151
|
In silico docking of forchlorfenuron (FCF) to septins suggests that FCF interferes with GTP binding. PLoS One 2014; 9:e96390. [PMID: 24787956 PMCID: PMC4008567 DOI: 10.1371/journal.pone.0096390] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/07/2014] [Indexed: 11/19/2022] Open
Abstract
Septins are GTP-binding proteins that form cytoskeleton-like filaments, which are essential for many functions in eukaryotic organisms. Small molecule compounds that disrupt septin filament assembly are valuable tools for dissecting septin functions with high temporal control. To date, forchlorfenuron (FCF) is the only compound known to affect septin assembly and functions. FCF dampens the dynamics of septin assembly inducing the formation of enlarged stable polymers, but the underlying mechanism of action is unknown. To investigate how FCF binds and affects septins, we performed in silico simulations of FCF docking to all available crystal structures of septins. Docking of FCF with SEPT2 and SEPT3 indicated that FCF interacts preferentially with the nucleotide-binding pockets of septins. Strikingly, FCF is predicted to form hydrogen bonds with residues involved in GDP-binding, mimicking nucleotide binding. FCF docking with the structure of SEPT2-GppNHp, a nonhydrolyzable GTP analog, and SEPT7 showed that FCF may assume two alternative non-overlapping conformations deeply into and on the outer side of the nucleotide-binding pocket. Surprisingly, FCF was predicted to interact with the P-loop Walker A motif GxxxxGKS/T, which binds the phosphates of GTP, and the GTP specificity motif AKAD, which interacts with the guanine base of GTP, and highly conserved amino acids including a threonine, which is critical for GTP hydrolysis. Thus, in silico FCF exhibits a conserved mechanism of binding, interacting with septin signature motifs and residues involved in GTP binding and hydrolysis. Taken together, our results suggest that FCF stabilizes septins by locking them into a conformation that mimics a nucleotide-bound state, preventing further GTP binding and hydrolysis. Overall, this study provides the first insight into how FCF may bind and stabilize septins, and offers a blueprint for the rational design of FCF derivatives that could target septins with higher affinity and specificity.
Collapse
|
152
|
Liu YP, Tsai IC, Morleo M, Oh EC, Leitch CC, Massa F, Lee BH, Parker DS, Finley D, Zaghloul NA, Franco B, Katsanis N. Ciliopathy proteins regulate paracrine signaling by modulating proteasomal degradation of mediators. J Clin Invest 2014; 124:2059-70. [PMID: 24691443 PMCID: PMC4001542 DOI: 10.1172/jci71898] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 02/06/2014] [Indexed: 02/06/2023] Open
Abstract
Cilia are critical mediators of paracrine signaling; however, it is unknown whether proteins that contribute to ciliopathies converge on multiple paracrine pathways through a common mechanism. Here, we show that loss of cilopathy-associated proteins Bardet-Biedl syndrome 4 (BBS4) or oral-facial-digital syndrome 1 (OFD1) results in the accumulation of signaling mediators normally targeted for proteasomal degradation. In WT cells, several BBS proteins and OFD1 interacted with proteasomal subunits, and loss of either BBS4 or OFD1 led to depletion of multiple subunits from the centrosomal proteasome. Furthermore, overexpression of proteasomal regulatory components or treatment with proteasomal activators sulforaphane (SFN) and mevalonolactone (MVA) ameliorated signaling defects in cells lacking BBS1, BBS4, and OFD1, in morphant zebrafish embryos, and in induced neurons from Ofd1-deficient mice. Finally, we tested the hypothesis that other proteasome-dependent pathways not known to be associated with ciliopathies are defective in the absence of ciliopathy proteins. We found that loss of BBS1, BBS4, or OFD1 led to decreased NF-κB activity and concomitant IκBβ accumulation and that these defects were ameliorated with SFN treatment. Taken together, our data indicate that basal body proteasomal regulation governs paracrine signaling pathways and suggest that augmenting proteasomal function might benefit ciliopathy patients.
Collapse
Affiliation(s)
- Yangfan P. Liu
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA.
Telethon Institute of Genetics and Medicine, Naples, Italy.
Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Medical Translational Sciences, Federico II University, Naples, Italy
| | - I-Chun Tsai
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA.
Telethon Institute of Genetics and Medicine, Naples, Italy.
Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Medical Translational Sciences, Federico II University, Naples, Italy
| | - Manuela Morleo
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA.
Telethon Institute of Genetics and Medicine, Naples, Italy.
Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Medical Translational Sciences, Federico II University, Naples, Italy
| | - Edwin C. Oh
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA.
Telethon Institute of Genetics and Medicine, Naples, Italy.
Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Medical Translational Sciences, Federico II University, Naples, Italy
| | - Carmen C. Leitch
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA.
Telethon Institute of Genetics and Medicine, Naples, Italy.
Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Medical Translational Sciences, Federico II University, Naples, Italy
| | - Filomena Massa
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA.
Telethon Institute of Genetics and Medicine, Naples, Italy.
Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Medical Translational Sciences, Federico II University, Naples, Italy
| | - Byung-Hoon Lee
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA.
Telethon Institute of Genetics and Medicine, Naples, Italy.
Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Medical Translational Sciences, Federico II University, Naples, Italy
| | - David S. Parker
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA.
Telethon Institute of Genetics and Medicine, Naples, Italy.
Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Medical Translational Sciences, Federico II University, Naples, Italy
| | - Daniel Finley
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA.
Telethon Institute of Genetics and Medicine, Naples, Italy.
Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Medical Translational Sciences, Federico II University, Naples, Italy
| | - Norann A. Zaghloul
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA.
Telethon Institute of Genetics and Medicine, Naples, Italy.
Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Medical Translational Sciences, Federico II University, Naples, Italy
| | - Brunella Franco
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA.
Telethon Institute of Genetics and Medicine, Naples, Italy.
Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Medical Translational Sciences, Federico II University, Naples, Italy
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA.
Telethon Institute of Genetics and Medicine, Naples, Italy.
Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Medical Translational Sciences, Federico II University, Naples, Italy
| |
Collapse
|
153
|
Reversible paralysis of Schistosoma mansoni by forchlorfenuron, a phenylurea cytokinin that affects septins. Int J Parasitol 2014; 44:523-31. [PMID: 24768753 DOI: 10.1016/j.ijpara.2014.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/21/2014] [Accepted: 03/23/2014] [Indexed: 02/06/2023]
Abstract
Septins are guanosine-5'-triphosphate-binding proteins involved in wide-ranging cellular processes including cytokinesis, vesicle trafficking, membrane remodelling and scaffolds, and with diverse binding partners. Precise roles for these structural proteins in most processes often remain elusive. Identification of small molecules that inhibit septins could aid in elucidating the functions of septins and has become increasingly important, including the description of roles for septins in pathogenic phenomena such as tumorigenesis. The plant growth regulator forchlorfenuron, a synthetic cytokinin known to inhibit septin dynamics, likely represents an informative probe for septin function. This report deals with septins of the human blood fluke Schistosoma mansoni and their interactions with forchlorfenuron. Recombinant forms of three schistosome septins, SmSEPT5, SmSEPT7.2 and SmSEPT10, interacted with forchlorfenuron, leading to rapid polymerization of filaments. Culturing developmental stages (miracidia, cercariae, adult males) of schistosomes in FCF at 50-500 μM rapidly led to paralysis, which was reversible upon removal of the cytokinin. The reversible paralysis was concentration-, time- and developmental stage-dependent. Effects of forchlorfenuron on the cultured schistosomes were monitored by video and/or by an xCELLigence-based assay of motility, which quantified the effect of forchlorfenuron on fluke motility. The findings implicated a mechanism targeting a molecular system controlling movement in these developmental stages: a direct effect on muscle contraction due to septin stabilization might be responsible for the reversible paralysis, since enrichment of septins has been described within the muscles of schistosomes. This study revealed the reversible effect of forchlorfenuron on both schistosome motility and its striking impact in hastening polymerization of septins. These novel findings suggested routes to elucidate roles for septins in this pathogen, and exploitation of derivatives of forchlorfenuron for anti-schistosomal drugs.
Collapse
|
154
|
Schätz G, Schneiter M, Rička J, Kühni-Boghenbor K, Tschanz S, Doherr M, Frenz M, Stoffel M. Ciliary Beating Plane and Wave Propagation in the Bovine Oviduct. Cells Tissues Organs 2014; 198:457-69. [DOI: 10.1159/000360155] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2014] [Indexed: 11/19/2022] Open
|
155
|
Dubaissi E, Rousseau K, Lea R, Soto X, Nardeosingh S, Schweickert A, Amaya E, Thornton DJ, Papalopulu N. A secretory cell type develops alongside multiciliated cells, ionocytes and goblet cells, and provides a protective, anti-infective function in the frog embryonic mucociliary epidermis. Development 2014; 141:1514-25. [PMID: 24598166 PMCID: PMC3957375 DOI: 10.1242/dev.102426] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 02/02/2014] [Indexed: 02/05/2023]
Abstract
The larval epidermis of Xenopus is a bilayered epithelium, which is an excellent model system for the study of the development and function of mucosal and mucociliary epithelia. Goblet cells develop in the outer layer while multiciliated cells and ionocytes sequentially intercalate from the inner to the outer layer. Here, we identify and characterise a fourth cell type, the small secretory cell (SSC). We show that the development of these cells is controlled by the transcription factor Foxa1 and that they intercalate into the outer layer of the epidermis relatively late, at the same time as embryonic hatching. Ultrastructural and molecular characterisation shows that these cells have an abundance of large apical secretory vesicles, which contain highly glycosylated material, positive for binding of the lectin, peanut agglutinin, and an antibody to the carbohydrate epitope, HNK-1. By specifically depleting SSCs, we show that these cells are crucial for protecting the embryo against bacterial infection. Mass spectrometry studies show that SSCs secrete a glycoprotein similar to Otogelin, which may form the structural component of a mucus-like protective layer, over the surface of the embryo, and several potential antimicrobial substances. Our study completes the characterisation of all the epidermal cell types in the early tadpole epidermis and reinforces the suitability of this system for the in vivo study of complex epithelia, including investigation of innate immune defences.
