two GnRH-related systems in A. aegypti sharing the most recent evolutionary origin sustain independence of function and signaling despite their relatively high degree of ligand and receptor homology.
Collapse
Affiliation(s)
- Azizia Wahedi
- Department of Biology, York University, Toronto, ON, Canada
| | - Gerd Gäde
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
- *Correspondence: Gerd Gäde
| | - Jean-Paul Paluzzi
- Department of Biology, York University, Toronto, ON, Canada
- Jean-Paul Paluzzi
| |
Collapse
|
181
|
Suppression of Type I Interferon Signaling by Flavivirus NS5. Viruses 2018; 10:v10120712. [PMID: 30558110 PMCID: PMC6316265 DOI: 10.3390/v10120712] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/08/2018] [Accepted: 12/09/2018] [Indexed: 01/02/2023] Open
Abstract
Type I interferon (IFN-I) is the first line of mammalian host defense against viral infection. To counteract this, the flaviviruses, like other viruses, have encoded a variety of antagonists, and use a multi-layered molecular defense strategy to establish their infections. Among the most potent antagonists is non-structural protein 5 (NS5), which has been shown for all disease-causing flaviviruses to target different steps and players of the type I IFN signaling pathway. Here, we summarize the type I IFN antagonist mechanisms used by flaviviruses with a focus on the role of NS5 in regulating one key regulator of type I IFN, signal transducer and activator of transcription 2 (STAT2).
Collapse
|
182
|
Wasserlauf IE, Alekseeva SS, Andreeva YV, Sibataev AK, Stegniy VN. A comparative analysis of the metaphase karyotypes of Aedes excrucians, Ae. behningi, and Ae. euedes (Diptera: Culicidae) imaginal disсs. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2018; 43:245-251. [PMID: 30408286 DOI: 10.1111/jvec.12308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/08/2018] [Indexed: 06/08/2023]
Abstract
Karyotypes of Aedes (Culicidae) mosquitoes (Ae. excrucians, Ae. behningi, and Ae. euedes) have been analyzed using the metaphase chromosomes of imaginal discs. Lacto-aceto-orcein, C-banding, and DAPI staining have detected species-specific features in the morphology and lengths of these chromosomes in the examined species. Species-specific features of chromosome 1 in the location of heterochromatin blocks have been shown. Thus, the metaphase chromosomes in the imaginal discs of Ae. excrucians, Ae. behningi, and Ae. euedes are a characteristic for species identification of mosquito species.
Collapse
Affiliation(s)
- Irina E Wasserlauf
- Tomsk State University, Lenin st., 36, Tomsk, 634050, Russian Federation
| | | | - Yulia V Andreeva
- Tomsk State University, Lenin st., 36, Tomsk, 634050, Russian Federation
| | | | - Vladimir N Stegniy
- Tomsk State University, Lenin st., 36, Tomsk, 634050, Russian Federation
| |
Collapse
|
183
|
Hill CA, Sharan S, Watts VJ. Genomics, GPCRs and new targets for the control of insect pests and vectors. CURRENT OPINION IN INSECT SCIENCE 2018; 30:99-106. [PMID: 30553493 DOI: 10.1016/j.cois.2018.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 06/09/2023]
Abstract
The pressing need for new pest control products with novel modes of action has spawned interest in small molecules and peptides targeting arthropod GPCRs. Genome sequence data and tools for reverse genetics have enabled the prediction and characterization of GPCRs from many invertebrates. We review recent work to identify, characterize and de-orphanize arthropod GPCRs, with a focus on studies that reveal exciting new functional roles for these receptors, including the regulation of metabolic resistance. We explore the potential for insecticides targeting Class A biogenic amine-binding and peptide-binding receptors, and consider the innovation required to generate pest-selective leads for development, within the context of new PCR-targeting products to control arthropod vectors of disease.
Collapse
Affiliation(s)
- Catherine A Hill
- Department of Entomology, Purdue University, West Lafayette, IN 47907-2089, USA.
| | - Shruti Sharan
- Department of Entomology, Purdue University, West Lafayette, IN 47907-2089, USA
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907-2089, USA
| |
Collapse
|
184
|
Miller JR, Koren S, Dilley KA, Puri V, Brown DM, Harkins DM, Thibaud-Nissen F, Rosen B, Chen XG, Tu Z, Sharakhov IV, Sharakhova MV, Sebra R, Stockwell TB, Bergman NH, Sutton GG, Phillippy AM, Piermarini PM, Shabman RS. Analysis of the Aedes albopictus C6/36 genome provides insight into cell line utility for viral propagation. Gigascience 2018; 7:1-13. [PMID: 29329394 PMCID: PMC5869287 DOI: 10.1093/gigascience/gix135] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/23/2017] [Indexed: 12/25/2022] Open
Abstract
Background The 50-year-old Aedes albopictus C6/36 cell line is a resource for the detection, amplification, and analysis of mosquito-borne viruses including Zika, dengue, and chikungunya. The cell line is derived from an unknown number of larvae from an unspecified strain of Aedes albopictus mosquitoes. Toward improved utility of the cell line for research in virus transmission, we present an annotated assembly of the C6/36 genome. Results The C6/36 genome assembly has the largest contig N50 (3.3 Mbp) of any mosquito assembly, presents the sequences of both haplotypes for most of the diploid genome, reveals independent null mutations in both alleles of the Dicer locus, and indicates a male-specific genome. Gene annotation was computed with publicly available mosquito transcript sequences. Gene expression data from cell line RNA sequence identified enrichment of growth-related pathways and conspicuous deficiency in aquaporins and inward rectifier K+ channels. As a test of utility, RNA sequence data from Zika-infected cells were mapped to the C6/36 genome and transcriptome assemblies. Host subtraction reduced the data set by 89%, enabling faster characterization of nonhost reads. Conclusions The C6/36 genome sequence and annotation should enable additional uses of the cell line to study arbovirus vector interactions and interventions aimed at restricting the spread of human disease.
