151
|
Antoniadi I, Skalický V, Sun G, Ma W, Galbraith DW, Novák O, Ljung K. Fluorescence activated cell sorting-A selective tool for plant cell isolation and analysis. Cytometry A 2021; 101:725-736. [PMID: 34028996 DOI: 10.1002/cyto.a.24461] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022]
Abstract
Instrumentation for flow cytometry and sorting is designed around the assumption that samples are single-cell suspensions. However, with few exceptions, higher plants comprise complex multicellular tissues and organs, in which the individual cells are held together by shared cell walls. Single-cell suspensions can be obtained through digestion of the cells walls and release of the so-called protoplasts (plants without their cell wall). Here we describe best practices for protoplast preparation, and for analysis through flow cytometry and cell sorting. Finally, the numerous downstream applications involving sorted protoplasts are discussed.
Collapse
Affiliation(s)
- Ioanna Antoniadi
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Vladimír Skalický
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences and Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Guiling Sun
- School of Life Sciences, Henan University, Institute of Plant Stress Biology, Kaifeng, China
| | - Wen Ma
- School of Life Sciences, Henan University, Institute of Plant Stress Biology, Kaifeng, China
| | - David W Galbraith
- Department of Biomedical Engineering, University of Arizona, School of Plant Sciences, BIO5 Institute, Arizona Cancer Center, Tucson, Arizona, USA.,School of Life Sciences, Henan University, Institute of Plant Stress Biology, Kaifeng, China
| | - Ondřej Novák
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden.,Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences and Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Karin Ljung
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
152
|
Perotti MF, Arce AL, Chan RL. The underground life of homeodomain-leucine zipper transcription factors. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4005-4021. [PMID: 33713412 DOI: 10.1093/jxb/erab112] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Roots are the anchorage organs of plants, responsible for water and nutrient uptake, exhibiting high plasticity. Root architecture is driven by the interactions of biomolecules, including transcription factors and hormones that are crucial players regulating root plasticity. Multiple transcription factor families are involved in root development; some, such as ARFs and LBDs, have been well characterized, whereas others remain less well investigated. In this review, we synthesize the current knowledge about the involvement of the large family of homeodomain-leucine zipper (HD-Zip) transcription factors in root development. This family is divided into four subfamilies (I-IV), mainly according to structural features, such as additional motifs aside from HD-Zip, as well as their size, gene structure, and expression patterns. We explored and analyzed public databases and the scientific literature regarding HD-Zip transcription factors in Arabidopsis and other species. Most members of the four HD-Zip subfamilies are expressed in specific cell types and several individuals from each group have assigned functions in root development. Notably, a high proportion of the studied proteins are part of intricate regulation pathways involved in primary and lateral root growth and development.
Collapse
Affiliation(s)
- María Florencia Perotti
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, FBCB, Colectora Ruta Nacional 168 km 0, 3000 Santa Fe,Argentina
| | - Agustín Lucas Arce
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, FBCB, Colectora Ruta Nacional 168 km 0, 3000 Santa Fe,Argentina
| | - Raquel Lía Chan
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, FBCB, Colectora Ruta Nacional 168 km 0, 3000 Santa Fe,Argentina
| |
Collapse
|
153
|
Innovation, conservation, and repurposing of gene function in root cell type development. Cell 2021; 184:3333-3348.e19. [PMID: 34010619 DOI: 10.1016/j.cell.2021.04.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/19/2021] [Accepted: 04/14/2021] [Indexed: 12/21/2022]
Abstract
Plant species have evolved myriads of solutions, including complex cell type development and regulation, to adapt to dynamic environments. To understand this cellular diversity, we profiled tomato root cell type translatomes. Using xylem differentiation in tomato, examples of functional innovation, repurposing, and conservation of transcription factors are described, relative to the model plant Arabidopsis. Repurposing and innovation of genes are further observed within an exodermis regulatory network and illustrate its function. Comparative translatome analyses of rice, tomato, and Arabidopsis cell populations suggest increased expression conservation of root meristems compared with other homologous populations. In addition, the functions of constitutively expressed genes are more conserved than those of cell type/tissue-enriched genes. These observations suggest that higher order properties of cell type and pan-cell type regulation are evolutionarily conserved between plants and animals.
Collapse
|
154
|
A cis-regulatory atlas in maize at single-cell resolution. Cell 2021; 184:3041-3055.e21. [PMID: 33964211 DOI: 10.1016/j.cell.2021.04.014] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/04/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023]
Abstract
cis-regulatory elements (CREs) encode the genomic blueprints of spatiotemporal gene expression programs enabling highly specialized cell functions. Using single-cell genomics in six maize organs, we determined the cis- and trans-regulatory factors defining diverse cell identities and coordinating chromatin organization by profiling transcription factor (TF) combinatorics, identifying TFs with non-cell-autonomous activity, and uncovering TFs underlying higher-order chromatin interactions. Cell-type-specific CREs were enriched for enhancer activity and within unmethylated long terminal repeat retrotransposons. Moreover, we found cell-type-specific CREs are hotspots for phenotype-associated genetic variants and were targeted by selection during modern maize breeding, highlighting the biological implications of this CRE atlas. Through comparison of maize and Arabidopsis thaliana developmental trajectories, we identified TFs and CREs with conserved and divergent chromatin dynamics, showcasing extensive evolution of gene regulatory networks. In addition to this rich dataset, we developed single-cell analysis software, Socrates, which can be used to understand cis-regulatory variation in any species.
Collapse
|
155
|
Kim JY, Symeonidi E, Pang TY, Denyer T, Weidauer D, Bezrutczyk M, Miras M, Zöllner N, Hartwig T, Wudick MM, Lercher M, Chen LQ, Timmermans MCP, Frommer WB. Distinct identities of leaf phloem cells revealed by single cell transcriptomics. THE PLANT CELL 2021; 33:511-530. [PMID: 33955487 PMCID: PMC8136902 DOI: 10.1093/plcell/koaa060] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/18/2020] [Indexed: 05/20/2023]
Abstract
The leaf vasculature plays a key role in solute translocation. Veins consist of at least seven distinct cell types, with specific roles in transport, metabolism, and signaling. Little is known about leaf vascular cells, in particular the phloem parenchyma (PP). PP effluxes sucrose into the apoplasm as a basis for phloem loading, yet PP has been characterized only microscopically. Here, we enriched vascular cells from Arabidopsis leaves to generate a single-cell transcriptome atlas of leaf vasculature. We identified at least 19 cell clusters, encompassing epidermis, guard cells, hydathodes, mesophyll, and all vascular cell types, and used metabolic pathway analysis to define their roles. Clusters comprising PP cells were enriched for transporters, including SWEET11 and SWEET12 sucrose and UmamiT amino acid efflux carriers. We provide evidence that PP development occurs independently from ALTERED PHLOEM DEVELOPMENT, a transcription factor required for phloem differentiation. PP cells have a unique pattern of amino acid metabolism activity distinct from companion cells (CCs), explaining differential distribution/metabolism of amino acids in veins. The kinship relation of the vascular clusters is strikingly similar to the vein morphology, except for a clear separation of CC from the other vascular cells including PP. In summary, our single-cell RNA-sequencing analysis provides a wide range of information into the leaf vasculature and the role and relationship of the leaf cell types.
Collapse
Affiliation(s)
- Ji-Yun Kim
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Author for correspondence: (W.B.F.), (J.-Y.K.)
| | - Efthymia Symeonidi
- Center for Plant Molecular Biology, University of Tübingen, Tübingen 72076, Germany
| | - Tin Yau Pang
- Institute for Computer Science and Department of Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Tom Denyer
- Center for Plant Molecular Biology, University of Tübingen, Tübingen 72076, Germany
| | - Diana Weidauer
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Margaret Bezrutczyk
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Manuel Miras
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Nora Zöllner
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Thomas Hartwig
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Michael M Wudick
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Martin Lercher
- Institute for Computer Science and Department of Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Li-Qing Chen
- Department of Plant Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Marja C P Timmermans
- Center for Plant Molecular Biology, University of Tübingen, Tübingen 72076, Germany
| | - Wolf B Frommer
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
- Author for correspondence: (W.B.F.), (J.-Y.K.)
| |
Collapse
|
156
|
Shahan R. Editor profile: Siobhan M. Brady. THE PLANT CELL 2021; 33:441-444. [PMID: 33955488 PMCID: PMC8136905 DOI: 10.1093/plcell/koaa050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Affiliation(s)
- Rachel Shahan
- Department of Biology, Duke University, Durham, NC, USA
| |
Collapse
|
157
|
Tian H, Li Y, Wang C, Xu X, Zhang Y, Zeb Q, Zicola J, Fu Y, Turck F, Li L, Lu Z, Liu L. Photoperiod-responsive changes in chromatin accessibility in phloem companion and epidermis cells of Arabidopsis leaves. THE PLANT CELL 2021; 33:475-491. [PMID: 33955490 PMCID: PMC8136901 DOI: 10.1093/plcell/koaa043] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/29/2020] [Indexed: 05/04/2023]
Abstract
Photoperiod plays a key role in controlling the phase transition from vegetative to reproductive growth in flowering plants. Leaves are the major organs perceiving day-length signals, but how specific leaf cell types respond to photoperiod remains unknown. We integrated photoperiod-responsive chromatin accessibility and transcriptome data in leaf epidermis and vascular companion cells of Arabidopsis thaliana by combining isolation of nuclei tagged in specific cell/tissue types with assay for transposase-accessible chromatin using sequencing and RNA-sequencing. Despite a large overlap, vasculature and epidermis cells responded differently. Long-day predominantly induced accessible chromatin regions (ACRs); in the vasculature, more ACRs were induced and these were located at more distal gene regions, compared with the epidermis. Vascular ACRs induced by long days were highly enriched in binding sites for flowering-related transcription factors. Among the highly ranked genes (based on chromatin and expression signatures in the vasculature), we identified TREHALOSE-PHOSPHATASE/SYNTHASE 9 (TPS9) as a flowering activator, as shown by the late flowering phenotypes of T-DNA insertion mutants and transgenic lines with phloem-specific knockdown of TPS9. Our cell-type-specific analysis sheds light on how the long-day photoperiod stimulus impacts chromatin accessibility in a tissue-specific manner to regulate plant development.
