151
|
Fu J, Wu Y, Nguyen H, Heinrichs J, Schutt S, Liu Y, Liu C, Jin J, Anasetti C, Yu XZ. T-bet Promotes Acute Graft-versus-Host Disease by Regulating Recipient Hematopoietic Cells in Mice. THE JOURNAL OF IMMUNOLOGY 2016; 196:3168-79. [PMID: 26903480 DOI: 10.4049/jimmunol.1501020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 01/21/2016] [Indexed: 01/16/2023]
Abstract
Beyond its critical role in T cells, T-bet regulates the functions of APCs including dendritic cells and B cells, as well as NK cells. Given that recipient APCs are essential for priming allogeneic T cells and recipient NK or T cells are able to reject allogeneic donor cells, we evaluated the role of T-bet on the host in acute graft-versus-host disease (GVHD) using murine models of allogeneic bone marrow transplantation. T-bet(-/-) recipients developed significantly milder GVHD than their wild type counterparts in MHC-mismatched or CD4-dependent minor histocompatibility Ag-mismatched models. Allogeneic donor T cells, in particular, CD4 subset, significantly reduced IFN-γ production, proliferation and migration, and caused less injury in liver and gut of T-bet(-/-) recipients. We further observed that T-bet on recipient hematopoietic cells was primarily responsible for the donor T cell response and pathogenicity in GVHD. T-bet(-/-) dendritic cells expressed higher levels of Trail, whereas they produced lower levels of IFN-γ and IL-12/23 p40, as well as chemokine CXCL9, resulting in significantly higher levels of apoptosis, less priming, and infiltration of donor T cells. Meanwhile, NK cells in T-bet(-/-) hosts partially contribute to the decreased donor T cell proliferation. Furthermore, although T-bet on hematopoietic cells was required for GVHD development, it was largely dispensable for the graft-versus-leukemia effect. Taken together with our previous findings, we propose that T-bet is a potential therapeutic target for the control of GVHD through regulating donor T cells and recipient hematopoietic cells.
Collapse
Affiliation(s)
- Jianing Fu
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33612; Department of Immunology, Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612; Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Yongxia Wu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Hung Nguyen
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Jessica Heinrichs
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Steven Schutt
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Yuejun Liu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Chen Liu
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32611
| | - Junfei Jin
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425; Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001 Guangxi, China; and
| | - Claudio Anasetti
- Department of Immunology, Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425; Department of Medicine, Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
152
|
Abstract
Natural killer (NK) cells have gained significant attention for adoptive immunotherapy of cancer due to their well-documented antitumor function. In order to evaluate the therapeutic efficacy of NK cell adoptive immunotherapy in preclinical models with a potential for clinical translation, there is a need for a reliable platform for ex vivo expansion of NK cells. Numerous methods are reported in literature using cytokines and feeder cells to activate and expand human NK cells, and many of these methods are limited by low-fold expansion, cytokine dependency of expanded NK cells or expansion-related senescence. In this chapter, a robust NK cell expansion protocol is described using K562 cell line gene modified to express membrane bound IL21 (K562 mb.IL21). We had previously demonstrated that this platform enables the highest fold expansion of NK cells reported in the literature to date (>47,000-folds in 21 days), and produces highly activated and pure NK cells without signs of senescence, as determined by telomere shortening.
Collapse
|
153
|
Meng L, Bai Z, He S, Mochizuki K, Liu Y, Purushe J, Sun H, Wang J, Yagita H, Mineishi S, Fung H, Yanik GA, Caricchio R, Fan X, Crisalli LM, Hexner EO, Reshef R, Zhang Y, Zhang Y. The Notch Ligand DLL4 Defines a Capability of Human Dendritic Cells in Regulating Th1 and Th17 Differentiation. THE JOURNAL OF IMMUNOLOGY 2015; 196:1070-80. [PMID: 26712946 DOI: 10.4049/jimmunol.1501310] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/19/2015] [Indexed: 01/07/2023]
Abstract
Notch signaling regulates multiple helper CD4(+) T cell programs. We have recently demonstrated that dendritic cells (DCs) expressing the Notch ligand DLL4 are critical for eliciting alloreactive T cell responses and induction of graft-versus-host disease in mice. However, the human counterpart of murine DLL4(+) DCs has yet to be examined. We report the identification of human DLL4(+) DCs and their critical role in regulating Th1 and Th17 differentiation. CD1c(+) DCs and plasmacytoid DCs (pDCs) from the peripheral blood (PB) of healthy donors did not express DLL4. In contrast, patients undergoing allogeneic hematopoietic stem cell transplantation had a 16-fold more DLL4(+)CD1c(+) DCs than healthy donors. Upon activation of TLR signaling, healthy donor-derived CD1c(+) DCs dramatically upregulated DLL4, as did pDCs to a lesser extent. Activated DLL4(+) DCs were better able to promote Th1 and Th17 differentiation than unstimulated PB DCs. Blocking DLL4 using a neutralizing Ab decreased Notch signaling in T cells stimulated with DLL4(+) DCs, and it reduced the generation of Th1 and Th17 cells. Both NF-κB and STAT3 were crucial for inducing DLL4 in human DCs. Interestingly, STAT3 directly activated DLL4 transcription and inhibiting STAT3 alone was sufficient to reduce DLL4 in activated PB DCs. Thus, DLL4 is a unique functional molecule of human circulating DCs critical for directing Th1 and Th17 differentiation. These findings identify a pathway for therapeutic intervention for inflammatory disorders in humans, such as graft-versus-host disease after allogeneic hematopoietic stem cell transplantation, autoimmunity, and tumor immunity.
Collapse
Affiliation(s)
- Lijun Meng
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200231, China; Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140; Department of Microbiology and Immunology, Temple University, Philadelphia, PA 19140
| | - Zhenjiang Bai
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140; Pediatric Intensive Care Unit, Children's Hospital of Soochow University, Soochow University, Suzhou 215003, China
| | - Shan He
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140; Department of Microbiology and Immunology, Temple University, Philadelphia, PA 19140
| | - Kazuhiro Mochizuki
- Department of Pediatric Oncology, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Yongnian Liu
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140
| | - Janaki Purushe
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140; Department of Microbiology and Immunology, Temple University, Philadelphia, PA 19140
| | - Hongxing Sun
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140; Department of Microbiology and Immunology, Temple University, Philadelphia, PA 19140
| | - Jian Wang
- Pediatric Intensive Care Unit, Children's Hospital of Soochow University, Soochow University, Suzhou 215003, China
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Shin Mineishi
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294
| | - Henry Fung
- Department of Hematology/Oncology, Fox Chase Cancer Center, Temple Health, Philadelphia, PA 19111
| | - Gregory A Yanik
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Roberto Caricchio
- Department of Medicine, Temple University School of Medicine, Philadelphia, PA 19148
| | - Xiaoxuan Fan
- Flow Cytometry Core Facility, Temple University School of Medicine, Temple University, Philadelphia, PA 19148; and
| | - Lisa M Crisalli
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Elizabeth O Hexner
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Ran Reshef
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Yanyun Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200231, China;
| | - Yi Zhang
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140; Department of Microbiology and Immunology, Temple University, Philadelphia, PA 19140;
| |
Collapse
|
154
|
IL-1 Receptor Blockade Alleviates Graft-versus-Host Disease through Downregulation of an Interleukin-1β-Dependent Glycolytic Pathway in Th17 Cells. Mediators Inflamm 2015; 2015:631384. [PMID: 26798206 PMCID: PMC4698788 DOI: 10.1155/2015/631384] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/27/2015] [Accepted: 11/04/2015] [Indexed: 12/24/2022] Open
Abstract
T helper (Th) 17 cells are a subset of Th cells expressing interleukin- (IL-) 17 and initiating an inflammatory response in autoimmune diseases. Graft-versus-host disease (GVHD) is an immune inflammatory disease caused by interactions between the adaptive immunity of donor and recipient. The Th17 lineage exhibits proinflammatory activity and is believed to be a central player in GVHD. IL-1 performs a key function in immune responses and induces development of Th17 cells. Here, we show that blockade of IL-1 signaling suppresses Th17 cell differentiation and alleviates GVHD severity. We hypothesized that the IL-1 receptor antagonist (IL-1Ra) would suppress Th17 cell differentiation in vitro via inhibition of glycolysis-related genes. Blockade of IL-1 using IL-1Ra downregulated Th17 cell differentiation, an alloreactive T cell response, and expression of genes of the glycolysis pathway. Severity of GVHD was reduced in mice with a transplant of IL-Ra-treated cells, in comparison with control mice. To clarify the mechanisms via which IL-1Ra exerts the therapeutic effect, we demonstrated in vivo that IL-1Ra decreased the proportion of Th17 cells, increased the proportion of FoxP3-expressing T regulatory (Treg) cells, and inhibited expression of glycolysis-related genes and suppressed Th17 cell development and B-cell activation. These results suggest that blockade of IL-1 signaling ameliorates GVHD via suppression of excessive T cell-related inflammation.
Collapse
|
155
|
Plasmacytoid dendritic cells in allogeneic hematopoietic cell transplantation: benefit or burden? Bone Marrow Transplant 2015; 51:333-43. [PMID: 26642333 DOI: 10.1038/bmt.2015.301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/25/2015] [Accepted: 10/27/2015] [Indexed: 11/09/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) bridge innate and adaptive immune responses and have important roles in hematopoietic engraftment, GvHD and graft-versus-leukemia responses following allogeneic hematopoietic cell transplantation (HCT). In addition, pDCs mediate antiviral immunity, particularly as they are the body's primary cellular source of type I interferon. Given their pleiotropic roles, pDCs have emerged as cells that critically impact transplant outcomes, including overall survival. In this article, we will review the pre-clinical and clinical literature, supporting the crucial roles that pDCs assume as key immune effector cells during HCT.
Collapse
|
156
|
Inoue T, Ikegame K, Kaida K, Okada M, Yoshihara S, Tamaki H, Fujimori Y, Soma T, Ogawa H. Host Foxp3+CD4+ Regulatory T Cells Act as a Negative Regulator of Dendritic Cells in the Peritransplantation Period. THE JOURNAL OF IMMUNOLOGY 2015; 196:469-83. [PMID: 26621858 DOI: 10.4049/jimmunol.1402950] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 10/26/2015] [Indexed: 12/31/2022]
Abstract
Host Foxp3+CD4+ regulatory T cells (Tregs) have been shown to suppress graft-versus-host disease (GVHD) in experimental bone marrow transplantation (BMT) models; however, the detailed mechanism is unknown. To address this issue, we established a murine MHC-haploidentical BMT model (BDF1 (H-2b/d) → B6C3F1 (H-2b/k)), in which transplantation following conditioning with high-dose (13 Gy) or low-dose (5 Gy) total body irradiation corresponds to myeloablative stem cell transplantation (MAST) or reduced-intensity stem cell transplantation (RIST) BMT. All MAST recipients died of GVHD within 70 d, whereas RIST recipients developed almost no GVHD and survived for at least 3 mo. In this BMT model, we investigated the kinetics of immune cells in the mesenteric lymph nodes because GVHD was most prominent in the intestines. Host Tregs that survived after total body irradiation could proliferate transiently by day 4. Comparing the kinetics of immune cells among MAST, RIST, and anti-CD25 mAb-treated RIST, we found that the transiently surviving host Tregs were fully functional, closely contacted with host dendritic cells (DCs), and significantly restrained the maturation (CD80 and CD86 expression) of DCs in a dose-dependent manner. There was a positive correlation between the ratio of DCs to host Tregs and the extent of maturation of DCs. Host Tregs suppressed alloresponse mainly by contact inhibition. Host Tregs are already active in lymph nodes before transplantation and restrain the maturation of host DCs, thereby dampening the ability of DCs to activate allogeneic donor T cells and consequently reducing the magnitude of graft-versus-host reaction. Thus, host Tregs are negative regulators of host DCs that act in the peritransplantation period.