Collapse
Affiliation(s)
- Jason R Miller
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850, USA.,College of Natural Sciences and Mathematics, Shepherd University, Shepherdstown, WV 25443, USA
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Kari A Dilley
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850, USA
| | - Vinita Puri
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850, USA
| | - David M Brown
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850, USA
| | - Derek M Harkins
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850, USA
| | | | - Benjamin Rosen
- USDA 10300 Baltimore Ave., Bldg 306 Barc-East, Beltsville, MD 20705-2350, USA
| | - Xiao-Guang Chen
- Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhijian Tu
- Department of Biochemistry and the Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, USA
| | - Igor V Sharakhov
- Department of Entomology and the Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, USA.,Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia
| | - Maria V Sharakhova
- Department of Entomology and the Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, USA.,Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia
| | - Robert Sebra
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | - Granger G Sutton
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850, USA
| | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Peter M Piermarini
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850, USA.,Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Reed S Shabman
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850, USA.,ATCC, 217 Perry Parkway, Gaithersburg, MD 20877, USA
| |
Collapse
|
185
|
Sapountzis P, Zhukova M, Shik JZ, Schiott M, Boomsma JJ. Reconstructing the functions of endosymbiotic Mollicutes in fungus-growing ants. eLife 2018; 7:e39209. [PMID: 30454555 PMCID: PMC6245734 DOI: 10.7554/elife.39209] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/16/2018] [Indexed: 12/25/2022] Open
Abstract
Mollicutes, a widespread class of bacteria associated with animals and plants, were recently identified as abundant abdominal endosymbionts in healthy workers of attine fungus-farming leaf-cutting ants. We obtained draft genomes of the two most common strains harbored by Panamanian fungus-growing ants. Reconstructions of their functional significance showed that they are independently acquired symbionts, most likely to decompose excess arginine consistent with the farmed fungal cultivars providing this nitrogen-rich amino-acid in variable quantities. Across the attine lineages, the relative abundances of the two Mollicutes strains are associated with the substrate types that foraging workers offer to fungus gardens. One of the symbionts is specific to the leaf-cutting ants and has special genomic machinery to catabolize citrate/glucose into acetate, which appears to deliver direct metabolic energy to the ant workers. Unlike other Mollicutes associated with insect hosts, both attine ant strains have complete phage-defense systems, underlining that they are actively maintained as mutualistic symbionts.
Collapse
Affiliation(s)
- Panagiotis Sapountzis
- Centre for Social Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Mariya Zhukova
- Centre for Social Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Jonathan Z Shik
- Centre for Social Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Morten Schiott
- Centre for Social Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Jacobus J Boomsma
- Centre for Social Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
186
|
Kim SR, Kwak W, Kim H, Caetano-Anolles K, Kim KY, Kim SB, Choi KH, Kim SW, Hwang JS, Kim M, Kim I, Goo TW, Park SW. Genome sequence of the Japanese oak silk moth, Antheraea yamamai: the first draft genome in the family Saturniidae. Gigascience 2018; 7:1-11. [PMID: 29186418 PMCID: PMC5774507 DOI: 10.1093/gigascience/gix113] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022] Open
Abstract
Background Antheraea yamamai, also known as the Japanese oak silk moth, is a wild species of silk moth. Silk produced by A. yamamai, referred to as tensan silk, shows different characteristics such as thickness, compressive elasticity, and chemical resistance compared with common silk produced from the domesticated silkworm, Bombyx mori. Its unique characteristics have led to its use in many research fields including biotechnology and medical science, and the scientific as well as economic importance of the wild silk moth continues to gradually increase. However, no genomic information for the wild silk moth, including A. yamamai, is currently available. Findings In order to construct the A. yamamai genome, a total of 147G base pairs using Illumina and Pacbio sequencing platforms were generated, providing 210-fold coverage based on the 700-Mb estimated genome size of A. yamamai. The assembled genome of A. yamamai was 656 Mb (>2 kb) with 3675 scaffolds, and the N50 length of assembly was 739 Kb with a 34.07% GC ratio. Identified repeat elements covered 37.33% of the total genome, and the completeness of the constructed genome assembly was estimated to be 96.7% by Benchmarking Universal Single-Copy Orthologs v2 analysis. A total of 15 481 genes were identified using Evidence Modeler based on the gene prediction results obtained from 3 different methods (ab initio, RNA-seq-based, known-gene-based) and manual curation. Conclusions Here we present the genome sequence of A. yamamai, the first genome sequence of the wild silk moth. These results provide valuable genomic information, which will help enrich our understanding of the molecular mechanisms relating to not only specific phenotypes such as wild silk itself but also the genomic evolution of Saturniidae.