Collapse
Affiliation(s)
| | | | | | | | - Yajie Zhang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Qudsia Zeb
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Johan Zicola
- Max Planck Institute for Plant Breeding Research, Cologne, D-50829, Germany
| | - Yongfu Fu
- National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Franziska Turck
- Max Planck Institute for Plant Breeding Research, Cologne, D-50829, Germany
| | - Legong Li
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zefu Lu
- Author for correspondence: (L.L) and (Z.L.)
| | | |
Collapse
|
158
|
Serrano-Ron L, Cabrera J, Perez-Garcia P, Moreno-Risueno MA. Unraveling Root Development Through Single-Cell Omics and Reconstruction of Gene Regulatory Networks. FRONTIERS IN PLANT SCIENCE 2021; 12:661361. [PMID: 34017350 PMCID: PMC8129646 DOI: 10.3389/fpls.2021.661361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/25/2021] [Indexed: 05/30/2023]
Abstract
Over the last decades, research on postembryonic root development has been facilitated by "omics" technologies. Among these technologies, microarrays first, and RNA sequencing (RNA-seq) later, have provided transcriptional information on the underlying molecular processes establishing the basis of System Biology studies in roots. Cell fate specification and development have been widely studied in the primary root, which involved the identification of many cell type transcriptomes and the reconstruction of gene regulatory networks (GRN). The study of lateral root (LR) development has not been an exception. However, the molecular mechanisms regulating cell fate specification during LR formation remain largely unexplored. Recently, single-cell RNA-seq (scRNA-seq) studies have addressed the specification of tissues from stem cells in the primary root. scRNA-seq studies are anticipated to be a useful approach to decipher cell fate specification and patterning during LR formation. In this review, we address the different scRNA-seq strategies used both in plants and animals and how we could take advantage of scRNA-seq to unravel new regulatory mechanisms and reconstruct GRN. In addition, we discuss how to integrate scRNA-seq results with previous RNA-seq datasets and GRN. We also address relevant findings obtained through single-cell based studies and how LR developmental studies could be facilitated by scRNA-seq approaches and subsequent GRN inference. The use of single-cell approaches to investigate LR formation could help to decipher fundamental biological mechanisms such as cell memory, synchronization, polarization, or pluripotency.
Collapse
Affiliation(s)
| | | | | | - Miguel A. Moreno-Risueno
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
159
|
Shi D, Jouannet V, Agustí J, Kaul V, Levitsky V, Sanchez P, Mironova VV, Greb T. Tissue-specific transcriptome profiling of the Arabidopsis inflorescence stem reveals local cellular signatures. THE PLANT CELL 2021; 33:200-223. [PMID: 33582756 PMCID: PMC8136906 DOI: 10.1093/plcell/koaa019] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/02/2020] [Indexed: 05/06/2023]
Abstract
Genome-wide gene expression maps with a high spatial resolution have substantially accelerated plant molecular science. However, the number of characterized tissues and growth stages is still small due to the limited accessibility of most tissues for protoplast isolation. Here, we provide gene expression profiles of the mature inflorescence stem of Arabidopsis thaliana covering a comprehensive set of distinct tissues. By combining fluorescence-activated nucleus sorting and laser-capture microdissection with next-generation RNA sequencing, we characterized the transcriptomes of xylem vessels, fibers, the proximal and distal cambium, phloem, phloem cap, pith, starch sheath, and epidermis cells. Our analyses classified more than 15,000 genes as being differentially expressed among different stem tissues and revealed known and novel tissue-specific cellular signatures. By determining overrepresented transcription factor binding regions in the promoters of differentially expressed genes, we identified candidate tissue-specific transcriptional regulators. Our datasets predict the expression profiles of an exceptional number of genes and allow hypotheses to be generated about the spatial organization of physiological processes. Moreover, we demonstrate that information about gene expression in a broad range of mature plant tissues can be established at high spatial resolution by nuclear mRNA profiling. Tissue-specific gene expression values can be accessed online at https://arabidopsis-stem.cos.uni-heidelberg.de/.
Collapse
Affiliation(s)
- Dongbo Shi
- Department of Developmental Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
- Japan Science and Technology Agency (JST), Saitama, Kawaguchi, Japan
| | - Virginie Jouannet
- Department of Developmental Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Javier Agustí
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), C/Enginyer Fausto Elio S/N. 46011 Valencia, Spain
| | - Verena Kaul
- Department of Developmental Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Victor Levitsky
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
- Department of Systems Biology, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Pablo Sanchez
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Victoria V Mironova
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
- Department of Systems Biology, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Department of Plant Systems Physiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Thomas Greb
- Department of Developmental Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
- Author for correspondence:
| |
Collapse
|
160
|
Harnvanichvech Y, Gorelova V, Sprakel J, Weijers D. The Arabidopsis embryo as a quantifiable model for studying pattern formation. QUANTITATIVE PLANT BIOLOGY 2021; 2:e3. [PMID: 37077211 PMCID: PMC10095805 DOI: 10.1017/qpb.2021.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 05/03/2023]
Abstract
Phenotypic diversity of flowering plants stems from common basic features of the plant body pattern with well-defined body axes, organs and tissue organisation. Cell division and cell specification are the two processes that underlie the formation of a body pattern. As plant cells are encased into their cellulosic walls, directional cell division through precise positioning of division plane is crucial for shaping plant morphology. Since many plant cells are pluripotent, their fate establishment is influenced by their cellular environment through cell-to-cell signaling. Recent studies show that apart from biochemical regulation, these two processes are also influenced by cell and tissue morphology and operate under mechanical control. Finding a proper model system that allows dissecting the relationship between these aspects is the key to our understanding of pattern establishment. In this review, we present the Arabidopsis embryo as a simple, yet comprehensive model of pattern formation compatible with high-throughput quantitative assays.
Collapse
Affiliation(s)
- Yosapol Harnvanichvech
- Physical Chemistry and Soft Matter, Wageningen University, Wageningen, The Netherlands
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | - Vera Gorelova
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | - Joris Sprakel
- Physical Chemistry and Soft Matter, Wageningen University, Wageningen, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
161
|
Allelign Ashagre H, Zaltzman D, Idan-Molakandov A, Romano H, Tzfadia O, Harpaz-Saad S. FASCICLIN-LIKE 18 Is a New Player Regulating Root Elongation in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:645286. [PMID: 33897736 PMCID: PMC8058476 DOI: 10.3389/fpls.2021.645286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/19/2021] [Indexed: 05/26/2023]
Abstract
The plasticity of root development represents a key trait that enables plants to adapt to diverse environmental cues. The pattern of cell wall deposition, alongside other parameters, affects the extent, and direction of root growth. In this study, we report that FASCICLIN-LIKE ARABINOGALACTAN PROTEIN 18 (FLA18) plays a role during root elongation in Arabidopsis thaliana. Using root-specific co-expression analysis, we identified FLA18 to be co-expressed with a sub-set of genes required for root elongation. FLA18 encodes for a putative extra-cellular arabinogalactan protein from the FLA-gene family. Two independent T-DNA insertion lines, named fla18-1 and fla18-2, display short and swollen lateral roots (LRs) when grown on sensitizing condition of high-sucrose containing medium. Unlike fla4/salt overly sensitive 5 (sos5), previously shown to display short and swollen primary root (PR) and LRs under these conditions, the PR of the fla18 mutants is slightly longer compared to the wild-type. Overexpression of the FLA18 CDS complemented the fla18 root phenotype. Genetic interaction between either of the fla18 alleles and sos5 reveals a more severe perturbation of anisotropic growth in both PR and LRs, as compared to the single mutants and the wild-type under restrictive conditions of high sucrose or high-salt containing medium. Additionally, under salt-stress conditions, fla18sos5 had a small, chlorotic shoot phenotype, that was not observed in any of the single mutants or the wild type. As previously shown for sos5, the fla18-1 and fla18-1sos5 root-elongation phenotype is suppressed by abscisic acid (ABA) and display hypersensitivity to the ABA synthesis inhibitor, Fluridon. Last, similar to other cell wall mutants, fla18 root elongation is hypersensitive to the cellulose synthase inhibitor, Isoxaben. Altogether, the presented data assign a new role for FLA18 in the regulation of root elongation. Future studies of the unique vs. redundant roles of FLA proteins during root elongation is anticipated to shed a new light on the regulation of root architecture during plant adaptation to different growth conditions.
Collapse
Affiliation(s)
- Hewot Allelign Ashagre
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Zaltzman
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anat Idan-Molakandov
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hila Romano
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Oren Tzfadia
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Institute for Tropical Medicine, Antwerp, Belgium
| | - Smadar Harpaz-Saad
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
162
|
Zhang TQ, Chen Y, Liu Y, Lin WH, Wang JW. Single-cell transcriptome atlas and chromatin accessibility landscape reveal differentiation trajectories in the rice root. Nat Commun 2021; 12:2053. [PMID: 33824350 PMCID: PMC8024345 DOI: 10.1038/s41467-021-22352-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/08/2021] [Indexed: 12/26/2022] Open
Abstract
Root development relies on the establishment of meristematic tissues that give rise to distinct cell types that differentiate across defined temporal and spatial gradients. Dissection of the developmental trajectories and the transcriptional networks that underlie them could aid understanding of the function of the root apical meristem in both dicots and monocots. Here, we present a single-cell RNA (scRNA) sequencing and chromatin accessibility survey of rice radicles. By temporal profiling of individual root tip cells we reconstruct continuous developmental trajectories of epidermal cells and ground tissues, and elucidate regulatory networks underlying cell fate determination in these cell lineages. We further identify characteristic processes, transcriptome profiles, and marker genes for these cell types and reveal conserved and divergent root developmental pathways between dicots and monocots. Finally, we demonstrate the potential of the platform for functional genetic studies by using spatiotemporal modeling to identify a rice root meristematic mutant from a cell-specific gene cohort.
Collapse
Affiliation(s)
- Tian-Qi Zhang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.
| | - Yu Chen
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Ye Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Wen-Hui Lin
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.
- ShanghaiTech University, Shanghai, 200031, China.
| |
Collapse
|
163
|
Nitrogen Uptake in Plants: The Plasma Membrane Root Transport Systems from a Physiological and Proteomic Perspective. PLANTS 2021; 10:plants10040681. [PMID: 33916130 PMCID: PMC8066207 DOI: 10.3390/plants10040681] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022]
Abstract
Nitrogen nutrition in plants is a key determinant in crop productivity. The availability of nitrogen nutrients in the soil, both inorganic (nitrate and ammonium) and organic (urea and free amino acids), highly differs and influences plant physiology, growth, metabolism, and root morphology. Deciphering this multifaceted scenario is mandatory to improve the agricultural sustainability. In root cells, specific proteins located at the plasma membrane play key roles in the transport and sensing of nitrogen forms. This review outlines the current knowledge regarding the biochemical and physiological aspects behind the uptake of the individual nitrogen forms, their reciprocal interactions, the influences on root system architecture, and the relations with other proteins sustaining fundamental plasma membrane functionalities, such as aquaporins and H+-ATPase. This topic is explored starting from the information achieved in the model plant Arabidopsis and moving to crops in agricultural soils. Moreover, the main contributions provided by proteomics are described in order to highlight the goals and pitfalls of this approach and to get new hints for future studies.