Collapse
Affiliation(s)
- Eamon Dubaissi
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Karine Rousseau
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Wellcome Trust Centre for Cell Matrix Research, University of Manchester, Manchester M13 9PT, UK
| | - Robert Lea
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- The Healing Foundation Centre, University of Manchester, Manchester M13 9PT, UK
| | - Ximena Soto
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Siddarth Nardeosingh
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Axel Schweickert
- University of Hohenheim, Institute of Zoology, Garbenstrasse 30, D-70593 Stuttgart, Germany
| | - Enrique Amaya
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- The Healing Foundation Centre, University of Manchester, Manchester M13 9PT, UK
| | - David J. Thornton
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Wellcome Trust Centre for Cell Matrix Research, University of Manchester, Manchester M13 9PT, UK
| | - Nancy Papalopulu
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
156
|
Jiang H, Hua D, Zhang J, Lan Q, Huang Q, Yoon JG, Han X, Li L, Foltz G, Zheng S, Lin B. MicroRNA-127-3p promotes glioblastoma cell migration and invasion by targeting the tumor-suppressor gene SEPT7. Oncol Rep 2014; 31:2261-9. [PMID: 24604520 DOI: 10.3892/or.2014.3055] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/06/2014] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs of 20-25 nucleotides in length that are capable of modulating gene expression post-transcriptionally. The potential roles of miRNAs in the tumorigenesis of glioblastoma (GBM) have been under intensive studies in the past few years. In the present study, we found a positive correlation between the levels of miR-127-3p and the cell migration and invasion abilities in several human GBM cell lines. We showed that miR-127-3p promoted cell migration and invasion of GBM cells using in vitro cell lines and in vivo mouse models. We identified SEPT7, a known tumor-suppressor gene that has been reported to suppress GBM cell migration and invasion, as a direct target of miR-127-3p. SEPT7 was able to partially abrogate the effect of miR-127-3p on cell migration and invasion. In addition, microarray analysis revealed that miR-127-3p regulated a number of migration and invasion-related genes. Finally, we verified that miR-127-3p affected the remodeling of the actin cytoskeleton mediated by SEPT7 in GBM cells.
Collapse
Affiliation(s)
- Huawei Jiang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Dasong Hua
- Systems Biology Division, Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou, Zhejiang 310029, P.R. China
| | - Jing Zhang
- Systems Biology Division, Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou, Zhejiang 310029, P.R. China
| | - Qing Lan
- Department of Neurosurgery and Brain Tumor Research Laboratory, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Qiang Huang
- Department of Neurosurgery and Brain Tumor Research Laboratory, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Jae-Geun Yoon
- Swedish Neuroscience Institute, Swedish Medical Center, Seattle, WA 98122, USA
| | - Xu Han
- Systems Biology Division, Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou, Zhejiang 310029, P.R. China
| | - Lisha Li
- Systems Biology Division, Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou, Zhejiang 310029, P.R. China
| | - Gregory Foltz
- Swedish Neuroscience Institute, Swedish Medical Center, Seattle, WA 98122, USA
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Biaoyang Lin
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
157
|
Shindo A, Wallingford JB. PCP and septins compartmentalize cortical actomyosin to direct collective cell movement. Science 2014; 343:649-52. [PMID: 24503851 DOI: 10.1126/science.1243126] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Despite our understanding of actomyosin function in individual migrating cells, we know little about the mechanisms by which actomyosin drives collective cell movement in vertebrate embryos. The collective movements of convergent extension drive both global reorganization of the early embryo and local remodeling during organogenesis. We report here that planar cell polarity (PCP) proteins control convergent extension by exploiting an evolutionarily ancient function of the septin cytoskeleton. By directing septin-mediated compartmentalization of cortical actomyosin, PCP proteins coordinate the specific shortening of mesenchymal cell-cell contacts, which in turn powers cell interdigitation. These data illuminate the interface between developmental signaling systems and the fundamental machinery of cell behavior and should provide insights into the etiology of human birth defects, such as spina bifida and congenital kidney cysts.
Collapse
Affiliation(s)
- Asako Shindo
- Howard Hughes Medical Institute and University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
158
|
Dash SN, Lehtonen E, Wasik AA, Schepis A, Paavola J, Panula P, Nelson WJ, Lehtonen S. Sept7b is essential for pronephric function and development of left-right asymmetry in zebrafish embryogenesis. J Cell Sci 2014; 127:1476-86. [PMID: 24496452 DOI: 10.1242/jcs.138495] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The conserved septin family of filamentous small GTPases plays important roles in mitosis, cell migration and cell morphogenesis by forming scaffolds and diffusion barriers. Recent studies in cultured cells in vitro indicate that a septin complex of septin 2, 7 and 9 is required for ciliogenesis and cilia function, but septin function in ciliogenesis in vertebrate organs in vivo is not understood. We show that sept7b is expressed in ciliated cells in different tissues during early zebrafish development. Knockdown of sept7b by using morpholino antisense oligonucleotides caused misorientation of basal bodies and cilia, reduction of apical actin and the shortening of motile cilia in Kupffer's vesicle and pronephric tubules. This resulted in pericardial and yolk sac edema, body axis curvature and hydrocephaly. Notably, in sept7b morphants we detected strong left-right asymmetry defects in the heart and lateral plate mesoderm (situs inversus), reduced fluid flow in the kidney, the formation of kidney cysts and loss of glomerular filtration barrier function. Thus, sept7b is essential during zebrafish development for pronephric function and ciliogenesis, and loss of expression of sept7b results in defects that resemble human ciliopathies.
Collapse
Affiliation(s)
- Surjya Narayan Dash
- University of Helsinki, Haartman Institute, Department of Pathology, Haartmaninkatu 3, 00290 Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Sung CH, Leroux MR. The roles of evolutionarily conserved functional modules in cilia-related trafficking. Nat Cell Biol 2014; 15:1387-97. [PMID: 24296415 DOI: 10.1038/ncb2888] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cilia are present across most eukaryotic phyla and have diverse sensory and motility roles in animal physiology, cell signalling and development. Their biogenesis and maintenance depend on vesicular and intraciliary (intraflagellar) trafficking pathways that share conserved structural and functional modules. The functional units of the interconnected pathways, which include proteins involved in membrane coating as well as small GTPases and their accessory factors, were first experimentally associated with canonical vesicular trafficking. These components are, however, ancient, having been co-opted by the ancestral eukaryote to establish the ciliary organelle, and their study can inform us about ciliary biology in higher organisms.
Collapse
Affiliation(s)
- Ching-Hwa Sung
- Margaret M. Dyson Vision Research Institute, Department of Ophthalmology, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10065, USA
| | | |
Collapse
|
160
|
Mostowy S, Bi E, Füchtbauer EM, Goryachev AB, Montagna C, Nagata KI, Trimble WS, Werner HB, Yao X, Zieger B, Spiliotis ET. Highlight: the 5th International Workshop on Septin Biology. Biol Chem 2014; 395:119-21. [PMID: 24334412 DOI: 10.1515/hsz-2013-0291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
161
|
Sept6 is required for ciliogenesis in Kupffer's vesicle, the pronephros, and the neural tube during early embryonic development. Mol Cell Biol 2014; 34:1310-21. [PMID: 24469395 DOI: 10.1128/mcb.01409-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Septins are conserved filament-forming GTP-binding proteins that act as cellular scaffolds or diffusion barriers in a number of cellular processes. However, the role of septins in vertebrate development remains relatively obscure. Here, we show that zebrafish septin 6 (sept6) is first expressed in the notochord and then in nearly all of the ciliary organs, including Kupffer's vesicle (KV), the pronephros, eye, olfactory bulb, and neural tube. Knockdown of sept6 in zebrafish embryos results in reduced numbers and length of cilia in KV. Consequently, cilium-related functions, such as the left-right patterning of internal organs and nodal/spaw signaling, are compromised. Knockdown of sept6 also results in aberrant cilium formation in the pronephros and neural tube, leading to cilium-related defects in pronephros development and Sonic hedgehog (Shh) signaling. We further demonstrate that SEPT6 associates with acetylated α-tubulin in vivo and localizes along the axoneme in the cilia of zebrafish pronephric duct cells as well as cultured ZF4 cells. Our study reveals a novel role of sept6 in ciliogenesis during early embryonic development in zebrafish.
Collapse
|
162
|
Singh J, Mlodzik M. Planar cell polarity signaling: coordination of cellular orientation across tissues. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 1:479-99. [PMID: 23066429 DOI: 10.1002/wdev.32] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Establishment of Planar Cell Polarity (PCP) in epithelia, in the plane of an epithelium, is an important feature of the development and homeostasis of most organs. Studies in different model organisms have contributed a wealth of information regarding the mechanisms that govern PCP regulation. Genetic studies in Drosophila have identified two signaling systems, the Fz/PCP and Fat/Dachsous system, which are both required for PCP establishment in many different tissues in a largely non-redundant manner. Recent advances in vertebrate PCP studies have added novel factors of PCP regulation and also new cellular features requiring PCP-signaling input, including the positioning and orientation of the primary cilium of many epithelial cells. This review focuses mostly on several recent advances made in the Drosophila and vertebrate PCP field and integrates these within the existing PCP-signaling framework.
Collapse
Affiliation(s)
- Jaskirat Singh
- Department of Developmental & Regenerative Biology, Mount Sinai School of Medicine, New York, NY, USA
| | | |
Collapse
|
163
|
Chung MI, Kwon T, Tu F, Brooks ER, Gupta R, Meyer M, Baker JC, Marcotte EM, Wallingford JB. Coordinated genomic control of ciliogenesis and cell movement by RFX2. eLife 2014; 3:e01439. [PMID: 24424412 PMCID: PMC3889689 DOI: 10.7554/elife.01439] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/27/2013] [Indexed: 12/16/2022] Open
Abstract
The mechanisms linking systems-level programs of gene expression to discrete cell biological processes in vivo remain poorly understood. In this study, we have defined such a program for multi-ciliated epithelial cells (MCCs), a cell type critical for proper development and homeostasis of the airway, brain and reproductive tracts. Starting from genomic analysis of the cilia-associated transcription factor Rfx2, we used bioinformatics and in vivo cell biological approaches to gain insights into the molecular basis of cilia assembly and function. Moreover, we discovered a previously un-recognized role for an Rfx factor in cell movement, finding that Rfx2 cell-autonomously controls apical surface expansion in nascent MCCs. Thus, Rfx2 coordinates multiple, distinct gene expression programs in MCCs, regulating genes that control cell movement, ciliogenesis, and cilia function. As such, the work serves as a paradigm for understanding genomic control of cell biological processes that span from early cell morphogenetic events to terminally differentiated cellular functions. DOI: http://dx.doi.org/10.7554/eLife.01439.001.