Collapse
Affiliation(s)
- Seong-Ryul Kim
- Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration, 166, Nongsaengmyeong-ro, Iseo-myeon, Wanju_Gun, Jeollabuk-do, 55365, Republic of Korea
| | - Woori Kwak
- C&K Genomics, Main Bldg. #420, SNU Research Park, Gwanak-ro 1, Gwanak gu, Seoul, 08826, Republic of Korea
| | - Hyaekang Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Gwanak-ro 1, Gwanak gu, Seoul, 08826, Republic of Korea
| | - Kelsey Caetano-Anolles
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Gwanak-ro 1, Gwanak gu, Seoul, 08826, Republic of Korea
| | - Kee-Young Kim
- Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration, 166, Nongsaengmyeong-ro, Iseo-myeon, Wanju_Gun, Jeollabuk-do, 55365, Republic of Korea
| | - Su-Bae Kim
- Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration, 166, Nongsaengmyeong-ro, Iseo-myeon, Wanju_Gun, Jeollabuk-do, 55365, Republic of Korea
| | - Kwang-Ho Choi
- Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration, 166, Nongsaengmyeong-ro, Iseo-myeon, Wanju_Gun, Jeollabuk-do, 55365, Republic of Korea
| | - Seong-Wan Kim
- Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration, 166, Nongsaengmyeong-ro, Iseo-myeon, Wanju_Gun, Jeollabuk-do, 55365, Republic of Korea
| | - Jae-Sam Hwang
- Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration, 166, Nongsaengmyeong-ro, Iseo-myeon, Wanju_Gun, Jeollabuk-do, 55365, Republic of Korea
| | - Minjee Kim
- College of Agriculture and Life Sciences, Chonnam National University, Yongbong-ro 77, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Iksoo Kim
- College of Agriculture and Life Sciences, Chonnam National University, Yongbong-ro 77, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Tae-Won Goo
- Department of Biochemistry, Dongguk University College of Medicine, Gyeongju-si, Gyeongsangbuk-do, 38066, Republic of Korea
| | - Seung-Won Park
- Department of Biotechnology, Catholic University of Daegu, Hayang-ro 13-13, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do, 38430, Republic of Korea
| |
Collapse
|
187
|
|
188
|
Taank V, Zhou W, Zhuang X, Anderson JF, Pal U, Sultana H, Neelakanta G. Characterization of tick organic anion transporting polypeptides (OATPs) upon bacterial and viral infections. Parasit Vectors 2018; 11:593. [PMID: 30428915 PMCID: PMC6236954 DOI: 10.1186/s13071-018-3160-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/22/2018] [Indexed: 12/21/2022] Open
Abstract
Background Ixodes scapularis organic anion transporting polypeptides (OATPs) play important roles in tick-rickettsial pathogen interactions. In this report, we characterized the role of these conserved molecules in ticks infected with either Lyme disease agent Borrelia burgdorferi or tick-borne Langat virus (LGTV), a pathogen closely related to tick-borne encephalitis virus (TBEV). Results Quantitative real-time polymerase chain reaction analysis revealed no significant changes in oatps gene expression upon infection with B. burgdorferi in unfed ticks. Synchronous infection of unfed nymphal ticks with LGTV in vitro revealed no significant changes in oatps gene expression. However, expression of specific oatps was significantly downregulated upon LGTV infection of tick cells in vitro. Treatment of tick cells with OATP inhibitor significantly reduced LGTV loads, kynurenine amino transferase (kat), a gene involved in the production of tryptophan metabolite xanthurenic acid (XA), levels and expression of several oatps in tick cells. Furthermore, bioinformatics characterization of OATPs from some of the medically important vectors including ticks, mosquitoes and lice revealed the presence of several glycosylation, phosphorylation and myristoylation sites. Conclusions This study provides additional evidence on the role of arthropod OATPs in vector-intracellular pathogen interactions. Electronic supplementary material The online version of this article (10.1186/s13071-018-3160-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vikas Taank
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Wenshuo Zhou
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Xuran Zhuang
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - John F Anderson
- Department of Entomology, Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Utpal Pal
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Hameeda Sultana
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA.,Center for Molecular Medicine, College of Sciences, Old Dominion University, Norfolk, VA, USA
| | - Girish Neelakanta
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA. .,Center for Molecular Medicine, College of Sciences, Old Dominion University, Norfolk, VA, USA.
| |
Collapse
|
189
|
Matthews BJ, Dudchenko O, Kingan SB, Koren S, Antoshechkin I, Crawford JE, Glassford WJ, Herre M, Redmond SN, Rose NH, Weedall GD, Wu Y, Batra SS, Brito-Sierra CA, Buckingham SD, Campbell CL, Chan S, Cox E, Evans BR, Fansiri T, Filipović I, Fontaine A, Gloria-Soria A, Hall R, Joardar VS, Jones AK, Kay RGG, Kodali VK, Lee J, Lycett GJ, Mitchell SN, Muehling J, Murphy MR, Omer AD, Partridge FA, Peluso P, Aiden AP, Ramasamy V, Rašić G, Roy S, Saavedra-Rodriguez K, Sharan S, Sharma A, Smith ML, Turner J, Weakley AM, Zhao Z, Akbari OS, Black WC, Cao H, Darby AC, Hill CA, Johnston JS, Murphy TD, Raikhel AS, Sattelle DB, Sharakhov IV, White BJ, Zhao L, Aiden EL, Mann RS, Lambrechts L, Powell JR, Sharakhova MV, Tu Z, Robertson HM, McBride CS, Hastie AR, Korlach J, Neafsey DE, Phillippy AM, Vosshall LB. Improved reference genome of Aedes aegypti informs arbovirus vector control. Nature 2018; 563:501-507. [PMID: 30429615 PMCID: PMC6421076 DOI: 10.1038/s41586-018-0692-z] [Citation(s) in RCA: 335] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 10/05/2018] [Indexed: 11/10/2022]
Abstract
Female Aedes aegypti mosquitoes infect more than 400 million people each year with dangerous viral pathogens including dengue, yellow fever, Zika and chikungunya. Progress in understanding the biology of mosquitoes and developing the tools to fight them has been slowed by the lack of a high-quality genome assembly. Here we combine diverse technologies to produce the markedly improved, fully re-annotated AaegL5 genome assembly, and demonstrate how it accelerates mosquito science. We anchored physical and cytogenetic maps, doubled the number of known chemosensory ionotropic receptors that guide mosquitoes to human hosts and egg-laying sites, provided further insight into the size and composition of the sex-determining M locus, and revealed copy-number variation among glutathione S-transferase genes that are important for insecticide resistance. Using high-resolution quantitative trait locus and population genomic analyses, we mapped new candidates for dengue vector competence and insecticide resistance. AaegL5 will catalyse new biological insights and intervention strategies to fight this deadly disease vector. An improved, fully re-annotated Aedes aegypti genome assembly (AaegL5) provides insights into the sex-determining M locus, chemosensory systems that help mosquitoes to hunt humans and loci involved in insecticide resistance and will help to generate intervention strategies to fight this deadly disease vector.
