151
|
Affiliation(s)
- Leonard Katz
- Kosan Biosciences, Incorporated, 3832 Bay Center Place, Hayward, California 94545, USA.
| | | |
Collapse
|
152
|
Trivedi OA, Arora P, Vats A, Ansari MZ, Tickoo R, Sridharan V, Mohanty D, Gokhale RS. Dissecting the mechanism and assembly of a complex virulence mycobacterial lipid. Mol Cell 2005; 17:631-43. [PMID: 15749014 DOI: 10.1016/j.molcel.2005.02.009] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 12/08/2004] [Accepted: 02/04/2005] [Indexed: 11/22/2022]
Abstract
Mycobacterium tuberculosis cell envelope is a treasure house of biologically active lipids of fascinating molecular architecture. Although genetic studies have alluded to an array of genes in biosynthesis of complex lipids, their mechanistic, structural, and biochemical principles have not been investigated. Here, we have dissected the molecular logic underlying the biosynthesis of a virulence lipid phthiocerol dimycocerosate (PDIM). Cell-free reconstitution studies demonstrate that polyketide synthases, which are usually involved in the biosynthesis of secondary metabolites, are responsible for generating complex lipids in mycobacteria. We show that PapA5 protein directly transfers the protein bound mycocerosic acid analogs on phthiocerol to catalyze the final esterification step. Based on precise identification of biological functions of proteins from Pps cluster, we have rationally produced a nonmethylated variant of mycocerosate esters. Apart from elucidating mechanisms that generate chemical heterogeneity with PDIMs, this study also presents an attractive approach to explore host-pathogen interactions by altering mycobacterial surface coat.
Collapse
Affiliation(s)
- Omita A Trivedi
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | | | | | | | | | | | | | | |
Collapse
|
153
|
Wilkinson B, Kendrew SG, Sheridan RM, Leadlay PF. Biosynthetic engineering of polyketide synthases. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.13.10.1579] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
154
|
Rahman AS, Hothersall J, Crosby J, Simpson TJ, Thomas CM. Tandemly Duplicated Acyl Carrier Proteins, Which Increase Polyketide Antibiotic Production, Can Apparently Function Either in Parallel or in Series. J Biol Chem 2005; 280:6399-408. [PMID: 15583005 DOI: 10.1074/jbc.m409814200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polyketide biosynthesis involves the addition of subunits commonly derived from malonate or methylmalonate to a starter unit such as acetate. Type I polyketide synthases are multifunctional polypeptides that contain one or more modules, each of which normally contains all the enzymatic domains for a single round of extension and modification of the polyketide backbone. Acyl carrier proteins (ACP(s)) hold the extender unit to which the starter or growing chain is added. Normally there is one ACP for each ketosynthase module. However, there are an increasing number of known examples of tandemly repeated ACP domains, whose function is as yet unknown. For the doublet and triplet ACP domains in the biosynthetic pathway for the antibiotic mupirocin from Pseudomonas fluorescens NCIMB10586 we have inactivated ACP domains by inframe deletion and amino acid substitution of the active site serine. By deletion analysis each individual ACP from a cluster can provide a basic but reduced activity for the pathway. In the doublet cluster, substitution analysis indicates that the pathway may follow two parallel routes, one via each of the ACPs, thus increasing overall pathway flow. In the triplet cluster, substitution in ACP5 blocked the pathway. Thus ACP5 appears to be arranged "in series" to ACP6 and ACP7. Thus although both the doublet and triplet clusters increase antibiotic production, the mechanisms by which they do this appear to be different and depend specifically on the biosynthetic stage involved. The function of some ACPs may be determined by their location in the protein rather than absolute enzymic activity.
Collapse
Affiliation(s)
- Ayesha S Rahman
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | | | |
Collapse
|
155
|
Shen B, Chen M, Cheng Y, Du L, Edwards DJ, George NP, Huang Y, Oh T, Sanchez C, Tang G, Wendt-Pienkowski E, Yi F. Prerequisites for combinatorial biosynthesis: evolution of hybrid NRPS/PKS gene clusters. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2005:107-26. [PMID: 15645718 DOI: 10.1007/3-540-27055-8_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- B Shen
- Division of Pharmaceutical Sciences and Department of Chemistry, University of Wisconsin-Madison, WI 53705, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Affiliation(s)
- Robert McDaniel
- Kosan Biosciences, 3832 Bay Center Place, Hayward, California 94545, USA.
| | | | | |
Collapse
|
157
|
Vosburg DA, Walsh CT. Natural product biosynthetic assembly lines: prospects and challenges for reprogramming. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2005:261-84. [PMID: 15645725 DOI: 10.1007/3-540-27055-8_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- D A Vosburg
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
158
|
Weissman KJ. Polyketide synthases: mechanisms and models. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2005:43-78. [PMID: 15645716 DOI: 10.1007/3-540-27055-8_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- K J Weissman
- Department of Biochemistry, University of Cambridge, UK.
| |
Collapse
|
159
|
Abstract
Bacteria and fungi use large multifunctional enzymes, the so-called nonribosomal peptide synthetases (NRPSs), to produce peptides of broad structural and biological activity. Biochemical studies have contributed substantially to the understanding of the key principles of these modular enzymes that can draw on a much larger number of catalytic tools for the incorporation of unusual features compared with the ribosomal system. Several crystal structures of NRPS-domains have yielded deep insight into the catalytic mechanisms involved and have led to a better prediction of the products assembled and to the construction of hybrid enzymes. In addition to the structure-function relationship of the core- and tailoring-domains of NRPSs, which is the main focus of this review, different biosynthetic strategies and essential enzymes for posttranslational modification and editing are discussed.
Collapse
Affiliation(s)
- Robert Finking
- Philipps-Universität Marburg, Fachbereich Chemie/Biochemie, Hans-Meerwein-Strasse, 35043 Marburg, Germany.
| | | |
Collapse
|
160
|
Weissman KJ. Polyketide biosynthesis: understanding and exploiting modularity. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2004; 362:2671-2690. [PMID: 15539364 DOI: 10.1098/rsta.2004.1470] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Polyketide-based pharmaceuticals are some of our most important medicines. They are constructed in micro-organisms (typically bacteria and fungi) by gigantic enzyme catalysts called polyketide synthases (PKSs). The organization of PKSs into molecular assembly lines makes them particularly appealing targets for genetic engineering because, in principle, an alteration in the enzyme organization might translate into a predictable change in polyketide structure. Excitingly, this has been shown repeatedly to work in practice, but the efficiency of the engineered PKSs is frequently too low to be useful for large-scale drug synthesis. To reach this goal, researchers need a deeper understanding of the structure and function of these proteins, which are among the most complex in nature. This review highlights some recent experiments which are providing key information about the molecular organization, mechanism and orchestration of these magnificent catalysts, and opening up fresh prospects of truly combinatorial biosynthesis of novel polyketides as leads in drug discovery.