Collapse
|
164
|
Giacomello S. A new era for plant science: spatial single-cell transcriptomics. CURRENT OPINION IN PLANT BIOLOGY 2021; 60:102041. [PMID: 33915520 DOI: 10.1016/j.pbi.2021.102041] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/04/2021] [Accepted: 03/14/2021] [Indexed: 05/05/2023]
Abstract
To achieve a complete understanding of how organisms function, there is a need to study their fundamental unit, the cell, in its spatial context. In recent years, we have seen fast-paced technological progress to study the transcriptional content of single cells and their spatial relationships. This review highlights modern advancements in single-cell RNA-sequencing, provides an overview of the technologies that led the plant field toward spatial transcriptomics, and describes the available spatial transcriptomics approaches providing examples of their application to plant tissues. In addition, it discusses the integration of these methods to study plant tissues. Taken together, we propose a central role of spatial transcriptomics approaches in plant science.
Collapse
Affiliation(s)
- Stefania Giacomello
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
165
|
Zhou W, Chi W, Shen W, Dou W, Wang J, Tian X, Gehring C, Wong A. Computational Identification of Functional Centers in Complex Proteins: A Step-by-Step Guide With Examples. FRONTIERS IN BIOINFORMATICS 2021; 1:652286. [PMID: 36303732 PMCID: PMC9581015 DOI: 10.3389/fbinf.2021.652286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
In proteins, functional centers consist of the key amino acids required to perform molecular functions such as catalysis, ligand-binding, hormone- and gas-sensing. These centers are often embedded within complex multi-domain proteins and can perform important cellular signaling functions that enable fine-tuning of temporal and spatial regulation of signaling molecules and networks. To discover hidden functional centers, we have developed a protocol that consists of the following sequential steps. The first is the assembly of a search motif based on the key amino acids in the functional center followed by querying proteomes of interest with the assembled motif. The second consists of a structural assessment of proteins that harbor the motif. This approach, that relies on the application of computational tools for the analysis of data in public repositories and the biological interpretation of the search results, has to-date uncovered several novel functional centers in complex proteins. Here, we use recent examples to describe a step-by-step guide that details the workflow of this approach and supplement with notes, recommendations and cautions to make this protocol robust and widely applicable for the discovery of hidden functional centers.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Wei Chi
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Wanting Shen
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Wanying Dou
- Department of Computer Science, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Junyi Wang
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Xuechen Tian
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Christoph Gehring
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center of Wenzhou-Kean University, Wenzhou, China
- *Correspondence: Aloysius Wong
| |
Collapse
|
166
|
Abstract
Plants encompass unparalleled multi-scale regenerative potential. Despite lacking specialized cells that are recruited to injured sites, and despite their cells being encased in rigid cell walls, plants exhibit a variety of regenerative responses ranging from the regeneration of specific cell types, tissues and organs, to the rebuilding of an entire organism. Over the years, extensive studies on embryo, shoot and root development in the model plant species Arabidopsis thaliana have provided insights into the mechanisms underlying plant regeneration. These studies highlight how Arabidopsis, with its wide array of refined molecular, genetic and cell biological tools, provides a perfect model to interrogate the cellular and molecular mechanisms of reprogramming during regeneration.
Collapse
Affiliation(s)
- Mabel Maria Mathew
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, 695551, India
| | - Kalika Prasad
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, 695551, India
| |
Collapse
|
167
|
Okada K, Kubota Y, Hirase T, Otani K, Goh T, Hiruma K, Saijo Y. Uncoupling root hair formation and defence activation from growth inhibition in response to damage-associated Pep peptides in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2021; 229:2844-2858. [PMID: 33131060 DOI: 10.1111/nph.17064] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
In Arabidopsis thaliana, PROPEPs and their derived elicitor-active Pep epitopes provide damage-associated molecular patterns (DAMPs), which trigger defence responses through cell-surface receptors PEPR1 and PEPR2. In addition, Pep peptides induce root growth inhibition and root hair formation, however their relationships and coordinating mechanisms are poorly understood. Here, we reveal that Pep1-mediated root hair formation requires PEPR-associated kinases BAK1/BKK1 and BIK1/PBL1, ethylene, auxin and root hair differentiation regulators, in addition to PEPR2. Our analysis on 69 accessions unravels intraspecies variations in Pep1-induced root hair formation and growth inhibition. The absence of a positive correlation between the two traits suggests their separate regulation and diversification in natural populations of A. thaliana. Restricted PEPR2 expression to certain root tissues is sufficient to induce root hair formation and growth inhibition in response to Pep1, indicating the capacity of non-cell-autonomous receptor signalling in different root tissues. Of particular note, root hair cell-specific PEPR2 expression uncouples defence activation from root growth inhibition and root hair formation, suggesting a unique property of root hairs in root defence activation following Pep1 recognition.
Collapse
Affiliation(s)
- Kentaro Okada
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Yuki Kubota
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Taishi Hirase
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Koichi Otani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Tatsuaki Goh
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Kei Hiruma
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
- Japan Science and Technology (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Kawaguchi, 332-0012, Japan
| | - Yusuke Saijo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
- Japan Science and Technology (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Kawaguchi, 332-0012, Japan
| |
Collapse
|
168
|
Zheng HX, Wu FH, Li SM, Zhang XS, Sui N. Single-cell profiling lights different cell trajectories in plants. ABIOTECH 2021; 2:64-78. [PMID: 36304478 PMCID: PMC9590582 DOI: 10.1007/s42994-021-00040-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/13/2021] [Indexed: 11/29/2022]
Abstract
The molecular mechanism of the maintenance and differentiation of plant stem cells is an eternal theme in studies on plant growth and development. Recent advances in single-cell RNA sequencing (scRNA-seq) methods have completely changed the understanding of cell heterogeneity and cell function, allowing research precision to identify the differentiation trajectory of stem cells maintained and differentiated at the cellular level. This review aimed to mainly discuss the novel insights provided by scRNA-seq for the maintenance and initiation of plant stem cells, cell differentiation, cell response to environmental changes, and improvement strategies for scRNA-seq. In addition, it highlighted additional perspectives beyond scRNA-seq, such as spatial transcriptomes, epigenomes, and single-cell multiomics, for a renewed understanding of stem cell maintenance and cell differentiation, thus providing potential targets and theoretical foundations for crop improvement.
Collapse
Affiliation(s)
- Hong-Xiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014 Shandong China
| | - Feng-Hui Wu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014 Shandong China
| | - Si-Min Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014 Shandong China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018 Shandong China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014 Shandong China
| |
Collapse
|
169
|
Long Y, Liu Z, Jia J, Mo W, Fang L, Lu D, Liu B, Zhang H, Chen W, Zhai J. FlsnRNA-seq: protoplasting-free full-length single-nucleus RNA profiling in plants. Genome Biol 2021; 22:66. [PMID: 33608047 PMCID: PMC7893963 DOI: 10.1186/s13059-021-02288-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
The broad application of single-cell RNA profiling in plants has been hindered by the prerequisite of protoplasting that requires digesting the cell walls from different types of plant tissues. Here, we present a protoplasting-free approach, flsnRNA-seq, for large-scale full-length RNA profiling at a single-nucleus level in plants using isolated nuclei. Combined with 10x Genomics and Nanopore long-read sequencing, we validate the robustness of this approach in Arabidopsis root cells and the developing endosperm. Sequencing results demonstrate that it allows for uncovering alternative splicing and polyadenylation-related RNA isoform information at the single-cell level, which facilitates characterizing cell identities.
Collapse
Affiliation(s)
- Yanping Long
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhijian Liu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jinbu Jia
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Weipeng Mo
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liang Fang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dongdong Lu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bo Liu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hong Zhang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wei Chen
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China.
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
170
|
Cuadrado-Pedetti MB, Rauschert I, Sainz MM, Amorim-Silva V, Botella MA, Borsani O, Sotelo-Silveira M. The Arabidopsis TETRATRICOPEPTIDE THIOREDOXIN-LIKE 1 Gene Is Involved in Anisotropic Root Growth during Osmotic Stress Adaptation. Genes (Basel) 2021; 12:236. [PMID: 33562207 PMCID: PMC7915054 DOI: 10.3390/genes12020236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022] Open
Abstract
Mutations in the Arabidopsis TETRATRICOPEPTIDE THIOREDOXIN-LIKE 1 (TTL1) gene cause reduced tolerance to osmotic stress evidenced by an arrest in root growth and root swelling, which makes it an interesting model to explore how root growth is controlled under stress conditions. We found that osmotic stress reduced the growth rate of the primary root by inhibiting the cell elongation in the elongation zone followed by a reduction in the number of cortical cells in the proximal meristem. We then studied the stiffness of epidermal cell walls in the root elongation zone of ttl1 mutants under osmotic stress using atomic force microscopy. In plants grown in control conditions, the mean apparent elastic modulus was 448% higher for live Col-0 cell walls than for ttl1 (88.1 ± 2.8 vs. 16.08 ± 6.9 kPa). Seven days of osmotic stress caused an increase in the stiffness in the cell wall of the cells from the elongation zone of 87% and 84% for Col-0 and ttl1, respectively. These findings suggest that TTL1 may play a role controlling cell expansion orientation during root growth, necessary for osmotic stress adaptation.
Collapse
Affiliation(s)
- María Belén Cuadrado-Pedetti
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, UdelaR, 12900 Montevideo, Uruguay; (M.B.C.-P.); (M.M.S.); (O.B.)
| | - Inés Rauschert
- Laboratorio de Señalización Celular y Nanobiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11600 Montevideo, Uruguay;
| | - María Martha Sainz
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, UdelaR, 12900 Montevideo, Uruguay; (M.B.C.-P.); (M.M.S.); (O.B.)
| | - Vítor Amorim-Silva
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortifruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Campus Teatinos, 29071 Málaga, Spain; (V.A.-S); (M.A.B.)
| | - Miguel Angel Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortifruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Campus Teatinos, 29071 Málaga, Spain; (V.A.-S); (M.A.B.)
| | - Omar Borsani
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, UdelaR, 12900 Montevideo, Uruguay; (M.B.C.-P.); (M.M.S.); (O.B.)
| | - Mariana Sotelo-Silveira
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, UdelaR, 12900 Montevideo, Uruguay; (M.B.C.-P.); (M.M.S.); (O.B.)
| |
Collapse
|
171
|
Space: the final frontier — achieving single-cell, spatially resolved transcriptomics in plants. Emerg Top Life Sci 2021; 5:179-188. [DOI: 10.1042/etls20200274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 01/13/2023]
Abstract
Single-cell RNA-seq is a tool that generates a high resolution of transcriptional data that can be used to understand regulatory networks in biological systems. In plants, several methods have been established for transcriptional analysis in tissue sections, cell types, and/or single cells. These methods typically require cell sorting, transgenic plants, protoplasting, or other damaging or laborious processes. Additionally, the majority of these technologies lose most or all spatial resolution during implementation. Those that offer a high spatial resolution for RNA lack breadth in the number of transcripts characterized. Here, we briefly review the evolution of spatial transcriptomics methods and we highlight recent advances and current challenges in sequencing, imaging, and computational aspects toward achieving 3D spatial transcriptomics of plant tissues with a resolution approaching single cells. We also provide a perspective on the potential opportunities to advance this novel methodology in plants.