Collapse
Affiliation(s)
- Benjamin J Matthews
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY, USA. .,Howard Hughes Medical Institute, New York, NY, USA. .,Kavli Neural Systems Institute, New York, NY, USA.
| | - Olga Dudchenko
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Computer Science, Rice University, Houston, TX, USA.,Center for Theoretical and Biological Physics, Rice University, Houston, TX, USA
| | | | - Sergey Koren
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | - William J Glassford
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Margaret Herre
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY, USA.,Kavli Neural Systems Institute, New York, NY, USA
| | - Seth N Redmond
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Immunology and Infectious Disease, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Noah H Rose
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.,Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Gareth D Weedall
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK.,Liverpool John Moores University, Liverpool, UK
| | - Yang Wu
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China.,Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA.,Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, USA
| | - Sanjit S Batra
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Computer Science, Rice University, Houston, TX, USA
| | - Carlos A Brito-Sierra
- Department of Entomology, Purdue University, West Lafayette, IN, USA.,Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Steven D Buckingham
- Centre for Respiratory Biology, UCL Respiratory, University College London, London, UK
| | - Corey L Campbell
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Saki Chan
- Bionano Genomics, San Diego, CA, USA
| | - Eric Cox
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin R Evans
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Thanyalak Fansiri
- Vector Biology and Control Section, Department of Entomology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Igor Filipović
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Albin Fontaine
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France.,Unité de Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Centre National de la Recherche Scientifique, Unité Mixte de Recherche 2000, Paris, France.,Aix Marseille Université, IRD, AP-HM, SSA, UMR Vecteurs - Infections Tropicales et Méditerranéennes (VITROME), IHU - Méditerranée Infection, Marseille, France
| | - Andrea Gloria-Soria
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.,The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | | | - Vinita S Joardar
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Andrew K Jones
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Raissa G G Kay
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - Vamsi K Kodali
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Joyce Lee
- Bionano Genomics, San Diego, CA, USA
| | - Gareth J Lycett
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | | | - Michael R Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Arina D Omer
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Computer Science, Rice University, Houston, TX, USA
| | - Frederick A Partridge
- Centre for Respiratory Biology, UCL Respiratory, University College London, London, UK
| | | | - Aviva Presser Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Bioengineering, Rice University, Houston, TX, USA.,Department of Pediatrics, Texas Children's Hospital, Houston, TX, USA
| | - Vidya Ramasamy
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Gordana Rašić
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Sourav Roy
- Department of Entomology, Center for Disease Vector Research and Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Karla Saavedra-Rodriguez
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Shruti Sharan
- Department of Entomology, Purdue University, West Lafayette, IN, USA.,Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Atashi Sharma
- Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, USA.,Department of Entomology, Virginia Tech, Blacksburg, VA, USA
| | | | - Joe Turner
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | | - Zhilei Zhao
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.,Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Omar S Akbari
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.,Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, USA
| | - William C Black
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Han Cao
- Bionano Genomics, San Diego, CA, USA
| | - Alistair C Darby
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Catherine A Hill
- Department of Entomology, Purdue University, West Lafayette, IN, USA.,Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - J Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Alexander S Raikhel
- Department of Entomology, Center for Disease Vector Research and Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - David B Sattelle
- Centre for Respiratory Biology, UCL Respiratory, University College London, London, UK
| | - Igor V Sharakhov
- Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, USA.,Department of Entomology, Virginia Tech, Blacksburg, VA, USA.,Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia
| | | | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Computer Science, Rice University, Houston, TX, USA.,Center for Theoretical and Biological Physics, Rice University, Houston, TX, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Richard S Mann
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Louis Lambrechts
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique, Unité Mixte de Recherche 2000, Paris, France
| | - Jeffrey R Powell
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Maria V Sharakhova
- Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, USA.,Department of Entomology, Virginia Tech, Blacksburg, VA, USA.,Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia
| | - Zhijian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA.,Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, USA
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Carolyn S McBride
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.,Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | | | - Daniel E Neafsey
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Immunology and Infectious Disease, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Adam M Phillippy
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Leslie B Vosshall
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY, USA.,Howard Hughes Medical Institute, New York, NY, USA.,Kavli Neural Systems Institute, New York, NY, USA
| |
Collapse
|
190
|
Bharati M, Saha D. Assessment of insecticide resistance in primary dengue vector, Aedes aegypti (Linn.) from Northern Districts of West Bengal, India. Acta Trop 2018; 187:78-86. [PMID: 30026024 DOI: 10.1016/j.actatropica.2018.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/10/2018] [Accepted: 07/04/2018] [Indexed: 01/01/2023]
Abstract
Aedes mosquitoes are the major vectors transmitting several arboviral diseases such as dengue, zika and chikungunya worldwide. Northern districts of West Bengal is home to several epidemics vectored by mosquito including dengue infections, proper control of which depends on efficient vector control. However the onset of insecticide resistance has resulted in failure of vector control approaches. This study was carried out to unveil the level of insecticide resistance prevailing among the primary dengue vector in this dengue endemic region of India. It was observed that, field caught populations of Ae. aegypti were moderately to severely resistant to majority of the insecticide classes tested, i.e. Organochlorine (DDT), Organophosphates (temephos, malathion), Synthetic Pyrethroids (deltamethrin, lambdacyhalothrin and permethrin) and carbamate (propoxur). In majority of the populations, metabolic detoxification seemed to play the underlying role behind the development of insecticide resistance. This study seems to be the first report revealing the pattern of insecticide resistance in Ae. aegypti from Northern West Bengal. Efficient disease management in this region can only be achieved through proper insecticide resistance management. This study may help the concerned authorities in the formulation of an effective vector control strategy throughout this region incorporating the knowledge gained through this study.