Collapse
Affiliation(s)
- Kira J Weissman
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
161
|
Liu F, Garneau S, Walsh CT. Hybrid Nonribosomal Peptide-Polyketide Interfaces in Epothilone Biosynthesis. ACTA ACUST UNITED AC 2004; 11:1533-42. [PMID: 15556004 DOI: 10.1016/j.chembiol.2004.08.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 08/14/2004] [Accepted: 08/23/2004] [Indexed: 11/21/2022]
Abstract
Epothilone (Epo) D, an antitumor agent currently in clinical trials, is a hybrid natural product produced by the combined action of nonribosomal peptide synthetases (NRPS) and polyketide synthases (PKS). In the epothilone biosynthetic pathway, EpoB, a 165 kDa NRPS is inserted into an otherwise entirely PKS assembly line, forming two hybrid NRPS-PKS interfaces. In light of the terminal linker effect previously identified in PKS, the N- and C-terminal sequences of EpoB were examined for their roles in propagating the incipient natural product. Eight amino acid residues at EpoB C terminus, in which six are positively charged, were found to be a key component of the C-terminal linker effect. A minimal sequence of 56 residues at EpoB N terminus was required for elongating the acetyl group from the acyl carrier protein (ACP) of EpoA to form methylthiazolyl-S-EpoB.
Collapse
Affiliation(s)
- Fei Liu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
162
|
Hahn M, Stachelhaus T. Selective interaction between nonribosomal peptide synthetases is facilitated by short communication-mediating domains. Proc Natl Acad Sci U S A 2004; 101:15585-90. [PMID: 15498872 PMCID: PMC524835 DOI: 10.1073/pnas.0404932101] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nonribosomal peptide synthetases (NRPSs) catalyze the formation of structurally diverse and biologically important peptides. Given their modular organization, NRPSs provide an enormous potential for biocombinatorial approaches to generate novel bioactive compounds. Crucial for the exploitation of this potential is a profound knowledge of the intermolecular communication between partner NRPSs. The overall goal of this study was to understand the basis of protein-protein communication that facilitates the selective interaction in these multienzyme complexes. On this account, we studied the relevance of short regions at the termini of the NRPSs tyrocidine (Tyc) synthetases TycA, TycB, and TycC, constituting the Tyc biosynthetic template. In vitro and in vivo investigations of C-terminal deletion mutants of the initiation module TycA provided evidence for the existence and impact of short communication-mediating (COM) domains. Their decisive role in protein-protein recognition was subsequently proven by means of COM domain-swapping experiments. Substitution of the terminal COM domains between the donor modules TycA and TycB3, as well as between the acceptor modules TycB1 and TycC1, clearly demonstrated that matching pairs of COM domains are both necessary and sufficient for the establishment of communication between partner NRPSs in trans. These results corroborated the generality of COM domains, which were subsequently exploited to induce crosstalk, even between NRPSs derived from different biosynthetic systems. In conclusion, COM domains represent interesting tools for biocombinatorial approaches, which, for example, could be used for the generation of innovative natural product derivatives.
Collapse
Affiliation(s)
- Martin Hahn
- Department of Chemistry/Biochemistry, Philipps University of Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany
| | | |
Collapse
|
163
|
Moyne AL, Cleveland TE, Tuzun S. Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09511.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
164
|
Trivedi OA, Arora P, Sridharan V, Tickoo R, Mohanty D, Gokhale RS. Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria. Nature 2004; 428:441-5. [PMID: 15042094 DOI: 10.1038/nature02384] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2003] [Accepted: 02/02/2004] [Indexed: 11/08/2022]
Abstract
The metabolic repertoire in nature is augmented by generating hybrid metabolites from a limited set of gene products. In mycobacteria, several unique complex lipids are produced by the combined action of fatty acid synthases and polyketide synthases (PKSs), although it is not clear how the covalently sequestered biosynthetic intermediates are transferred from one enzymatic complex to another. Here we show that some of the 36 annotated fadD genes, located adjacent to the PKS genes in the Mycobacterium tuberculosis genome, constitute a new class of long-chain fatty acyl-AMP ligases (FAALs). These proteins activate long-chain fatty acids as acyl-adenylates, which are then transferred to the multifunctional PKSs for further chain extension. This mode of activation and transfer of fatty acids is contrary to the previously described universal mechanism involving the formation of acyl-coenzyme A thioesters. Similar mechanisms may operate in the biosynthesis of other lipid-containing metabolites and could have implications in engineering novel hybrid products.
Collapse
Affiliation(s)
- Omita A Trivedi
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | | | | | | | | | | |
Collapse
|
165
|
Abstract
Combinatorial biosynthesis involves the genetic manipulation of natural product biosynthetic enzymes to produce potential new drug candidates that would otherwise be difficult to obtain. In either a theoretical or practical sense, the number of combinations possible from different types of natural product pathways ranges widely. Enzymes that have been the most amenable to this technology synthesize the polyketides, nonribosomal peptides, and hybrids of the two. The number of polyketide or peptide natural products theoretically possible is huge, but considerable work remains before these large numbers can be realized. Nevertheless, many analogs have been created by this technology, providing useful structure-activity relationship data and leading to a few compounds that may reach the clinic in the next few years. In this review the focus is on recent advances in our understanding of how different enzymes for natural product biosynthesis can be used successfully in this technology.
Collapse
|
166
|
Khosla C, Keasling JD. Metabolic engineering for drug discovery and development. Nat Rev Drug Discov 2004; 2:1019-25. [PMID: 14654799 DOI: 10.1038/nrd1256] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Chaitan Khosla
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA.
| | | |
Collapse
|
167
|
Jenkin GA, Stinear TP, Johnson PDR, Davies JK. Subtractive hybridization reveals a type I polyketide synthase locus specific to Mycobacterium ulcerans. J Bacteriol 2004; 185:6870-82. [PMID: 14617651 PMCID: PMC262701 DOI: 10.1128/jb.185.23.6870-6882.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium ulcerans causes Buruli ulcer, the third most prevalent mycobacterial infection of immunocompetent humans after tuberculosis and leprosy. Recent work has shown that the production by M. ulcerans of mycolactone, a novel polyketide, may partly explain the pathogenesis of Buruli ulcer. To search for the genetic basis of virulence in M. ulcerans, we took advantage of the close genetic relationship between M. ulcerans and Mycobacterium marinum by performing genomic suppressive subtractive hybridization of M. ulcerans with M. marinum. We identified several DNA fragments specific to M. ulcerans, in particular, a type I polyketide synthase locus with a highly repetitive modular arrangement. We postulate that this locus is responsible for the synthesis of mycolactone in M. ulcerans.
Collapse
Affiliation(s)
- Grant A Jenkin
- Bacterial Pathogenesis Research Group, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
168
|
Affiliation(s)
- Pawan Kumar
- Department of Chemical Engineering, Stanford University, California 94305, USA
| | | | | |
Collapse
|
169
|
Cassady JM, Chan KK, Floss HG, Leistner E. Recent Developments in the Maytansinoid Antitumor Agents. Chem Pharm Bull (Tokyo) 2004; 52:1-26. [PMID: 14709862 DOI: 10.1248/cpb.52.1] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maytansine and its congeners have been isolated from higher plants, mosses and from an Actinomycete, Actinosynnema pretiosum. Many of these compounds are antitumor agents of extraordinary potency, yet phase II clinical trials with maytansine proved disappointing. The chemistry and biology of maytansinoids has been reviewed repeatedly in the late 1970s and early 1980s; the present review covers new developments in this field during the last two decades. These include the use of maytansinoids as "warheads" in tumor-specific antibodies, preliminary metabolism studies, investigations of their biosynthesis at the biochemical and genetic level, and ecological issues related to the occurrence of such typical microbial metabolites in higher plants.