Collapse
Affiliation(s)
- Takayuki Inoue
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo 663-8501, Japan; and
| | - Kazuhiro Ikegame
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo 663-8501, Japan; and
| | - Katsuji Kaida
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo 663-8501, Japan; and
| | - Masaya Okada
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo 663-8501, Japan; and
| | - Satoshi Yoshihara
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo 663-8501, Japan; and
| | - Hiroya Tamaki
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo 663-8501, Japan; and
| | - Yoshihiro Fujimori
- Department of Transfusion Medicine, Hyogo College of Medicine, Hyogo 663-8501, Japan
| | - Toshihiro Soma
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo 663-8501, Japan; and
| | - Hiroyasu Ogawa
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo 663-8501, Japan; and
| |
Collapse
|
157
|
Klämbt V, Wohlfeil SA, Schwab L, Hülsdünker J, Ayata K, Apostolova P, Schmitt-Graeff A, Dierbach H, Prinz G, Follo M, Prinz M, Idzko M, Zeiser R. A Novel Function for P2Y2 in Myeloid Recipient-Derived Cells during Graft-versus-Host Disease. THE JOURNAL OF IMMUNOLOGY 2015; 195:5795-804. [PMID: 26538394 DOI: 10.4049/jimmunol.1501357] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/11/2015] [Indexed: 11/19/2022]
Abstract
Acute graft-versus-host disease (GvHD) is a life-threatening complication of allogeneic hematopoietic cell transplantation. During the initiation phase of acute GvHD, endogenous danger signals such as ATP are released and inform the innate immune system via activation of the purinergic receptor P2X7 that a noninfectious damage has occurred. A second ATP-activated purinergic receptor involved in inflammatory diseases is P2Y2. In this study, we used P2y2(-/-) mice to test the role of this receptor in GvHD. P2y2(-/-) recipients experienced reduced GvHD-related mortality, IL-6 levels, enterocyte apoptosis, and histopathology scores. Chimeric mice with P2y2 deficiency restricted to hematopoietic tissues survived longer after GvHD induction than did wild-type mice. P2y2 deficiency of the recipient was connected to lower levels of myeloperoxidase in the intestinal tract of mice developing GvHD and a reduced myeloid cell signature. Selective deficiency of P2Y2 in inflammatory monocytes decreased GvHD severity. Mechanistically, P2y2(-/-) inflammatory monocytes displayed defective ERK activation and reactive oxygen species production. Compatible with a role of P2Y2 in human GvHD, the frequency of P2Y2(+) cells in inflamed GvHD lesions correlated with histopathological GvHD severity. Our findings indicate a novel function for P2Y2 in ATP-activated recipient myeloid cells during GvHD, which could be exploited when targeting danger signals to prevent GvHD.
Collapse
Affiliation(s)
- Verena Klämbt
- Department of Hematology and Oncology, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Sebastian A Wohlfeil
- Department of Hematology and Oncology, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Lukas Schwab
- Department of Hematology and Oncology, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Jan Hülsdünker
- Department of Hematology and Oncology, University Medical Center Freiburg, 79106 Freiburg, Germany; Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Korcan Ayata
- Department of Pneumology, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Petya Apostolova
- Department of Hematology and Oncology, University Medical Center Freiburg, 79106 Freiburg, Germany
| | | | - Heide Dierbach
- Department of Hematology and Oncology, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Gabriele Prinz
- Department of Hematology and Oncology, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Marie Follo
- Department of Hematology and Oncology, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, University Medical Center Freiburg, 79106 Freiburg, Germany; and BIOSS Centre for Biological Signalling Studies, Albert Ludwigs University of Freiburg, 79104 Freiburg, Germany
| | - Marco Idzko
- Department of Pneumology, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Robert Zeiser
- Department of Hematology and Oncology, University Medical Center Freiburg, 79106 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Albert Ludwigs University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
158
|
Oostvogels R, Lokhorst HM, Mutis T. Minor histocompatibility Ags: identification strategies, clinical results and translational perspectives. Bone Marrow Transplant 2015; 51:163-71. [PMID: 26501766 DOI: 10.1038/bmt.2015.256] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/11/2015] [Accepted: 08/15/2015] [Indexed: 12/14/2022]
Abstract
Allogeneic stem cell transplantation (allo-SCT) and donor lymphocyte infusion are effective treatment modalities for various hematological malignancies. Their therapeutic effect, the graft-versus-tumor (GvT) effect, is based mainly on an alloimmune response of donor T cells directed at tumor cells, in which differences in the expression of minor histocompatibility Ags (mHags) on the cells of the patient and donor have a crucial role. However, these differences are also responsible for induction of sometimes detrimental GvHD. As relapse and development of GvHD pose major threats for a large proportion of allotransplanted patients, additional therapeutic strategies are required. To augment the GvT response without increasing the risk of GvHD, specific mHag-directed immunotherapeutic strategies have been developed. Over the past years, much effort has been put into the identification of therapeutically relevant mHags to enable these strategies for a substantial proportion of patients. Currently, the concept of mHag-directed immunotherapy is tested in clinical trials on feasibility, safety and efficacy. In this review, we will summarize the recent developments in mHag identification and the clinical data on mHag-specific immune responses and mHag-directed therapies in patients with hematological malignancies. Finally, we will outline the current challenges and future prospectives in the field.
Collapse
Affiliation(s)
- R Oostvogels
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Hematology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - H M Lokhorst
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - T Mutis
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
159
|
Leigh ND, Kokolus KM, O'Neill RE, Du W, Eng JWL, Qiu J, Chen GL, McCarthy PL, Farrar JD, Cao X, Repasky EA. Housing Temperature-Induced Stress Is Suppressing Murine Graft-versus-Host Disease through β2-Adrenergic Receptor Signaling. THE JOURNAL OF IMMUNOLOGY 2015; 195:5045-54. [PMID: 26459348 DOI: 10.4049/jimmunol.1500700] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 09/16/2015] [Indexed: 01/18/2023]
Abstract
Graft-versus-host disease (GVHD) is the major complication of allogeneic hematopoietic cell transplantation, a potentially curative therapy for hematologic diseases. It has long been thought that murine bone marrow-derived T cells do not mediate severe GVHD because of their quantity and/or phenotype. During the course of experiments testing the impact of housing temperatures on GVHD, we discovered that this apparent resistance is a function of the relatively cool ambient housing temperature. Murine bone marrow-derived T cells have the ability to mediate severe GVHD in mice housed at a thermoneutral temperature. Specifically, mice housed at Institutional Animal Care and Use Committee-mandated, cool standard temperatures (∼ 22°C) are more resistant to developing GVHD than are mice housed at thermoneutral temperatures (∼ 30°C). We learned that the mechanism underlying this housing-dependent immunosuppression is associated with increased norepinephrine production and excessive signaling through β-adrenergic receptor signaling, which is increased when mice are cold stressed. Treatment of mice housed at 22°C with a β2-adrenergic antagonist reverses the norepinephrine-driven suppression of GVHD and yields similar disease to mice housed at 30°C. Conversely, administering a β2-adrenergic agonist decreases GVHD in mice housed at 30°C. In further mechanistic studies using β2-adrenergic receptor-deficient (β2-AR(-/-)) mice, we found that it is host cell β2-AR signaling that is essential for decreasing GVHD. These data reveal how baseline levels of β-adrenergic receptor signaling can influence murine GVHD and point to the feasibility of manipulation of β2-AR signaling to ameliorate GVHD in the clinical setting.
Collapse
Affiliation(s)
- Nicholas D Leigh
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Kathleen M Kokolus
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Rachel E O'Neill
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Wei Du
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Jason W-L Eng
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Jingxin Qiu
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - George L Chen
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263; and
| | - Philip L McCarthy
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263; and
| | - J David Farrar
- Department of Immunology and Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Xuefang Cao
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263;
| | | |
Collapse
|
160
|
Reduced-intensity conditioning with fludarabine and busulfan for allogeneic hematopoietic cell transplantation in elderly or infirm patients with advanced myeloid malignancies. Ann Hematol 2015; 95:115-124. [PMID: 26411736 DOI: 10.1007/s00277-015-2512-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/17/2015] [Indexed: 01/06/2023]
Abstract
We report a retrospective single-center analysis of 112 consecutive patients that underwent allogeneic hematopoietic cell transplantation (HCT) after reduced-intensity conditioning (RIC) with fludarabine (FLU) and busulfan (BU) for the treatment of acute myeloid leukemia (AML), myelodysplastic syndrome (MDS) and myeloproliferative syndrome (MPS) from 2005 to 2014. Three-year event-free survival (EFS) and overall survival (OS) were 46 and 58 %, respectively. Patients ≥60 years of age showed a similar outcome compared to younger patients (3-year OS 55 vs. 61 %, p = 0.96; 3-year EFS 46 vs. 46 %, p = 0.82). Cumulative incidence of non-relapse mortality (NRM) at 3 years adjusted for relapse as competing risk was 25 % for patients aged <60 years and 15 % for older patients (p = 0.15). Infusions of higher CD34(+) blood stem cell doses were associated with a significantly better outcome in the elderly subgroup (3-year OS 82 vs. 39 %, p = 0.007). Moreover, complete donor chimerism at day +100 was associated with a significantly improved survival (3-year OS 69 vs. 23 %, p = 0.003). In conclusion, our data suggest that RIC with FLU/BU enables long-term disease-free survival even in an elderly patient population. Age has no negative impact on the outcome of allogeneic HCT, and decision for transplant should be based on disease risk and performance status rather than age alone.
Collapse
|
161
|
Xiong P, Sang HW, Zhu M. Critical roles of co-activation receptor DNAX accessory molecule-1 in natural killer cell immunity. Immunology 2015; 146:369-78. [PMID: 26235210 DOI: 10.1111/imm.12516] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/28/2015] [Accepted: 07/28/2015] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK) cells, which can exert early and powerful anti-tumour and anti-viral responses, are important components of the innate immune system. DNAX accessory molecule-1 (DNAM-1) is an activating receptor molecule expressed on the surface of NK cells. Recent findings suggest that DNAM-1 is a critical regulator of NK cell biology. DNAM-1 is involved in NK cell education and differentiation, and also plays a pivotal role in the development of cancer, viral infections and immune-related diseases. However, tumours and viruses have developed multiple mechanisms to evade the immune system. They are able to impair DNAM-1 activity by targeting the DNAM-1 receptor-ligand system. We have reviewed the roles of DNAM-1, and its biological functions, with respect to NK cell biology and DNAM-1 chimeric antigen receptor-based immunotherapy.
Collapse
Affiliation(s)
- Peng Xiong
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hai-Wei Sang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
162
|
Crouse J, Xu HC, Lang PA, Oxenius A. NK cells regulating T cell responses: mechanisms and outcome. Trends Immunol 2015; 36:49-58. [PMID: 25432489 DOI: 10.1016/j.it.2014.11.001] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/28/2014] [Accepted: 11/06/2014] [Indexed: 12/11/2022]
Abstract
Natural killer (NK) cells are important innate effectors in immunity. NK cells also have a role in the regulation of the adaptive immune response, and have been shown, in different contexts, to stimulate or inhibit T cell responses. Recent findings have expanded our understanding of the mechanisms underlying this regulation, revealing that regulation by NK cells can result from both direct interactions between NK cells and T cells, as well as indirectly, involving interactions with antigen presenting cells and the impact of NK cells on infected cells and pathogen load. We review these recent findings here, and outline emerging principles of how this regulation influences the overall outcome of adaptive immunity in infection and disease.
Collapse
|
163
|
Choi S, Reddy P. Principles of hematopoietic cell transplantation. Transpl Immunol 2015. [DOI: 10.1002/9781119072997.ch9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
164
|
Kim SK, Yun CH, Han SH. Dendritic Cells Differentiated from Human Umbilical Cord Blood-Derived Monocytes Exhibit Tolerogenic Characteristics. Stem Cells Dev 2015. [PMID: 26203805 DOI: 10.1089/scd.2014.0600] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human umbilical cord blood (UCB) is rich in diverse hematopoietic stem cells that are competent to differentiate into various cell types with immunological compatibility at transplantation. Thus, UCB is a potential source for the preparation of dendritic cells (DCs) to be used for cell therapy against inflammatory disorders or cancers. However, the immunological properties of UCB-derived DCs are not fully characterized. In this study, we investigated the phenotypes and functions of UCB monocyte-derived DCs (UCB-DCs) in comparison with those of adult peripheral blood (APB) monocyte-derived DCs (APB-DCs). UCB-DCs contained less CD1a(+) DCs, which is known as immunostimulatory DCs, than APB-DCs. UCB-DCs exhibited lower expression of CD80, MHC proteins, and DC-SIGN, but higher endocytic activity, than APB-DCs. Lipopolysaccharide stimulation of UCB-DCs minimally augmented the expression of maturation markers and production of interleukin (IL)-12 and tumor necrosis factor (TNF)-α, but potently expressed IL-10. When UCB-DCs were cocultured with CD14(+) cell-depleted allogeneic peripheral blood mononuclear cells, they weakly induced the proliferation, surface expression of activation markers, and interferon (IFN)-γ production of T lymphocytes compared with APB-DCs. UCB possessed higher levels of prostaglandin E2 (PGE2) than APB, which might be responsible for tolerogenic phenotypes and functions of UCB-DCs. Indeed, APB-DCs prepared in the presence of PGE2 exhibited CD1a(-)CD14(+) phenotypes with tolerogenic properties, including weak maturation, impaired IL-12 production, and negligible T lymphocyte activation as UCB-DCs did. Taken together, we suggest that UCB-DCs have tolerogenic properties, which might be due to PGE2 highly sustained in UCB.