Collapse
|
191
|
Smith LB, Tyagi R, Kasai S, Scott JG. CYP-mediated permethrin resistance in Aedes aegypti and evidence for trans-regulation. PLoS Negl Trop Dis 2018; 12:e0006933. [PMID: 30452436 PMCID: PMC6277111 DOI: 10.1371/journal.pntd.0006933] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/03/2018] [Accepted: 10/18/2018] [Indexed: 12/05/2022] Open
Abstract
Aedes aegypti poses a serious risk to human health due to its wide global distribution, high vector competence for several arboviruses, frequent human biting, and ability to thrive in urban environments. Pyrethroid insecticides remain the primary means of controlling adult A. aegypti populations during disease outbreaks. As a result of decades of use, pyrethroid resistance is a global problem. Cytochrome P450 monooxygenase (CYP)-mediated detoxification is one of the primary mechanisms of pyrethroid resistance. However, the specific CYP(s) responsible for resistance have not been unequivocally determined. We introgressed the resistance alleles from the resistant A. aegypti strain, Singapore (SP), into the genetic background of the susceptible ROCK strain. The resulting strain (CKR) was congenic to ROCK. Our primary goal was to determine which CYPs in SP are linked to resistance. To do this, we first determined which CYPs overexpressed in SP are also overexpressed in CKR, with the assumption that only the CYPs linked to resistance will be overexpressed in CKR relative to ROCK. Next, we determined whether any of the overexpressed CYPs were genetically linked to resistance (cis-regulated) or not (trans-regulated). We found that CYP6BB2, CYP6Z8, CYP9M5 and CYP9M6 were overexpressed in SP as well as in CKR. Based on the genomic sequences and polymorphisms of five single copy CYPs (CYP4C50, 6BB2, 6F2, 6F3 and 6Z8) in each strain, none of these genes were linked to resistance, except for CYP6BB2, which was partially linked to the resistance locus. Hence, overexpression of these four CYPs is due to a trans-regulatory factor(s). Knowledge on the specific CYPs and their regulators involved in resistance is critical for resistance management strategies because it aids in the development of new control chemicals, provides information on potential environmental modulators of resistance, and allows for the detection of resistance markers before resistance becomes fixed in the population.
Collapse
Affiliation(s)
- Letícia B. Smith
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
| | - Rakshit Tyagi
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
| | - Shinji Kasai
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
- Department of Medical Entomology, National Institute of Infectious Diseases, Toyama, Shinjukuku, Tokyo, Japan
| | - Jeffrey G. Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
192
|
Turner J, Krishna R, Van't Hof AE, Sutton ER, Matzen K, Darby AC. The sequence of a male-specific genome region containing the sex determination switch in Aedes aegypti. Parasit Vectors 2018; 11:549. [PMID: 30342535 PMCID: PMC6195999 DOI: 10.1186/s13071-018-3090-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/31/2018] [Indexed: 11/26/2022] Open
Abstract
Background Aedes aegypti is the principal vector of several important arboviruses. Among the methods of vector control to limit transmission of disease are genetic strategies that involve the release of sterile or genetically modified non-biting males, which has generated interest in manipulating mosquito sex ratios. Sex determination in Ae. aegypti is controlled by a non-recombining Y chromosome-like region called the M locus, yet characterisation of this locus has been thwarted by the repetitive nature of the genome. In 2015, an M locus gene named Nix was identified that displays the qualities of a sex determination switch. Results With the use of a whole-genome bacterial artificial chromosome (BAC) library, we amplified and sequenced a ~200 kb region containing the male-determining gene Nix. In this study, we show that Nix is comprised of two exons separated by a 99 kb intron primarily composed of repetitive DNA, especially transposable elements. Conclusions Nix, an unusually large and highly repetitive gene, exhibits features in common with Y chromosome genes in other organisms. We speculate that the lack of recombination at the M locus has allowed the expansion of repeats in a manner characteristic of a sex-limited chromosome, in accordance with proposed models of sex chromosome evolution in insects. Electronic supplementary material The online version of this article (10.1186/s13071-018-3090-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joe Turner
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.,Oxitec Ltd., 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Ritesh Krishna
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.,IBM Research UK, STFC Daresbury Laboratory, Warrington, WA4 4AD, UK
| | - Arjen E Van't Hof
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.,Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Elizabeth R Sutton
- Oxitec Ltd., 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK.,Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.,Sistemic, West of Scotland Science Park, Glasgow, G20 0SP, UK
| | - Kelly Matzen
- Oxitec Ltd., 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Alistair C Darby
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.