Collapse
Affiliation(s)
- John M Cassady
- College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
170
|
Weissman KJ, Hong H, Oliynyk M, Siskos AP, Leadlay PF. Identification of a Phosphopantetheinyl Transferase for Erythromycin Biosynthesis in Saccharopolyspora erythraea. Chembiochem 2003; 5:116-25. [PMID: 14695521 DOI: 10.1002/cbic.200300775] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Phosphopantetheinyl transferases (PPTases) catalyze the essential post-translational activation of carrier proteins (CPs) from fatty acid synthases (FASs) (primary metabolism), polyketide synthases (PKSs), and non-ribosomal polypeptide synthetases (NRPSs) (secondary metabolism). Bacteria typically harbor one PPTase specific for CPs of primary metabolism ("ACPS-type" PPTases) and at least one capable of modifying carrier proteins involved in secondary metabolism ("Sfp-type" PPTases). In order to identify the PPTase(s) associated with erythromycin biosynthesis in Saccharopolyspora erythraea, we have used the genome sequence of this organism to identify, clone, and express (in Escherichia coli) three candidate PPTases: an ACPS-type PPTase (S. erythraea ACPS) and two Sfp-type PPTases (a discrete enzyme (SePptII) and another that is integrated into a modular PKS subunit (SePptI)). In vitro analysis of these recombinant PPTases, with an acyl carrier protein-thioesterase (ACP-TE) didomain from the erythromycin PKS as substrate, revealed that only SePptII is active in phosphopantetheinyl transfer with this substrate. SePptII was also shown to provide complete modification of ACP-TE and of an entire multienzyme subunit from the erythromycin PKS in E. coli. The efficiency of the SePptII in phosphopantetheinyl transfer in E. coli makes it an attractive alternative to other Sfp-type PPTases for co-expression experiments with PKS proteins.
Collapse
Affiliation(s)
- Kira J Weissman
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| | | | | | | | | |
Collapse
|
171
|
References. Antibiotics (Basel) 2003. [DOI: 10.1128/9781555817886.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
172
|
Watanabe K, Wang CCC, Boddy CN, Cane DE, Khosla C. Understanding substrate specificity of polyketide synthase modules by generating hybrid multimodular synthases. J Biol Chem 2003; 278:42020-6. [PMID: 12923197 DOI: 10.1074/jbc.m305339200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Modular polyketide biosynthesis can be harnessed to generate rationally designed complex natural products through bioengineering. A detailed understanding of the features that govern transfer and processing of polyketide biosynthetic intermediates is crucial to successfully engineer new polyketide pathways. Previous studies have shown that substrate stereochemistry and protein-protein interactions between polyketide synthase modules are both important factors in this process. Here we investigated the substrate tolerance of different polyketide modules and assessed the relative importance of inter-module chain transfer versus chain elongation activity of some of these modules. By constructing a variety of hybrid modular polyketide synthase systems and assaying their ability to generate polyketide products, it was determined that the substrate tolerance of each individual ketosynthase domain is an important parameter for the successful recombination of polyketide synthase modules. Surprisingly, however, failure by a module to process a candidate substrate was not due to its inability to bind to it. Rather, it appeared to result from a blockage in carbon-carbon bond formation, suggesting that proper orientation of the initially formed acyl thioester in the ketosynthase active site was important for the enzyme-catalyzed decarboxylative condensation reaction.
Collapse
Affiliation(s)
- Kenji Watanabe
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
173
|
Broadhurst RW, Nietlispach D, Wheatcroft MP, Leadlay PF, Weissman KJ. The structure of docking domains in modular polyketide synthases. CHEMISTRY & BIOLOGY 2003; 10:723-31. [PMID: 12954331 DOI: 10.1016/s1074-5521(03)00156-x] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polyketides from actinomycete bacteria provide the basis for many valuable medicines, so engineering genes for their biosynthesis to produce variant molecules holds promise for drug discovery. The modular polyketide synthases are particularly amenable to this approach, because each cycle of chain extension is catalyzed by a different module of enzymes, and the modules are arranged within giant multienzyme subunits in the order in which they act. Protein-protein interactions between terminal docking domains of successive multienzymes promote their correct positioning within the assembly line, but because the overall complex is not stable in vitro, the key interactions have not been identified. We present here the NMR solution structure of a 120 residue polypeptide representing a typical pair of such domains, fused at their respective C and N termini: it adopts a stable dimeric structure which reveals the detailed role of these (predominantly helical) domains in docking and dimerization by modular polyketide synthases.
Collapse
Affiliation(s)
- R William Broadhurst
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
174
|
Carreras CW, Schirmer A, Zhong Z, Santi DV. Filter binding assay for the geldanamycin-heat shock protein 90 interaction. Anal Biochem 2003; 317:40-6. [PMID: 12729599 DOI: 10.1016/s0003-2697(03)00060-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A filter binding assay to measure affinity of [3H-allyl]17-allylamino geldanamycin ([3H]AAG) for the ATP binding site of the N-terminal domain of human Hsp90alpha (hHsp90alpha9-236) was developed. Diethylaminoethyl cellulose or glass fiber filters impregnated with polyethyleneimine were used to capture the [3H]AAG-Hsp90 complex, and conditions which washed >98% of free [3H]AAG from the filters were developed. The complex formed at a rapid rate (k(on)=2.5 x 10(7)Lmol(-1) x s(-1)) and dissociated with a half-life of 2.3 min (k(off)=5 x 10(-3) x s(-1)). hHsp90alpha9-236 bound to [3H]AAG with a K(d) value of 0.4+/-0.1 microM. [3H]AAG had similar affinities for full-length hHsp90alpha and for hHsp90alpha9-236 variants containing biotinylated N-terminal biotinylation signal sequences and N- or C-terminal His(6) tags. Geldanamycin, ADP, ATP, and radicicol-all known to bind to the ATP domain of Hsp90-competed with [3H]AAG for binding to hHsp90alpha9-236, showing K(d) values in good agreement with reported values.