Collapse
Affiliation(s)
- Sun Kyung Kim
- 1 Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University , Seoul, Republic of Korea
| | - Cheol-Heui Yun
- 2 Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University , Seoul, Republic of Korea
| | - Seung Hyun Han
- 1 Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University , Seoul, Republic of Korea
| |
Collapse
|
165
|
Atorvastatin for the Prophylaxis of Acute Graft-versus-Host Disease in Patients Undergoing HLA-Matched Related Donor Allogeneic Hematopoietic Stem Cell Transplantation (allo-HCT). Biol Blood Marrow Transplant 2015; 22:71-9. [PMID: 26256940 DOI: 10.1016/j.bbmt.2015.07.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/29/2015] [Indexed: 01/01/2023]
Abstract
Statins possess potent immunomodulatory effects that may play a role in preventing acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic cell transplantation (allo-HCT). We performed a phase II study of atorvastatin for aGVHD prophylaxis when given to allo-HCT recipients and their HLA-matched sibling donors. Atorvastatin (40 mg/day) was administered to sibling donors, beginning 14 days before the anticipated start of stem cell collection. Allo-HCT recipients (n = 40) received atorvastatin (40 mg/day) in addition to standard aGVHD prophylaxis. The primary endpoint was cumulative incidence of grades II to IV aGVHD at day 100. Atorvastatin was well tolerated, with no attributable grades III to IV toxicities in donors or their recipients. Day 100 and 180 cumulative incidences of grades II to IV aGVHD were 30% (95% confidence interval [CI], 17% to 45%) and 40% (95% CI, 25% to 55%), respectively. One-year cumulative incidence of chronic GVHD was 43% (95% CI, 32% to 69%). One-year nonrelapse mortality and relapse incidences were 5.5% (95% CI, .9% to 16.5%) and 38% (95% CI, 18% to 47%), respectively. One-year progression-free and overall survival rates were 54% (95% CI, 38% to 71%) and 82% (95% CI, 69% to 94%). One-year GVHD-free, relapse-free survival was 27% (95% CI, 16% to 47%). These results did not differ from our historical control subjects (n = 96). Although safe and tolerable, the addition of atorvastatin did not appear to provide any benefit to standard GVHD prophylaxis alone.
Collapse
|
166
|
Koyama M, Cheong M, Markey KA, Gartlan KH, Kuns RD, Locke KR, Lineburg KE, Teal BE, Leveque-El Mouttie L, Bunting MD, Vuckovic S, Zhang P, Teng MWL, Varelias A, Tey SK, Wockner LF, Engwerda CR, Smyth MJ, Belz GT, McColl SR, MacDonald KPA, Hill GR. Donor colonic CD103+ dendritic cells determine the severity of acute graft-versus-host disease. THE JOURNAL OF EXPERIMENTAL MEDICINE 2015. [PMID: 26169940 DOI: 10.1084/jem.20150329.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The primacy of the gastrointestinal (GI) tract in dictating the outcome of graft-versus-host disease (GVHD) is broadly accepted; however, the mechanisms controlling this effect are poorly understood. Here, we demonstrate that GVHD markedly enhances alloantigen presentation within the mesenteric lymph nodes (mLNs), mediated by donor CD103(+)CD11b(-) dendritic cells (DCs) that migrate from the colon under the influence of CCR7. Expansion and differentiation of donor T cells specifically within the mLNs is driven by profound levels of alloantigen, IL-12, and IL-6 promoted by Toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signals. Critically, alloantigen presentation in the mLNs imprints gut-homing integrin signatures on donor T cells, leading to their emigration into the GI tract where they mediate fulminant disease. These data identify a critical, anatomically distinct, donor DC subset that amplifies GVHD. We thus highlight multiple therapeutic targets and the ability of GVHD, once initiated by recipient antigen-presenting cells, to generate a profound, localized, and lethal feed-forward cascade of donor DC-mediated indirect alloantigen presentation and cytokine secretion within the GI tract.
Collapse
Affiliation(s)
- Motoko Koyama
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Melody Cheong
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Kate A Markey
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Kate H Gartlan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Rachel D Kuns
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Kelly R Locke
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Katie E Lineburg
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Bianca E Teal
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | | | - Mark D Bunting
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Slavica Vuckovic
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Ping Zhang
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Michele W L Teng
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Antiopi Varelias
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Siok-Keen Tey
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia The Royal Brisbane and Women's Hospital, Brisbane, Queensland 4029, Australia
| | - Leesa F Wockner
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | | | - Mark J Smyth
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Gabrielle T Belz
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia
| | - Shaun R McColl
- The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Kelli P A MacDonald
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Geoffrey R Hill
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia The Royal Brisbane and Women's Hospital, Brisbane, Queensland 4029, Australia
| |
Collapse
|
167
|
Koyama M, Cheong M, Markey KA, Gartlan KH, Kuns RD, Locke KR, Lineburg KE, Teal BE, Leveque-El Mouttie L, Bunting MD, Vuckovic S, Zhang P, Teng MWL, Varelias A, Tey SK, Wockner LF, Engwerda CR, Smyth MJ, Belz GT, McColl SR, MacDonald KPA, Hill GR. Donor colonic CD103+ dendritic cells determine the severity of acute graft-versus-host disease. ACTA ACUST UNITED AC 2015; 212:1303-21. [PMID: 26169940 PMCID: PMC4516799 DOI: 10.1084/jem.20150329] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/26/2015] [Indexed: 12/23/2022]
Abstract
Koyama et al. show that GVHD markedly enhances alloantigen presentation within the mesenteric lymph nodes, mediated by donor CD103+CD11b− DCs that migrate from the colon under the influence of CCR7. This antigen presentation imprints gut-homing integrin signatures on donor T cells, leading to their migration to the GI tract where they mediate fulminant disease. The primacy of the gastrointestinal (GI) tract in dictating the outcome of graft-versus-host disease (GVHD) is broadly accepted; however, the mechanisms controlling this effect are poorly understood. Here, we demonstrate that GVHD markedly enhances alloantigen presentation within the mesenteric lymph nodes (mLNs), mediated by donor CD103+CD11b− dendritic cells (DCs) that migrate from the colon under the influence of CCR7. Expansion and differentiation of donor T cells specifically within the mLNs is driven by profound levels of alloantigen, IL-12, and IL-6 promoted by Toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signals. Critically, alloantigen presentation in the mLNs imprints gut-homing integrin signatures on donor T cells, leading to their emigration into the GI tract where they mediate fulminant disease. These data identify a critical, anatomically distinct, donor DC subset that amplifies GVHD. We thus highlight multiple therapeutic targets and the ability of GVHD, once initiated by recipient antigen-presenting cells, to generate a profound, localized, and lethal feed-forward cascade of donor DC–mediated indirect alloantigen presentation and cytokine secretion within the GI tract.
Collapse
Affiliation(s)
- Motoko Koyama
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Melody Cheong
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Kate A Markey
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Kate H Gartlan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Rachel D Kuns
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Kelly R Locke
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Katie E Lineburg
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Bianca E Teal
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | | | - Mark D Bunting
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Slavica Vuckovic
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Ping Zhang
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Michele W L Teng
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Antiopi Varelias
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Siok-Keen Tey
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia The Royal Brisbane and Women's Hospital, Brisbane, Queensland 4029, Australia
| | - Leesa F Wockner
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | | | - Mark J Smyth
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Gabrielle T Belz
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia
| | - Shaun R McColl
- The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Kelli P A MacDonald
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Geoffrey R Hill
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia The Royal Brisbane and Women's Hospital, Brisbane, Queensland 4029, Australia
| |
Collapse
|
168
|
Wu Y, Bastian D, Schutt S, Nguyen H, Fu J, Heinrichs J, Xia C, Yu XZ. Essential Role of Interleukin-12/23p40 in the Development of Graft-versus-Host Disease in Mice. Biol Blood Marrow Transplant 2015; 21:1195-204. [PMID: 25846718 PMCID: PMC4466028 DOI: 10.1016/j.bbmt.2015.03.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/19/2015] [Indexed: 11/27/2022]
Abstract
Graft-versus-host disease (GVHD), in both its acute (aGVHD) and chronic (cGVHD) forms, remains a major obstacle impeding successful allogeneic hematopoietic stem cell transplantation (allo-HSCT). T cells, in particular pathogenic T helper (Th) 1 and Th17 subsets, are a driving force for the induction of GVHD. IL-12 and IL-23 cytokines share a common p40 subunit and play a critical role in driving Th1 differentiation and in stabilizing the Th17 phenotype, respectively. In our current study, we hypothesized that p40 is an essential cytokine in the development of GVHD. By using p40-deficient mice, we found that both donor- and host-derived p40 contribute to the development of aGVHD. Neutralization of p40 with an anti-p40 mAb inhibited Th1- and Th17-polarization in vitro. Furthermore, anti-p40 treatment reduced aGVHD severity while preserving the graft-versus-leukemia (GVL) activity. Alleviation of aGVHD was associated with an increase of Th2 differentiation and a decrease of Th1 and Th17 effector T cells in the GVHD target organs. In addition, anti-p40 treatment attenuated the severity of sclerodermatous cGVHD. These results provide a strong rationale that blockade of p40 may represent a promising therapeutic strategy in preventing and treating aGVHD and cGVHD while sparing the GVL effect after allo-HSCT.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/pharmacology
- Bone Marrow Transplantation/adverse effects
- Cell Differentiation
- Disease Models, Animal
- Gene Expression
- Graft vs Host Disease/etiology
- Graft vs Host Disease/genetics
- Graft vs Host Disease/immunology
- Graft vs Host Disease/therapy
- Graft vs Leukemia Effect
- Histocompatibility Testing
- Humans
- Interleukin-12 Subunit p40/deficiency
- Interleukin-12 Subunit p40/genetics
- Interleukin-12 Subunit p40/immunology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Lymphocyte Depletion
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/therapy
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Primary Cell Culture
- Th1 Cells/immunology
- Th1 Cells/pathology
- Th17 Cells/immunology
- Th17 Cells/pathology
- Th2 Cells/immunology
- Th2 Cells/pathology
- Transplantation, Homologous
Collapse
Affiliation(s)
- Yongxia Wu
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, China; Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - David Bastian
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Steven Schutt
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Hung Nguyen
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Jianing Fu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Jessica Heinrichs
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Changqing Xia
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, China; Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina; Department of Medicine, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
169
|
Pérez CA, Rabanales R, Rojas-Alcayaga G, Larrondo M, Escobar AF, López MN, Salazar-Onfray F, Alfaro JI, González FE. Dendritic cell chimerism in oral mucosa of transplanted patients affected by graft-versus-host disease. J Oral Pathol Med 2015; 45:127-35. [PMID: 26102283 DOI: 10.1111/jop.12338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2015] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Graft-versus-host disease (GVHD) is one of the main complications after haematopoietic stem cell transplantation. Clinical features of GVHD include either an acute (aGVHD) or a chronic (cGVHD) condition that affects locations such as the oral mucosa. While the involvement of the host's dendritic cells (DCs) has been demonstrated in aGVHD, the origin (donor/host) and mechanisms underlying oral cGVHD have not been completely elucidated. In this study, we intend to determine the origin of DCs present in mucosal tissue biopsies from the oral cavity of transplanted patients affected by cGVHD. METHODS We purified DCs, from oral biopsies of three patients with cGVHD, through immunobeads and subsequently performed DNA extraction. The origin of the obtained DCs was determined by PCR amplification of 13 informative short tandem repeat (STR) alleles. We also characterised the DCs phenotype and the inflammatory infiltrate from biopsies of two patients by immunohistochemistry. RESULTS Clinical and histological features of the biopsies were concordant with oral cGVHD. We identified CD11c-, CD207- and CD1a-positive cells in the epithelium and beneath the basal layer. Purification of DCs from the mucosa of patients affected by post-transplantation cGVHD was >95%. PCR-STR data analysis of DCs DNA showed that 100% of analysed cells were of donor origin in all of the evaluated patients. CONCLUSION Our results demonstrate that resident DCs isolated from the oral tissue of allotransplanted patients affected by cGVHD are originated from the donor. Further research will clarify the role of DCs in the development and/or severity of oral cGVHD.
Collapse
Affiliation(s)
- Claudio A Pérez
- Cell Therapy Laboratory, Blood Bank Service, University of Chile Clinical Hospital, Santiago, Chile
| | - Ramón Rabanales
- Cell Therapy Laboratory, Blood Bank Service, University of Chile Clinical Hospital, Santiago, Chile
| | - Gonzalo Rojas-Alcayaga
- Department of Oral Pathology and Medicine, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Milton Larrondo
- Cell Therapy Laboratory, Blood Bank Service, University of Chile Clinical Hospital, Santiago, Chile
| | - Alejandro F Escobar
- Research Institute of Dental Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Mercedes N López
- Cell Therapy Laboratory, Blood Bank Service, University of Chile Clinical Hospital, Santiago, Chile.,Disciplinary Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile
| | - Flavio Salazar-Onfray
- Disciplinary Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile
| | - Jorge I Alfaro
- Cell Therapy Laboratory, Blood Bank Service, University of Chile Clinical Hospital, Santiago, Chile
| | - Fermín E González
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile.,Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| |
Collapse
|
170
|
Guerrero AD, Moyes JS, Cooper LJN. The human application of gene therapy to re-program T-cell specificity using chimeric antigen receptors. CHINESE JOURNAL OF CANCER 2015; 33:421-33. [PMID: 25189715 PMCID: PMC4190432 DOI: 10.5732/cjc.014.10100] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The adoptive transfer of T cells is a promising approach to treat cancers. Primary human T cells can be modified using viral and non-viral vectors to promote the specific targeting of cancer cells via the introduction of exogenous T-cell receptors (TCRs) or chimeric antigen receptors (CARs). This gene transfer displays the potential to increase the specificity and potency of the anticancer response while decreasing the systemic adverse effects that arise from conventional treatments that target both cancerous and healthy cells. This review highlights the generation of clinical-grade T cells expressing CARs for immunotherapy, the use of these cells to target B-cell malignancies and, particularly, the first clinical trials deploying the Sleeping Beauty gene transfer system, which engineers T cells to target CD19+ leukemia and non-Hodgkin's lymphoma.