Collapse
Affiliation(s)
- Mei-I Chung
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| | - Taejoon Kwon
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| | - Fan Tu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| | - Eric R Brooks
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| | - Rakhi Gupta
- Department of Genetics, Stanford University, Stanford, United States
| | - Matthew Meyer
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| | - Julie C Baker
- Department of Genetics, Stanford University, Stanford, United States
| | - Edward M Marcotte
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, United States
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, United States
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
- Howard Hughes Medical Institute, University of Texas at Austin, Austin, United States
| |
Collapse
|
164
|
Li Y, Song L, Gong Y, He B. Detection of colorectal cancer by DNA methylation biomarker SEPT9: past, present and future. Biomark Med 2014; 8:755-769. [PMID: 25123042 DOI: 10.2217/bmm.14.8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer has become the third most common cancer in the world. Early diagnosis and treatment can significantly reduce colorectal cancer mortality. The current routinely used fecal-based screening methods do not provide satisfactory sensitivity. Although colonoscopy provides macroscopic diagnosis, the compliance is low due to its inconvenience and complications. Hence, the development of new screening methods is needed urgently. Peripheral blood SEPT9 gene methylation assay has become a potential option with promising future for early detection and screening of colorectal cancer. It is shown to be convenient, reliable with good compliance by several clinical trials. This article will review the theoretical foundation and development of the assay, focusing on its clinical trials, comparing it with other screening methods and discussing its future applications.
Collapse
Affiliation(s)
- Yuemin Li
- The Chinese PLA 309 Hospital (General Hospital of the PLA General Staff Headquarters), No. 17, HeiShanHu Road, HaiDian District, Beijing 100091, PR China
| | | | | | | |
Collapse
|
165
|
Wheway G, Parry DA, Johnson CA. The role of primary cilia in the development and disease of the retina. Organogenesis 2014; 10:69-85. [PMID: 24162842 PMCID: PMC4049897 DOI: 10.4161/org.26710] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 10/01/2013] [Accepted: 10/04/2013] [Indexed: 02/07/2023] Open
Abstract
The normal development and function of photoreceptors is essential for eye health and visual acuity in vertebrates. Mutations in genes encoding proteins involved in photoreceptor development and function are associated with a suite of inherited retinal dystrophies, often as part of complex multi-organ syndromic conditions. In this review, we focus on the role of the photoreceptor outer segment, a highly modified and specialized primary cilium, in retinal health and disease. We discuss the many defects in the structure and function of the photoreceptor primary cilium that can cause a class of inherited conditions known as ciliopathies, often characterized by retinal dystrophy and degeneration, and highlight the recent insights into disease mechanisms.
Collapse
Affiliation(s)
- Gabrielle Wheway
- Section of Ophthalmology and Neurosciences; Leeds Institute of Molecular Medicine; The University of Leeds; Leeds, United Kingdom
| | - David A Parry
- Section of Genetics; Leeds Institute of Molecular Medicine; The University of Leeds; Leeds, United Kingdom
| | - Colin A Johnson
- Section of Ophthalmology and Neurosciences; Leeds Institute of Molecular Medicine; The University of Leeds; Leeds, United Kingdom
| |
Collapse
|
166
|
M'hamdi O, Ouertani I, Chaabouni-Bouhamed H. Update on the genetics of bardet-biedl syndrome. Mol Syndromol 2013; 5:51-6. [PMID: 24715851 DOI: 10.1159/000357054] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2013] [Indexed: 12/18/2022] Open
Abstract
Bardet-Biedl syndrome (BBS) is an autosomal recessive disease characterized by retinal dystrophy, obesity, postaxial polydactyly, learning disabilities, renal involvement, and male hypogenitalism. BBS is genetically heterogeneous, and to date 18 genes (BBS1-18) have been described. Mutations in known BBS genes account for approximately 70-80% of cases, and triallelic inheritance has been suggested in about 5%. Many minor features can be helpful in making the clinical diagnosis. Recently, the use of next-generation sequencing technologies has accelerated the identification of novel genes and causative disease mutations in known genes. This report presents a concise overview of the current knowledge on clinical data in BBS and the progress in molecular genetics research. A future objective will be the development of BBS diagnosis kits in order to offer genetic counseling for families at risk.
Collapse
Affiliation(s)
- O M'hamdi
- Department of Human Genetics, Faculty of Medicine, Tunis El-Manar University, Tunis, Tunisia
| | - I Ouertani
- Department of Human Genetics, Faculty of Medicine, Tunis El-Manar University, Tunis, Tunisia ; Department of Hereditary and Congenital Disorders, Charles Nicolle Hospital, Tunis, Tunisia
| | - H Chaabouni-Bouhamed
- Department of Human Genetics, Faculty of Medicine, Tunis El-Manar University, Tunis, Tunisia ; Department of Hereditary and Congenital Disorders, Charles Nicolle Hospital, Tunis, Tunisia
| |
Collapse
|
167
|
Zeraik AE, Rinaldi G, Mann VH, Popratiloff A, Araujo APU, DeMarco R, Brindley PJ. Septins of Platyhelminths: identification, phylogeny, expression and localization among developmental stages of Schistosoma mansoni. PLoS Negl Trop Dis 2013; 7:e2602. [PMID: 24367716 PMCID: PMC3868516 DOI: 10.1371/journal.pntd.0002602] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 11/08/2013] [Indexed: 01/19/2023] Open
Abstract
Septins are a family of eukaryotic GTP binding proteins conserved from yeasts to humans. Originally identified in mutants of budding yeast, septins participate in diverse cellular functions including cytokinesis, organization of actin networks, cell polarity, vesicle trafficking and many others. Septins assemble into heteroligomers to form filaments and rings. Here, four septins of Schistosoma mansoni are described, which appear to be conserved within the phylum Platyhelminthes. These orthologues were related to the SEPT5, SEPT10 and SEPT7 septins of humans, and hence we have termed the schistosome septins SmSEPT5, SmSEPT10, SmSEPT7.1 and SmSEPT7.2. Septin transcripts were detected throughout the developmental cycle of the schistosome and a similar expression profile was observed for septins in the stages examined, consistent with concerted production of these proteins to form heterocomplexes. Immunolocalization analyses undertaken with antibodies specific for SmSEPT5 and SmSEPT10 revealed a broad tissue distribution of septins in the schistosomulum and colocalization of septin and actin in the longitudinal and circular muscles of the sporocyst. Ciliated epidermal plates of the miracidium were rich in septins. Expression levels for these septins were elevated in germ cells in the miracidium and sporocyst. Intriguingly, septins colocalize with the protonephridial system of the cercaria, which extends laterally along the length of this larval stage. Together, the findings revealed that schistosomes expressed several septins which likely form filaments within the cells, as in other eukaryotes. Identification and localization demonstrating a broad distribution of septins across organs and tissues of schistosome contributes towards the understanding of septins in schistosomes and other flatworms.
Collapse
Affiliation(s)
- Ana E. Zeraik
- Departamento de Física e Informática, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Tropical and Infectious Diseases of Poverty, School of Medicine & Health Sciences, The George Washington University, Washington, D.C., United States of America
| | - Gabriel Rinaldi
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Tropical and Infectious Diseases of Poverty, School of Medicine & Health Sciences, The George Washington University, Washington, D.C., United States of America
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | - Victoria H. Mann
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Tropical and Infectious Diseases of Poverty, School of Medicine & Health Sciences, The George Washington University, Washington, D.C., United States of America
| | - Anastas Popratiloff
- Center for Microscopy and Image Analysis, The George Washington University, Washington, D.C., United States of America
| | - Ana P. U. Araujo
- Departamento de Física e Informática, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Ricardo DeMarco
- Departamento de Física e Informática, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
- * E-mail: (RDM); (PJB)
| | - Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Tropical and Infectious Diseases of Poverty, School of Medicine & Health Sciences, The George Washington University, Washington, D.C., United States of America
- * E-mail: (RDM); (PJB)
| |
Collapse
|
168
|
Cevik S, Sanders AAWM, Van Wijk E, Boldt K, Clarke L, van Reeuwijk J, Hori Y, Horn N, Hetterschijt L, Wdowicz A, Mullins A, Kida K, Kaplan OI, van Beersum SEC, Man Wu K, Letteboer SJF, Mans DA, Katada T, Kontani K, Ueffing M, Roepman R, Kremer H, Blacque OE. Active transport and diffusion barriers restrict Joubert Syndrome-associated ARL13B/ARL-13 to an Inv-like ciliary membrane subdomain. PLoS Genet 2013; 9:e1003977. [PMID: 24339792 PMCID: PMC3854969 DOI: 10.1371/journal.pgen.1003977] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 10/10/2013] [Indexed: 11/23/2022] Open
Abstract
Cilia are microtubule-based cell appendages, serving motility, chemo-/mechano-/photo- sensation, and developmental signaling functions. Cilia are comprised of distinct structural and functional subregions including the basal body, transition zone (TZ) and inversin (Inv) compartments, and defects in this organelle are associated with an expanding spectrum of inherited disorders including Bardet-Biedl syndrome (BBS), Meckel-Gruber Syndrome (MKS), Joubert Syndrome (JS) and Nephronophthisis (NPHP). Despite major advances in understanding ciliary trafficking pathways such as intraflagellar transport (IFT), how proteins are transported to subciliary membranes remains poorly understood. Using Caenorhabditis elegans and mammalian cells, we investigated the transport mechanisms underlying compartmentalization of JS-associated ARL13B/ARL-13, which we previously found is restricted at proximal ciliary membranes. We now show evolutionary conservation of ARL13B/ARL-13 localisation to an Inv-like subciliary membrane compartment, excluding the TZ, in many C. elegans ciliated neurons and in a subset of mammalian ciliary subtypes. Compartmentalisation of C. elegans ARL-13 requires a C-terminal RVVP motif and membrane anchoring to prevent distal cilium and nuclear targeting, respectively. Quantitative imaging in more than 20 mutants revealed differential contributions for IFT and ciliopathy modules in defining the ARL-13 compartment; IFT-A/B, IFT-dynein and BBS genes prevent ARL-13 accumulation at periciliary membranes, whereas MKS/NPHP modules additionally inhibit ARL-13 association with TZ membranes. Furthermore, in vivo FRAP analyses revealed distinct roles for IFT and MKS/NPHP genes in regulating a TZ barrier to ARL-13 diffusion, and intraciliary ARL-13 diffusion. Finally, C. elegans ARL-13 undergoes IFT-like motility and quantitative protein complex analysis of human ARL13B identified functional associations with IFT-B complexes, mapped to IFT46 and IFT74 interactions. Together, these findings reveal distinct requirements for sequence motifs, IFT and ciliopathy modules in defining an ARL-13 subciliary membrane compartment. We conclude that MKS/NPHP modules comprise a TZ barrier to ARL-13 diffusion, whereas IFT genes predominantly facilitate ARL-13 ciliary entry and/or retention via active transport mechanisms.