Collapse
|
172
|
Takehisa H, Sato Y. Transcriptome-based approaches for clarification of nutritional responses and improvement of crop production. BREEDING SCIENCE 2021; 71:76-88. [PMID: 33762878 PMCID: PMC7973498 DOI: 10.1270/jsbbs.20098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/01/2020] [Indexed: 06/12/2023]
Abstract
Genome-wide transcriptome profiling is a powerful tool for identifying key genes and pathways involved in plant development and physiological processes. This review summarizes studies that have used transcriptome profiling mainly in rice to focus on responses to macronutrients such as nitrogen, phosphorus and potassium, and spatio-temporal root profiling in relation to the regulation of root system architecture as well as nutrient uptake and transport. We also discuss strategies based on meta- and co-expression analyses with different attributed transcriptome data, which can be used for investigating the regulatory mechanisms and dynamics of nutritional responses and adaptation, and speculate on further advances in transcriptome profiling that could have potential application to crop breeding and cultivation.
Collapse
Affiliation(s)
- Hinako Takehisa
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Yutaka Sato
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| |
Collapse
|
173
|
Arabidopsis REI-LIKE proteins activate ribosome biogenesis during cold acclimation. Sci Rep 2021; 11:2410. [PMID: 33510206 PMCID: PMC7844247 DOI: 10.1038/s41598-021-81610-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Arabidopsis REIL proteins are cytosolic ribosomal 60S-biogenesis factors. After shift to 10 °C, reil mutants deplete and slowly replenish non-translating eukaryotic ribosome complexes of root tissue, while controlling the balance of non-translating 40S- and 60S-subunits. Reil mutations respond by hyper-accumulation of non-translating subunits at steady-state temperature; after cold-shift, a KCl-sensitive 80S sub-fraction remains depleted. We infer that Arabidopsis may buffer fluctuating translation by pre-existing non-translating ribosomes before de novo synthesis meets temperature-induced demands. Reil1 reil2 double mutants accumulate 43S-preinitiation and pre-60S-maturation complexes and alter paralog composition of ribosomal proteins in non-translating complexes. With few exceptions, e.g. RPL3B and RPL24C, these changes are not under transcriptional control. Our study suggests requirement of de novo synthesis of eukaryotic ribosomes for long-term cold acclimation, feedback control of NUC2 and eIF3C2 transcription and links new proteins, AT1G03250, AT5G60530, to plant ribosome biogenesis. We propose that Arabidopsis requires biosynthesis of specialized ribosomes for cold acclimation.
Collapse
|
174
|
Juarez-Escobar J, Guerrero-Analco JA, Zamora-Briseño JA, Elizalde-Contreras JM, Bautista-Valle MV, Bojórquez-Velázquez E, Loyola-Vargas VM, Mata-Rosas M, Ruíz-May E. Tissue-specific proteome characterization of avocado seed during postharvest shelf life. J Proteomics 2021; 235:104112. [PMID: 33450407 DOI: 10.1016/j.jprot.2021.104112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/15/2022]
Abstract
Avocado is a nutritious and economically important fruit, generating significant income for exporter countries. Recently, by-products of this fruit such as seeds and peels, have raised interest in different industries. However, the biochemical features of the nutraceutical value of these tissues have not been analyzed using molecular approaches during the postharvest shelf life (PSL). We carried out comparative proteomics using tandem mass tagging (TMT) and synchronous-precursor selection (SPS)-MS3. We analyzed testa, cotyledon, and embryo axes from avocado seeds at detachment from the tree (unripe), and after five (breaker) and ten days (ripe) of PSL. We identified 1968 proteins, from which 933 were specific to the testa, 167 to the embryo axis, and 23 to the cotyledon. The testa had a more dynamic proteome than the other tissues, resembling similar stress responses to those observed in peel tissues, such as down-accumulation of translational machinery, cell wall catabolism and synthesis of secondary metabolites. In contrast, the up-accumulation of the biosynthesis of l-glutamine, L-isoleucine, and l-serine was observed in all tissues. Our study provides the basic biochemical and physiological features of avocado seed during PSL and demonstrates that avocado seed tissues could potentially be used as a costless source of high-value compounds. SIGNIFICANCE: Avocado seed as a fruit by-product is a source of different valuable molecules, including those with nutraceutical properties. During PSL, several biochemical and physiological modifications occur in this dispersal unit, which also includes the alteration of several key metabolites' content. However, the proteome profile associated with different metabolic pathways that regulate the inner content of seed metabolites has not been previously studied. Our tissue-specific proteomics TMT-SPS-MS3-based provides the first evidence of molecular and physiological changes in avocado tissues during PSL delivering fundamental knowledge of this organ. In this vein, the modulation of secondary metabolites, amino acid, and sugar metabolism of avocado tissues during PLS can encourage these by-products exploitation in multiple industries.
Collapse
Affiliation(s)
- Janet Juarez-Escobar
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Congregación el Haya, CP 91070, Xalapa, Veracruz, Mexico
| | - José A Guerrero-Analco
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Congregación el Haya, CP 91070, Xalapa, Veracruz, Mexico
| | - Jesús Alejandro Zamora-Briseño
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Congregación el Haya, CP 91070, Xalapa, Veracruz, Mexico
| | - José M Elizalde-Contreras
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Congregación el Haya, CP 91070, Xalapa, Veracruz, Mexico
| | - Mirna V Bautista-Valle
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Congregación el Haya, CP 91070, Xalapa, Veracruz, Mexico
| | - Esaú Bojórquez-Velázquez
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Congregación el Haya, CP 91070, Xalapa, Veracruz, Mexico
| | - Víctor M Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán (CICY), Mérida, Yucatán, Mexico
| | - Martín Mata-Rosas
- Red de Manejo Biotecnológico de Recursos, Instituto de Ecología A. C., Cluster BioMimic®, Carretera Antigua a Coatepec 351, Congregación el Haya, CP 91070 Xalapa, Veracruz, Mexico
| | - Eliel Ruíz-May
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Congregación el Haya, CP 91070, Xalapa, Veracruz, Mexico.
| |
Collapse
|
175
|
Shaw R, Tian X, Xu J. Single-Cell Transcriptome Analysis in Plants: Advances and Challenges. MOLECULAR PLANT 2021; 14:115-126. [PMID: 33152518 DOI: 10.1016/j.molp.2020.10.012] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/08/2020] [Accepted: 10/30/2020] [Indexed: 05/22/2023]
Abstract
The rapid and enthusiastic adoption of single-cell RNA sequencing (scRNA-seq) has demonstrated that this technology is far more than just another way to perform transcriptome analysis. It is not an exaggeration to say that the advent of scRNA-seq is revolutionizing the details of whole-transcriptome snapshots from a tissue to a cell. With this disruptive technology, it is now possible to mine heterogeneity between tissue types and within cells like never before. This enables more rapid identification of rare and novel cell types, simultaneous characterization of multiple different cell types and states, more accurate and integrated understanding of their roles in life processes, and more. However, we are only at the beginning of unlocking the full potential of scRNA-seq applications. This is particularly true for plant sciences, where single-cell transcriptome profiling is in its early stage and has many exciting challenges to overcome. In this review, we compare and evaluate recent pioneering studies using the Arabidopsis root model, which has established new paradigms for scRNA-seq studies in plants. We also explore several new and promising single-cell analysis tools that are available to those wishing to study plant development and physiology at unprecedented resolution and scale. In addition, we propose some future directions on the use of scRNA-seq technology to tackle some of the critical challenges in plant research and breeding.
Collapse
Affiliation(s)
- Rahul Shaw
- Department of Plant Systems Physiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Xin Tian
- Department of Plant Systems Physiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Jian Xu
- Department of Plant Systems Physiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
176
|
Galbraith D, Loureiro J, Antoniadi I, Bainard J, Bureš P, Cápal P, Castro M, Castro S, Čertner M, Čertnerová D, Chumová Z, Doležel J, Giorgi D, Husband BC, Kolář F, Koutecký P, Kron P, Leitch IJ, Ljung K, Lopes S, Lučanová M, Lucretti S, Ma W, Melzer S, Molnár I, Novák O, Poulton N, Skalický V, Sliwinska E, Šmarda P, Smith TW, Sun G, Talhinhas P, Tárnok A, Temsch EM, Trávníček P, Urfus T. Best practices in plant cytometry. Cytometry A 2021; 99:311-317. [PMID: 33398930 DOI: 10.1002/cyto.a.24295] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 01/19/2023]
Affiliation(s)
- David Galbraith
- School of Plant Sciences, BIO5 Institute, Arizona Cancer Center, Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA.,State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, Henan University, School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, Kaifeng, China
| | - João Loureiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ioanna Antoniadi
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Jillian Bainard
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, Saskatchewan, Canada
| | - Petr Bureš
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, CZ, Czech Republic
| | - Petr Cápal
- Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Mariana Castro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Sílvia Castro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Martin Čertner
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.,Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - Dora Čertnerová
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Zuzana Chumová
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.,Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Debora Giorgi
- Green Biotechnology Laboratory, Biotechnology and Agroindustry Division, Casaccia Research Center, ENEA - Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Brian C Husband
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.,Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - Petr Koutecký
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Paul Kron
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Ilia J Leitch
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Richmond, UK
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Sara Lopes
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Magdalena Lučanová
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic.,Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Sergio Lucretti
- Green Biotechnology Laboratory, Biotechnology and Agroindustry Division, Casaccia Research Center, ENEA - Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Wen Ma
- School of Plant Sciences, BIO5 Institute, Arizona Cancer Center, Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA.,State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, Henan University, School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, Kaifeng, China
| | - Susanne Melzer
- Clinical Trial Centre Leipzig, University Leipzig, Leipzig, Germany.,LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - István Molnár
- Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Ondřej Novák
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden.,Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, Olomouc, Czech Republic
| | - Nicole Poulton
- Center for Aquatic Cytometry, Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA
| | - Vladimír Skalický
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, Olomouc, Czech Republic
| | - Elwira Sliwinska
- Laboratory of Molecular Biology and Cytometry, Department of Agricultural Biotechnology, UTP University of Science and Technology, Bydgoszcz, Poland
| | - Petr Šmarda
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, CZ, Czech Republic
| | - Tyler W Smith
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Guiling Sun
- School of Plant Sciences, BIO5 Institute, Arizona Cancer Center, Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA.,State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, Henan University, School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, Kaifeng, China
| | - Pedro Talhinhas
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Attila Tárnok
- LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany.,Department of Precision Instruments, Tsinghua University, Beijing, China.,Department for Therapy Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Eva M Temsch
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Pavel Trávníček
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - Tomáš Urfus
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
177
|
Abstract
Flow cytometry and sorting represents a valuable and mature experimental platform for the analysis of cellular populations. Applications involving higher plants started to emerge around 40 years ago and are now widely employed both to provide unique information regarding basic and applied questions in the biosciences and to advance agricultural productivity in practical ways. Further development of this platform is being actively pursued, and this promises additional progress in our understanding of the interactions of cells within complex tissues and organs. Higher plants offer unique challenges in terms of flow cytometric analysis, first since their organs and tissues are, almost without exception, three-dimensional assemblies of different cell types held together by tough cell walls, and, second, because individual plant cells are generally larger than those of mammals.This chapter, which updates work last reviewed in 2014 [Galbraith DW (2014) Flow cytometry and sorting in Arabidopsis. In: Sanchez Serrano JJ, Salinas J (eds) Arabidopsis Protocols, 3rd ed. Methods in molecular biology, vol 1062. Humana Press, Totowa, pp 509-537], describes the application of techniques of flow cytometry and sorting to the model plant species Arabidopsis thaliana, in particular emphasizing (a) fluorescence labeling in vivo of specific cell types and of subcellular components, (b) analysis using both conventional cytometers and spectral analyzers, (c) fluorescence-activated sorting of protoplasts and nuclei, and (d) transcriptome analyses using sorted protoplasts and nuclei, focusing on population analyses at the level of single protoplasts and nuclei. Since this is an update, details of new experimental methods are emphasized.