Collapse
Affiliation(s)
- Christopher W Carreras
- Department of Pharmacological Sciences, Kosan Biosciences, Inc, 3832 Bay Center Place, Hayward, CA 94545, USA.
| | | | | | | |
Collapse
|
175
|
Yin Y, Lu H, Khosla C, Cane DE. Expression and kinetic analysis of the substrate specificity of modules 5 and 6 of the picromycin/methymycin polyketide synthase. J Am Chem Soc 2003; 125:5671-6. [PMID: 12733905 DOI: 10.1021/ja034574q] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Picromycin synthase (PICS) is a multifunctional, modular polyketide synthase (PKS) that catalyzes the conversion of methylmalonyl-CoA to narbonolide and 10-deoxymethynolide, the macrolide aglycone precursors of the antibiotics picromycin and methymycin, respectively. PICS modules 5 and 6 were each expressed in Escherichia coli with a thioesterase domain at the C-terminus to allow release of polyketide products. The substrate specificity of PICS modules 5+TE and 6+TE was investigated using N-acetylcysteamine thioesters of 2-methyl-3-hydroxy-pentanoic acid as diketide analogues of the natural polyketide chain elongation substrates. PICS module 5+TE could catalyze the chain elongation of only the syn diketide (2S,3R)-4, while PICS module 6+TE processed both syn diastereomers, (2S,3R)-4 and (2R,3S)-5, with a 2.5:1 preference in k(cat)/K(m) for 5 but did not turn over either of the two anti diketides. The observed substrate specificity patterns are in contrast to the 15-100:1 preference for 4 over 5 previously established for several modules of the closely related erythromycin PKS, 6-deoxyerythronolide B synthase (DEBS).
Collapse
Affiliation(s)
- Yifeng Yin
- Department of Chemistry, Box H, Brown University, Providence, Rhode Island 02912-9108, USA
| | | | | | | |
Collapse
|
176
|
Hans M, Hornung A, Dziarnowski A, Cane DE, Khosla C. Mechanistic analysis of acyl transferase domain exchange in polyketide synthase modules. J Am Chem Soc 2003; 125:5366-74. [PMID: 12720450 DOI: 10.1021/ja029539i] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many polyketides are synthesized by a class of multifunctional enzymes called type I modular polyketide synthases (PKSs). Several reports have described the power of predictively altering polyketide structure by replacing individual PKS domains with homologues from other PKSs. For example, numerous erythromycin analogues have been generated by replacing individual methylmalonyl-specific acyl transferase (AT) domains of the 6-deoxyerythronolide B synthase (DEBS) with malonyl-, ethylmalonyl-, or methoxymalonyl-specific domains. However, the construction of hybrid PKS modules often attenuates product formation both kinetically and distributively. The molecular basis for this mechanistic imperfection is not understood. We have systematically analyzed the impact of replacing an AT domain of DEBS on acyl-AT formation, acyl-CoA:HS-NAc acyl transferase activity, acyl-CoA:ACP acyl transferase activity (nucleophile charging), acyl-SNAc:ketosynthase acyl transferase activity (electrophile charging), and beta-ketoacyl ACP synthase activity (condensation). As usual, domain junctions were located in interdomain regions flanking the AT domain. Kinetic analysis of hybrid modules containing either malonyl transferase or methylmalonyl transferase domains revealed a 15-20-fold decrease in overall turnover numbers of the hybrid modules as compared to the wild-type module. In contrast, both the activity and the specificity of the heterologous AT domains remained unaffected. Moreover, no defects could be detected in the ability of the heterologous AT domains to catalyze acyl-CoA:ACP acyl transfer. Single turnover studies aimed at directly probing the ketosynthase-catalyzed reaction led to two crucial findings. First, wild-type modules catalyzed chain elongation with comparable efficiency regardless of whether methylmalonyl-ACP or malonyl-ACP were the nucleophilic substrates. Second, chain elongation in all hybrid modules tested was seriously attenuated relative to the wild-type module. Our data suggest that, as currently practiced, the most deleterious impact of AT domain swapping is not on the substrate specificity. Rather, it is due to the impaired ability of the KS and ACP domains in the hybrid module to catalyze chain elongation. Consistent with this proposal, limited proteolysis of wild-type and hybrid modules showed major differences in cleavage patterns, especially in the region between the KR and ACP domains.
Collapse
Affiliation(s)
- Marcus Hans
- Department of Chemical Engineering, Stanford University, Stanford, California 94306, USA
| | | | | | | | | |
Collapse
|
177
|
Yadav G, Gokhale RS, Mohanty D. Computational approach for prediction of domain organization and substrate specificity of modular polyketide synthases. J Mol Biol 2003; 328:335-63. [PMID: 12691745 DOI: 10.1016/s0022-2836(03)00232-8] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Modular polyketide synthases (PKSs) are large multi-enzymatic, multi-domain megasynthases, which are involved in the biosynthesis of a class of pharmaceutically important natural products, namely polyketides. These enzymes harbor a set of repetitive active sites termed modules and the domains present in each module dictate the chemical moiety that would add to a growing polyketide chain. This modular logic of biosynthesis has been exploited with reasonable success to produce several novel compounds by genetic manipulation. However, for harnessing their vast potential of combinatorial biosynthesis, it is essential to develop knowledge based in silico approaches for correlating the sequence and domain organization of PKSs to their polyketide products. In this work, we have carried out extensive sequence analysis of experimentally characterized PKS clusters to develop an automated computational protocol for unambiguous identification of various PKS domains in a polypeptide sequence. A structure based approach has been used to identify the putative active site residues of acyltransferase (AT) domains, which control the specificities for various starter and extender units during polyketide biosynthesis. On the basis of the analysis of the active site residues and molecular modelling of substrates in the active site of representative AT domains, we have identified a crucial residue that is likely to play a major role in discriminating between malonate and methylmalonate during selection of extender groups by this domain. Structural modelling has also explained the experimentally observed chiral preference of AT domain in substrate selection. This computational protocol has been used to predict the domain organization and substrate specificity for PKS clusters from various microbial genomes. The results of our analysis as well as the computational tools for prediction of domain organization and substrate specificity have been organized in the form of a searchable computerized database (PKSDB). PKSDB would serve as a valuable tool for identification of polyketide products biosynthesized by uncharacterized PKS clusters. This database can also provide guidelines for rational design of experiments to engineer novel polyketides.
Collapse
Affiliation(s)
- Gitanjali Yadav
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | |
Collapse
|
178
|
Kumar P, Li Q, Cane DE, Khosla C. Intermodular communication in modular polyketide synthases: structural and mutational analysis of linker mediated protein-protein recognition. J Am Chem Soc 2003; 125:4097-102. [PMID: 12670230 DOI: 10.1021/ja0297537] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Modular polyketide synthases (PKSs) present an attractive scaffold for the engineered biosynthesis of novel polyketide products via recombination of naturally occurring enzyme modules with desired catalytic properties. Recent studies have highlighted the pivotal role of short intermodular "linker pairs" in the selective channeling of biosynthetic intermediates between adjacent PKS modules. Using a combination of computer modeling, NMR spectroscopy, cross-linking, and site-directed mutagenesis, we have investigated the mechanism by which a linker pair from the 6-deoxyerythronolide B synthase promotes chain transfer. Our studies support a "coiled-coil" model in which the individual peptides comprising this linker pair adopt helical conformations that associate through a combination of hydrophobic and electrostatic interactions in an antiparallel fashion. Given the important contribution of such linker pair interactions to the kinetics of chain transfer between PKS modules, the ability to rationally modulate linker pair affinity by site-directed mutagenesis could be useful in the construction of optimized hybrid PKSs.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
179
|
Hutchinson CR. Polyketide and non-ribosomal peptide synthases: falling together by coming apart. Proc Natl Acad Sci U S A 2003; 100:3010-2. [PMID: 12631695 PMCID: PMC152231 DOI: 10.1073/pnas.0730689100] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
180
|
Abstract
The multifunctional polypeptide cyclosporin synthetase (CySyn) remains one of the most complex nonribosomal peptide synthetase described. In this study we used a highly specific photoaffinity labeling procedure with the natural cofactor S-adenosyl-L-methionine (AdoMet), 14C-isotopically labeled at the Sdelta methyl group to probe the concerted AdoMet-binding interaction of the N-methyltransferase (N-MTase) centers of CySyn. The binding stoichiometry for the enzyme-AdoMet complex was determined to be 1:7, which is in agreement with inferences made from analysis of the complementary DNA sequence of the simA gene encoding the CySyn polypeptide. The photolabeling of the AdoMet-binding sites displayed homotropic negative cooperativity, characterized by a curvilinear Scatchard plot with upward concavity. Although, the process of N-methyl transfer is not a critical event for peptide elongation, the destabilizing homotropic interactions between N-MTase centers that were observed may represent a mechanism whereby the enzyme preserves the proficiency of the substrate-channeling process of cyclosporin peptide assembly over a broad range of cofactor concentrations. Furthermore, we demonstrated the utility of the photolabeling procedure for tracking the enzyme during purification.