Collapse
Affiliation(s)
- Sebiha Cevik
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Anna A. W. M. Sanders
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Erwin Van Wijk
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
- Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Karsten Boldt
- Division of Experimental Ophthalmology and Medical Proteome Center, Center of Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Lara Clarke
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Jeroen van Reeuwijk
- Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute for Genetic and Metabolic Disease, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yuji Hori
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Nicola Horn
- Division of Experimental Ophthalmology and Medical Proteome Center, Center of Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Lisette Hetterschijt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anita Wdowicz
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Andrea Mullins
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Katarzyna Kida
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Oktay I. Kaplan
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
- Berlin Institute for Medical Systems Biology (BIMSB) at Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Sylvia E. C. van Beersum
- Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute for Genetic and Metabolic Disease, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ka Man Wu
- Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute for Genetic and Metabolic Disease, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stef J. F. Letteboer
- Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute for Genetic and Metabolic Disease, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dorus A. Mans
- Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute for Genetic and Metabolic Disease, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Toshiaki Katada
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kenji Kontani
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Marius Ueffing
- Division of Experimental Ophthalmology and Medical Proteome Center, Center of Ophthalmology, University of Tübingen, Tübingen, Germany
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Ronald Roepman
- Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute for Genetic and Metabolic Disease, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hannie Kremer
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
- Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Oliver E. Blacque
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
169
|
Wu SK, Yap AS. Patterns in space: coordinating adhesion and actomyosin contractility at E-cadherin junctions. ACTA ACUST UNITED AC 2013; 20:201-12. [PMID: 24205985 DOI: 10.3109/15419061.2013.856889] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cadherin adhesion receptors are fundamental determinants of tissue organization in health and disease. Increasingly, we have come to appreciate that classical cadherins exert their biological actions through active cooperation with the contractile actin cytoskeleton. Rather than being passive resistors of detachment forces, cadherins can regulate the assembly and mechanics of the contractile apparatus itself. Moreover, coordinate spatial patterning of adhesion and contractility is emerging as a determinant of morphogenesis. Here we review recent developments in cadherins and actin cytoskeleton cooperativity, by focusing on E-cadherin adhesive patterning in the epithelia. Next, we discuss the underlying principles of cellular rearrangement during Drosophila germband extension and epithelial cell extrusion, as models of how planar and apical-lateral patterns of contractility organize tissue architecture.
Collapse
Affiliation(s)
- Selwin Kaixiang Wu
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland , St. Lucia, Queensland , Australia
| | | |
Collapse
|
170
|
Cui C, Chatterjee B, Lozito TP, Zhang Z, Francis RJ, Yagi H, Swanhart LM, Sanker S, Francis D, Yu Q, San Agustin JT, Puligilla C, Chatterjee T, Tansey T, Liu X, Kelley MW, Spiliotis ET, Kwiatkowski AV, Tuan R, Pazour GJ, Hukriede NA, Lo CW. Wdpcp, a PCP protein required for ciliogenesis, regulates directional cell migration and cell polarity by direct modulation of the actin cytoskeleton. PLoS Biol 2013; 11:e1001720. [PMID: 24302887 PMCID: PMC3841097 DOI: 10.1371/journal.pbio.1001720] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/18/2013] [Indexed: 02/07/2023] Open
Abstract
Planar cell polarity (PCP) regulates cell alignment required for collective cell movement during embryonic development. This requires PCP/PCP effector proteins, some of which also play essential roles in ciliogenesis, highlighting the long-standing question of the role of the cilium in PCP. Wdpcp, a PCP effector, was recently shown to regulate both ciliogenesis and collective cell movement, but the underlying mechanism is unknown. Here we show Wdpcp can regulate PCP by direct modulation of the actin cytoskeleton. These studies were made possible by recovery of a Wdpcp mutant mouse model. Wdpcp-deficient mice exhibit phenotypes reminiscent of Bardet-Biedl/Meckel-Gruber ciliopathy syndromes, including cardiac outflow tract and cochlea defects associated with PCP perturbation. We observed Wdpcp is localized to the transition zone, and in Wdpcp-deficient cells, Sept2, Nphp1, and Mks1 were lost from the transition zone, indicating Wdpcp is required for recruitment of proteins essential for ciliogenesis. Wdpcp is also found in the cytoplasm, where it is localized in the actin cytoskeleton and in focal adhesions. Wdpcp interacts with Sept2 and is colocalized with Sept2 in actin filaments, but in Wdpcp-deficient cells, Sept2 was lost from the actin cytoskeleton, suggesting Wdpcp is required for Sept2 recruitment to actin filaments. Significantly, organization of the actin filaments and focal contacts were markedly changed in Wdpcp-deficient cells. This was associated with decreased membrane ruffling, failure to establish cell polarity, and loss of directional cell migration. These results suggest the PCP defects in Wdpcp mutants are not caused by loss of cilia, but by direct disruption of the actin cytoskeleton. Consistent with this, Wdpcp mutant cochlea has normal kinocilia and yet exhibits PCP defects. Together, these findings provide the first evidence, to our knowledge, that a PCP component required for ciliogenesis can directly modulate the actin cytoskeleton to regulate cell polarity and directional cell migration.
Collapse
Affiliation(s)
- Cheng Cui
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Laboratory of Developmental Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bishwanath Chatterjee
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Laboratory of Developmental Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas P. Lozito
- Center for Cellular and Molecular Engineering, Department of Orthopedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Zhen Zhang
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Richard J. Francis
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Laboratory of Developmental Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hisato Yagi
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Lisa M. Swanhart
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Subramaniam Sanker
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Deanne Francis
- Laboratory of Developmental Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Qing Yu
- Laboratory of Developmental Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jovenal T. San Agustin
- Program in Molecular Medicine, University of Massachusetts Medical Center, Worcester, Massachusetts, United States of America
| | - Chandrakala Puligilla
- Section on Developmental Neuroscience, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tania Chatterjee
- Laboratory of Developmental Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Terry Tansey
- Laboratory of Developmental Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xiaoqin Liu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Matthew W. Kelley
- Section on Developmental Neuroscience, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Elias T. Spiliotis
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Adam V. Kwiatkowski
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Rocky Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Gregory J. Pazour
- Program in Molecular Medicine, University of Massachusetts Medical Center, Worcester, Massachusetts, United States of America
| | - Neil A. Hukriede
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Cecilia W. Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Laboratory of Developmental Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
171
|
Nechipurenko IV, Doroquez DB, Sengupta P. Primary cilia and dendritic spines: different but similar signaling compartments. Mol Cells 2013; 36:288-303. [PMID: 24048681 PMCID: PMC3837705 DOI: 10.1007/s10059-013-0246-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 09/02/2013] [Indexed: 01/11/2023] Open
Abstract
Primary non-motile cilia and dendritic spines are cellular compartments that are specialized to sense and transduce environmental cues and presynaptic signals, respectively. Despite their unique cellular roles, both compartments exhibit remarkable parallels in the general principles, as well as molecular mechanisms, by which their protein composition, membrane domain architecture, cellular interactions, and structural and functional plasticity are regulated. We compare and contrast the pathways required for the generation and function of cilia and dendritic spines, and suggest that insights from the study of one may inform investigations into the other of these critically important signaling structures.
Collapse
Affiliation(s)
- Inna V. Nechipurenko
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - David B. Doroquez
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| |
Collapse
|
172
|
Jayashankar V, Nguyen MJ, Carr BW, Zheng DC, Rosales JB, Rosales JB, Weiser DC. Protein phosphatase 1 β paralogs encode the zebrafish myosin phosphatase catalytic subunit. PLoS One 2013; 8:e75766. [PMID: 24040418 PMCID: PMC3770619 DOI: 10.1371/journal.pone.0075766] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 08/19/2013] [Indexed: 12/21/2022] Open
Abstract
Background The myosin phosphatase is a highly conserved regulator of actomyosin contractility. Zebrafish has emerged as an ideal model system to study the invivo role of myosin phosphatase in controlling cell contractility, cell movement and epithelial biology. Most work in zebrafish has focused on the regulatory subunit of the myosin phosphatase called Mypt1. In this work, we examined the critical role of Protein Phosphatase 1, PP1, the catalytic subunit of the myosin phosphatase. Methodology/Principal Findings We observed that in zebrafish two paralogous genes encoding PP1β, called ppp1cba and ppp1cbb, are both broadly expressed during early development. Furthermore, we found that both gene products interact with Mypt1 and assemble an active myosin phosphatase complex. In addition, expression of this complex results in dephosphorylation of the myosin regulatory light chain and large scale rearrangements of the actin cytoskeleton. Morpholino knock-down of ppp1cba and ppp1cbb results in severe defects in morphogenetic cell movements during gastrulation through loss of myosin phosphatase function. Conclusions/Significance Our work demonstrates that zebrafish have two genes encoding PP1β, both of which can interact with Mypt1 and assemble an active myosin phosphatase. In addition, both genes are required for convergence and extension during gastrulation and correct dosage of the protein products is required.