Collapse
Affiliation(s)
- David W Galbraith
- University of Arizona, School of Plant Sciences and Bio5 Institute, Tucson, AZ, USA. .,Henan University, Institute of Plant Stress Biology, School of Life Sciences, Kaifeng, China.
| | - Guiling Sun
- Henan University, Institute of Plant Stress Biology, School of Life Sciences, Kaifeng, China
| |
Collapse
|
178
|
Perianez-Rodriguez J, Rodriguez M, Marconi M, Bustillo-Avendaño E, Wachsman G, Sanchez-Corrionero A, De Gernier H, Cabrera J, Perez-Garcia P, Gude I, Saez A, Serrano-Ron L, Beeckman T, Benfey PN, Rodríguez-Patón A, Del Pozo JC, Wabnik K, Moreno-Risueno MA. An auxin-regulable oscillatory circuit drives the root clock in Arabidopsis. SCIENCE ADVANCES 2021; 7:eabd4722. [PMID: 33523850 PMCID: PMC7775764 DOI: 10.1126/sciadv.abd4722] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/06/2020] [Indexed: 05/19/2023]
Abstract
In Arabidopsis, the root clock regulates the spacing of lateral organs along the primary root through oscillating gene expression. The core molecular mechanism that drives the root clock periodicity and how it is modified by exogenous cues such as auxin and gravity remain unknown. We identified the key elements of the oscillator (AUXIN RESPONSE FACTOR 7, its auxin-sensitive inhibitor IAA18/POTENT, and auxin) that form a negative regulatory loop circuit in the oscillation zone. Through multilevel computer modeling fitted to experimental data, we explain how gene expression oscillations coordinate with cell division and growth to create the periodic pattern of organ spacing. Furthermore, gravistimulation experiments based on the model predictions show that external auxin stimuli can lead to entrainment of the root clock. Our work demonstrates the mechanism underlying a robust biological clock and how it can respond to external stimuli.
Collapse
Affiliation(s)
- Juan Perianez-Rodriguez
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria). Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Marcos Rodriguez
- Departamento de Inteligencia Artificial, ETSIINF, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Marco Marconi
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria). Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Estefano Bustillo-Avendaño
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria). Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Guy Wachsman
- Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Alvaro Sanchez-Corrionero
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria). Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Hugues De Gernier
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Javier Cabrera
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria). Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Pablo Perez-Garcia
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria). Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Inmaculada Gude
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria). Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Angela Saez
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria). Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Laura Serrano-Ron
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria). Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Tom Beeckman
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Philip N Benfey
- Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Alfonso Rodríguez-Patón
- Departamento de Inteligencia Artificial, ETSIINF, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Juan Carlos Del Pozo
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria). Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Krzysztof Wabnik
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria). Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain.
| | - Miguel A Moreno-Risueno
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria). Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain.
| |
Collapse
|
179
|
Abstract
Bioinformatic tools are now an everyday part of a plant researcher's collection of protocols. They allow almost instantaneous access to large data sets encompassing genomes, transcriptomes, proteomes, epigenomes, and other "-omes," which are now being generated with increasing speed and decreasing cost. With the appropriate queries, such tools can generate quality hypotheses, sometimes without the need for new experimental data. In this chapter, we will investigate some of the tools used for examining gene expression and coexpression patterns, performing promoter analyses and functional classification enrichment for sets of genes, and exploring protein-protein and protein-DNA interactions in Arabidopsis. We will also cover additional tools that allow integration of data from several sources for improved hypothesis generation.
Collapse
Affiliation(s)
- G Alex Mason
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Alex Cantó-Pastor
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Nicholas J Provart
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
180
|
Bernal M, Krämer U. Involvement of Arabidopsis Multi-Copper Oxidase-Encoding LACCASE12 in Root-to-Shoot Iron Partitioning: A Novel Example of Copper-Iron Crosstalk. FRONTIERS IN PLANT SCIENCE 2021; 12:688318. [PMID: 34707625 PMCID: PMC8544784 DOI: 10.3389/fpls.2021.688318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/23/2021] [Indexed: 05/17/2023]
Abstract
Numerous central biological processes depend on the participation of the essential elements iron (Fe) or copper (Cu), including photosynthesis, respiration, cell wall remodeling and oxidative stress protection. Yet, both Fe and Cu metal cations can become toxic when accumulated in excess. Because of the potent ligand-binding and redox chemistries of these metals, there is a need for the tight and combined homeostatic control of their uptake and distribution. Several known examples pinpoint an inter-dependence of Fe and Cu homeostasis in eukaryotes, mostly in green algae, yeast and mammals, but this is less well understood in multicellular plants to date. In Arabidopsis, Cu deficiency causes secondary Fe deficiency, and this is associated with reduced in vitro ferroxidase activity and decreased root-to-shoot Fe translocation. Here we summarize the current knowledge of the cross-talk between Cu and Fe homeostasis and present a partial characterization of LACCASE12 (LAC12) that encodes a member of the multicopper oxidase (MCO) protein family in Arabidopsis. LAC12 transcript levels increase under Fe deficiency. The phenotypic characterization of two mutants carrying T-DNA insertions suggests a role of LAC12 in root-to-shoot Fe partitioning and in maintaining growth on Fe-deficient substrates. A molecular understanding of the complex interactions between Fe and Cu will be important for combating Fe deficiency in crops and for advancing biofortification approaches.
Collapse
Affiliation(s)
- María Bernal
- Department of Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
- Department of Plant Nutrition, Estación Experimental de Aula Dei-CSIC, Zaragoza, Spain
- *Correspondence: María Bernal,
| | - Ute Krämer
- Department of Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
- Ute Krämer,
| |
Collapse
|
181
|
Versatile Roles of Aquaporins in Plant Growth and Development. Int J Mol Sci 2020; 21:ijms21249485. [PMID: 33322217 PMCID: PMC7763978 DOI: 10.3390/ijms21249485] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Aquaporins (AQPs) are universal membrane integrated water channel proteins that selectively and reversibly facilitate the movement of water, gases, metalloids, and other small neutral solutes across cellular membranes in living organisms. Compared with other organisms, plants have the largest number of AQP members with diverse characteristics, subcellular localizations and substrate permeabilities. AQPs play important roles in plant water relations, cell turgor pressure maintenance, the hydraulic regulation of roots and leaves, and in leaf transpiration, root water uptake, and plant responses to multiple biotic and abiotic stresses. They are also required for plant growth and development. In this review, we comprehensively summarize the expression and roles of diverse AQPs in the growth and development of various vegetative and reproductive organs in plants. The functions of AQPs in the intracellular translocation of hydrogen peroxide are also discussed.
Collapse
|
182
|
BAM1/2 receptor kinase signaling drives CLE peptide-mediated formative cell divisions in Arabidopsis roots. Proc Natl Acad Sci U S A 2020; 117:32750-32756. [PMID: 33288706 PMCID: PMC7768756 DOI: 10.1073/pnas.2018565117] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Proper elaboration of the plant body plan requires that cell division patterns are coordinated during development in complex tissues. Activation of cell cycle machinery is critical for this process, but it is not clear how or if this links to cell-to-cell communication networks that are important during development. Here we show that key cell divisions that generate the plant root are controlled by cell-to-cell signaling peptides which act through plant-specific receptor kinases to control expression of a specific cyclinD cell cycle regulatory gene. We show that cyclinD gene expression depends on both receptor signaling and the SHORT-ROOT transcription factor to ensure timely and robust cell division patterns. Cell division is often regulated by extracellular signaling networks to ensure correct patterning during development. In Arabidopsis, the SHORT-ROOT (SHR)/SCARECROW (SCR) transcription factor dimer activates CYCLIND6;1 (CYCD6;1) to drive formative divisions during root ground tissue development. Here, we show plasma-membrane-localized BARELY ANY MERISTEM1/2 (BAM1/2) family receptor kinases are required for SHR-dependent formative divisions and CYCD6;1 expression, but not SHR-dependent ground tissue specification. Root-enriched CLE ligands bind the BAM1 extracellular domain and are necessary and sufficient to activate SHR-mediated divisions and CYCD6;1 expression. Correspondingly, BAM-CLE signaling contributes to the restriction of formative divisions to the distal root region. Additionally, genetic analysis reveals that BAM-CLE and SHR converge to regulate additional cell divisions outside of the ground tissues. Our work identifies an extracellular signaling pathway regulating formative root divisions and provides a framework to explore this pathway in patterning and evolution.