Collapse
Affiliation(s)
- Alan D Guerrero
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | |
Collapse
|
171
|
O'Reilly RJ, Koehne G, Hasan AN, Doubrovina E, Prockop S. T-cell depleted allogeneic hematopoietic cell transplants as a platform for adoptive therapy with leukemia selective or virus-specific T-cells. Bone Marrow Transplant 2015; 50 Suppl 2:S43-50. [PMID: 26039207 PMCID: PMC4787269 DOI: 10.1038/bmt.2015.95] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Allogeneic hematopoietic cell transplants adequately depleted of T-cells can reduce or prevent acute and chronic GVHD in both HLA-matched and haplotype-disparate hosts, without post-transplant prophylaxis with immunosuppressive drugs. Recent trials indicate that high doses of CD34+ progenitors from G-CSF mobilized peripheral blood leukocytes isolated and T-cell depleted by immunoadsorption to paramagnetic beads, when administered after myeloablative conditioning with TBI and chemotherapy or chemotherapy alone can secure consistent engraftment and abrogate GVHD in patients with acute leukemia without incurring an increased risk of a recurrent leukemia. Early clinical trials also indicate that high doses of in vitro generated leukemia-reactive donor T-cells can be adoptively transferred and can induce remissions of leukemia relapse without GVHD. Similarly, virus-specific T-cells generated from the transplant donor or an HLA partially matched third party, have induced remissions of Rituxan-refractory EBV lymphomas and can clear CMV disease or viremia persisting despite antiviral therapy in a high proportion of cases. Analyses of treatment responses and failures illustrate both the advantages and limitations of donor or banked, third party-derived T-cells, but underscore the potential of adoptive T-cell therapy in the absence of ongoing immunosuppression.
Collapse
Affiliation(s)
- R J O'Reilly
- Departments of Pediatrics and Medicine, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - G Koehne
- Departments of Pediatrics and Medicine, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - A N Hasan
- Departments of Pediatrics and Medicine, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Doubrovina
- Departments of Pediatrics and Medicine, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - S Prockop
- Departments of Pediatrics and Medicine, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
172
|
Dickinson AM, Norden J. Non-HLA genomics: does it have a role in predicting haematopoietic stem cell transplantation outcome? Int J Immunogenet 2015; 42:229-38. [PMID: 26010044 DOI: 10.1111/iji.12202] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/17/2015] [Accepted: 03/31/2015] [Indexed: 12/11/2022]
Abstract
Haematopoietic stem cell transplantation (HSCT) remains the only cure for many haematological neoplasms; however, the mortality rate remains high, at around 30-80%. Complications after HSCT include relapse, graft-versus-host disease, graft rejection and infection. High-resolution HLA matching has improved survival in HSCT over recent years; however, GVHD still remains a serious complication. Single nucleotide polymorphisms (SNPS) within genes that are involved with an individual's capability to mount an immune response to infectious pathogens, residual leukaemia, alloantigens or genes involved in drug metabolism have been studied for their association with HSCT outcome. Indeed, over the last 15 years, several groups, including ourselves, have demonstrated that non-HLA gene polymorphisms can be predictive of HSCT outcome. Can genetic characteristics of the patient and donor be used in the future to tailor HSCT protocols and determine GVHD prophylaxis? This review summarizes some of the recent SNP association studies in HSCT and highlights some of the disparities therein, discussing the integral problems of performing genetic association studies on diseases with complex outcomes using heterogeneous cohorts. The review will comment on recent genomewide association studies (GWAS) and discuss their relevance in this field, and it will also comment on recent meta-analysis combining GWAS studies with other studies such as gene expression micro array data in the field of autoimmune disease and solid organ transplantation. It will mention possible novel candidate gene polymorphisms, for example SNPS in microRNAs. In addition, it will discuss some of the inherent problems associated with gene association studies including the GRIPs (genetic risk prediction studies) recommendations. In summary, this review will assess the usefulness of non-HLA genomic studies in HSCT with regard to predicting outcome and modifying therapy.
Collapse
Affiliation(s)
- A M Dickinson
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - J Norden
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
173
|
Imaging the immunological synapse between dendritic cells and T cells. J Immunol Methods 2015; 423:40-4. [PMID: 25967948 DOI: 10.1016/j.jim.2015.04.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 03/28/2015] [Accepted: 04/30/2015] [Indexed: 11/21/2022]
Abstract
Immunological synapse formation between antigen-specific T cells and antigen presenting cells (APC) involves reorganization of the cellular cytoskeleton (polymerization of filamentous actin) and recruitment of adhesion molecules (e.g. LFA-1, ICAM-1). This engagement is critical for the generation of specific immune responses. Until recently, quantitative, high-throughput measurements of these interactions have not been possible. Instead, previous assessment was reliant on qualitative microscopy of live cells, where typically the APC is adhered to a surface and the suspended T cell is required to migrate to facilitate synapse formation. While this methodology can demonstrate the capacity for synapse formation, it cannot accommodate quantification of large numbers of interacting cell pairs, nor does it allow for statistically robust comparison between test conditions. We have developed a method for assessing immunological synapse formation between purified ex vivo dendritic cells (DCs) and responder antigen-specific CD4(+) T cells using imaging flow cytometry, allowing us to quantify LFA-1 and f-actin rearrangement at the interface between DC/T cell pairs. This novel application of imaging flow cytometry represents a major advance in dendritic cell function and immunological synapse research as it facilitates quantitative, high throughput analysis of the interaction between live, ex vivo DC and T cells.
Collapse
|
174
|
Flies DB, Higuchi T, Chen L. Mechanistic Assessment of PD-1H Coinhibitory Receptor-Induced T Cell Tolerance to Allogeneic Antigens. THE JOURNAL OF IMMUNOLOGY 2015; 194:5294-304. [PMID: 25917101 DOI: 10.4049/jimmunol.1402648] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/29/2015] [Indexed: 01/28/2023]
Abstract
PD-1H is a recently identified cell surface coinhibitory molecule of the B7/CD28 immune modulatory gene family. We showed previously that single injection of a PD-1H agonistic mAb protected mice from graft-versus-host disease (GVHD). In this study, we report two distinct mechanisms operate in PD-1H-induced T cell tolerance. First, signaling via PD-1H coinhibitory receptor potently arrests alloreactive donor T cells from activation and expansion in the initiation phase. Second, donor regulatory T cells are subsequently expanded to maintain long-term tolerance and GVHD suppression. Our study reveals the crucial function of PD-1H as a coinhibitory receptor on alloreactive T cells and its function in the regulation of T cell tolerance. Therefore, PD-1H may be a target for the modulation of alloreactive T cells in GVHD and transplantation.
Collapse
Affiliation(s)
- Dallas B Flies
- Department of Immunobiology and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT 06511
| | - Tomoe Higuchi
- Department of Immunobiology and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT 06511
| | - Lieping Chen
- Department of Immunobiology and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT 06511
| |
Collapse
|
175
|
Toubai T, Guoqing H, Rossi C, Mathewson N, Oravecz-Wilson K, Cummings E, Wu J, Sun Y, Choi S, Reddy P. Ikaros deficiency in host hematopoietic cells separates GVL from GVHD after experimental allogeneic hematopoietic cell transplantation. Oncoimmunology 2015; 4:e1016699. [PMID: 26140241 PMCID: PMC4485841 DOI: 10.1080/2162402x.2015.1016699] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 10/25/2022] Open
Abstract
The graft-versus-leukemia (GVL) effect following allogeneic hematopoietic stem cell transplantation (allo-HCT) is critical for its curative potential. Hwever, GVL is tightly linked to graft-versus-host disease (GVHD). Among hematological malignancies, acute lymphoblastic leukemia (ALL) is the most resistant to GVL, although the reasons for this remain poorly understood. Clinical studies have identified alterations in Ikaros (Ik) transcription factor as the major marker associated with poor outcomes in ALL. We have shown that the absence of Ik in professional host-derived hematopoietic antigen-presenting cells (APCs) exacerbates GVHD. However, whether Ik expression plays a role in resistance to GVL is not known. In this study we used multiple clinically relevant murine models of allo-HCT to explore whether Ik expression in hematopoietic APCs and/or leukemic cells is critical for increasing resistance to GVL and thus inducing relapse. We found that Ik deficiency in host APCs failed to enhance GVL despite increased GVHD severity. Mechanistic studies with bone marrow (BM) chimeras and tetramer analyses demonstrated reduced tumor-specific immunodominant (gag+) antigen responses in the [B6Ik-/-→B6] group. Loss of GVL was observed when both the leukemia cells and the host APCs were deficient in Ik. We found that calreticulin (CRT) expression in host antigen-presenting dendritic cells (DCs) of Ik-/- animals was significantly lower than in wild-type animals. Rescuing CRT expression in Ik-/- DCs improved leukemic-specific cytotoxic T cell function. Together, our data demonstrate that the absence of Ikaros in host hematopoietic cells promotes resistance to GVL despite increasing GVHD and thus provides a potential mechanism for the poor outcome of Ik-/- ALL patients.
Collapse
Key Words
- 51Cr, Chromium-51
- ALL, acute lymphoblastic leukemia
- APC, allophycocyanin
- APCs, antigen-presenting cells
- Allo-HCT, allogeneic hematopoietic stem cell transplantation
- BC, blast crisis
- BLI, bioluminescence imaging
- BM, bone marrow
- BMDCs, bone marrow derived dendritic cells
- BMT, bone marrow transplantation
- CML, chronic myeloid leukemia
- CRT, calreticulin
- CTL, cytotoxic T cell
- DCs, dendritic cells
- FACS, Fluorescence-activated cell sorting
- FBS, fatal bovine serum
- FITC, fluorescein isothiocyanate
- GVHD, graft-versus-host-disease
- GVL, graft-versus-leukemia
- HCT, hematopoietic stem cell transplantation
- ICAM-1, intracellular adhesion molecule 1
- Ik DN, Ikaros dominant negative
- Ik, Ikaros
- Ikaros
- MACS, magnetic- activated cell sorting
- MBL-2, moloney-murine sarcoma virus-induced MBL-2 lymphoma cells
- MHC, major histocompatibility complex
- MLR, mixed lymphocyte reaction
- MiHAs, multiple minor histocompatibility antigens
- PBS, phosphate buffered saline
- PE, phycoerythrin
- SIRP-α, signal regulatory protein α
- TCD-BM, T cell depleted bone marrow
- TSA, tumor specific antigen
- Tregs, regulatory T cells
- UCUCA, University Committee on Use and Care of Animals
- WT, wild-type
- antigen-presenting cells
- bone marrow transplantation
- graft-versus-leukemia
- luc+, luciferase+
- mAbs, monoclonal antibodies
- mCRT, murine calreticulin
Collapse
Affiliation(s)
- Tomomi Toubai
- Department of Internal Medicine; University of Michigan Comprehensive Cancer Center ; Ann Arbor, MI USA
| | - Hou Guoqing
- Department of Pediatrics and Communicable Diseases; University of Michigan Medical School ; Ann Arbor, MI USA
| | - Corrine Rossi
- Department of Internal Medicine; University of Michigan Comprehensive Cancer Center ; Ann Arbor, MI USA
| | - Nathan Mathewson
- Department of Internal Medicine; University of Michigan Comprehensive Cancer Center ; Ann Arbor, MI USA
| | - Katherine Oravecz-Wilson
- Department of Internal Medicine; University of Michigan Comprehensive Cancer Center ; Ann Arbor, MI USA
| | - Emily Cummings
- Department of Internal Medicine; University of Michigan Comprehensive Cancer Center ; Ann Arbor, MI USA
| | - Julia Wu
- Department of Internal Medicine; University of Michigan Comprehensive Cancer Center ; Ann Arbor, MI USA
| | - Yaping Sun
- Department of Internal Medicine; University of Michigan Comprehensive Cancer Center ; Ann Arbor, MI USA
| | - Sung Choi
- Department of Pediatrics and Communicable Diseases; University of Michigan Medical School ; Ann Arbor, MI USA
| | - Pavan Reddy
- Department of Internal Medicine; University of Michigan Comprehensive Cancer Center ; Ann Arbor, MI USA
| |
Collapse
|
176
|
Berger M, Albiani R, Sini B, Fagioli F. Extracorporeal photopheresis for graft-versus-host disease: the role of patient, transplant, and classification criteria and hematologic values on outcome-results from a large single-center study. Transfusion 2015; 55:736-47. [PMID: 25355659 PMCID: PMC4403977 DOI: 10.1111/trf.12900] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/27/2014] [Accepted: 09/02/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Extracorporeal photopheresis (ECP) has been shown as active therapy for graft-versus-host disease (GVHD). STUDY DESIGN AND METHODS The aim was to ascertain the role of ECP in 71 patients with steroid-refractory or -dependent acute and chronic GVHD (aGVHD and cGVHD) with special focus on hematologic variables and GVHD staging classification. A total of 34 patients were treated for aGVHD and 37 for cGVHD. RESULTS The overall response rate (ORR) for aGVHD was 65% and the complete aGVHD-free survival was 50% (95% confidence interval [CI], 36%-70%). The ORR for cGVHD response was 81% while the complete cGVHD-free survival was 50% (95% CI, 34%-73%). The aGVHD-free survival was associated with aGVHD grading (Grade II 81%, Grade III 33%, and Grade IV 0%, p ≤ 0.00) and the absence of visceral involvement (77% vs. 33%, p = 0.03). The cGVHD-free survival was associated with the female sex (67% vs. 25%, p = 0.01) and with the limited form according to the Seattle classification (67% vs. 20%, p = 0.003). No role for hematologic values or apheresis cell count was found, except for the cGVHD ORR (p = 0.037). Transplant-related mortality and overall survival were associated with ECP response 0% versus 54% (p = 0.0001) and 77% versus 45% (p = 0.03) for aGVHD patients and 7% versus 14% (p = 0.02) and 73% versus 20% (p = 0.0003) for cGVHD patients, respectively. CONCLUSIONS While confirming a higher probability of GVHD responses for early GVHD, our study shows no role of hematologic values or apheresis cell count on GVHD response.