Collapse
Affiliation(s)
- Vaishali Jayashankar
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - Michael J. Nguyen
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - Brandon W. Carr
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - Dale C. Zheng
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - Joseph B. Rosales
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - Joshua B. Rosales
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - Douglas C. Weiser
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
- * E-mail:
| |
Collapse
|
173
|
Zhang Q, Hu J, Ling K. Molecular views of Arf-like small GTPases in cilia and ciliopathies. Exp Cell Res 2013; 319:2316-22. [PMID: 23548655 PMCID: PMC3742637 DOI: 10.1016/j.yexcr.2013.03.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 03/19/2013] [Indexed: 11/28/2022]
Abstract
The primary cilia are microtubule-based organelles that protrude from most of the eukaryotic cells. Recognized as the cell's antenna, primary cilium functions as a signaling hub for many physiologically and developmentally important signaling cascades. Ciliary dysfunction causes a wide spectrum of syndromic human genetic diseases collectively termed "ciliopathies". Mounting evidences have shown that various small GTPases have been implicated in the context of cilia as well as human ciliopathies. However, how these small GTPases affect cilia formation and function remains poorly understood. Here we review and discuss the ciliary role of three Arf-like small GTPases (Arls), Arl3, Arl6, and Arl13b.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- NIH Mayo Translational PKD Center
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- NIH Mayo Translational PKD Center
| |
Collapse
|
174
|
Tsai HY, Chang M, Liu SC, Abe G, Ota KG. Embryonic development of goldfish (Carassius auratus): a model for the study of evolutionary change in developmental mechanisms by artificial selection. Dev Dyn 2013; 242:1262-83. [PMID: 23913853 PMCID: PMC4232884 DOI: 10.1002/dvdy.24022] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Highly divergent morphology among the different goldfish strains (Carassius auratus) may make it a suitable model for investigating how artificial selection has altered developmental mechanisms. Here we describe the embryological development of the common goldfish (the single fin Wakin), which retains the ancestral morphology of this species. RESULTS We divided goldfish embryonic development into seven periods consisting of 34 stages, using previously reported developmental indices of zebrafish and goldfish. Although several differences were identified in terms of their yolk size, epiboly process, pigmentation patterns, and development rate, our results indicate that the embryonic features of these two teleost species are highly similar in their overall morphology from the zygote to hatching stage. CONCLUSIONS These results provide an opportunity for further study of the evolutionary relationship between domestication and development, through applying well-established zebrafish molecular biological resources to goldfish embryos.
Collapse
Affiliation(s)
- Hsin-Yuan Tsai
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan; The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | | | | | | | | |
Collapse
|
175
|
Zhang Y, Seo S, Bhattarai S, Bugge K, Searby CC, Zhang Q, Drack AV, Stone EM, Sheffield VC. BBS mutations modify phenotypic expression of CEP290-related ciliopathies. Hum Mol Genet 2013; 23:40-51. [PMID: 23943788 DOI: 10.1093/hmg/ddt394] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ciliopathies are a group of heterogeneous disorders associated with ciliary dysfunction. Diseases in this group display considerable phenotypic variation within individual syndromes and overlapping phenotypes among clinically distinct disorders. Particularly, mutations in CEP290 cause phenotypically diverse ciliopathies ranging from isolated retinal degeneration, nephronophthisis and Joubert syndrome, to the neonatal lethal Meckel-Gruber syndrome. However, the underlying mechanisms of the variable expressivity in ciliopathies are not well understood. Here, we show that components of the BBSome, a protein complex composed of seven Bardet-Biedl syndrome (BBS) proteins, physically and genetically interact with CEP290 and modulate the expression of disease phenotypes caused by CEP290 mutations. The BBSome binds to the N-terminal region of CEP290 through BBS4 and co-localizes with CEP290 to the transition zone (TZ) of primary cilia and centriolar satellites in ciliated cells, as well as to the connecting cilium in photoreceptor cells. Although CEP290 still localizes to the TZ and connecting cilium in BBSome-depleted cells, its localization to centriolar satellites is disrupted and CEP290 appears to disperse throughout the cytoplasm in BBSome-depleted cells. Genetic interactions were tested using Cep290(rd16)- and Bbs4-null mutant mouse lines. Additional loss of Bbs4 alleles in Cep290(rd16/rd16) mice results in increased body weight and accelerated photoreceptor degeneration compared with mice without Bbs4 mutations. Furthermore, double-heterozygous mice (Cep290(+/rd16);Bbs4(+/-)) have increased body weight compared with single-heterozygous animals. Our data indicate that genetic interactions between BBSome components and CEP290 could underlie the variable expression and overlapping phenotypes of ciliopathies caused by CEP290 mutations.
Collapse
|
176
|
Ichikawa T, Nakazato K, Keller PJ, Kajiura-Kobayashi H, Stelzer EHK, Mochizuki A, Nonaka S. Live imaging of whole mouse embryos during gastrulation: migration analyses of epiblast and mesodermal cells. PLoS One 2013; 8:e64506. [PMID: 23861733 PMCID: PMC3704669 DOI: 10.1371/journal.pone.0064506] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/15/2013] [Indexed: 11/19/2022] Open
Abstract
During gastrulation in the mouse embryo, dynamic cell movements including epiblast invagination and mesodermal layer expansion lead to the establishment of the three-layered body plan. The precise details of these movements, however, are sometimes elusive, because of the limitations in live imaging. To overcome this problem, we developed techniques to enable observation of living mouse embryos with digital scanned light sheet microscope (DSLM). The achieved deep and high time-resolution images of GFP-expressing nuclei and following 3D tracking analysis revealed the following findings: (i) Interkinetic nuclear migration (INM) occurs in the epiblast at embryonic day (E)6 and 6.5. (ii) INM-like migration occurs in the E5.5 embryo, when the epiblast is a monolayer and not yet pseudostratified. (iii) Primary driving force for INM at E6.5 is not pressure from neighboring nuclei. (iv) Mesodermal cells migrate not as a sheet but as individual cells without coordination.
Collapse
Affiliation(s)
- Takehiko Ichikawa
- Laboratory for Spatiotemporal Regulations, National Institute for Basic Biology, Okazaki Aichi, Japan
| | - Kenichi Nakazato
- Theoretical Biology Laboratory, RIKEN Advanced Science Institute, Wako-city, Saitama, Japan
| | - Philipp J. Keller
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Hiroko Kajiura-Kobayashi
- Laboratory for Spatiotemporal Regulations, National Institute for Basic Biology, Okazaki Aichi, Japan
| | - Ernst H. K. Stelzer
- Physical Biology (FB 15 IZN), Buchmann Institute for Molecular Life Sciences (BMLS, CEF-MC), Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - Atsushi Mochizuki
- Theoretical Biology Laboratory, RIKEN Advanced Science Institute, Wako-city, Saitama, Japan
| | - Shigenori Nonaka
- Laboratory for Spatiotemporal Regulations, National Institute for Basic Biology, Okazaki Aichi, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan
| |
Collapse
|
177
|
Muñoz-Soriano V, Belacortu Y, Paricio N. Planar cell polarity signaling in collective cell movements during morphogenesis and disease. Curr Genomics 2013; 13:609-22. [PMID: 23730201 PMCID: PMC3492801 DOI: 10.2174/138920212803759721] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/14/2012] [Accepted: 09/17/2012] [Indexed: 01/01/2023] Open
Abstract
Collective and directed cell movements are crucial for diverse developmental processes in the animal kingdom, but they are also involved in wound repair and disease. During these processes groups of cells are oriented within the tissue plane, which is referred to as planar cell polarity (PCP). This requires a tight regulation that is in part conducted by the PCP pathway. Although this pathway was initially characterized in flies, subsequent studies in vertebrates revealed a set of conserved core factors but also effector molecules and signal modulators, which build the fundamental PCP machinery. The PCP pathway in Drosophila regulates several developmental processes involving collective cell movements such as border cell migration during oogenesis, ommatidial rotation during eye development, and embryonic dorsal closure. During vertebrate embryogenesis, PCP signaling also controls collective and directed cell movements including convergent extension during gastrulation, neural tube closure, neural crest cell migration, or heart morphogenesis. Similarly, PCP signaling is linked to processes such as wound repair, and cancer invasion and metastasis in adults. As a consequence, disruption of PCP signaling leads to pathological conditions. In this review, we will summarize recent findings about the role of PCP signaling in collective cell movements in flies and vertebrates. In addition, we will focus on how studies in Drosophila have been relevant to our understanding of the PCP molecular machinery and will describe several developmental defects and human disorders in which PCP signaling is compromised. Therefore, new discoveries about the contribution of this pathway to collective cell movements could provide new potential diagnostic and therapeutic targets for these disorders.
Collapse
Affiliation(s)
- Verónica Muñoz-Soriano
- Departamento de Genética, Facultad de CC Biológicas, Universidad de Valencia, Burjassot 46100, Valencia, Spain
| | | | | |
Collapse
|
178
|
Cardenas-Rodriguez M, Irigoín F, Osborn DPS, Gascue C, Katsanis N, Beales PL, Badano JL. The Bardet-Biedl syndrome-related protein CCDC28B modulates mTORC2 function and interacts with SIN1 to control cilia length independently of the mTOR complex. Hum Mol Genet 2013; 22:4031-42. [PMID: 23727834 DOI: 10.1093/hmg/ddt253] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
CCDC28B encodes a coiled coil domain-containing protein involved in ciliogenesis that was originally identified as a second site modifier of the ciliopathy Bardet-Biedl syndrome. We have previously shown that the depletion of CCDC28B leads to shortened cilia; however, the mechanism underlying how this protein controls ciliary length is unknown. Here, we show that CCDC28B interacts with SIN1, a component of the mTOR complex 2 (mTORC2), and that this interaction is important both in the context of mTOR signaling and in a hitherto unknown, mTORC-independent role of SIN1 in cilia biology. We show that CCDC28B is a positive regulator of mTORC2, participating in its assembly/stability and modulating its activity, while not affecting mTORC1 function. Further, we show that Ccdc28b regulates cilia length in vivo, at least in part, through its interaction with Sin1. Importantly, depletion of Rictor, another core component of mTORC2, does not result in shortened cilia. Taken together, our findings implicate CCDC28B in the regulation of mTORC2, and uncover a novel function of SIN1 regulating cilia length that is likely independent of mTOR signaling.