Collapse
Affiliation(s)
- Tony Velkov
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Victoria, Australia
| | | |
Collapse
|
181
|
Affiliation(s)
- William C Nierman
- Institute for Genomic Research, 9712 Medical Center Drive, Rockville, Maryland 20850, USA
| | | |
Collapse
|
182
|
Velkov T, Lawen A. Non-ribosomal peptide synthetases as technological platforms for the synthesis of highly modified peptide bioeffectors – Cyclosporin synthetase as a complex example. BIOTECHNOLOGY ANNUAL REVIEW 2003; 9:151-97. [PMID: 14650927 DOI: 10.1016/s1387-2656(03)09002-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Many microbial peptide secondary metabolites possess important medicinal properties, of which the immunosuppressant cyclosporin A is an example. The enormous structural and functional diversity of these low-molecular weight peptides is attributable to their mode of biosynthesis. Peptide secondary metabolites are assembled non-ribosomally by multi-functional enzymes, termed non-ribosomal peptide synthetases. These systems consist of a multi-modular arrangement of the functional domains responsible for the catalysis of the partial reactions of peptide assembly. The extensive homology shared among NRPS systems allows for the generalisation of the knowledge garnered from studies of systems of diverse origins. In this review we shall focus the contemporary knowledge of non-ribosomal peptide biosynthesis on the structure and function of the cyclosporin biosynthetic system, with some emphasis on the re-direction of the biosynthetic potential of this system by combinatorial approaches.
Collapse
Affiliation(s)
- Tony Velkov
- Monash University, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, P.O. Box 13D, Melbourne, Victoria 3800, Australia
| | | |
Collapse
|
183
|
Ostash BO, Fedorenko VO. Gene engineering of novel polyketide antibiotics producers. ACTA ACUST UNITED AC 2002. [DOI: 10.7124/bc.000629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
184
|
Symmank H, Franke P, Saenger W, Bernhard F. Modification of biologically active peptides: production of a novel lipohexapeptide after engineering of Bacillus subtilis surfactin synthetase. Protein Eng Des Sel 2002; 15:913-21. [PMID: 12538911 DOI: 10.1093/protein/15.11.913] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Bacillus subtilis strain ATCC 21332 produces the lipoheptapeptide surfactin, a highly potent biosurfactant synthesized by a large multimodular peptide synthetase. We report the genetic engineering of the surfactin biosynthesis resulting in the production of a novel lipohexapeptide with altered antimicrobial activities. A combination of in vitro and in vivo recombination approaches was used to construct a modified peptide synthetase by eliminating a large internal region of the enzyme containing a complete amino acid incorporating module. The remaining modules adjacent to the deletion were recombined at different highly conserved sequence motifs characteristic of amino acid incorporating modules of peptide synthetases. The primary goal of this work was to identify permissive fusion sites suitable for the engineering of peptide synthetase genes by genetic recombination. Analysis of the rearranged enzymes after purification from B. subtilis and from the heterologous host Escherichia coli revealed that the selection of the recombination site is of crucial importance for a successful engineering. Only the recombination at a specific HHII x DGVS sequence motif resulted in an active peptide synthetase. The expected lipohexapeptide was produced in vivo and first evidence of a reduced toxicity against erythrocytes and an enhanced lysis of Bacillus licheniformis cells was shown.
Collapse
Affiliation(s)
- Hanka Symmank
- Institut für Kristallographie, Takustrasse 6 , Freie Universität Berlin, D-14195 Berlin, Germany
| | | | | | | |
Collapse
|
185
|
George RA, Heringa J. An analysis of protein domain linkers: their classification and role in protein folding. Protein Eng Des Sel 2002; 15:871-9. [PMID: 12538906 DOI: 10.1093/protein/15.11.871] [Citation(s) in RCA: 284] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent advances in protein engineering have come from creating multi-functional chimeric proteins containing modules from various proteins. These modules are typically joined via an oligopeptide linker, the correct design of which is crucial for the desired function of the chimeric protein. Here we analyse the properties of naturally occurring inter-domain linkers with the aim to design linkers for domain fusion. Two main types of linker were identified; helical and non-helical. Helical linkers are thought to act as rigid spacers separating two domains. Non-helical linkers are rich in prolines, which also leads to structural rigidity and isolation of the linker from the attached domains. This means that both linker types are likely to act as a scaffold to prevent unfavourable interactions between folding domains. Based on these results we have constructed a linker database intended for the rational design of linkers for domain fusion, which can be accessed via the Internet at http://mathbio.nimr.mrc.ac.uk.
Collapse
Affiliation(s)
- Richard A George
- Division of Mathematical Biology, National Institute for Medical Research, The Ridgeway, Mill Hill NW7 1AA, UK
| | | |
Collapse
|
186
|
Kwon HJ, Smith WC, Scharon AJ, Hwang SH, Kurth MJ, Shen B. C-O bond formation by polyketide synthases. Science 2002; 297:1327-30. [PMID: 12193782 DOI: 10.1126/science.1073175] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Polyketide synthases (PKSs) assemble the polyketide carbon backbone by sequential decarboxylative condensation of acyl coenzyme A (CoA) precursors, and the C-C bond-forming step in this process is catalyzed by the beta-ketoacyl synthase (KS) domain or subunit. Genetic and biochemical characterization of the nonactin biosynthesis gene cluster from Streptomyces griseus revealed two KSs, NonJ and NonK, that are highly homologous to known KSs but catalyze sequential condensation of the acyl CoA substrates by forming C-O rather than C-C bonds. This chemistry can be used in PKS engineering to increase the scope and diversity of polyketide biosynthesis.