| |
Collapse
|
193
|
Zilio G, Moesch L, Bovet N, Sarr A, Koella JC. The effect of parasite infection on the recombination rate of the mosquito Aedes aegypti. PLoS One 2018; 13:e0203481. [PMID: 30300349 PMCID: PMC6177114 DOI: 10.1371/journal.pone.0203481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/21/2018] [Indexed: 12/29/2022] Open
Abstract
Sexual reproduction and meiotic recombination generate new genetic combinations and may thereby help an individual infected by a parasite to protect its offspring from being infected. While this idea is often used to understand the evolutionary forces underlying the maintenance of sex and recombination, it also suggests that infected individuals should increase plastically their rate of recombination. We tested the latter idea with the mosquito Aedes aegypti and asked whether females infected by the microsporidian Vavraia culicis were more likely to have recombinant offspring than uninfected females. To measure the rate of recombination over a chromosome we analysed combinations of microsatellites on chromosome 3 in infected and uninfected females, in the (uninfected) males they copulated with and in their offspring. As predicted, the infected females were more likely to have recombinant offspring than the uninfected ones. These results show the ability of a female to diversify her offspring in response to parasitic infection by plastically increasing her recombination rate.
Collapse
Affiliation(s)
- Giacomo Zilio
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Lea Moesch
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Department of Environmental Systems Science, ETHZ, Zurich, Switzerland
| | - Nathalie Bovet
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Anouk Sarr
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Jacob C. Koella
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
194
|
Elmogy M, Mohamed AA, Tufail M, Uno T, Takeda M. Molecular and functional characterization of the American cockroach, Periplaneta americana, Rab5: the first exopterygotan low molecular weight ovarian GTPase during oogenesis. INSECT SCIENCE 2018; 25:751-764. [PMID: 28548451 DOI: 10.1111/1744-7917.12485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/22/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
The small Rab GTPases are key regulators of membrane vesicle trafficking. Ovaries of Periplaneta americana (Linnaeus) (Blattodea: Blattidae) have small molecular weight GTP/ATP-binding proteins during early and late vitellogenic periods of oogenesis. However, the identification and characterization of the detected proteins have not been yet reported. Herein, we cloned a cDNA encoding Rab5 from the American cockroach, P. americana, ovaries (PamRab5). It comprises 796 bp, encoding a protein of 213 amino acid residues with a predicted molecular weight of 23.5 kDa. PamRab5 exists as a single-copy gene in the P. americana genome, as revealed by Southern blot analysis. An approximate 2.6 kb ovarian mRNA was transcribed especially at high levels in the previtellogenic ovaries, detected by Northern blot analysis. The muscle and head tissues also showed high levels of PamRab5 transcript. PamRab5 protein was localized, via immunofluorescence labeling, to germline-derived cells of the oocytes, very early during oocyte differentiation. Immunoblotting detected a ∼25 kDa signal as a membrane-associated form revealed after application of detergent in the extraction buffer, and 23 kDa as a cytosolic form consistent with the predicted molecular weight from amino acid sequence in different tissues including ovary, muscles and head. The PamRab5 during late vitellogenic periods is required to regulate the endocytotic machinery during oogenesis in this cockroach. This is the first report on Rab5 from a hemimetabolan, and presents an inaugural step in probing the molecular premises of insect oocyte endocytotic trafficking important for oogenesis and embryonic development.
Collapse
Affiliation(s)
- Mohamed Elmogy
- Department of Entomology, Faculty of Science, Cairo University, Orman, Giza, Egypt
| | - Amr A Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Orman, Giza, Egypt
| | - Muhammad Tufail
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Japan
| | - Tomohide Uno
- Laboratory of Biological Chemistry, Faculty of Agriculture, Department of Biofunctional Chemistry, Kobe University, Nada-ku, Hyogo, Japan
| | - Makio Takeda
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Japan
| |
Collapse
|
195
|
Nouzova M, Rivera-Pérez C, Noriega FG. Omics approaches to study juvenile hormone synthesis. CURRENT OPINION IN INSECT SCIENCE 2018; 29:49-55. [PMID: 30551825 PMCID: PMC6470398 DOI: 10.1016/j.cois.2018.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/23/2018] [Indexed: 05/04/2023]
Abstract
The juvenile hormones (JHs) are a family of insect acyclic sesquiterpenoids produced by the corpora allata (CA), a pair of endocrine glands connected to the brain. They are involved in the regulation of development, reproduction, behavior, caste determination, diapause, stress response, and numerous polyphenisms. In the post-genomics era, comprehensive analyses using functional 'omics' technologies such as transcriptomics, proteomics and metabolomics have increased our understanding of the activity of the minute CA. This review attempts to summarize some of the 'omics' studies that have contributed to further understand JH synthesis in insects, with an emphasis on our own research on the mosquito Aedes aegypti.