Collapse
|
179
|
Ghossoub R, Hu Q, Failler M, Rouyez MC, Spitzbarth B, Mostowy S, Wolfrum U, Saunier S, Cossart P, Jamesnelson W, Benmerah A. Septins 2, 7 and 9 and MAP4 colocalize along the axoneme in the primary cilium and control ciliary length. J Cell Sci 2013; 126:2583-94. [PMID: 23572511 DOI: 10.1242/jcs.111377] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Septins are a large, evolutionarily conserved family of GTPases that form hetero-oligomers and interact with the actin-based cytoskeleton and microtubules. They are involved in scaffolding functions, and form diffusion barriers in budding yeast, the sperm flagellum and the base of primary cilia of kidney epithelial cells. We investigated the role of septins in the primary cilium of retinal pigmented epithelial (RPE) cells, and found that SEPT2 forms a 1:1:1 complex with SEPT7 and SEPT9 and that the three members of this complex colocalize along the length of the axoneme. Similar to observations in kidney epithelial cells, depletion of cilium-localized septins by siRNA-based approaches inhibited ciliogenesis. MAP4, which is a binding partner of SEPT2 and controls the accessibility of septins to microtubules, was also localized to the axoneme where it appeared to negatively regulate ciliary length. Taken together, our data provide new insights into the functions and regulation of septins and MAP4 in the organization of the primary cilium and microtubule-based activities in cells.
Collapse
|
180
|
Veland IR, Montjean R, Eley L, Pedersen LB, Schwab A, Goodship J, Kristiansen K, Pedersen SF, Saunier S, Christensen ST. Inversin/Nephrocystin-2 is required for fibroblast polarity and directional cell migration. PLoS One 2013; 8:e60193. [PMID: 23593172 PMCID: PMC3620528 DOI: 10.1371/journal.pone.0060193] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/22/2013] [Indexed: 12/30/2022] Open
Abstract
Inversin is a ciliary protein that critically regulates developmental processes and tissue homeostasis in vertebrates, partly through the degradation of Dishevelled (Dvl) proteins to coordinate Wnt signaling in planar cell polarity (PCP). Here, we investigated the role of Inversin in coordinating cell migration, which highly depends on polarity processes at the single-cell level, including the spatial and temporal organization of the cytoskeleton as well as expression and cellular localization of proteins in leading edge formation of migrating cells. Using cultures of mouse embryonic fibroblasts (MEFs) derived from inv(-/-) and inv(+/+) animals, we confirmed that both inv(-/-) and inv(+/+) MEFs form primary cilia, and that Inversin localizes to the primary cilium in inv(+/+) MEFs. In wound healing assays, inv(-/-) MEFs were severely compromised in their migratory ability and exhibited cytoskeletal rearrangements, including distorted lamellipodia formation and cilia orientation. Transcriptome analysis revealed dysregulation of Wnt signaling and of pathways regulating actin organization and focal adhesions in inv(-/-) MEFs as compared to inv(+/+) MEFs. Further, Dvl-1 and Dvl-3 localized to MEF primary cilia, and β-catenin/Wnt signaling was elevated in inv(-/-) MEFs, which moreover showed reduced ciliary localization of Dvl-3. Finally, inv(-/-) MEFs displayed dramatically altered activity and localization of RhoA, Rac1, and Cdc42 GTPases, and aberrant expression and targeting of the Na(+)/H(+) exchanger NHE1 and ezrin/radixin/moesin (ERM) proteins to the edge of cells facing the wound. Phosphorylation of β-catenin at the ciliary base and formation of well-defined lamellipodia with localization and activation of ERM to the leading edge of migrating cells were restored in inv(-/-) MEFs expressing Inv-GFP. Collectively, our findings point to the significance of Inversin in controlling cell migration processes, at least in part through transcriptional regulation of genes involved in Wnt signaling and pathways that control cytoskeletal organization and ion transport.
Collapse
Affiliation(s)
- Iben R. Veland
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rodrick Montjean
- Inserm U-983, Imagine Institut, Paris Descartes-Sorbonne Paris Cité University, Necker Hospital, Paris, France
| | - Lorraine Eley
- Institute of Human Genetics, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lotte B. Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Albrecht Schwab
- Institute of Physiology II, Münster University, Münster, Germany
| | - Judith Goodship
- Institute of Human Genetics, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Stine F. Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sophie Saunier
- Inserm U-983, Imagine Institut, Paris Descartes-Sorbonne Paris Cité University, Necker Hospital, Paris, France
| | | |
Collapse
|
181
|
Agha Z, Iqbal Z, Azam M, Hoefsloot LH, van Bokhoven H, Qamar R. A novel homozygous 10 nucleotide deletion in BBS10 causes Bardet-Biedl syndrome in a Pakistani family. Gene 2013; 519:177-81. [PMID: 23403234 DOI: 10.1016/j.gene.2013.01.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/18/2012] [Accepted: 01/27/2013] [Indexed: 01/30/2023]
Abstract
Bardet-Biedl Syndrome is a multisystem autosomal recessive disorder characterized by central obesity, polydactyly, hypogonadism, learning difficulties, rod-cone dystrophy and renal dysplasia. Bardet-Biedl Syndrome has a prevalence rate ranging from 1 in 100,000 to 1 in 160,000 births although there are communities where Bardet-Biedl Syndrome is found at a higher frequency due to consanguinity. We report here a Pakistani consanguineous family with two affected sons with typical clinical features of Bardet-Biedl Syndrome, in addition to abnormal liver functioning and bilateral basal ganglia calcification, the latter feature being typical of Fahr's disease. Homozygous regions obtained from SNP array depicted three known genes BBS10, BBS14 and BBS2. Bidirectional sequencing of all coding exons by traditional sequencing of all these three genes showed a homozygous deletion of 10 nucleotides (c.1958_1967del), in BBS10 in both affected brothers. The segregation analysis revealed that the parents, paternal grandfather, maternal grandmother and an unaffected sister were heterozygous for the deletion. Such a large deletion in BBS10 has not been reported previously in any population and is likely to be contributing to the phenotype of Bardet-Biedl Syndrome in this family.
Collapse
Affiliation(s)
- Zehra Agha
- Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | | | | | | | | | | |
Collapse
|
182
|
Abstract
Bacteria lack many of the features that eukaryotic cells use to compartmentalize cytoplasm and membranes. In this issue, Schlimpert et al. describe a new mechanism of spatial confinment in the bacterium Caulobacter crescentus that prevents the exchange of soluble and membrane proteins between the stalk and cell body.
Collapse
Affiliation(s)
- Sandro Baldi
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | |
Collapse
|
183
|
Ounjai P, Kim KD, Liu H, Dong M, Tauscher AN, Witkowska HE, Downing KH. Architectural insights into a ciliary partition. Curr Biol 2013; 23:339-44. [PMID: 23375896 DOI: 10.1016/j.cub.2013.01.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/12/2012] [Accepted: 01/11/2013] [Indexed: 11/16/2022]
Abstract
Ciliary compartmentalization plays pivotal roles in ciliogenesis and in various signaling pathways. Here we describe a structure at the ciliary base that appears to have all the features required for compartmentalization and which we thus call the "ciliary partitioning system" (CPS). This complex consists of the terminal plate, which serves as a cytosolic "ciliary pore complex" (CPC), and a membrane region well suited to serve as a diffusion barrier. The CPC is a plate-shaped structure containing nine pores through which the microtubule doublets of the basal body pass. Each pore expands from the doublet B-tubule into an opening well suited for the passage of intraflagellar transport particles. The membrane diffusion barrier encompasses an extended region of detergent-resistant periciliary membrane (ciliary pocket) and a ring complex that connects the CPC to the membrane. Proteomics analysis shows involvement of the ciliary pocket in vesicle trafficking, suggesting that this region plays an active role in membrane transport. The CPC and the ring together form a complete partition defining the ciliary boundary.
Collapse
Affiliation(s)
- Puey Ounjai
- Donner Laboratory, Life Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
184
|
Broekhuis JR, Leong WY, Jansen G. Regulation of cilium length and intraflagellar transport. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 303:101-38. [PMID: 23445809 DOI: 10.1016/b978-0-12-407697-6.00003-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Primary cilia are highly conserved sensory organelles that extend from the surface of almost all vertebrate cells. The importance of cilia is evident from their involvement in many diseases, called ciliopathies. Primary cilia contain a microtubular axoneme that is used as a railway for transport of both structural components and signaling proteins. This transport machinery is called intraflagellar transport (IFT). Cilia are dynamic organelles whose presence on the cell surface, morphology, length and function are highly regulated. It is clear that the IFT machinery plays an important role in this regulation. However, it is not clear how, for example environmental cues or cell fate decisions are relayed to modulate IFT and cilium morphology or function. This chapter presents an overview of molecules that have been shown to regulate cilium length and IFT. Several examples where signaling modulates IFT and cilium function are used to discuss the importance of these systems for the cell and for understanding of the etiology of ciliopathies.
Collapse
|
185
|
Tada M, Heisenberg CP. Convergent extension: using collective cell migration and cell intercalation to shape embryos. Development 2012; 139:3897-904. [PMID: 23048180 DOI: 10.1242/dev.073007] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Body axis elongation represents a common and fundamental morphogenetic process in development. A key mechanism triggering body axis elongation without additional growth is convergent extension (CE), whereby a tissue undergoes simultaneous narrowing and extension. Both collective cell migration and cell intercalation are thought to drive CE and are used to different degrees in various species as they elongate their body axis. Here, we provide an overview of CE as a general strategy for body axis elongation and discuss conserved and divergent mechanisms underlying CE among different species.
Collapse
Affiliation(s)
- Masazumi Tada
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | | |
Collapse
|
186
|
Yamaguchi Y, Miura M. How to form and close the brain: insight into the mechanism of cranial neural tube closure in mammals. Cell Mol Life Sci 2012; 70:3171-86. [PMID: 23242429 PMCID: PMC3742426 DOI: 10.1007/s00018-012-1227-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/07/2012] [Accepted: 11/27/2012] [Indexed: 12/18/2022]
Abstract
The development of the embryonic brain critically depends on successfully completing cranial neural tube closure (NTC). Failure to properly close the neural tube results in significant and potentially lethal neural tube defects (NTDs). We believe these malformations are caused by disruptions in normal developmental programs such as those involved in neural plate morphogenesis and patterning, tissue fusion, and coordinated cell behaviors. Cranial NTDs include anencephaly and craniorachischisis, both lethal human birth defects. Newly emerging methods for molecular and cellular analysis offer a deeper understanding of not only the developmental NTC program itself but also mechanical and kinetic aspects of closure that may contribute to cranial NTDs. Clarifying the underlying mechanisms involved in NTC and how they relate to the onset of specific NTDs in various experimental models may help us develop novel intervention strategies to prevent NTDs.