Collapse
Affiliation(s)
- Hyung-Jin Kwon
- Division of Pharmaceutical Sciences and, Department of Chemistry, University of Wisconsin, Madison, WI 53705, USA
| | | | | | | | | | | |
Collapse
|
187
|
Thomas I, Martin CJ, Wilkinson CJ, Staunton J, Leadlay PF. Skipping in a hybrid polyketide synthase. Evidence for ACP-to-ACP chain transfer. CHEMISTRY & BIOLOGY 2002; 9:781-7. [PMID: 12144921 DOI: 10.1016/s1074-5521(02)00164-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tetraketide synthase containing a loading module (LM), the extension modules erythromycin module 1, rapamycin module 2, and erythromycin module 2 (LM-Ery1-Rap2-Ery2-TE), when expressed in Saccharopolyspora erythraea strain JC2, produced as previously reported a mixture of tetraketide lactones (minor products) and triketide lactones (major products). Several alternative plausible mechanisms by which this "skipping" phenomenon might occur may be proposed. Site-directed mutagenesis of the ketosynthase (KS) and acylcarrier protein (ACP) domains in the interpolated module has shown that skipping within the hybrid PKS involves passage of the growing polyketide through the interpolated module, by direct ACP-to-ACP transfer of the polyketide chain.
Collapse
Affiliation(s)
- Iain Thomas
- Cambridge Centre for Molecular Recognition and Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
188
|
Shen B, Du L, Sanchez C, Edwards DJ, Chen M, Murrell JM. Cloning and characterization of the bleomycin biosynthetic gene cluster from Streptomyces verticillus ATCC15003. JOURNAL OF NATURAL PRODUCTS 2002; 65:422-431. [PMID: 11908996 DOI: 10.1021/np010550q] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Bleomycin (BLM) biosynthesis has been studied as a model for hybrid peptide-polyketide natural product biosynthesis. Cloning, sequencing, and biochemical characterization of the blm biosynthetic gene cluster from Streptomyces verticillus ATCC15003 revealed that (1) the BLM hybrid peptide-polyketide aglycon is assembled by the BLM megasynthetase that consists of both nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) modules; (2) BlmIX/BlmVIII/BlmVII constitute a natural hybrid NRPS/PKS/NRPS system, serving as a model for both hybrid NRPS/PKS and PKS/NRPS systems; (3) the catalytic sites appear to be conserved in both hybrid NRPS/PKS and nonhybrid NRPS or PKS systems, with the exception of the KS domains in the hybrid NRPS/PKS systems that are unique; (4) specific interpolypeptide linkers may play a critical role in intermodular communication to facilitate the transfer of the growing intermediates between the interacting NRPS and/or PKS modules; (5) post-translational modification of the BLM megasynthetase has been accomplished by a single PPTase with broad carrier protein specificity; and (6) BlmIV/BlmIII-templated assembly of the BLM bithiazole moiety requires intriguing protein juxtaposition and modular recognition. These results lay the foundation to investigate the molecular basis for intermodular communication between NRPS and PKS in hybrid peptide-polyketide natural product biosynthesis and set the stage for engineering novel BLM analogues by genetic manipulation of genes governing BLM biosynthesis.
Collapse
Affiliation(s)
- Ben Shen
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, USA.
| | | | | | | | | | | |
Collapse
|
189
|
McDaniel R, Licari P, Khosla C. Process development and metabolic engineering for the overproduction of natural and unnatural polyketides. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2002; 73:31-52. [PMID: 11816811 DOI: 10.1007/3-540-45300-8_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Polyketide natural products are a rich source of bioactive substances that have found considerable use in human health and agriculture. Their complex structures require that they be produced via fermentation processes. This review describes the strategies and challenges used to develop practical fermentation strains and processes for polyketide production. Classical strain improvement procedures, process development methods, and metabolic engineering approaches are described. The elucidation of molecular mechanisms that underlie polyketide biosynthesis has played an important role in each of these areas over the past few years.
Collapse
Affiliation(s)
- R McDaniel
- KOSAN Biosciences, Inc., 3832 Bay Center Place, Hayward, CA 94545, USA
| | | | | |
Collapse
|
190
|
Cane DE, Kudo F, Kinoshita K, Khosla C. Precursor-directed biosynthesis: biochemical basis of the remarkable selectivity of the erythromycin polyketide synthase toward unsaturated triketides. CHEMISTRY & BIOLOGY 2002; 9:131-42. [PMID: 11841945 DOI: 10.1016/s1074-5521(02)00089-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The structural basis for the striking stereochemical discrimination among triketide analogs has been investigated by incubating a series of N-acetyl cysteamine (-SNAC) esters of unsaturated triketides with DEBS module 2+TE. The triketide analogs were first screened under a standard set of short-term incubation conditions in the presence of the extender substrate methylmalonyl-CoA and NADPH. For those triketide analogs that served as substrates for module 2+TE, the relative specificity, represented by the k(cat)/K(M) values, was quantitated. Triketide diastereomers that were converted in precursor-directed biosynthesis experiments to unsaturated 16-membered ring macrolides by DEBS(KS1(0)) were good to excellent substrates for DEBS module 2+TE, whereas analogs that were converted to the 14-membered ring analogs of 10,11-dehydro-6-deoxyerythronolide B by DEBS(KS1(0)) were not turned over at all by module 2+TE.
Collapse
Affiliation(s)
- David E Cane
- Department of Chemistry, Box H, Brown University, Providence, RI 02912, USA.
| | | | | | | |
Collapse
|
191
|
Abstract
Nature has been a source of medicinal agents for thousands of years, and an impressive number of modern drugs have been isolated from natural sources, many based on their use in traditional medicine. The use of herbal drugs is once more escalating in the form of complementary and alternative medicine. The past century, however, has seen an increasing role played by microorganisms in the production of the antibiotics and other drugs for the treatment of some serious diseases. With less than 1% of the microbial world currently known, advances in procedures for microbial cultivation and the extraction of nucleic acids from environmental samples from soil and marine habitats, and from symbiotic and endophytic microbes associated with terrestrial and marine macro-organisms, will provide access to a vast untapped reservoir of genetic and metabolic diversity. By use of combinatorial chemical and biosynthetic technology, novel natural product leads will be optimized on the basis of their biological activities to yield effective chemotherapeutic and other bioactive agents.
Collapse
Affiliation(s)
- G M Cragg
- Natural Products Branch, DTP, DCTD, National Cancer Institute, Frederick, Maryland 21702-1201, USA.
| | | |
Collapse
|
192
|
Schembri MA, Neilan BA, Saint CP. Identification of genes implicated in toxin production in the cyanobacterium Cylindrospermopsis raciborskii. ENVIRONMENTAL TOXICOLOGY 2001; 16:413-21. [PMID: 11594028 DOI: 10.1002/tox.1051] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cylindrospermopsis raciborskii is a bloom-forming cyanobacterium found in both tropical and temperate climates which produces cylindrospermopsin, a potent hepatotoxic secondary metabolite. This organism is notorious for its association with a significant human poisoning incident on Palm Island, Australia, which resulted in the hospitalization of 148 people. We have screened 13 C. raciborskii isolates from various regions of Australia and shown that both toxic and nontoxic strains exist within this species. No association was observed between geographical origin and toxin production. Polyketide synthases (PKSs) and peptide synthetases (PSs) are enzymes involved in secondary metabolite biosynthesis in cyanobacteria. Putative PKS and PS genes from C. raciborskii strains AWT205 and CYP020B were identified by PCR using degenerate primers based on conserved regions within each gene. Examination of the strain-specific distribution of the PKS and PS genes in C. raciborskii isolates demonstrated a direct link between the presence of these two genes and the ability to produce cylindrospermopsin. Interestingly, the possession of these two genes was also linked. They were also identified in an Anabaena bergii isolate that was demonstrated to produce cylindrospermopsin. Taken together, these data suggest a likely role for these determinants in secondary metabolite and toxin production by C. raciborskii.