Collapse
|
183
|
The Arabidopsis NRT1/PTR FAMILY protein NPF7.3/NRT1.5 is an indole-3-butyric acid transporter involved in root gravitropism. Proc Natl Acad Sci U S A 2020; 117:31500-31509. [PMID: 33219124 PMCID: PMC7733822 DOI: 10.1073/pnas.2013305117] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Active membrane transport of plant hormones and their related compounds is an essential process that determines the distribution of the compounds within plant tissues and, hence, regulates various physiological events. Here, we report that the Arabidopsis NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER FAMILY 7.3 (NPF7.3) protein functions as a transporter of indole-3-butyric acid (IBA), a precursor of the major endogenous auxin indole-3-acetic acid (IAA). When expressed in yeast, NPF7.3 mediated cellular IBA uptake. Loss-of-function npf7.3 mutants showed defective root gravitropism with reduced IBA levels and auxin responses. Nevertheless, the phenotype was restored by exogenous application of IAA but not by IBA treatment. NPF7.3 was expressed in pericycle cells and the root tip region including root cap cells of primary roots where the IBA-to-IAA conversion occurs. Our findings indicate that NPF7.3-mediated IBA uptake into specific cells is required for the generation of appropriate auxin gradients within root tissues.
Collapse
|
184
|
A network of transcriptional repressors modulates auxin responses. Nature 2020; 589:116-119. [PMID: 33208947 DOI: 10.1038/s41586-020-2940-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 09/04/2020] [Indexed: 11/08/2022]
Abstract
The regulation of signalling capacity, combined with the spatiotemporal distribution of developmental signals themselves, is pivotal in setting developmental responses in both plants and animals1. The hormone auxin is a key signal for plant growth and development that acts through the AUXIN RESPONSE FACTOR (ARF) transcription factors2-4. A subset of these, the conserved class A ARFs5, are transcriptional activators of auxin-responsive target genes that are essential for regulating auxin signalling throughout the plant lifecycle2,3. Although class A ARFs have tissue-specific expression patterns, how their expression is regulated is unknown. Here we show, by investigating chromatin modifications and accessibility, that loci encoding these proteins are constitutively open for transcription. Through yeast one-hybrid screening, we identify the transcriptional regulators of the genes encoding class A ARFs from Arabidopsis thaliana and demonstrate that each gene is controlled by specific sets of transcriptional regulators. Transient transformation assays and expression analyses in mutants reveal that, in planta, the majority of these regulators repress the transcription of genes encoding class A ARFs. These observations support a scenario in which the default configuration of open chromatin enables a network of transcriptional repressors to regulate expression levels of class A ARF proteins and modulate auxin signalling output throughout development.
Collapse
|
185
|
High-order mutants reveal an essential requirement for peroxidases but not laccases in Casparian strip lignification. Proc Natl Acad Sci U S A 2020; 117:29166-29177. [PMID: 33139576 PMCID: PMC7682338 DOI: 10.1073/pnas.2012728117] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lignin is a defining polymer of vascular plants and of great physiological, ecological, and economical importance. Yet, its polymerization in the cell wall is still not understood. Lignin polymerizing enzymes, laccases and peroxidases, exist in vast numbers in plant genomes. By focusing on a specific lignin structure, the ring-like Casparian strips (CSs), we reduced candidate numbers and abolished essentially all laccases with detectable endodermal expression. Yet, not even slight defects in CS formation were detected. By contrast, a quintuple peroxidase mutant displayed a complete absence of CS. Our findings suggest that cells lignify differently depending on whether lignin is localized or ubiquitous and whether cells stay alive during and after lignification, as well as the composition of the cell wall. Lignin has enabled plants to colonize land, grow tall, transport water within their bodies, and protect themselves against various stresses. Consequently, this polyphenolic polymer, impregnating cellulosic plant cell walls, is the second most abundant polymer on Earth. Yet, despite its great physiological, ecological, and economical importance, our knowledge of lignin biosynthesis in vivo, especially the polymerization steps within the cell wall, remains vague—specifically, the respective roles of the two polymerizing enzymes classes, laccases and peroxidases. One reason for this lies in the very high numbers of laccases and peroxidases encoded by 17 and 73 homologous genes, respectively, in Arabidopsis. Here, we have focused on a specific lignin structure, the ring-like Casparian strips (CSs) within the root endodermis. By reducing candidate numbers using cellular resolution expression and localization data and by boosting stacking of mutants using CRISPR-Cas9, we mutated the majority of laccases in Arabidopsis in a nonuple mutant—essentially abolishing laccases with detectable endodermal expression. Yet, we were unable to detect even slight defects in CS formation. By contrast, we were able to induce a complete absence of CS formation in a quintuple peroxidase mutant. Our findings are in stark contrast to the strong requirement of xylem vessels for laccase action and indicate that lignin in different cell types can be polymerized in very distinct ways. We speculate that cells lignify differently depending on whether lignin is localized or ubiquitous and whether cells stay alive during and after lignification, as well as the composition of the cell wall.
Collapse
|
186
|
Jacobs B, Molenaar J, Deinum EE. Robust banded protoxylem pattern formation through microtubule-based directional ROP diffusion restriction. J Theor Biol 2020; 502:110351. [PMID: 32505828 DOI: 10.1016/j.jtbi.2020.110351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/07/2020] [Accepted: 05/27/2020] [Indexed: 12/28/2022]
Abstract
In plant vascular tissue development, different cell wall patterns are formed, offering different mechanical properties optimised for different growth stages. Critical in these patterning processes are Rho of Plants (ROP) proteins, a class of evolutionarily conserved small GTPase proteins responsible for local membrane domain formation in many organisms. While te spotted metaxylem pattern can easily be understood as a result of a Turing-style reaction-diffusion mechanism, it remains an open question how the consistent orientation of evenly spaced bands and spirals as found in protoxylem is achieved. We hypothesise that this orientation results from an interaction between ROPs and an array of transversely oriented cortical microtubules that acts as a directional diffusion barrier. Here, we explore this hypothesis using partial differential equation models with anisotropic ROP diffusion and show that a horizontal microtubule array acting as a vertical diffusion barrier to active ROP can yield a horizontally banded ROP pattern. We then study the underlying mechanism in more detail, finding that it can only orient curved pattern features but not straight lines. This implies that, once formed, banded and spiral patterns cannot be reoriented by this mechanism. Finally, we observe that ROPs and microtubules together only form ultimately static patterns if the interaction is implemented with sufficient biological realism.
Collapse
Affiliation(s)
- Bas Jacobs
- Biometris, Department for Mathematical and Statistical Methods, Wageningen University, Wageningen, The Netherlands
| | - Jaap Molenaar
- Biometris, Department for Mathematical and Statistical Methods, Wageningen University, Wageningen, The Netherlands
| | - Eva E Deinum
- Biometris, Department for Mathematical and Statistical Methods, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
187
|
Ko DK, Brandizzi F. Network-based approaches for understanding gene regulation and function in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:302-317. [PMID: 32717108 PMCID: PMC8922287 DOI: 10.1111/tpj.14940] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/14/2020] [Indexed: 05/03/2023]
Abstract
Expression reprogramming directed by transcription factors is a primary gene regulation underlying most aspects of the biology of any organism. Our views of how gene regulation is coordinated are dramatically changing thanks to the advent and constant improvement of high-throughput profiling and transcriptional network inference methods: from activities of individual genes to functional interactions across genes. These technical and analytical advances can reveal the topology of transcriptional networks in which hundreds of genes are hierarchically regulated by multiple transcription factors at systems level. Here we review the state of the art of experimental and computational methods used in plant biology research to obtain large-scale datasets and model transcriptional networks. Examples of direct use of these network models and perspectives on their limitations and future directions are also discussed.
Collapse
Affiliation(s)
- Dae Kwan Ko
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- For correspondence ()
| |
Collapse
|
188
|
Svolacchia N, Salvi E, Sabatini S. Arabidopsis primary root growth: let it grow, can't hold it back anymore! CURRENT OPINION IN PLANT BIOLOGY 2020; 57:133-141. [PMID: 33096518 DOI: 10.1016/j.pbi.2020.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/03/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
In multicellular organisms, growth is defined by those processes that allow an organ to increase in mass, namely cell proliferation - that increases the number of cells - and cell expansion - that increases their volume. For an organ to achieve a functional shape and a characteristic final size both these processes need to be tightly coordinated. In roots, these processes stand behind root primary growth, which results in lengthening of the root along its longitudinal axis, and secondary growth, which results in an increase of the root thickness. In this review, we will analyze latest advances in the study of the molecular mechanisms involved in root primary growth, focusing on the model species Arabidopsis thaliana, where some molecular factors and networks responsible for regulating its self-organized primary growth have been identified.
Collapse
Affiliation(s)
- Noemi Svolacchia
- Laboratory of Functional Genomics and Proteomics of Model Systems, Department of Biology and Biotechnology "C. Darwin", "La Sapienza" University of Rome, Via dei Sardi 70, Rome, Italy
| | - Elena Salvi
- Laboratory of Functional Genomics and Proteomics of Model Systems, Department of Biology and Biotechnology "C. Darwin", "La Sapienza" University of Rome, Via dei Sardi 70, Rome, Italy
| | - Sabrina Sabatini
- Laboratory of Functional Genomics and Proteomics of Model Systems, Department of Biology and Biotechnology "C. Darwin", "La Sapienza" University of Rome, Via dei Sardi 70, Rome, Italy.
| |
Collapse
|
189
|
Graças JP, Ranocha P, Vitorello VA, Savelli B, Jamet E, Dunand C, Burlat V. The Class III Peroxidase Encoding Gene AtPrx62 Positively and Spatiotemporally Regulates the Low pH-Induced Cell Death in Arabidopsis thaliana Roots. Int J Mol Sci 2020; 21:ijms21197191. [PMID: 33003393 PMCID: PMC7582640 DOI: 10.3390/ijms21197191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Exogenous low pH stress causes cell death in root cells, limiting root development, and agricultural production. Different lines of evidence suggested a relationship with cell wall (CW) remodeling players. We investigated whether class III peroxidase (CIII Prx) total activity, CIII Prx candidate gene expression, and reactive oxygen species (ROS) could modify CW structure during low pH-induced cell death in Arabidopsis thaliana roots. Wild-type roots displayed a good spatio-temporal correlation between the low pH-induced cell death and total CIII Prx activity in the early elongation (EZs), transition (TZs), and meristematic (MZs) zones. In situ mRNA hybridization showed that AtPrx62 transcripts accumulated only in roots treated at pH 4.6 in the same zones where cell death was induced. Furthermore, roots of the atprx62-1 knockout mutant showed decreased cell mortality under low pH compared to wild-type roots. Among the ROS, there was a drastic decrease in O2●− levels in the MZs of wild-type and atprx62-1 roots upon low pH stress. Together, our data demonstrate that AtPrx62 expression is induced by low pH and that the produced protein could positively regulate cell death. Whether the decrease in O2●− level is related to cell death induced upon low pH treatment remains to be elucidated.