Collapse
Affiliation(s)
- Yoshifumi Yamaguchi
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, and CREST, JST, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| | | |
Collapse
|
187
|
Khan S, Ullah I, Irfanullah, Touseef M, Basit S, Khan MN, Ahmad W. Novel homozygous mutations in the genes ARL6 and BBS10 underlying Bardet-Biedl syndrome. Gene 2012; 515:84-8. [PMID: 23219996 DOI: 10.1016/j.gene.2012.11.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 10/21/2012] [Accepted: 11/27/2012] [Indexed: 12/29/2022]
Abstract
Bardet-Biedl syndrome (BBS) is an autosomal recessive disorder resulting from structural and functional defects in numerous organs. Frequent manifestations reported in the syndrome include obesity, renal dysplasia, cognitive impairment, postaxial polydactyly, pigmentary retinal degeneration and hypogonadism. To date, 17 genes causing BBS have been identified. Two of these BBS1 and BBS10 are the most frequently mutated genes. The present report describes two consanguineous families (A, B) with clinical manifestations of BBS. Linkage in the family A was established to ARL6 on chromosome 3q11.2, while family B showed linkage to BBS10 on chromosome 12q21.2. Sequence analysis revealed a novel homozygous missense mutation (c.281T>C, p.Ile94Thr) in the gene ARL6 in family A and a nonsense mutation (c.1075C>T, p.Gln359*) in the gene BBS10 in family B. Mutations identified in the present study extend the body of evidence implicating the genes ARL6 and BBS10 in causing Bardet-Biedl syndrome.
Collapse
Affiliation(s)
- Saadullah Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | | | | | | | | | | | | |
Collapse
|
188
|
Vertebrate kidney tubules elongate using a planar cell polarity-dependent, rosette-based mechanism of convergent extension. Nat Genet 2012; 44:1382-7. [PMID: 23143599 DOI: 10.1038/ng.2452] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/03/2012] [Indexed: 12/20/2022]
Abstract
Cystic kidney diseases are a global public health burden, affecting over 12 million people. Although much is known about the genetics of kidney development and disease, the cellular mechanisms driving normal kidney tubule elongation remain unclear. Here, we used in vivo imaging to show for the first time that mediolaterally oriented cell intercalation is fundamental to vertebrate kidney morphogenesis. Unexpectedly, we found that kidney tubule elongation is driven in large part by a myosin-dependent, multicellular rosette-based mechanism, previously only described in Drosophila melanogaster. In contrast to findings in Drosophila, however, non-canonical Wnt and planar cell polarity (PCP) signaling is required to control rosette topology and orientation during vertebrate kidney tubule elongation. These data resolve long-standing questions concerning the role of PCP signaling in the developing kidney and, moreover, establish rosette-based intercalation as a deeply conserved cellular engine for epithelial morphogenesis.
Collapse
|
189
|
Oh EC, Katsanis N. Context-dependent regulation of Wnt signaling through the primary cilium. J Am Soc Nephrol 2012; 24:10-8. [PMID: 23123400 DOI: 10.1681/asn.2012050526] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The primary cilium is a highly conserved environmental sensor and modulator of fluid movement in tubular structures. The growing recognition of mutations among its many components has led to the discovery of new disorders collectively called ciliopathies. Ciliary dysfunction disturbs a variety of signaling pathways along its basal body and axoneme that are critical for embryonic development and cell and organ homeostasis. Among the many pathways, here we discuss the emerging role of Wnt proteins in morphogenic signaling and ciliary biology during health and disease.
Collapse
Affiliation(s)
- Edwin C Oh
- Center for Human Disease Modeling, Department of Cell Biology, 466 Nanaline Building, Duke University, Durham, NC 27710, USA
| | | |
Collapse
|
190
|
Ashkinadze E, Rosen T, Brooks SS, Katsanis N, Davis EE. Combining fetal sonography with genetic and allele pathogenicity studies to secure a neonatal diagnosis of Bardet-Biedl syndrome. Clin Genet 2012; 83:553-9. [PMID: 22998390 DOI: 10.1111/cge.12022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/16/2012] [Accepted: 09/17/2012] [Indexed: 02/06/2023]
Abstract
Bardet-Biedl syndrome (BBS) is a rare pediatric ciliopathy characterized by marked clinical variability and extensive genetic heterogeneity. Typical diagnosis of BBS is secured at a median of 9 years of age, and sometimes well into adolescence. Here, we report a patient in whom prenatal detection of increased nuchal fold, enlarged echogenic kidneys, and polydactyly prompted us to screen the most commonly mutated genes in BBS and the phenotypically and genetically overlapping ciliopathy, Meckel-Gruber syndrome (MKS). We identified the common Met390Arg mutation in BBS1 in compound heterozygosity with a novel intronic variant of unknown significance (VUS). Testing of mRNA harvested from primary foreskin fibroblasts obtained shortly after birth revealed the VUS to induce a cryptic splice site, which in turn led to a premature termination and mRNA degradation. To our knowledge, this is the earliest diagnosis of BBS in the absence of other affected individuals in the family, and exemplifies how combining clinical assessment with genetic and timely assays of variant pathogenicity can inform clinical diagnosis and assist with patient management in the prenatal and neonatal setting.
Collapse
Affiliation(s)
- E Ashkinadze
- Department of Obstetrics and Gynecology, UMDNJ Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| | | | | | | | | |
Collapse
|
191
|
Swiderski RE, Agassandian K, Ross JL, Bugge K, Cassell MD, Yeaman C. Structural defects in cilia of the choroid plexus, subfornical organ and ventricular ependyma are associated with ventriculomegaly. Fluids Barriers CNS 2012; 9:22. [PMID: 23046663 PMCID: PMC3527152 DOI: 10.1186/2045-8118-9-22] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/03/2012] [Indexed: 12/02/2022] Open
Abstract
Background Hydrocephalus is a heterogeneous disorder with multiple etiologies that are not yet fully understood. Animal models have implicated dysfunctional cilia of the ependyma and choroid plexus in the development of the disorder. In this report, we sought to determine the origin of the ventriculomegaly in four Bardet Biedl syndrome (BBS) mutant mouse strains as models of a ciliopathy. Methods Evans Blue dye was injected into the lateral ventricle of wild- type and BBS mutant mice to determine whether obstruction of intra- or extra-ventricular CSF flow contributed to ventriculomegaly. Transmission electron microscopy (TEM) was used to examine the ultrastructure of the choroid plexus, subfornical organ (SFO), subcommisural organ (SCO), and ventricular ependyma to evaluate their ultrastructure and the morphology of their primary and motile cilia. Results and discussion No obstruction of intra- or extra-ventricular CSF flow was observed, implying a communicating form of hydrocephalus in BBS mutant mice. TEM analyses of the mutants showed no evidence of choroidal papillomas or breakdown of the blood:CSF barrier. In contrast, structural defects were observed in a subpopulation of cilia lining the choroid plexus, SFO, and ventricular ependyma. These included disruptions of the microtubular structure of the axoneme and the presence of electron-dense vesicular-like material along the ciliary shaft and at the tips of cilia. Conclusions Abnormalities in cilia structure and function have the potential to influence ciliary intraflagellar transport (IFT), cilia maintenance, protein trafficking, and regulation of CSF production. Ciliary structural defects are the only consistent pathological features associated with CSF-related structures in BBS mutant mice. These defects are observed from an early age, and may contribute to the underlying pathophysiology of ventriculomegaly.
Collapse
Affiliation(s)
- Ruth E Swiderski
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, 52242, IA, USA.
| | | | | | | | | | | |
Collapse
|
192
|
Brooks ER, Wallingford JB. Control of vertebrate intraflagellar transport by the planar cell polarity effector Fuz. ACTA ACUST UNITED AC 2012; 198:37-45. [PMID: 22778277 PMCID: PMC3392940 DOI: 10.1083/jcb.201204072] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cilia play key roles in development and homeostasis, and defects in cilia structure or function lead to an array of human diseases. Ciliogenesis is accomplished by the intraflagellar transport (IFT) system, a set of proteins governing bidirectional transport of cargoes within ciliary axonemes. In this paper, we present a novel platform for in vivo analysis of vertebrate IFT dynamics. Using this platform, we show that the planar cell polarity (PCP) effector Fuz was required for normal IFT dynamics in vertebrate cilia, the first evidence directly linking PCP to the core machinery of ciliogenesis. Further, we show that Fuz played a specific role in trafficking of retrograde, but not anterograde, IFT proteins. These data place Fuz in the small group of known IFT effectors outside the core machinery and, additionally, identify Fuz as a novel cytoplasmic effector that differentiates between the retrograde and anterograde IFT complexes.
Collapse
Affiliation(s)
- Eric R Brooks
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA
| | | |
Collapse
|
193
|
Cardenas-Rodriguez M, Osborn DPS, Irigoín F, Graña M, Romero H, Beales PL, Badano JL. Characterization of CCDC28B reveals its role in ciliogenesis and provides insight to understand its modifier effect on Bardet-Biedl syndrome. Hum Genet 2012; 132:91-105. [PMID: 23015189 DOI: 10.1007/s00439-012-1228-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 09/15/2012] [Indexed: 11/26/2022]
Abstract
Bardet-Biedl syndrome (BBS) is a genetically heterogeneous disorder that is generally inherited in an autosomal recessive fashion. However, in some families, trans mutant alleles interact with the primary causal locus to modulate the penetrance and/or the expressivity of the phenotype. CCDC28B (MGC1203) was identified as a second site modifier of BBS encoding a protein of unknown function. Here we report the first functional characterization of this protein and show it affects ciliogenesis both in cultured cells and in vivo in zebrafish. Consistent with this biological role, our in silico analysis shows that the presence of CCDC28B homologous sequences is restricted to ciliated metazoa. Depletion of Ccdc28b in zebrafish results in defective ciliogenesis and consequently causes a number of phenotypes that are characteristic of BBS and other ciliopathy mutants including hydrocephalus, left-right axis determination defects and renal function impairment. Thus, this work reports CCDC28B as a novel protein involved in the process of ciliogenesis whilst providing functional insight into the cellular basis of its modifier effect in BBS patients.