Collapse
Affiliation(s)
- M A Schembri
- CRC for Water Quality and Treatment, Australian Water Quality Centre, SA Water Corporation, Private Mail Bag 3, Salisbury, South Australia 5108, Australia
| | | | | |
Collapse
|
193
|
Chen H, O'Connor S, Cane DE, Walsh CT. Epothilone biosynthesis: assembly of the methylthiazolylcarboxy starter unit on the EpoB subunit. CHEMISTRY & BIOLOGY 2001; 8:899-912. [PMID: 11564558 DOI: 10.1016/s1074-5521(01)00064-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Polyketides (PKs) and non-ribosomal peptides (NRPs) are therapeutically important natural products biosynthesized by multimodular protein assembly lines, termed the PK synthases (PKSs) and NRP synthetases (NRPSs), via a similar thiotemplate-mediated mechanism. The potential for productive interaction between these two parallel enzymatic systems has recently been demonstrated, with the discovery that PK/NRP hybrid natural products can be of great therapeutic importance. One newly discovered PK/NRP product, epothilone D from Sorangium cellulosum, has shown great potential as an anti-tumor agent. RESULTS The chain-initiating methylthiazole ring of epothilone has been generated in vitro as an acyl-S-enzyme intermediate, using five domains from two modules of the polymodular epothilone synthetase. The acyl carrier protein (ACP) domain, excised from the EpoA gene, was expressed in Escherichia coli, purified as an apo protein, and then post-translationally primed with acetyl-CoA using the phosphopantetheinyl transferase enzyme Sfp. The four-domain 150-kDa EpoB subunit (cyclization-adenylation-oxidase-peptidyl carrier protein domains: Cy-A-Ox-PCP) was also expressed and purified in soluble form from E. coli. Post-translational modification with Sfp and CoASH introduced the HS-pantP prosthetic group to the apo-PCP, enabling subsequent loading with L-cysteine to generate the Cys-S-PCP acyl enzyme intermediate. When acetyl-S-ACP (EpoA) and cysteinyl-S-EpoB were mixed, the Cy domain of EpoB catalyzed acetyl transfer from EpoA to the amino group of the Cys-S-EpoB, generating a transient N-Ac-Cys-S-EpoB intermediate that is cyclized and dehydrated to the five-membered ring methylthiazolinyl-S-EpoB. Finally, the FMN-containing Ox domain of EpoB oxidized the dihydro heterocyclic thiazolinyl ring to the heteroaromatic oxidation state, the methylthiazolylcarboxy-S-EpoB. When other acyl-CoAs were substituted for acetyl-CoA in the Sfp-based priming of the apo-CP domain, additional alkylthiazolylcarboxy-S-EpoB acyl enzymes were produced. CONCLUSIONS These experiments establish chain transfer across a PKS and NRPS interface. Transfer of the acetyl group from the ACP domain of EpoA to EpoB reconstitutes the start of the epothilone synthetase assembly line, and installs and converts a cysteine group into a methyl-substituted heterocycle during this natural product chain growth.
Collapse
Affiliation(s)
- H Chen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
194
|
Wu N, Tsuji SY, Cane DE, Khosla C. Assessing the balance between protein-protein interactions and enzyme-substrate interactions in the channeling of intermediates between polyketide synthase modules. J Am Chem Soc 2001; 123:6465-74. [PMID: 11439032 DOI: 10.1021/ja010219t] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
6-Deoxyerythronolide B synthase (DEBS) is the modular polyketide synthase (PKS) that catalyzes the biosynthesis of 6-deoxyerythronolide B (6-dEB), the aglycon precursor of the antibiotic erythromycin. The biosynthesis of 6-dEB exemplifies the extraordinary substrate- and stereo-selectivity of this family of multifunctional enzymes. Paradoxically, DEBS has been shown to be an attractive scaffold for combinatorial biosynthesis, indicating that its constituent modules are also very tolerant of unnatural substrates. By interrogating individual modules of DEBS with a panel of diketides activated as N-acetylcysteamine (NAC) thioesters, it was recently shown that individual modules have a marked ability to discriminate among certain diastereomeric diketides. However, since free NAC thioesters were used as substrates in these studies, the modules were primed by a diffusive process, which precluded involvement of the covalent, substrate-channeling mechanism by which enzyme-bound intermediates are directly transferred from one module to the next in a multimodular PKS. Recent evidence pointing to a pivotal role for protein-protein interactions in the substrate-channeling mechanism has prompted us to develop novel assays to reassess the steady-state kinetic parameters of individual DEBS modules when primed in a more "natural" channeling mode by the same panel of diketide substrates used earlier. Here we describe these assays and use them to quantify the kinetic benefit of linker-mediated substrate channeling in a modular PKS. This benefit can be substantial, especially for intrinsically poor substrates. Examples are presented where the k(cat) of a module for a given diketide substrate increases >100-fold when the substrate is presented to the module in a channeling mode as opposed to a diffusive mode. However, the substrate specificity profiles for individual modules are conserved regardless of the mode of presentation. By highlighting how substrate channeling can allow PKS modules to effectively accept and process intrinsically poor substrates, these studies provide a rational basis for examining the enormous untapped potential for combinatorial biosynthesis via module rearrangement.
Collapse
Affiliation(s)
- N Wu
- Departments of Chemistry, Chemical Engineering, and Biochemistry, Stanford University, Stanford California 94305, USA
| | | | | | | |
Collapse
|
195
|
Yin Y, Gokhale R, Khosla C, Cane DE. Erythromycin biosynthesis. The 4-pro-S hydride of NADPH is utilized for ketoreduction by both module 5 and module 6 of the 6-deoxyerythronolide B synthase. Bioorg Med Chem Lett 2001; 11:1477-9. [PMID: 11412964 DOI: 10.1016/s0960-894x(00)00529-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Incubation of chirally deuterated NADPH with 6-deoxyerythronolide B synthase (DEBS) modules 5 and module 6 and analysis of the derived triketide lactones established that the two ketoreductase domains, KR5 and KR6, are both specific for the 4-pro-S hydride of the nicotinamide cofactor.
Collapse
Affiliation(s)
- Y Yin
- Department of Chemistry, Box H, Brown University, Providence, RI 02912-9108, USA
| | | | | | | |
Collapse
|
196
|
Rohlin L, Oh MK, Liao JC. Microbial pathway engineering for industrial processes: evolution, combinatorial biosynthesis and rational design. Curr Opin Microbiol 2001; 4:330-5. [PMID: 11378488 DOI: 10.1016/s1369-5274(00)00213-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Microbial pathway engineering has made significant progress in multiple areas. Many examples of successful pathway engineering for specialty and fine chemicals have been reported in the past two years. Novel carotenoids and polyketides have been synthesized using molecular evolution and combinatorial strategies. In addition, rational design approaches based on metabolic control have been reported to increase metabolic flux to specific products. Experimental and computational tools have been developed to aid in design, reconstruction and analysis of non-native pathways. It is expected that a hybrid of evolutionary, combinatorial and rational design approaches will yield significant advances in the near future.