Collapse
Affiliation(s)
- Massimo Berger
- Pediatric Onco-Hematology and Stem Cell Transplant Division, Regina Margherita Children's HospitalTurin, Italy
| | - Roberto Albiani
- Immunohematology and Transfusion Medicine, Regina Margherita Children's HospitalTurin, Italy
| | - Bruno Sini
- Immunohematology and Transfusion Medicine, Regina Margherita Children's HospitalTurin, Italy
| | - Franca Fagioli
- Pediatric Onco-Hematology and Stem Cell Transplant Division, Regina Margherita Children's HospitalTurin, Italy
| |
Collapse
|
177
|
Nakasone H, Sahaf B, Miklos DB. Therapeutic benefits targeting B-cells in chronic graft-versus-host disease. Int J Hematol 2015; 101:438-51. [PMID: 25812839 DOI: 10.1007/s12185-015-1782-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 03/16/2015] [Indexed: 12/21/2022]
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) can be a curative strategy for hematological diseases, and the indications for allo-HCT have broadened widely due to recent progress in supportive strategies. However, patients must overcome various complications and chronic graft-versus-host disease (cGVHD) remains the most common allo-HCT cause of long-term morbidity and mortality. cGVHD is difficult to biologically assess due to the heterogeneity of cGVHD symptoms, and the pathogenesis of cGVHD has yet to be established. Recent experimental model progress has suggested that B-cells play a critical role in cGVHD development. Consistent with these experimental results, some clinical studies investigating B-cell depletion and modulation of B-cell signaling pathways have decreased cGVHD incidence and provided some therapeutic benefit. However, randomized control studies are necessary to confirm the efficacy of B-cell targeting drugs for cGVHD. Here, we review the pathophysiology of cGVHD, especially focusing on the role of B-cell immunity, and discuss the efficacy of both B-cell depletion and modulation of B-cell signaling pathways in human cGVHD prevention, initial treatment, and salvage treatment.
Collapse
Affiliation(s)
- Hideki Nakasone
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, 269 West Campus Dr., CCSR #2205, Stanford, CA, 94305, USA
| | | | | |
Collapse
|
178
|
Third-party CD4+ invariant natural killer T cells protect from murine GVHD lethality. Blood 2015; 125:3491-500. [PMID: 25795920 DOI: 10.1182/blood-2014-11-612762] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/12/2015] [Indexed: 12/11/2022] Open
Abstract
Graft-versus-host disease (GVHD) is driven by extensive activation and proliferation of alloreactive donor T cells causing significant morbidity and mortality following allogeneic hematopoietic cell transplantation (HCT). Invariant natural killer T (iNKT) cells are a potent immunoregulatory T-cell subset in both humans and mice. Here, we explored the role of adoptively transferred third-party CD4(+) iNKT cells for protection from lethal GVHD in a murine model of allogeneic HCT across major histocompatibility barriers. We found that low numbers of CD4(+) iNKT cells from third-party mice resulted in a significant survival benefit with retained graft-versus-tumor effects. In vivo expansion of alloreactive T cells was diminished while displaying a T helper cell 2-biased phenotype. Notably, CD4(+) iNKT cells from third-party mice were as protective as CD4(+) iNKT cells from donor mice although third-party CD4(+) iNKT cells were rejected early after allogeneic HCT. Adoptive transfer of third-party CD4(+) iNKT cells resulted in a robust expansion of donor CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) that were required for protection from lethal GVHD. However, in vivo depletion of myeloid-derived suppressor cells abrogated both Treg expansion and protection from lethal GVHD. Despite the fact that iNKT cells are a rare cell population, the almost unlimited third-party availability and feasibility of in vitro expansion provide the basis for clinical translation.
Collapse
|
179
|
Collin M, Jardine L. A question of persistence: Langerhans cells and graft-versus-host disease. Exp Dermatol 2015; 23:234-5. [PMID: 24443966 PMCID: PMC4150527 DOI: 10.1111/exd.12325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2014] [Indexed: 01/03/2023]
Abstract
Langerhans cells (LCs) have been scrutinized many times in studies of the pathogenesis of graft-versus-host disease (GVHD). As migratory dendritic cells, LCs are capable of direct antigen presentation to cytotoxic T cells. Their self-renewal capacity has led to speculation that persistent recipient LCs could provide a continuous source of host antigen to donor T cells infused during hematopoietic stem cell transplantation (HSCT). In this issue of Experimental Dermatology, a new study examines at the relationship between recipient LCs and chronic GVHD.
Collapse
Affiliation(s)
- Matthew Collin
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | |
Collapse
|
180
|
Yoon SR, Kim TD, Choi I. Understanding of molecular mechanisms in natural killer cell therapy. Exp Mol Med 2015; 47:e141. [PMID: 25676064 PMCID: PMC4346487 DOI: 10.1038/emm.2014.114] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/17/2014] [Accepted: 12/02/2014] [Indexed: 01/14/2023] Open
Abstract
Cancer cells and the immune system are closely related and thus influence each other. Although immune cells can suppress cancer cell growth, cancer cells can evade immune cell attack via immune escape mechanisms. Natural killer (NK) cells kill cancer cells by secreting perforins and granzymes. Upon contact with cancer cells, NK cells form immune synapses to deliver the lethal hit. Mature NK cells are differentiated from hematopoietic stem cells in the bone marrow. They move to lymph nodes, where they are activated through interactions with dendritic cells. Interleukin-15 (IL-15) is a key molecule that activates mature NK cells. The adoptive transfer of NK cells to treat incurable cancer is an attractive approach. A certain number of activated NK cells are required for adoptive NK cell therapy. To prepare these NK cells, mature NK cells can be amplified to obtain sufficient numbers of NK cells. Alternatively, NK cells can be differentiated and amplified from hematopoietic stem cells. In addition, the selection of donors is important to achieve maximal efficacy. In this review, we discuss the overall procedures and strategies of NK cell therapy against cancer.
Collapse
Affiliation(s)
- Suk Ran Yoon
- 1] Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea [2] Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Tae-Don Kim
- 1] Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea [2] Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Inpyo Choi
- 1] Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea [2] Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
181
|
Abstract
Background: Oral lichenoid lesions or reactions (OLLs/OLRs) are clinical and histological contemporaries of the classical oral lichen planus (OLP) that have generated a lot of debate in literature. In contrast to the idiopathic nature of OLP, OLLs are often associated with a known identifiable inciting factor. A superficial examination of these lesions clinically and histologically often reveals many similarities with OLP, but recent data indicate that distinguishable features do exist and form the basis of most classifications. Aims and Objectives: This paper attempts to collate available data in English literature on OLLs, highlight distinguishing features clinically and histologically and reflect on the malignant transformation potential and treatment modalities of the condition. Materials and Methods: A comprehensive search of medical and dental databases including PubMed, Ovid, Cochrane, Pubget, Researchgate, and non-medical search engines were utilized for the review. The search words included “oral lichen planus”, “oral lichenoid lesions”, “oral drug reactions”, “lichenoid dysplasia”, and “adverse effects of dental materials”. Review Results: OLLs seem to grossly underrated and most cases were clubbed as OLP. Definite clinical and histological features were uncovered to establish the identity of this lesion. Associations with dental restorative materials, drugs, and medications have been conclusively proven in the etiology of this condition. Specific markers are being utilized to diagnose the condition and monitor its progress. Conclusion: Substantial differentiating features were uncovered to delineate OLLs as a separate entity with definite etiology, pathogenesis, and a high malignant transformation rate compared with OLP.
Collapse
Affiliation(s)
- Venkatesh Vishwanath Kamath
- Department of Oral and Maxillofacial Pathology, Dr. Syamala Reddy Dental College, Hospital and Research Centre, Munnekolala, Marathalli, Bangalore, Karnataka, India
| | - Krishnanand Setlur
- Department of Oral and Maxillofacial Pathology, Dr. Syamala Reddy Dental College, Hospital and Research Centre, Munnekolala, Marathalli, Bangalore, Karnataka, India
| | - Komali Yerlagudda
- Department of Oral and Maxillofacial Pathology, Dr. Syamala Reddy Dental College, Hospital and Research Centre, Munnekolala, Marathalli, Bangalore, Karnataka, India
| |
Collapse
|
182
|
Older recipient age is paradoxically associated with a lower incidence of chronic GVHD in thymoglobulin recipients: a retrospective study exploring risk factors for GVHD in allogeneic transplantation with thymoglobulin GVHD prophylaxis. Bone Marrow Transplant 2015; 50:566-72. [PMID: 25642763 DOI: 10.1038/bmt.2014.313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 11/18/2014] [Accepted: 11/29/2014] [Indexed: 01/19/2023]
Abstract
Thymoglobulin (TG) given with conditioning for allogeneic haematopoietic SCT (alloHSCT) is effective in reducing the risk of acute and chronic GVHD (cGVHD). Whether conventional risk factors for GVHD apply to TG-conditioned alloHSCT is unknown. We retrospectively studied 356 adults from three centres who received TG 4.5 mg/kg prior to alloHSCT for haematologic malignancy. Donors were unrelated in 64%. At 3 years, OS was 61% (95% confidence interval (CI) 55-67%), cumulative incidence of relapse was 28% (95% CI 23-33%) and non-relapse mortality was 19% (14-24%). The cumulative incidences of grade 2-4, and grade 3-4 acute GVHD were 23% (95% CI 19-28%) and 10% (95% CI 6-13%), respectively. The cumulative incidence of cGVHD requiring systemic immunosuppression (cGVHD-IS) at 3 years was 32% (95% CI 27-37%). On multivariate analysis, counterintuitively, recipient age over 40 was associated with a significantly decreased risk of cGVHD-IS (P=0.001). We report for the first time a paradoxical association of older age with reduced cGVHD in TG recipients, and conclude that traditional risk factors for GVHD may behave differently in the context of pre-transplant TG.
Collapse
|
183
|
Galvani RG, Lemos R, Areal RB, Salvador PA, Zamboni DS, Wanderley JLM, Bonomo A. Disease severity and mortality can be independently regulated in a mouse model of experimental graft versus host disease. PLoS One 2015; 10:e0118079. [PMID: 25643148 PMCID: PMC4313938 DOI: 10.1371/journal.pone.0118079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 01/05/2015] [Indexed: 12/16/2022] Open
Abstract
Graft versus host disease (GVHD) is the major limitation of allogeneic hematopoietic stem cell transplantation (HSCT) presenting high mortality and morbidity rates. However, the exact cause of death is not completely understood and does not correlate with specific clinical and histological parameters of disease. Here we show, by using a semi-allogeneic mouse model of GVHD, that mortality and morbidity can be experimentally separated. We injected bone marrow-derived dendritic cells (BMDC) from NOD2/CARD15-deficient donors into semi-allogeneic irradiated chimaeras and observed that recipients were protected from death. However, no protection was observed regarding clinical or pathological scores up to 20 days after transplantation. Protection from death was associated with decreased bacterial translocation, faster hematologic recovery and epithelial integrity maintenance despite mononuclear infiltration at day 20 post-GVHD induction with no skew towards different T helper phenotypes. The protected mice recovered from aGVHD and progressively reached scores compatible with healthy animals. Altogether, our data indicate that severity and mortality can be separate events providing a model to study transplant-related mortality.