Collapse
|
194
|
Garcia-Gonzalo FR, Reiter JF. Scoring a backstage pass: mechanisms of ciliogenesis and ciliary access. ACTA ACUST UNITED AC 2012; 197:697-709. [PMID: 22689651 PMCID: PMC3373398 DOI: 10.1083/jcb.201111146] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cilia are conserved, microtubule-based cell surface projections that emanate from basal bodies, membrane-docked centrioles. The beating of motile cilia and flagella enables cells to swim and epithelia to displace fluids. In contrast, most primary cilia do not beat but instead detect environmental or intercellular stimuli. Inborn defects in both kinds of cilia cause human ciliopathies, diseases with diverse manifestations such as heterotaxia and kidney cysts. These diseases are caused by defects in ciliogenesis or ciliary function. The signaling functions of cilia require regulation of ciliary composition, which depends on the control of protein traffic into and out of cilia.
Collapse
Affiliation(s)
- Francesc R Garcia-Gonzalo
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | | |
Collapse
|
195
|
Zhang D, Aravind L. Novel transglutaminase-like peptidase and C2 domains elucidate the structure, biogenesis and evolution of the ciliary compartment. Cell Cycle 2012; 11:3861-75. [PMID: 22983010 PMCID: PMC3495828 DOI: 10.4161/cc.22068] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In addition to their role in motility, eukaryotic cilia serve as a distinct compartment for signal transduction and regulatory sequestration of biomolecules. Recent genetic and biochemical studies have revealed an extraordinary diversity of protein complexes involved in the biogenesis of cilia during each cell cycle. Mutations in components of these complexes are at the heart of human ciliopathies such as Nephronophthisis (NPHP), Meckel-Gruber syndrome (MKS), Bardet-Biedl syndrome (BBS) and Joubert syndrome (JBTS). Despite intense studies, proteins in some of these complexes, such as the NPHP1-4-8 and the MKS, remain poorly understood. Using a combination of computational analyses we studied these complexes to identify novel domains in them which might throw new light on their functions and evolutionary origins. First, we identified both catalytically active and inactive versions of transglutaminase-like (TGL) peptidase domains in key ciliary/centrosomal proteins CC2D2A/MKS6, CC2D2B, CEP76 and CCDC135. These ciliary TGL domains appear to have originated from prokaryotic TGL domains that act as peptidases, either in a prokaryotic protein degradation system with the MoxR AAA+ ATPase, the precursor of eukaryotic dyneins and midasins, or in a peptide-ligase system with an ATP-grasp enzyme comparable to tubulin-modifying TTL proteins. We suggest that active ciliary TGL proteins are part of a cilia-specific peptidase system that might remove tubulin modifications or cleave cilia- localized proteins, while the inactive versions are likely to bind peptides and mediate key interactions during ciliogenesis. Second, we observe a vast radiation of C2 domains, which are key membrane-localization modules, in multiple ciliary proteins, including those from the NPHP1-4-8 and the MKS complexes, such as CC2D2A/MKS6, RPGRIP1, RPGRIP1L, NPHP1, NPHP4, C2CD3, AHI1/Jouberin and CEP76, most of which can be traced back to the last common eukaryotic ancestor. Identification of these TGL and C2 domains aid in the proper reconstruction of the Y-shaped linkers, which are key structures in the transitional zone of cilia, by allowing precise prediction of the multiple membrane-contacting and protein-protein interaction sites in these structures. These findings help decipher key events in the evolutionary separation of the ciliary and nuclear compartments in course of the emergence of the eukaryotic cell.
Collapse
Affiliation(s)
- Dapeng Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
196
|
Planar cell polarity effector gene Intu regulates cell fate-specific differentiation of keratinocytes through the primary cilia. Cell Death Differ 2012; 20:130-8. [PMID: 22935613 DOI: 10.1038/cdd.2012.104] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Genes involved in the planar cell polarity (PCP) signaling pathway are essential for a number of developmental processes in mammals, such as convergent extension and ciliogenesis. Tissue-specific PCP effector genes of the PCP signaling pathway are believed to mediate PCP signals in a tissue- and cell type-specific manner. However, how PCP signaling controls the morphogenesis of mammalian tissues remains unclear. In this study, we investigated the role of inturned (Intu), a tissue-specific PCP effector gene, during hair follicle formation in mice. Tissue-specific disruption of Intu in embryonic epidermis resulted in hair follicle morphogenesis arrest because of the failure of follicular keratinocyte to differentiate. Targeting Intu in the epidermis resulted in almost complete loss of primary cilia in epidermal and follicular keratinocytes, and a suppressed hedgehog signaling pathway. Surprisingly, the epidermal stratification and differentiation programs and barrier function were not affected. These results demonstrate that tissue-specific PCP effector genes of the PCP signaling pathway control the differentiation of keratinocytes through the primary cilia in a cell fate- and context-dependent manner, which may be critical in orchestrating the propagation and interpretation of polarity signals established by the core PCP components.
Collapse
|
197
|
Irigoín F, Badano JL. Keeping the balance between proliferation and differentiation: the primary cilium. Curr Genomics 2012; 12:285-97. [PMID: 22131874 PMCID: PMC3131736 DOI: 10.2174/138920211795860134] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 04/18/2011] [Accepted: 05/02/2011] [Indexed: 12/24/2022] Open
Abstract
Primary cilia are post-mitotic cellular organelles that are present in the vast majority of cell types in the human body. An extensive body of data gathered in recent years is demonstrating a crucial role for this organelle in a number of cellular processes that include mechano and chemo-sensation as well as the transduction of signaling cascades critical for the development and maintenance of different tissues and organs. Consequently, cilia are currently viewed as cellular antennae playing a critical role at the interphase between cells and their environment, integrating a range of stimuli to modulate cell fate decisions including cell proliferation, migration and differentiation. Importantly, this regulatory role is not just a consequence of their participation in signal transduction but is also the outcome of both the tight synchronization/regulation of ciliogenesis with the cell cycle and the role of individual ciliary proteins in cilia-dependent and independent processes. Here we review the role of primary cilia in the regulation of cell proliferation and differentiation and illustrate how this knowledge has provided insight to understand the phenotypic consequences of ciliary dysfunction.
Collapse
Affiliation(s)
- Florencia Irigoín
- Institut Pasteur de Montevideo, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | |
Collapse
|
198
|
Wallingford JB. Planar cell polarity and the developmental control of cell behavior in vertebrate embryos. Annu Rev Cell Dev Biol 2012; 28:627-53. [PMID: 22905955 DOI: 10.1146/annurev-cellbio-092910-154208] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Planar cell polarity (PCP), the orientation and alignment of cells within a sheet, is a ubiquitous cellular property that is commonly governed by the conserved set of proteins encoded by so-called PCP genes. The PCP proteins coordinate developmental signaling cues with individual cell behaviors in a wildly diverse array of tissues. Consequently, disruptions of PCP protein functions are linked to defects in axis elongation, inner ear patterning, neural tube closure, directed ciliary beating, and left/right patterning, to name only a few. This review attempts to synthesize what is known about PCP and the PCP proteins in vertebrate animals, with a particular focus on the mechanisms by which individual cells respond to PCP cues in order to execute specific cellular behaviors.
Collapse
Affiliation(s)
- John B Wallingford
- Howard Hughes Medical Institute, Section of Molecular, Cell and Developmental Biology, University of Texas, Austin, Texas 78712, USA.
| |
Collapse
|
199
|
Najafi M, Calvert PD. Transport and localization of signaling proteins in ciliated cells. Vision Res 2012; 75:11-8. [PMID: 22922002 DOI: 10.1016/j.visres.2012.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/05/2012] [Accepted: 08/08/2012] [Indexed: 11/16/2022]
Abstract
Most cells in the human body elaborate cilia which serve a wide variety of functions, including cell and tissue differentiation during development, sensing physical and chemical properties of the extracellular milieu and mechanical force generation. Common among cilia is the transduction of external stimuli into signals that regulate the activities of the cilia and the cells that possess them. These functions require the transport and localization of specialized proteins to the cilium, a process that many recent studies have shown to be vital for normal cell function and, ultimately, the health of the organism. Here we discuss several mechanisms proposed for the transport and localization of soluble and peripheral membrane proteins to, or their exclusion from the ciliary compartment with a focus on how the structure of the cytoplasm and the size and shape of proteins influence these processes. Additionally, we examine the impact of cell and protein structure on our ability to accurately measure the relative concentrations of fluorescently tagged proteins amongst various cellular domains, which is integral to our understanding of the molecular mechanisms underlying protein localization and transport.
Collapse
Affiliation(s)
- Mehdi Najafi
- Department of Ophthalmology and the Center for Vision Research, SUNY Upstate Medical University, United States
| | | |
Collapse
|
200
|
Kim MS, Froese CD, Xie H, Trimble WS. Uncovering principles that control septin-septin interactions. J Biol Chem 2012; 287:30406-13. [PMID: 22815479 DOI: 10.1074/jbc.m112.387464] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Septins comprise a conserved family of GTPases important in cytokinesis. These proteins polymerize into filaments from rod-shaped heteromeric septin complexes. Septins interact with one another at two interfaces (NC and G) that alternate within the complex. Here, we show that small mutations at the N terminus greatly enhance the formation of SEPT2 homopolymers. Taking advantage of this mutation to examine polymer formation using SEPT2 alone, we show that both NC and G interfaces are required for filament formation. However, co-expression of wild type SEPT2 with SEPT2 containing mutations at either NC or G interfaces revealed that only the NC mutant suppressed filament formation. NC mutants are able to interact with one another at putative G interfaces, whereas G mutants fail to interact at NC interfaces. In addition, all promiscuous septin pairwise interactions occur at the G interface. These findings suggest that G interface interactions must occur before NC interactions during polymer formation.
Collapse
Affiliation(s)
- Moshe S Kim
- Program in Cell Biology, Department of Biochemistry, Hospital for Sick Children, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | | | | | | |
Collapse
|