Collapse
Affiliation(s)
- Jonathas Pereira Graças
- Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo, 13418-900 São Paulo, Brazil
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France
| | - Philippe Ranocha
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France
| | | | - Bruno Savelli
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France
| | - Vincent Burlat
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France
| |
Collapse
|
190
|
Turco GM, Rodriguez-Medina J, Siebert S, Han D, Valderrama-Gómez MÁ, Vahldick H, Shulse CN, Cole BJ, Juliano CE, Dickel DE, Savageau MA, Brady SM. Molecular Mechanisms Driving Switch Behavior in Xylem Cell Differentiation. Cell Rep 2020; 28:342-351.e4. [PMID: 31291572 DOI: 10.1016/j.celrep.2019.06.041] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 05/01/2019] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
Plant xylem cells conduct water and mineral nutrients. Although most plant cells are totipotent, xylem cells are unusual and undergo terminal differentiation. Many genes regulating this process are well characterized, including the Vascular-related NAC Domain 7 (VND7), MYB46, and MYB83 transcription factors, which are proposed to act in interconnected feedforward loops (FFLs). Less is known regarding the molecular mechanisms underlying the terminal transition to xylem cell differentiation. Here, we generate whole-root and single-cell data, which demonstrate that VND7 initiates sharp switching of root cells to xylem cell identity. Based on these data, we identified 4 candidate VND7 downstream target genes capable of generating this switch. Although MYB46 responds to VND7 induction, it is not among these targets. This system provides an important model to study the emergent properties that may give rise to totipotency relative to terminal differentiation and reveals xylem cell subtypes.
Collapse
Affiliation(s)
- Gina M Turco
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Joel Rodriguez-Medina
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Stefan Siebert
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Diane Han
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Miguel Á Valderrama-Gómez
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA 95616, USA
| | - Hannah Vahldick
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Christine N Shulse
- Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Benjamin J Cole
- Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Celina E Juliano
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Diane E Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Michael A Savageau
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA 95616, USA; Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
191
|
Zhang B, Sztojka B, Seyfferth C, Escamez S, Miskolczi P, Chantreau M, Bakó L, Delhomme N, Gorzsás A, Bhalerao RP, Tuominen H. The chromatin-modifying protein HUB2 is involved in the regulation of lignin composition in xylem vessels. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5484-5494. [PMID: 32479638 PMCID: PMC7501814 DOI: 10.1093/jxb/eraa264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
PIRIN2 (PRN2) was earlier reported to suppress syringyl (S)-type lignin accumulation of xylem vessels of Arabidopsis thaliana. In the present study, we report yeast two-hybrid results supporting the interaction of PRN2 with HISTONE MONOUBIQUITINATION2 (HUB2) in Arabidopsis. HUB2 has been previously implicated in several plant developmental processes, but not in lignification. Interaction between PRN2 and HUB2 was verified by β-galactosidase enzymatic and co-immunoprecipitation assays. HUB2 promoted the deposition of S-type lignin in the secondary cell walls of both stem and hypocotyl tissues, as analysed by pyrolysis-GC/MS. Chemical fingerprinting of individual xylem vessel cell walls by Raman and Fourier transform infrared microspectroscopy supported the function of HUB2 in lignin deposition. These results, together with a genetic analysis of the hub2 prn2 double mutant, support the antagonistic function of PRN2 and HUB2 in deposition of S-type lignin. Transcriptome analyses indicated the opposite regulation of the S-type lignin biosynthetic gene FERULATE-5-HYDROXYLASE1 by PRN2 and HUB2 as the underlying mechanism. PRN2 and HUB2 promoter activities co-localized in cells neighbouring the xylem vessel elements, suggesting that the S-type lignin-promoting function of HUB2 is antagonized by PRN2 for the benefit of the guaiacyl (G)-type lignin enrichment of the neighbouring xylem vessel elements.
Collapse
Affiliation(s)
- Bo Zhang
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Bernadette Sztojka
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Carolin Seyfferth
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Sacha Escamez
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Pál Miskolczi
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Maxime Chantreau
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - László Bakó
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Nicolas Delhomme
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | | | - Rishikesh P Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Hannele Tuominen
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| |
Collapse
|
192
|
Wang J, Sun W, Kong X, Zhao C, Li J, Chen Y, Gao Z, Zuo K. The peptidyl-prolyl isomerases FKBP15-1 and FKBP15-2 negatively affect lateral root development by repressing the vacuolar invertase VIN2 in Arabidopsis. PLANTA 2020; 252:52. [PMID: 32945964 DOI: 10.1007/s00425-020-03459-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
The peptidyl-prolyl isomerases FKBP15-1 and FKBP15-2 negatively modulate lateral root development by repressing vacuolar invertase VIN2 activity. Lateral root (LR) architecture greatly affects the efficiency of nutrient absorption and the anchorage of plants. Although the internal phytohormone regulatory mechanisms that control LR development are well known, how external nutrients influence lateral root development remains elusive. Here, we characterized the function of two FK506-binding proteins, namely, FKBP15-1 and FKBP15-2, in Arabidopsis. FKBP15-1/15-2 genes were expressed prominently in the vascular bundles of the root basal meristem region, and the FKBP15-1/15-2 proteins were localized to the endoplasmic reticulum of the cells. Using IP-MS, Co-IP, and BiFC assays, we demonstrated that FKBP15-1 and FKBP15-2 interacted with vacuolar invertase 2 (VIN2). Compared to Col-0 and the single mutants, the fkbp15-1fkbp15-2 double mutant had more LRs, and presented higher sucrose catalytic activity. Moreover, genetic analysis showed genetic epistasis of VIN2 over FKBP15-1/FKBP15-2 in controlling LR development. Our results indicate that FKBP15-1 and FKBP15-2 participate in the control of LR number by inhibiting the catalytic activity of VIN2. Owing to the conserved peptidylprolyl cis-trans isomerase activity of FKBP family proteins, our results provide a clue for further analysis of the interplay between lateral root development and protein modification by FKBPs.
Collapse
Affiliation(s)
- Jun Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenjie Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiuzhen Kong
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunyan Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianfu Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yun Chen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhengyin Gao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kaijing Zuo
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
193
|
Sengupta S, Nag Chaudhuri R. ABI3 plays a role in de-novo root regeneration from Arabidopsis thaliana callus cells. PLANT SIGNALING & BEHAVIOR 2020; 15:1794147. [PMID: 32662721 PMCID: PMC8550280 DOI: 10.1080/15592324.2020.1794147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 05/27/2023]
Abstract
Developmental plasticity and the ability to regenerate organs during the life cycle are a signature feature of plant system. De novo organogenesis is a common mode of plant regeneration and may occur directly from the explant or indirectly via callus formation. It is now evident that callus formation occurs through the root development pathway. In fact, callus cells behave like a group of root primordium cells that are under the control of exogenous auxin. Presence or absence of auxin decides the subsequent fate of these cells. While in presence of external supplementation of auxin they are maintained as root primordia cells, absence of exogenous auxin induces the callus cells into patterning, differentiation and finally root emergence. Here we show that in absence of functional ABI3, a prominent member of the B3 superfamily of transcription factors, root regeneration is compromised in Arabidopsis callus cells. In culture medium free of any exogenous hormone supplementation, while adventitious root emergence and growth was prominently observed in wild type cells, no such features were observed in abi3-6 cells. Expression of auxin-responsive AUX1 and GH3 genes was significantly reduced in abi3-6 cells, indicating that auxin levels or distribution may be altered in absence of ABI3.
Collapse
Affiliation(s)
- Sourabh Sengupta
- Department of Biotechnology, St. Xavier’s College, Kolkata, India
| | | |
Collapse
|
194
|
Wang C, Wang H, Li P, Li H, Xu C, Cohen H, Aharoni A, Wu S. Developmental programs interact with abscisic acid to coordinate root suberization in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:241-251. [PMID: 32645747 DOI: 10.1111/tpj.14920] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 05/20/2023]
Abstract
Suberin lamellae, which provide a hydrophobic protective barrier against biotic and abiotic stresses, are widely deposited in various cell types during plant development and in response to stress. However, it remains unclear how developmental programs interact with stress responses to direct the precise spatiotemporal pattern of suberin deposition. In this study, we found that SHORT-ROOT (SHR), together with its downstream factor MYB36, guided suberization specifically in the root endodermis. Despite a partial dependence on abscisic acid (ABA), the suberization mediated by SHR and MYB36 appeared to derive from a slow readout of developmental programs, which was in contrast to the rapid but transient suberization induced by ABA. Furthermore, we found the MYB39 transcription factor functioned as a common downstream hub of the SHR/MYB36 pathway and the ABA-triggered response. MYB39 could directly bind to the FAR5 (alcohol-forming fatty acyl-coenzyme A reductase) promoter to activate its expression. In addition, overexpression of MYB39 dramatically increased the amount of suberization in Arabidopsis roots. Our results provide important insights into the interaction between developmental programs and environmental stimuli in root suberization in Arabidopsis.
Collapse
Affiliation(s)
- Chunhua Wang
- College of Horticulture & College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hong Wang
- College of Horticulture & College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Pengxue Li
- College of Horticulture & College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Haiyang Li
- College of Horticulture & College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chunmiao Xu
- College of Horticulture & College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hagai Cohen
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Shuang Wu
- College of Horticulture & College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
195
|
Matosevich R, Cohen I, Gil-Yarom N, Modrego A, Friedlander-Shani L, Verna C, Scarpella E, Efroni I. Local auxin biosynthesis is required for root regeneration after wounding. NATURE PLANTS 2020; 6:1020-1030. [PMID: 32747761 DOI: 10.1038/s41477-020-0737-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 07/02/2020] [Indexed: 05/21/2023]
Abstract
The root meristem can regenerate following removal of its stem-cell niche by recruitment of remnant cells from the stump. Regeneration is initiated by rapid accumulation of auxin near the injury site but the source of this auxin is unknown. Here, we show that auxin accumulation arises from the activity of multiple auxin biosynthetic sources that are newly specified near the cut site and that their continuous activity is required for the regeneration process. Auxin synthesis is highly localized while PIN-mediated transport is dispensable for auxin accumulation and tip regeneration. Roots lacking the activity of the regeneration competence factor ERF115, or that are dissected at a zone of low regeneration potential, fail to activate local auxin sources. Remarkably, restoring auxin supply is sufficient to confer regeneration capacity to these recalcitrant tissues. We suggest that regeneration competence relies on the ability to specify new local auxin sources in a precise temporal pattern.
Collapse
Affiliation(s)
- Rotem Matosevich
- Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Itay Cohen
- Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Naama Gil-Yarom
- Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Abelardo Modrego
- Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Carla Verna
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- California Institute of Technology, Pasadena, CA, USA
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Idan Efroni
- Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
196
|
Yao X, Nie J, Bai R, Sui X. Amino Acid Transporters in Plants: Identification and Function. PLANTS 2020; 9:plants9080972. [PMID: 32751984 PMCID: PMC7466100 DOI: 10.3390/plants9080972] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 12/04/2022]
Abstract
Amino acid transporters are the main mediators of nitrogen distribution throughout the plant body, and are essential for sustaining growth and development. In this review, we summarize the current state of knowledge on the identity and biological functions of amino acid transporters in plants, and discuss the regulation of amino acid transporters in response to environmental stimuli. We focus on transporter function in amino acid assimilation and phloem loading and unloading, as well as on the molecular identity of amino acid exporters. Moreover, we discuss the effects of amino acid transport on carbon assimilation, as well as their cross-regulation, which is at the heart of sustainable agricultural production.