Collapse
Affiliation(s)
- Rômulo G. Galvani
- Divisão de Medicina Experimental, Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
- Departamento de Imunologia, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ramon Lemos
- Divisão de Medicina Experimental, Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
- Departamento de Imunologia, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rômulo B. Areal
- Divisão de Medicina Experimental, Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Pollyanna A. Salvador
- Divisão de Medicina Experimental, Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Dario S. Zamboni
- Departamento de Biologia Celular, Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - João Luiz M. Wanderley
- Divisão de Medicina Experimental, Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
- NUPEM, Campus Macaé Professor Aloísio Teixeira, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
- * E-mail:
| | - Adriana Bonomo
- Divisão de Medicina Experimental, Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
- Departamento de Imunologia, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratorio de Pesquisa sobre o Timo, Instituo Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
184
|
Janikashvili N, Trad M, Gautheron A, Samson M, Lamarthée B, Bonnefoy F, Lemaire-Ewing S, Ciudad M, Rekhviashvili K, Seaphanh F, Gaugler B, Perruche S, Bateman A, Martin L, Audia S, Saas P, Larmonier N, Bonnotte B. Human monocyte-derived suppressor cells control graft-versus-host disease by inducing regulatory forkhead box protein 3-positive CD8+ T lymphocytes. J Allergy Clin Immunol 2015; 135:1614-24.e4. [PMID: 25630940 DOI: 10.1016/j.jaci.2014.12.1868] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/17/2014] [Accepted: 12/09/2014] [Indexed: 01/24/2023]
Abstract
BACKGROUND Adoptive transfer of immunosuppressive cells has emerged as a promising strategy for the treatment of immune-mediated disorders. However, only a limited number of such cells can be isolated from in vivo specimens. Therefore efficient ex vivo differentiation and expansion procedures are critically needed to produce a clinically relevant amount of these suppressive cells. OBJECTIVE We sought to develop a novel, clinically relevant, and feasible approach to generate ex vivo a subpopulation of human suppressor cells of monocytic origin, referred to as human monocyte-derived suppressive cells (HuMoSCs), which can be used as an efficient therapeutic tool to treat inflammatory disorders. METHODS HuMoSCs were generated from human monocytes cultured for 7 days with GM-CSF and IL-6. The immune-regulatory properties of HuMoSCs were investigated in vitro and in vivo. The therapeutic efficacy of HuMoSCs was evaluated by using a graft-versus-host disease (GvHD) model of humanized mice (NOD/SCID/IL-2Rγc(-/-) [NSG] mice). RESULTS CD33+ HuMoSCs are highly potent at inhibiting the proliferation and activation of autologous and allogeneic effector T lymphocytes in vitro and in vivo. The suppressive activity of these cells depends on signal transducer and activator of transcription 3 activation. Of therapeutic relevance, HuMoSCs induce long-lasting memory forkhead box protein 3-positive CD8+ regulatory T lymphocytes and significantly reduce GvHD induced with human PBMCs in NSG mice. CONCLUSION Ex vivo-generated HuMoSCs inhibit effector T lymphocytes, promote the expansion of immunosuppressive forkhead box protein 3-positive CD8+ regulatory T cells, and can be used as an efficient therapeutic tool to prevent GvHD.
Collapse
Affiliation(s)
- Nona Janikashvili
- INSERM UMR1098, University of Bourgogne Franche-Comté, EFS Bourgogne Franche-Comté, LabEX LipSTIC, ANR-11-LABX-0021, Besançon, France.
| | - Malika Trad
- INSERM UMR1098, University of Bourgogne Franche-Comté, EFS Bourgogne Franche-Comté, LabEX LipSTIC, ANR-11-LABX-0021, Besançon, France
| | - Alexandrine Gautheron
- INSERM UMR1098, University of Bourgogne Franche-Comté, EFS Bourgogne Franche-Comté, LabEX LipSTIC, ANR-11-LABX-0021, Besançon, France
| | - Maxime Samson
- INSERM UMR1098, University of Bourgogne Franche-Comté, EFS Bourgogne Franche-Comté, LabEX LipSTIC, ANR-11-LABX-0021, Besançon, France; Department of Internal Medicine, University Hospital, Dijon, France
| | - Baptiste Lamarthée
- INSERM UMR1098, University of Bourgogne Franche-Comté, EFS Bourgogne Franche-Comté, LabEX LipSTIC, ANR-11-LABX-0021, Besançon, France
| | - Francis Bonnefoy
- INSERM UMR1098, University of Bourgogne Franche-Comté, EFS Bourgogne Franche-Comté, LabEX LipSTIC, ANR-11-LABX-0021, Besançon, France
| | | | - Marion Ciudad
- INSERM UMR1098, University of Bourgogne Franche-Comté, EFS Bourgogne Franche-Comté, LabEX LipSTIC, ANR-11-LABX-0021, Besançon, France
| | - Khatuna Rekhviashvili
- INSERM UMR1098, University of Bourgogne Franche-Comté, EFS Bourgogne Franche-Comté, LabEX LipSTIC, ANR-11-LABX-0021, Besançon, France
| | - Famky Seaphanh
- INSERM UMR1098, University of Bourgogne Franche-Comté, EFS Bourgogne Franche-Comté, LabEX LipSTIC, ANR-11-LABX-0021, Besançon, France
| | - Béatrice Gaugler
- INSERM UMR1098, University of Bourgogne Franche-Comté, EFS Bourgogne Franche-Comté, LabEX LipSTIC, ANR-11-LABX-0021, Besançon, France
| | - Sylvain Perruche
- INSERM UMR1098, University of Bourgogne Franche-Comté, EFS Bourgogne Franche-Comté, LabEX LipSTIC, ANR-11-LABX-0021, Besançon, France
| | - Andrew Bateman
- Cancer Sciences, University of Southampton, Southampton, United Kingdom
| | - Laurent Martin
- INSERM UMR1098, University of Bourgogne Franche-Comté, EFS Bourgogne Franche-Comté, LabEX LipSTIC, ANR-11-LABX-0021, Besançon, France; Department of Pathology and Cytology, University Hospital, Dijon, France
| | - Sylvain Audia
- INSERM UMR1098, University of Bourgogne Franche-Comté, EFS Bourgogne Franche-Comté, LabEX LipSTIC, ANR-11-LABX-0021, Besançon, France; Department of Internal Medicine, University Hospital, Dijon, France
| | - Philippe Saas
- INSERM UMR1098, University of Bourgogne Franche-Comté, EFS Bourgogne Franche-Comté, LabEX LipSTIC, ANR-11-LABX-0021, Besançon, France; CHU Besançon, CIC-BT506, FHU INCREASE, Besançon, France
| | - Nicolas Larmonier
- Department of Pediatrics, Steele Children's Research Center, Department of Immunobiology, BIO5 Institute and Arizona Cancer Center, University of Arizona, Tucson, Ariz
| | - Bernard Bonnotte
- INSERM UMR1098, University of Bourgogne Franche-Comté, EFS Bourgogne Franche-Comté, LabEX LipSTIC, ANR-11-LABX-0021, Besançon, France; Department of Internal Medicine, University Hospital, Dijon, France
| |
Collapse
|
185
|
Gregoire-Gauthier J, Fontaine F, Benchimol L, Nicoletti S, Selleri S, Dieng MM, Haddad E. Role of Natural Killer Cells in Intravenous Immunoglobulin-Induced Graft-versus-Host Disease Inhibition in NOD/LtSz-scidIL2rg(-/-) (NSG) Mice. Biol Blood Marrow Transplant 2015; 21:821-8. [PMID: 25596424 DOI: 10.1016/j.bbmt.2015.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 01/08/2015] [Indexed: 01/07/2023]
Abstract
Although clinical studies have yet to demonstrate clearly the use of intravenous immunoglobulin (IVIG) for prevention of graft-versus-host disease (GVHD), their effective use in a xenogeneic mouse model has been demonstrated. We aimed to determine the mechanism of action by which IVIG contributes to GVHD prevention in a xenogeneic mouse model. NOD/LtSz-scidIL2rg(-/-) (NSG) mice were used for our xenogeneic mouse model of GVHD. Sublethally irradiated NSG mice were injected with human peripheral blood mononuclear cells (huPBMCs) and treated weekly with PBS or 50 mg IVIG. Incidence of GVHD and survival were noted, along with analysis of cell subsets proliferation in the peripheral blood. Weekly IVIG treatment resulted in a robust and consistent proliferation of human natural killer cells that were activated, as demonstrated by their cytotoxicity against K562 target cells. IVIG treatment did not inhibit GVHD when huPBMCs were depleted in natural killer (NK) cells, strongly suggesting that this NK cell expansion was required for the IVIG-mediated prevention of GVHD in our mouse model. Moreover, inhibition of T cell activation by either cyclosporine A (CsA) or monoclonal antihuman CD3 antibodies abolished the IVIG-induced NK cell expansion. In conclusion, IVIG treatment induces NK cell proliferation, which is essential for IVIG-mediated protection of GVHD in our mouse model. Furthermore, activated T cells are mandatory for effective IVIG-induced NK cell proliferation. These results shed light on a new mechanism of action of IVIG and could explain why the efficacy of IVIG in preventing GVHD in a clinical setting, where patients receive CsA, has never been undoubtedly demonstrated.
Collapse
Affiliation(s)
- Joëlle Gregoire-Gauthier
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | | | - Lionel Benchimol
- Department of Health Biochemistry, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Simon Nicoletti
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada; Université Paris Sud, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Silvia Selleri
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | | | - Elie Haddad
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada; Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
186
|
Theiss-Suennemann J, Jörß K, Messmann JJ, Reichardt SD, Montes-Cobos E, Lühder F, Tuckermann JP, AWolff H, Dressel R, Gröne HJ, Strauß G, Reichardt HM. Glucocorticoids attenuate acute graft-versus-host disease by suppressing the cytotoxic capacity of CD8(+) T cells. J Pathol 2015; 235:646-55. [PMID: 25358639 DOI: 10.1002/path.4475] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 10/09/2014] [Accepted: 10/29/2014] [Indexed: 01/15/2023]
Abstract
Glucocorticoids (GCs) are released from the adrenal gland during inflammation and help to keep immune responses at bay. Owing to their potent anti-inflammatory activity, GCs also play a key role in controlling acute graft-versus-host disease (aGvHD). Here we demonstrate that mice lacking the glucocorticoid receptor (GR) in T cells develop fulminant disease after allogeneic bone marrow transplantation. In a fully MHC-mismatched model, transfer of GR-deficient T cells resulted in severe aGvHD symptoms and strongly decreased survival times. Histopathological features were aggravated and infiltration of CD8(+) T cells into the jejunum was increased when the GR was not expressed. Furthermore, serum levels of IL-2, IFNγ, and IL-17 were elevated and the cytotoxicity of CD8(+) T cells was enhanced after transfer of GR-deficient T cells. Short-term treatment with dexamethasone reduced cytokine secretion but neither impacted disease severity nor the CTLs' cytolytic capacity. Importantly, in an aGvHD model in which disease development exclusively depends on the presence of CD8(+) T cells in the transplant, transfer of GR-deficient T cells aggravated clinical symptoms and reduced survival times as well. Taken together, our findings highlight that suppression of CD8(+) T-cell function is a crucial mechanism in the control of aGvHD by endogenous GCs.
Collapse
Affiliation(s)
- Jennifer Theiss-Suennemann
- Institute for Cellular and Molecular Immunology, University of Göttingen Medical School, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Hülsdünker J, Zeiser R. Insights into the pathogenesis of GvHD: what mice can teach us about man. ACTA ACUST UNITED AC 2014; 85:2-9. [PMID: 25532439 DOI: 10.1111/tan.12497] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Acute graft-vs-host disease (GvHD) is a life-threatening complication of allogeneic hematopoietic cell transplantation (allo-HCT). Most of the knowledge about the biology of GvHD is derived from mouse models of this disease and therefore a critical analysis of potential advantages and disadvantages of the murine GvHD models is important to classify and understand the findings made in these models. The central events leading up to GvHD were characterized in three phases which includes the tissue damage-phase, the T cell priming-phase and the effector-phase, when the disease becomes clinically overt. The role of individual cytokines, chemokines, transcription factor or receptors was studied in these models by using gene deficient or transgenic mice in the donor or recipient compartments. Besides, numerous studies have been performed in these models to prevent or treat GvHD. Several recent clinical trials were all based on previously reported findings from the mouse model of GvHD such as the trials on CCR5-blockade, donor statin treatment, vorinostat treatment or adoptive transfer of regulatory T cells for GvHD prevention. The different mouse models for GvHD and graft-vs-leukemia effects are critically reviewed and their impact on current clinical practice is discussed.