Collapse
Affiliation(s)
- Marcela Nouzova
- Department of Biological Sciences and Biomolecular Science Institute, Florida International University, Miami, FL, USA
| | | | - Fernando G Noriega
- Department of Biological Sciences and Biomolecular Science Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
196
|
Complete mitogenome of Anopheles sinensis and mitochondrial insertion segments in the nuclear genomes of 19 mosquito species. PLoS One 2018; 13:e0204667. [PMID: 30261042 PMCID: PMC6160108 DOI: 10.1371/journal.pone.0204667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/12/2018] [Indexed: 11/19/2022] Open
Abstract
Anopheles sinensis is a major malarial vector in China and Southeast Asia. The mitochondria is involved in many important biological functions. Nuclear mitochondrial DNA segments (NUMTs) are common in eukaryotic organisms, but their characteristics are poorly understood. We sequenced and analyzed the complete mitochondrial (mt) genome of An. sinensis. The mt genome is 15,418 bp long and contains 13 protein-coding genes (PCGs), two rRNAs, 22 tRNAs and a large non-coding region. Its gene arrangement is similar to previously published mosquito mt genomes. We identified and analyzed the NUMTs of 19 mosquito species with both nuclear genomes and mt genome sequences. The number, total length and density of NUMTs are significantly correlated with genome size. About half of NUMTs are short (< 200 bp), but larger genomes can house longer NUMTs. NUMTs may help explain genome size expansion in mosquitoes. The expansion due to mitochondrial insertion segments is variable in different insect groups. PCGs are transferred to nuclear genomes at a higher frequency in mosquitoes, but NUMT origination is more different than in mammals. Larger-sized nuclear genomes have longer mt genome sequences in both mosquitoes and mammals. The study provides a foundation for the functional research of mitochondrial genes in An. sinensis and helps us understand the characteristics and origin of NUMTs and the potential contribution to genome expansion.
Collapse
|
197
|
Hildebrandt JP, Wiesenthal AA, Müller C. Phenotypic Plasticity in Animals Exposed to Osmotic Stress - Is it Always Adaptive? Bioessays 2018; 40:e1800069. [PMID: 30160800 DOI: 10.1002/bies.201800069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/03/2018] [Indexed: 01/03/2023]
Abstract
Hyperplasia and hypertrophy are elements of phenotypic plasticity adjusting organ size and function. Because they are costly, we assume that they are beneficial. In this review, the authors discuss examples of tissue and organ systems that respond with plastic changes to osmotic stress to raise awareness that we do not always have sufficient experimental evidence to conclude that such processes provide fitness advantages. Changes in hydranth architecture in the hydroid Cordylophora caspia or variations in size in the anal papillae of insect larvae upon changes in medium salinity may be adaptive or not. The restructuring of salt glands in ducklings upon salt-loading is an example of phenotypic plasticity which indeed seems beneficial. As the genomes of model species are recently sequenced and the animals are easy to rear, these species are suitable study objects to investigate the biological significance of phenotypic plasticity and to study potential epigenetic and other mechanisms underlying phenotypic changes.
Collapse
Affiliation(s)
- Jan-Peter Hildebrandt
- Animal Physiology and Biochemistry, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| | - Amanda A Wiesenthal
- Animal Physiology and Biochemistry, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| | - Christian Müller
- Animal Physiology and Biochemistry, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| |
Collapse
|
198
|
Shaw WR, Catteruccia F. Vector biology meets disease control: using basic research to fight vector-borne diseases. Nat Microbiol 2018; 4:20-34. [PMID: 30150735 DOI: 10.1038/s41564-018-0214-7] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 06/29/2018] [Indexed: 12/11/2022]
Abstract
Human pathogens that are transmitted by insects are a global problem, particularly those vectored by mosquitoes; for example, malaria parasites transmitted by Anopheles species, and viruses such as dengue, Zika and chikungunya that are carried by Aedes mosquitoes. Over the past 15 years, the prevalence of malaria has been substantially reduced and virus outbreaks have been contained by controlling mosquito vectors using insecticide-based approaches. However, disease control is now threatened by alarming rates of insecticide resistance in insect populations, prompting the need to develop a new generation of specific strategies that can reduce vector-mediated transmission. Here, we review how increased knowledge in insect biology and insect-pathogen interactions is stimulating new concepts and tools for vector control. We focus on strategies that either interfere with the development of pathogens within their vectors or directly impact insect survival, including enhancement of vector-mediated immune control, manipulation of the insect microbiome, or use of powerful new genetic tools such as CRISPR-Cas systems to edit vector genomes. Finally, we offer a perspective on the implementation hurdles as well as the knowledge gaps that must be filled in the coming years to safely realize the potential of these novel strategies to eliminate the scourge of vector-borne disease.