Collapse
|
197
|
Arribas-Hernández L, Simonini S, Hansen MH, Paredes EB, Bressendorff S, Dong Y, Østergaard L, Brodersen P. Recurrent requirement for the m 6A-ECT2/ECT3/ECT4 axis in the control of cell proliferation during plant organogenesis. Development 2020; 147:dev189134. [PMID: 32611605 PMCID: PMC7390628 DOI: 10.1242/dev.189134] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
mRNA methylation at the N6-position of adenosine (m6A) enables multiple layers of post-transcriptional gene control, often via RNA-binding proteins that use a YT521-B homology (YTH) domain for specific m6A recognition. In Arabidopsis, normal leaf morphogenesis and rate of leaf formation require m6A and the YTH-domain proteins ECT2, ECT3 and ECT4. In this study, we show that ect2/ect3 and ect2/ect3/ect4 mutants also exhibit slow root and stem growth, slow flower formation, defective directionality of root growth, and aberrant flower and fruit morphology. In all cases, the m6A-binding site of ECT proteins is required for in vivo function. We also demonstrate that both m6A methyltransferase mutants and ect2/ect3/ect4 exhibit aberrant floral phyllotaxis. Consistent with the delayed organogenesis phenotypes, we observe particularly high expression of ECT2, ECT3 and ECT4 in rapidly dividing cells of organ primordia. Accordingly, ect2/ect3/ect4 mutants exhibit decreased rates of cell division in leaf and vascular primordia. Thus, the m6A-ECT2/ECT3/ECT4 axis is employed as a recurrent module to stimulate plant organogenesis, at least in part by enabling rapid cellular proliferation.
Collapse
Affiliation(s)
- Laura Arribas-Hernández
- University of Copenhagen, Department of Biology, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | | | - Mathias Henning Hansen
- University of Copenhagen, Department of Biology, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Esther Botterweg Paredes
- University of Copenhagen, Department of Biology, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Simon Bressendorff
- University of Copenhagen, Department of Biology, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Yang Dong
- John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | | | - Peter Brodersen
- University of Copenhagen, Department of Biology, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
198
|
High-Throughput Single-Cell Transcriptome Profiling of Plant Cell Types. Cell Rep 2020; 27:2241-2247.e4. [PMID: 31091459 PMCID: PMC6758921 DOI: 10.1016/j.celrep.2019.04.054] [Citation(s) in RCA: 222] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/14/2019] [Accepted: 04/11/2019] [Indexed: 11/25/2022] Open
Abstract
Single-cell transcriptome profiling of heterogeneous tissues can provide high-resolution windows into developmental dynamics and environmental responses, but its application to plants has been limited. Here, we used the high-throughput Drop-seq approach to profile >12,000 cells from Arabidopsis roots. This identified numerous distinct cell types, covering all major root tissues and developmental stages, and illuminated specific marker genes for these populations. In addition, we demonstrate the utility of this approach to study the impact of environmental conditions on developmental processes. Analysis of roots grown with or without sucrose supplementation uncovers changes in the relative frequencies of cell types in response to sucrose. Finally, we characterize the transcriptome changes that occur across endodermis development and identify nearly 800 genes with dynamic expression as this tissue differentiates. Collectively, we demonstrate that single-cell RNA-seq can be used to profile developmental processes in plants and show how they can be altered by external stimuli. The application of single-cell transcriptome profiling to plants has been limited. Shulse et al. performed Drop-seq on Arabidopsis roots, generating a transcriptional resource for >12,000 cells across major populations. This revealed marker genes for distinct cell types, cell frequency changes resulting from sucrose addition, and genes dynamically regulated during development.
Collapse
|
199
|
Song Q, Ando A, Jiang N, Ikeda Y, Chen ZJ. Single-cell RNA-seq analysis reveals ploidy-dependent and cell-specific transcriptome changes in Arabidopsis female gametophytes. Genome Biol 2020; 21:178. [PMID: 32698836 PMCID: PMC7375004 DOI: 10.1186/s13059-020-02094-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/06/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Polyploidy provides new genetic material that facilitates evolutionary novelty, species adaptation, and crop domestication. Polyploidy often leads to an increase in cell or organism size, which may affect transcript abundance or transcriptome size, but the relationship between polyploidy and transcriptome changes remains poorly understood. Plant cells often undergo endoreduplication, confounding the polyploid effect. RESULTS To mitigate these effects, we select female gametic cells that are developmentally stable and void of endoreduplication. Using single-cell RNA sequencing (scRNA-seq) in Arabidopsis thaliana tetraploid lines and isogenic diploids, we show that transcriptome abundance doubles in the egg cell and increases approximately 1.6-fold in the central cell, consistent with cell size changes. In the central cell of tetraploid plants, DEMETER (DME) is upregulated, which can activate PRC2 family members FIS2 and MEA, and may suppress the expression of other genes. Upregulation of cell size regulators in tetraploids, including TOR and OSR2, may increase the size of reproductive cells. In diploids, the order of transcriptome abundance is central cell, synergid cell, and egg cell, consistent with their cell size variation. Remarkably, we uncover new sets of female gametophytic cell-specific transcripts with predicted biological roles; the most abundant transcripts encode families of cysteine-rich peptides, implying roles in cell-cell recognition during double fertilization. CONCLUSIONS Transcriptome in single cells doubles in tetraploid plants compared to diploid, while the degree of change and relationship to the cell size depends on cell types. These scRNA-seq resources are free of cross-contamination and are uniquely valuable for advancing plant hybridization, reproductive biology, and polyploid genomics.
Collapse
Affiliation(s)
- Qingxin Song
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Atsumi Ando
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA
| | - Ning Jiang
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station C0800, Austin, TX, 78712, USA
| | - Yoko Ikeda
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046, Japan
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA.
| |
Collapse
|
200
|
Olmo R, Cabrera J, Díaz-Manzano FE, Ruiz-Ferrer V, Barcala M, Ishida T, García A, Andrés MF, Ruiz-Lara S, Verdugo I, Pernas M, Fukaki H, Del Pozo JC, Moreno-Risueno MÁ, Kyndt T, Gheysen G, Fenoll C, Sawa S, Escobar C. Root-knot nematodes induce gall formation by recruiting developmental pathways of post-embryonic organogenesis and regeneration to promote transient pluripotency. THE NEW PHYTOLOGIST 2020; 227:200-215. [PMID: 32129890 DOI: 10.1111/nph.16521] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/18/2020] [Indexed: 05/08/2023]
Abstract
Root-knot nematodes (RKNs; Meloidogyne spp.) induce new post-embryogenic organs within the roots (galls) where they stablish and differentiate nematode feeding cells, giant cells (GCs). The developmental programmes and functional genes involved remain poorly defined. Arabidopsis root apical meristem (RAM), lateral root (LR) and callus marker lines, SHORT-ROOT/SHR, SCARECROW/SCR, SCHIZORIZA/SCZ, WUSCHEL-RELATED-HOMEOBOX-5/WOX5, AUXIN-RESPONSIVE-FACTOR-5/ARF5, ARABIDOPSIS-HISTIDINE PHOSPHOTRANSFER-PROTEIN-6/AHP6, GATA-TRANSCRIPTION FACTOR-23/GATA23 and S-PHASE-KINASE-ASSOCIATED-PROTEIN2B/SKP2B, were analysed for nematode-dependent expression. Their corresponding loss-of-function lines, including those for LR upstream regulators, SOLITARY ROOT/SLR/IAA14, BONDELOS/BDL/IAA12 and INDOLE-3-ACETIC-ACID-INDUCIBLE-28/IAA28, were tested for RKN resistance/tolerance. LR genes, for example ARF5 (key factor for root stem-cell niche regeneration), GATA23 (which specifies pluripotent founder cells) and AHP6 (cytokinin-signalling-inhibitor regulating pericycle cell-divisions orientation), show a crucial function during gall formation. RKNs do not compromise the number of founder cells or LR primordia but locally induce gall formation possibly by tuning the auxin/cytokinin balance in which AHP6 might be necessary. Key RAM marker genes were induced and functional in galls. Therefore, the activation of plant developmental programmes promoting transient-pluripotency/stemness leads to the generation of quiescent-centre and meristematic-like cell identities within the vascular cylinder of galls. Nematodes enlist developmental pathways of new organogenesis and/or root regeneration in the vascular cells of galls. This should determine meristematic cell identities with sufficient transient pluripotency for gall organogenesis.
Collapse
Affiliation(s)
- Rocío Olmo
- Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal, Universidad de Castilla-La Mancha, Avda. Carlos III, s/n, 45071, Toledo, Spain
| | - Javier Cabrera
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Fernando E Díaz-Manzano
- Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal, Universidad de Castilla-La Mancha, Avda. Carlos III, s/n, 45071, Toledo, Spain
| | - Virginia Ruiz-Ferrer
- Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal, Universidad de Castilla-La Mancha, Avda. Carlos III, s/n, 45071, Toledo, Spain
| | - Marta Barcala
- Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal, Universidad de Castilla-La Mancha, Avda. Carlos III, s/n, 45071, Toledo, Spain
| | - Takashi Ishida
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, 860-8555, Japan
| | - Alejandra García
- Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal, Universidad de Castilla-La Mancha, Avda. Carlos III, s/n, 45071, Toledo, Spain
| | - María Fe Andrés
- Protección Vegetal, Instituto de Ciencias Agrarias (ICA, CSIC), Calle de Serrano 115, 28006, Madrid, Spain
| | - Simón Ruiz-Lara
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, 3460000, Chile
| | - Isabel Verdugo
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, 3460000, Chile
| | - Mónica Pernas
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501, Japan
| | - Juan Carlos Del Pozo
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Miguel Ángel Moreno-Risueno
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Tina Kyndt
- Department of Molecular Biotechnology, Ghent University, 9000, Ghent, Belgium
| | - Godelieve Gheysen
- Department of Molecular Biotechnology, Ghent University, 9000, Ghent, Belgium
| | - Carmen Fenoll
- Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal, Universidad de Castilla-La Mancha, Avda. Carlos III, s/n, 45071, Toledo, Spain
| | - Shinichiro Sawa
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, 860-8555, Japan
| | - Carolina Escobar
- Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal, Universidad de Castilla-La Mancha, Avda. Carlos III, s/n, 45071, Toledo, Spain
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, 860-8555, Japan
| |
Collapse
|