Collapse
Affiliation(s)
- J Hülsdünker
- Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, Albert Ludwigs University Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
188
|
Lehman JS, Gibson LE, el-Azhary RA, Chavan RN, Hashmi SK, Lohse CM, Flotte TJ. Acute cutaneous graft-vs.-host disease compared to drug hypersensitivity reaction with vacuolar interface changes: a blinded study of microscopic and immunohistochemical features. J Cutan Pathol 2014; 42:39-45. [DOI: 10.1111/cup.12427] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 06/13/2014] [Accepted: 07/19/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Julia S. Lehman
- Department of Dermatology; Mayo Clinic; Rochester MN USA
- Department of Laboratory Medicine and Pathology; Mayo Clinic; Rochester MN USA
| | - Lawrence E. Gibson
- Department of Dermatology; Mayo Clinic; Rochester MN USA
- Department of Laboratory Medicine and Pathology; Mayo Clinic; Rochester MN USA
| | | | | | | | | | - Thomas J. Flotte
- Department of Laboratory Medicine and Pathology; Mayo Clinic; Rochester MN USA
| |
Collapse
|
189
|
Davis JE, Harvey M, Gherardin NA, Koldej R, Huntington N, Neeson P, Trapani JA, Ritchie DS. A radio-resistant perforin-expressing lymphoid population controls allogeneic T cell engraftment, activation, and onset of graft-versus-host disease in mice. Biol Blood Marrow Transplant 2014; 21:242-9. [PMID: 25459639 DOI: 10.1016/j.bbmt.2014.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/03/2014] [Indexed: 10/24/2022]
Abstract
Immunosuppressive pretransplantation conditioning is essential for donor cell engraftment in allogeneic bone marrow transplantation (BMT). The role of residual postconditioning recipient immunity in determining engraftment is poorly understood. We examined the role of recipient perforin in the kinetics of donor cell engraftment. MHC-mismatched BMT mouse models demonstrated that both the rate and proportion of donor lymphoid cell engraftment and expansion of effector memory donor T cells in both spleen and BM were significantly increased within 5 to 7 days post-BMT in perforin-deficient (pfn(-/-)) recipients, compared with wild-type. In wild-type recipients, depletion of natural killer (NK) cells before BMT enhanced donor lymphoid cell engraftment to that seen in pfn(-/-) recipients. This demonstrated that a perforin-dependent, NK-mediated, host-versus-graft (HVG) effect limits the rate of donor engraftment and T cell activation. Radiation-resistant natural killer T (NKT) cells survived in the BM of lethally irradiated mice and may drive NK cell activation, resulting in the HVG effect. Furthermore, reduced pretransplant irradiation doses in pfn(-/-) recipients permitted long-term donor lymphoid cell engraftment. These findings suggest that suppression of perforin activity or selective depletion of recipient NK cells before BMT could be used to improve donor stem cell engraftment, in turn allowing for the reduction of pretransplant conditioning.
Collapse
Affiliation(s)
- Joanne E Davis
- ACRF Translational Research Laboratory, The Department of Research, The Royal Melbourne Hospital, Melbourne, Victoria, Australia; Haematology and Immunology Translational Research Laboratory, Cancer Immunology Research Department, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia.
| | - Michael Harvey
- Haematology and Immunology Translational Research Laboratory, Cancer Immunology Research Department, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Nicholas A Gherardin
- Haematology and Immunology Translational Research Laboratory, Cancer Immunology Research Department, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Rachel Koldej
- ACRF Translational Research Laboratory, The Department of Research, The Royal Melbourne Hospital, Melbourne, Victoria, Australia; Haematology and Immunology Translational Research Laboratory, Cancer Immunology Research Department, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Nicholas Huntington
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Paul Neeson
- ACRF Translational Research Laboratory, The Department of Research, The Royal Melbourne Hospital, Melbourne, Victoria, Australia; Haematology and Immunology Translational Research Laboratory, Cancer Immunology Research Department, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Joseph A Trapani
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - David S Ritchie
- ACRF Translational Research Laboratory, The Department of Research, The Royal Melbourne Hospital, Melbourne, Victoria, Australia; Haematology and Immunology Translational Research Laboratory, Cancer Immunology Research Department, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia; Clinical Haematology and Bone Marrow Transplantation Service, Department of Clinical Oncology and Haematology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
190
|
Akahoshi Y, Kako S, Nakano H, Ugai T, Wada H, Yamasaki R, Ishihara Y, Kawamura K, Sakamoto K, Sato M, Ashizawa M, Terasako-Saito K, Kimura SI, Kikuchi M, Nakasone H, Yamazaki R, Kanda J, Nishida J, Kanda Y. Effect of the duration between total body irradiation and stem cell infusion on the outcome of allogeneic transplantation with myeloablative conditioning. Hematology 2014; 20:410-5. [PMID: 25437012 DOI: 10.1179/1607845414y.0000000217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVES Limited data are available on the effect of how cyclophosphamide (CY) and total body irradiation (TBI) are administered. We analyzed the effect of the interval from TBI to hematopoietic stem cell transplantation (HSCT) on the outcome of HSCT. METHODS Adult patients who underwent HSCT using myeloablative conditioning consisting of TBI and CY were retrospectively analyzed. They were divided into three groups according to the duration between the start of TBI and HSCT (Group A: 2-4 days, Group B: 5-8 days, Group C: 9-10 days). RESULTS Seventy-five adult patients were included. The 3-year overall survival rate was 56, 47, and 77% in Groups A, B, and C, respectively (P = 0.14). Similarly, there was no significant difference among the three groups with respect to progression-free survival (57, 47, and 72%, P = 0.17), relapse rate (32, 37, and 16%, P = 0.29), or non-relapse mortality (8, 14, and 12%, P = 0.81). In addition, we observed no significant difference among the three groups with respect to the incidence of grade II-IV acute graft-versus-host disease (GVHD) (31, 47, and 32%, respectively, P = 0.56) and that of chronic GVHD (23, 23, and 22%, respectively, P = 0.97). DISCUSSION AND CONCLUSION Although recipient immune system at HSCT might be affected by the timing of TBI, the duration between the start of TBI and HSCT did not influence the outcome of HSCT using myeloablative conditioning with TBI and CY.
Collapse
|
191
|
Brissot E, Bossard C, Malard F, Braudeau C, Chevallier P, Guillaume T, Delaunay J, Josien R, Gregoire M, Gaugler B, Mohty M. Involvement of the CX3CL1 (fractalkine)/CX3CR1 pathway in the pathogenesis of acute graft-versus-host disease. J Leukoc Biol 2014; 97:227-35. [PMID: 25420917 DOI: 10.1189/jlb.5hi0714-325r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This study investigated the role of cytokines and chemokines in aGVHD incidence and severity in 109 patients who underwent reduced-intensity conditioning allogeneic stem cell transplantation (HSCT). Among the 42 cytokines tested at d 0 HSCT, only CX3CL1 levels at d 0 HSCT were significantly associated with Grades II-IV aGVHD development (P = 0.04). Increased levels of CX3CL1 at d 20-30 and 50 post-HSCT were also significantly associated with aGVHD (P = 0.02 and P = 0.03, respectively). No such association was found before the conditioning regimen or at d 100-120 post-HSCT. As the receptor for CX3CL1 is CX3CR1, the number of CX3CR1(+) cells was determined by flow cytometry. The CX3CR1(+)CD8(+) T cell proportion was significantly higher in patients with aGVHD than those without aGVHD (P = 0.01). To investigate the distribution of the CX3CL1/CX3CR1 axis in the anatomic sites of aGVHD, CX3CL1 and CX3CR1 levels were studied by use of an in situ immunohistochemical analysis on GI biopsies of patients with intestinal aGVHD. CX3CL1 expression was increased significantly in the epithelial cells and mononuclear cells of the lamina propria. CX3CR1(+) mononuclear cells were identified in close contact with epithelial cells. These findings strongly suggest the implication of the CX3CL1/CX3CR1 axis in the pathogenesis of aGVHD.
Collapse
Affiliation(s)
- Eolia Brissot
- *Universite Pierre et Marie Curie, Paris, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 938, Paris, France; Hématologie Clinique, Centre Hospitalier et Universitaire Hotel Dieu, Nantes, France; Le Centre Régional de Recherche en Cancérologie Nantes/Angers, Unité Mixte de Recherche 892 Institut National de la Santé et de la Recherche Médicale-6299 Centre National de la Recherche Scientifique, Nantes, France; EA4273 Biometadys, Faculté de Médecine, Université de Nantes, Nantes, France; Service d'Anatomie et Cytologie Pathologique and Laboratoire d'Immunologie, Plateforme d'Immuno-Monitorage Clinique, Centre Hospitalier et Universitaire de Nantes, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1098, Besançon, France; **Université de Franche-Comté, Besançon, France; Etablissement Français du Sang Bourgogne Franche-Comté, Besançon, France; Centre d'Investigation Clinique en Biothérapie CBT506, Plateforme de Biomonitoring, Besançon, France; and Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Celine Bossard
- *Universite Pierre et Marie Curie, Paris, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 938, Paris, France; Hématologie Clinique, Centre Hospitalier et Universitaire Hotel Dieu, Nantes, France; Le Centre Régional de Recherche en Cancérologie Nantes/Angers, Unité Mixte de Recherche 892 Institut National de la Santé et de la Recherche Médicale-6299 Centre National de la Recherche Scientifique, Nantes, France; EA4273 Biometadys, Faculté de Médecine, Université de Nantes, Nantes, France; Service d'Anatomie et Cytologie Pathologique and Laboratoire d'Immunologie, Plateforme d'Immuno-Monitorage Clinique, Centre Hospitalier et Universitaire de Nantes, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1098, Besançon, France; **Université de Franche-Comté, Besançon, France; Etablissement Français du Sang Bourgogne Franche-Comté, Besançon, France; Centre d'Investigation Clinique en Biothérapie CBT506, Plateforme de Biomonitoring, Besançon, France; and Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Florent Malard
- *Universite Pierre et Marie Curie, Paris, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 938, Paris, France; Hématologie Clinique, Centre Hospitalier et Universitaire Hotel Dieu, Nantes, France; Le Centre Régional de Recherche en Cancérologie Nantes/Angers, Unité Mixte de Recherche 892 Institut National de la Santé et de la Recherche Médicale-6299 Centre National de la Recherche Scientifique, Nantes, France; EA4273 Biometadys, Faculté de Médecine, Université de Nantes, Nantes, France; Service d'Anatomie et Cytologie Pathologique and Laboratoire d'Immunologie, Plateforme d'Immuno-Monitorage Clinique, Centre Hospitalier et Universitaire de Nantes, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1098, Besançon, France; **Université de Franche-Comté, Besançon, France; Etablissement Français du Sang Bourgogne Franche-Comté, Besançon, France; Centre d'Investigation Clinique en Biothérapie CBT506, Plateforme de Biomonitoring, Besançon, France; and Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Cécile Braudeau
- *Universite Pierre et Marie Curie, Paris, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 938, Paris, France; Hématologie Clinique, Centre Hospitalier et Universitaire Hotel Dieu, Nantes, France; Le Centre Régional de Recherche en Cancérologie Nantes/Angers, Unité Mixte de Recherche 892 Institut National de la Santé et de la Recherche Médicale-6299 Centre National de la Recherche Scientifique, Nantes, France; EA4273 Biometadys, Faculté de Médecine, Université de Nantes, Nantes, France; Service d'Anatomie et Cytologie Pathologique and Laboratoire d'Immunologie, Plateforme d'Immuno-Monitorage Clinique, Centre Hospitalier et Universitaire de Nantes, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1098, Besançon, France; **Université de Franche-Comté, Besançon, France; Etablissement Français du Sang Bourgogne Franche-Comté, Besançon, France; Centre d'Investigation Clinique en Biothérapie CBT506, Plateforme de Biomonitoring, Besançon, France; and Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Patrice Chevallier
- *Universite Pierre et Marie Curie, Paris, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 938, Paris, France; Hématologie Clinique, Centre Hospitalier et Universitaire Hotel Dieu, Nantes, France; Le Centre Régional de Recherche en Cancérologie Nantes/Angers, Unité Mixte de Recherche 892 Institut National de la Santé et de la Recherche Médicale-6299 Centre National de la Recherche Scientifique, Nantes, France; EA4273 Biometadys, Faculté de Médecine, Université de Nantes, Nantes, France; Service d'Anatomie et Cytologie Pathologique and Laboratoire d'Immunologie, Plateforme d'Immuno-Monitorage Clinique, Centre Hospitalier et Universitaire de Nantes, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1098, Besançon, France; **Université de Franche-Comté, Besançon, France; Etablissement Français du Sang Bourgogne Franche-Comté, Besançon, France; Centre d'Investigation Clinique en Biothérapie CBT506, Plateforme de Biomonitoring, Besançon, France; and Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Thierry Guillaume