Collapse
Affiliation(s)
- W Robert Shaw
- Harvard T. H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, USA.
| | - Flaminia Catteruccia
- Harvard T. H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, USA.
| |
Collapse
|
199
|
Venthur H, Zhou JJ. Odorant Receptors and Odorant-Binding Proteins as Insect Pest Control Targets: A Comparative Analysis. Front Physiol 2018; 9:1163. [PMID: 30197600 PMCID: PMC6117247 DOI: 10.3389/fphys.2018.01163] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/03/2018] [Indexed: 01/09/2023] Open
Abstract
Recently, two alternative targets in insect periphery nerve system have been explored for environmentally-friendly approaches in insect pest management, namely odorant-binding proteins (OBPs) and odorant receptors (ORs). Located in insect antennae, OBPs are thought to be involved in the transport of odorants to ORs for the specific signal transduction of behaviorally active odorants. There is rich information on OBP binding affinity and molecular docking to bioactive compounds as well as ample 3D crystal structures due to feasible production of recombinant proteins. Although these provide excellent opportunities for them to be considered as pest control targets and a tool to design pest control agents, the debates on their binding specificity represent an obstacle. On the other hand, ORs have recently been functionally characterized with increasing evidence for their specificity, sensitivity and functional roles in pest behaviors. However, a major barrier to use ORs for semiochemical discovery is the lack of 3D crystal structures. Thus, OBPs and ORs have not been analyzed comparatively together so far for their feasibility as pest control targets. Here, we summarize the state of OBPs and ORs research in terms of its application in insect pest management. We discuss the suitability of both proteins as pest control targets and their selection toward the discovery of new potent semiochemicals. We argue that both proteins represent promising targets for pest control and can be used to identify new super-ligands likely present in nature and with reduced risk of resistance development than insect pesticides currently used in agriculture. We discuss that with the massive identification of OBPs through RNA-seq and improved binding affinity measurements, these proteins could be reconsidered as suitable targets for semiochemical discovery.
Collapse
Affiliation(s)
- Herbert Venthur
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile.,Center of Excellence in Biotechnology Research Applied to the Environment (CIBAMA), Universidad de La Frontera, Temuco, Chile
| | - Jing-Jiang Zhou
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, United Kingdom.,Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| |
Collapse
|
200
|
Morales-Hojas R, Hinsley M, Armean IM, Silk R, Harrup LE, Gonzalez-Uriarte A, Veronesi E, Campbell L, Nayduch D, Saski C, Tabachnick WJ, Kersey P, Carpenter S, Fife M. The genome of the biting midge Culicoides sonorensis and gene expression analyses of vector competence for bluetongue virus. BMC Genomics 2018; 19:624. [PMID: 30134833 PMCID: PMC6106943 DOI: 10.1186/s12864-018-5014-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 08/14/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The new genomic technologies have provided novel insights into the genetics of interactions between vectors, viruses and hosts, which are leading to advances in the control of arboviruses of medical importance. However, the development of tools and resources available for vectors of non-zoonotic arboviruses remains neglected. Biting midges of the genus Culicoides transmit some of the most important arboviruses of wildlife and livestock worldwide, with a global impact on economic productivity, health and welfare. The absence of a suitable reference genome has hindered genomic analyses to date in this important genus of vectors. In the present study, the genome of Culicoides sonorensis, a vector of bluetongue virus (BTV) in the USA, has been sequenced to provide the first reference genome for these vectors. In this study, we also report the use of the reference genome to perform initial transcriptomic analyses of vector competence for BTV. RESULTS Our analyses reveal that the genome is 189 Mb, assembled in 7974 scaffolds. Its annotation using the transcriptomic data generated in this study and in a previous study has identified 15,612 genes. Gene expression analyses of C. sonorensis females infected with BTV performed in this study revealed 165 genes that were differentially expressed between vector competent and refractory females. Two candidate genes, glutathione S-transferase (gst) and the antiviral helicase ski2, previously recognized as involved in vector competence for BTV in C. sonorensis (gst) and repressing dsRNA virus propagation (ski2), were confirmed in this study. CONCLUSIONS The reference genome of C. sonorensis has enabled preliminary analyses of the gene expression profiles of vector competent and refractory individuals. The genome and transcriptomes generated in this study provide suitable tools for future research on arbovirus transmission. These provide a valuable resource for these vector lineage, which diverged from other major Dipteran vector families over 200 million years ago. The genome will be a valuable source of comparative data for other important Dipteran vector families including mosquitoes (Culicidae) and sandflies (Psychodidae), and together with the transcriptomic data can yield potential targets for transgenic modification in vector control and functional studies.
Collapse
Affiliation(s)
- Ramiro Morales-Hojas
- The Pirbright Institute, Ash Road, Woking, Surrey, GU24 0NF, UK. .,Rothamsted Insect Survey, Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK.
| | - Malcolm Hinsley
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Irina M Armean
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Rhiannon Silk
- The Pirbright Institute, Ash Road, Woking, Surrey, GU24 0NF, UK
| | - Lara E Harrup
- The Pirbright Institute, Ash Road, Woking, Surrey, GU24 0NF, UK
| | - Asier Gonzalez-Uriarte
- Bioinformatics group, Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Eva Veronesi
- The Pirbright Institute, Ash Road, Woking, Surrey, GU24 0NF, UK.,National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Lahcen Campbell
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Dana Nayduch
- USDA-ARS, Center for Grain and Animal Health Research, Arthropod Borne Animal Diseases Research Unit, 1515 College Avenue, Manhattan, KS, 66502, USA
| | - Christopher Saski
- Department of Genetics and Biochemistry, Clemson University Genomics Institute, BRC #310, 105 Collins Street, Clemson, SC, 29634, USA
| | - Walter J Tabachnick
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, IFAS, 200 9th St., SE, Vero Beach, FL, 32962, USA
| | - Paul Kersey
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Simon Carpenter
- The Pirbright Institute, Ash Road, Woking, Surrey, GU24 0NF, UK
| | - Mark Fife
- The Pirbright Institute, Ash Road, Woking, Surrey, GU24 0NF, UK
| |
Collapse
|