Collapse
Affiliation(s)
- L Rohlin
- Department of Chemical Engineering, 405 Hilgard Avenue, University of California, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
197
|
Wang L, McVey J, Vining LC. Cloning and functional analysis of a phosphopantetheinyl transferase superfamily gene associated with jadomycin biosynthesis in Streptomyces venezuelae ISP5230. MICROBIOLOGY (READING, ENGLAND) 2001; 147:1535-1545. [PMID: 11390684 DOI: 10.1099/00221287-147-6-1535] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sequence analysis of a XhoI/SacI fragment of chromosomal DNA downstream of jadL in the Streptomyces venezuelae ISP5230 gene cluster for jadomycin biosynthesis detected a partial ORF similar in its deduced amino acid sequence to the hetI product involved in synthesizing a regulator of heterocyst spacing in ANABAENA: By probing a phage library of S. venezuelae DNA with the XhoI/SacI fragment, the authors identified and isolated a hybridizing clone. The nucleotide sequence of its DNA contained three complete ORFs (jadM, N and X) and one incomplete ORF (jadO). The jadM ORF lay immediately downstream of, and partially overlapped, jadL. It contained 786 nucleotides encoding an amino acid sequence like those of enzymes in the phosphopantetheinyl transferase family. The jadN ORF contained 1794 nucleotides and encoded an amino acid sequence resembling acyl-CoA decarboxylases, thus suggesting a role in polyketide condensation reactions. The jadX ORF was not identified, but the partial jadO showed marked similarities in its deduced amino acid sequence to NDP-hexose-2,3-dehydratases, indicating a role in forming the sugar component of jadomycin B. Expression of jadM in Escherichia coli and examination of the product by SDS-PAGE established that the ORF encoded a 29.1 kDa protein, corresponding in size to the 262 amino acid polypeptide deduced from the jadM sequence. Evidence from a Northern hybridization indicated that jadM expression is correlated with jadomycin B synthesis. Cultures of S. venezuelae ISP5230 disrupted in jadM produced only 2-5% of the wild-type titre of jadomycin B, but grew well and produced chloramphenicol normally. The authors conclude that jadM encodes a holo-ACP synthase needed primarily for jadomycin B biosynthesis.
Collapse
Affiliation(s)
- Liru Wang
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, CanadaB3H 4J11
| | - Jennifer McVey
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, CanadaB3H 4J11
| | - Leo C Vining
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, CanadaB3H 4J11
| |
Collapse
|
198
|
Rowe CJ, Böhm IU, Thomas IP, Wilkinson B, Rudd BA, Foster G, Blackaby AP, Sidebottom PJ, Roddis Y, Buss AD, Staunton J, Leadlay PF. Engineering a polyketide with a longer chain by insertion of an extra module into the erythromycin-producing polyketide synthase. ACTA ACUST UNITED AC 2001; 8:475-85. [PMID: 11358694 DOI: 10.1016/s1074-5521(01)00024-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Modular polyketide synthases catalyse the biosynthesis of medically useful natural products by stepwise chain assembly, with each module of enzyme activities catalysing a separate cycle of polyketide chain extension. Domain swapping between polyketide synthases leads to hybrid multienzymes that yield novel polyketides in a more or less predictable way. No experiments have so far been reported which attempt to enlarge a polyketide synthase by interpolating additional modules. RESULTS We describe here the construction of tetraketide synthases in which an entire extension module from the rapamycin-producing polyketide synthase is covalently spliced between the first two extension modules of the erythromycin-producing polyketide synthase (DEBS). The extended polyketide synthases thus formed are found to catalyse the synthesis of specific tetraketide products containing an appropriate extra ketide unit. Co-expression in Saccharopolyspora erythraea of the extended DEBS multienzyme with multienzymes DEBS 2 and DEBS 3 leads to the formation, as expected, of novel octaketide macrolactones. In each case the predicted products are accompanied by significant amounts of unextended products, corresponding to those of the unaltered DEBS PKS. We refer to this newly observed phenomenon as 'skipping'. CONCLUSIONS The strategy exemplified here shows far-reaching possibilities for combinatorial engineering of polyketide natural products, as well as revealing the ability of modular polyketide synthases to 'skip' extension modules. The results also provide additional insight into the three-dimensional arrangement of modules within these giant synthases.
Collapse
Affiliation(s)
- C J Rowe
- Cambridge Centre for Molecular Recognition and Department of Biochemistry, University of Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Moyne AL, Shelby R, Cleveland TE, Tuzun S. Bacillomycin D: an iturin with antifungal activity against Aspergillus flavus. J Appl Microbiol 2001; 90:622-9. [PMID: 11309075 DOI: 10.1046/j.1365-2672.2001.01290.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS In a search for an antifungal peptide with a high activity against Aspergillus flavus, Bacillus subtilis AU195 was selected from a collection of isolates with antagonistic activity against A. flavus. METHODS AND RESULTS To identify the antifungal peptides, a protein purification scheme was developed based on the detection of the antifungal activity in purified fractions against A. flavus. Two lipopeptides were purified with anion exchange and gel filtration chromatography. Their masses were determined to be 1045 and 1059 m/z with mass spectrometry, and their peptide moiety was identical to bacillomycin D. CONCLUSION AU195 synthesized a mixture of two antifungal bacillomycin D analogues with masses of 1045 and 1059, the 14 mass unit difference representing the difference between a C15 and a C16 lipid chain. SIGNIFICANCE AND IMPACT OF THE STUDY Both bacillomycin D analogues were active at the same concentration against A. flavus, but the different lipid chain length apparently affected the activity of the lipopeptide against other fungi.
Collapse
Affiliation(s)
- A L Moyne
- Department of Entomology and Plant Pathology, 209 Life Sciences Building, Auburn University, Auburn, AL 36849, USA.
| | | | | | | |
Collapse
|
200
|
Pfeifer BA, Admiraal SJ, Gramajo H, Cane DE, Khosla C. Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. Science 2001; 291:1790-2. [PMID: 11230695 DOI: 10.1126/science.1058092] [Citation(s) in RCA: 542] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The macrocyclic core of the antibiotic erythromycin, 6-deoxyerythronolide B (6dEB), is a complex natural product synthesized by the soil bacterium Saccharopolyspora erythraea through the action of a multifunctional polyketide synthase (PKS). The engineering potential of modular PKSs is hampered by the limited capabilities for molecular biological manipulation of organisms (principally actinomycetes) in which complex polyketides have thus far been produced. To address this problem, a derivative of Escherichia coli has been genetically engineered. The resulting cellular catalyst converts exogenous propionate into 6dEB with a specific productivity that compares well with a high-producing mutant of S. erythraea that has been incrementally enhanced over decades for the industrial production of erythromycin.
Collapse
Affiliation(s)
- B A Pfeifer
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305-5025, USA
| | | | | | | | | |
Collapse
|