- *Universite Pierre et Marie Curie, Paris, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 938, Paris, France; Hématologie Clinique, Centre Hospitalier et Universitaire Hotel Dieu, Nantes, France; Le Centre Régional de Recherche en Cancérologie Nantes/Angers, Unité Mixte de Recherche 892 Institut National de la Santé et de la Recherche Médicale-6299 Centre National de la Recherche Scientifique, Nantes, France; EA4273 Biometadys, Faculté de Médecine, Université de Nantes, Nantes, France; Service d'Anatomie et Cytologie Pathologique and Laboratoire d'Immunologie, Plateforme d'Immuno-Monitorage Clinique, Centre Hospitalier et Universitaire de Nantes, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1098, Besançon, France; **Université de Franche-Comté, Besançon, France; Etablissement Français du Sang Bourgogne Franche-Comté, Besançon, France; Centre d'Investigation Clinique en Biothérapie CBT506, Plateforme de Biomonitoring, Besançon, France; and Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jacques Delaunay
- *Universite Pierre et Marie Curie, Paris, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 938, Paris, France; Hématologie Clinique, Centre Hospitalier et Universitaire Hotel Dieu, Nantes, France; Le Centre Régional de Recherche en Cancérologie Nantes/Angers, Unité Mixte de Recherche 892 Institut National de la Santé et de la Recherche Médicale-6299 Centre National de la Recherche Scientifique, Nantes, France; EA4273 Biometadys, Faculté de Médecine, Université de Nantes, Nantes, France; Service d'Anatomie et Cytologie Pathologique and Laboratoire d'Immunologie, Plateforme d'Immuno-Monitorage Clinique, Centre Hospitalier et Universitaire de Nantes, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1098, Besançon, France; **Université de Franche-Comté, Besançon, France; Etablissement Français du Sang Bourgogne Franche-Comté, Besançon, France; Centre d'Investigation Clinique en Biothérapie CBT506, Plateforme de Biomonitoring, Besançon, France; and Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Régis Josien
- *Universite Pierre et Marie Curie, Paris, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 938, Paris, France; Hématologie Clinique, Centre Hospitalier et Universitaire Hotel Dieu, Nantes, France; Le Centre Régional de Recherche en Cancérologie Nantes/Angers, Unité Mixte de Recherche 892 Institut National de la Santé et de la Recherche Médicale-6299 Centre National de la Recherche Scientifique, Nantes, France; EA4273 Biometadys, Faculté de Médecine, Université de Nantes, Nantes, France; Service d'Anatomie et Cytologie Pathologique and Laboratoire d'Immunologie, Plateforme d'Immuno-Monitorage Clinique, Centre Hospitalier et Universitaire de Nantes, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1098, Besançon, France; **Université de Franche-Comté, Besançon, France; Etablissement Français du Sang Bourgogne Franche-Comté, Besançon, France; Centre d'Investigation Clinique en Biothérapie CBT506, Plateforme de Biomonitoring, Besançon, France; and Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marc Gregoire
- *Universite Pierre et Marie Curie, Paris, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 938, Paris, France; Hématologie Clinique, Centre Hospitalier et Universitaire Hotel Dieu, Nantes, France; Le Centre Régional de Recherche en Cancérologie Nantes/Angers, Unité Mixte de Recherche 892 Institut National de la Santé et de la Recherche Médicale-6299 Centre National de la Recherche Scientifique, Nantes, France; EA4273 Biometadys, Faculté de Médecine, Université de Nantes, Nantes, France; Service d'Anatomie et Cytologie Pathologique and Laboratoire d'Immunologie, Plateforme d'Immuno-Monitorage Clinique, Centre Hospitalier et Universitaire de Nantes, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1098, Besançon, France; **Université de Franche-Comté, Besançon, France; Etablissement Français du Sang Bourgogne Franche-Comté, Besançon, France; Centre d'Investigation Clinique en Biothérapie CBT506, Plateforme de Biomonitoring, Besançon, France; and Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Beatrice Gaugler
- *Universite Pierre et Marie Curie, Paris, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 938, Paris, France; Hématologie Clinique, Centre Hospitalier et Universitaire Hotel Dieu, Nantes, France; Le Centre Régional de Recherche en Cancérologie Nantes/Angers, Unité Mixte de Recherche 892 Institut National de la Santé et de la Recherche Médicale-6299 Centre National de la Recherche Scientifique, Nantes, France; EA4273 Biometadys, Faculté de Médecine, Université de Nantes, Nantes, France; Service d'Anatomie et Cytologie Pathologique and Laboratoire d'Immunologie, Plateforme d'Immuno-Monitorage Clinique, Centre Hospitalier et Universitaire de Nantes, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1098, Besançon, France; **Université de Franche-Comté, Besançon, France; Etablissement Français du Sang Bourgogne Franche-Comté, Besançon, France; Centre d'Investigation Clinique en Biothérapie CBT506, Plateforme de Biomonitoring, Besançon, France; and Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Mohamad Mohty
- *Universite Pierre et Marie Curie, Paris, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 938, Paris, France; Hématologie Clinique, Centre Hospitalier et Universitaire Hotel Dieu, Nantes, France; Le Centre Régional de Recherche en Cancérologie Nantes/Angers, Unité Mixte de Recherche 892 Institut National de la Santé et de la Recherche Médicale-6299 Centre National de la Recherche Scientifique, Nantes, France; EA4273 Biometadys, Faculté de Médecine, Université de Nantes, Nantes, France; Service d'Anatomie et Cytologie Pathologique and Laboratoire d'Immunologie, Plateforme d'Immuno-Monitorage Clinique, Centre Hospitalier et Universitaire de Nantes, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1098, Besançon, France; **Université de Franche-Comté, Besançon, France; Etablissement Français du Sang Bourgogne Franche-Comté, Besançon, France; Centre d'Investigation Clinique en Biothérapie CBT506, Plateforme de Biomonitoring, Besançon, France; and Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
192
|
|
193
|
Peripheral red blood cell split chimerism as a consequence of intramedullary selective apoptosis of recipient red blood cells in a case of sickle cell disease. Mediterr J Hematol Infect Dis 2014; 6:e2014066. [PMID: 25408852 PMCID: PMC4235471 DOI: 10.4084/mjhid.2014.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 09/23/2014] [Indexed: 11/25/2022] Open
Abstract
Allogeneic cellular gene therapy through hematopoietic stem cell transplantation is the only radical cure for congenital hemoglobinopathies like thalassemia and sickle cell anemia. Persistent mixed hematopoietic chimerism (PMC) has been described in thalassemia and sickle cell anemia. Here, we describe the clinical course of a 6-year-old girl who had received bone marrow transplant for sickle cell anemia. After the transplant, the patient showed 36% donor hematopoietic stem cells in the bone marrow, whereas in the peripheral blood there was evidence of 80% circulating donor red blood cells (RBC). The analysis of apoptosis at the Bone Marrow level suggests that Fas might contribute to the cell death of host erythroid precursors. The increase in NK cells and the regulatory T cell population observed in this patient suggests that these cells might contribute to the condition of mixed chimerism.
Collapse
|
194
|
α-1-Antitrypsin (AAT)-modified donor cells suppress GVHD but enhance the GVL effect: a role for mitochondrial bioenergetics. Blood 2014; 124:2881-91. [PMID: 25224412 DOI: 10.1182/blood-2014-04-570440] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Hematopoietic cell transplantation is curative in many patients. However, graft-versus-host disease (GVHD), triggered by alloreactive donor cells, has remained a major complication. Here, we show an inverse correlation between plasma α-1-antitrypsin (AAT) levels in human donors and the development of acute GVHD in the recipients (n = 111; P = .0006). In murine models, treatment of transplant donors with human AAT resulted in an increase in interleukin-10 messenger RNA and CD8(+)CD11c(+)CD205(+) major histocompatibility complex class II(+) dendritic cells (DCs), and the prevention or attenuation of acute GVHD in the recipients. Ablation of DCs (in AAT-treated CD11c-DTR donors) decreased CD4(+)CD25(+)FoxP3(+) regulatory T cells to one-third and abrogated the anti-GVHD effect. The graft-versus-leukemia (GVL) effect of donor cells (against A20 tumor cells) was maintained or even enhanced with AAT treatment of the donor, mediated by an expanded population of NK1.1(+), CD49B(+), CD122(+), CD335(+) NKG2D-expressing natural killer (NK) cells. Blockade of NKG2D significantly suppressed the GVL effect. Metabolic analysis showed a high glycolysis-high oxidative phosphorylation profile for NK1.1(+) cells, CD4(+)CD25(+)FoxP3(+) T cells, and CD11c(+) DCs but not for effector T cells, suggesting a cell type-specific effect of AAT. Thus, via altered metabolism, AAT exerts effective GVHD protection while enhancing GVL effects.
Collapse
|
195
|
Andani R, Robertson I, Macdonald KPA, Durrant S, Hill GR, Khosrotehrani K. Origin of Langerhans cells in normal skin and chronic GVHD after hematopoietic stem-cell transplantation. Exp Dermatol 2014; 23:75-7. [PMID: 24313654 DOI: 10.1111/exd.12301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2013] [Indexed: 12/28/2022]
Abstract
Chronic graft-versus-host disease (cGVHD) is a common complication following allogeneic stem-cell transplantation (SCT). Past studies have implicated the persistence of host antigen-presenting cells (APCs) in GVHD. Our objective was to determine the frequency of host Langerhans cells (LCs) in normal skin post-SCT and ask if their persistence could predict cGVHD. Biopsies of normal skin from 124 sex-mismatched T-cell-replete allogenic SCT recipients were taken 100 days post-transplant. Patients with acute GVHD and those with <9 months of follow-up were excluded and prospective follow-up information was collected from remaining 22 patients. CD1a staining and X and Y chromosome in-situ hybridization were performed to label LCs and to identify their host or donor origin. At 3 months, 59 ± 5% of LCs were host derived. The density of LCs and the proportion of host-derived LCs were similar between patients that did or did not develop cGVHD. Most LCs in the skin remained of host origin 3 months after SCT regardless of cGVHD status. This finding is in line with the redundant role of LCs in acute GVHD initiation uncovered in recent experimental models.
Collapse
Affiliation(s)
- Rafiq Andani
- Experimental Dermatology Laboratory, UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | | | | | | | | | | |
Collapse
|
196
|
Donor CD4+ Foxp3+ regulatory T cells are necessary for posttransplantation cyclophosphamide-mediated protection against GVHD in mice. Blood 2014; 124:2131-41. [PMID: 25139358 DOI: 10.1182/blood-2013-10-525873] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Posttransplantation cyclophosphamide (PTCy) is an effective prophylaxis against graft-versus-host disease (GVHD). However, it is unknown whether PTCy works singularly by eliminating alloreactive T cells via DNA alkylation or also by restoring the conventional (Tcon)/regulatory (Treg) T-cell balance. We studied the role of Tregs in PTCy-mediated GVHD prophylaxis in murine models of allogeneic blood or marrow transplantation (alloBMT). In 2 distinct MHC-matched alloBMT models, infusing Treg-depleted allografts abrogated the GVHD-prophylactic activity of PTCy. Using allografts in which Foxp3(+) Tregs could be selectively depleted in vivo, either pre- or post-PTCy ablation of donor thymus-derived Tregs (tTregs) abolished PTCy protection against GVHD. PTCy treatment was associated with relative preservation of donor Tregs. Experiments using combinations of Foxp3(-) Tcons and Foxp3(+) Tregs sorted from different Foxp3 reporter mice indicated that donor Treg persistence after PTCy treatment was predominantly caused by survival of functional tTregs that retained Treg-specific demethylation and also induction of peripherally derived Tregs. Finally, adoptive transfer of tTregs retrieved from PTCy-treated chimeras rescued PTCy-treated, Treg-depleted recipients from lethal GVHD. Our findings indicate that PTCy-mediated protection against GVHD is not singularly dependent on depletion of donor alloreactive T cells but also requires rapidly recovering donor Tregs to initiate and maintain alloimmune regulation.
Collapse
|
197
|
Host-derived CD8⁺ dendritic cells protect against acute graft-versus-host disease after experimental allogeneic bone marrow transplantation. Biol Blood Marrow Transplant 2014; 20:1696-704. [PMID: 25132527 DOI: 10.1016/j.bbmt.2014.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/06/2014] [Indexed: 11/22/2022]
Abstract
Graft-versus-host disease (GVHD) is a frequent life-threatening complication after allogeneic hematopoietic stem cell transplantation (HSCT) and induced by donor-derived T cells that become activated by host antigen-presenting cells. To address the relevance of host dendritic cell (DC) populations in this disease, we used mouse strains deficient in CD11c(+) or CD8α(+) DC populations in a model of acute GVHD where bone marrow and T cells from BALB/c donors were transplanted into C57BL/6 hosts. Surprisingly, a strong increase in GVHD-related mortality was observed in the absence of CD11c(+) cells. Likewise, Batf3-deficient (Batf3(-/-)) mice that lack CD8α(+) DCs also displayed a strongly increased GVHD-related mortality. In the absence of CD8α(+) DCs, we detected an increased activation of the remaining DC populations after HSCT, leading to an enhanced priming of allogeneic T cells. Importantly, this was associated with reduced numbers of regulatory T cells and transforming growth factor-β levels, indicating an aggravated failure of peripheral tolerance mechanisms after HSCT in the absence of CD8α(+) DCs. In summary, our results indicate a critical role of CD8α(+) DCs as important inducers of regulatory T cell-mediated tolerance to control DC activation and T cell priming in the initiation phase of GVHD.
Collapse
|
198
|
Chawla S, Dharmani-Khan P, Liu Y, Prokopishyn N, Amlish Munir M, Griffiths C, Khan FM, Stewart DA, Russell JA, Daly A, Storek J. High Serum Level of Antithymocyte Globulin Immediately before Graft Infusion Is Associated with a Low Likelihood of Chronic, But Not Acute, Graft-versus-Host Disease. Biol Blood Marrow Transplant 2014; 20:1156-62. [DOI: 10.1016/j.bbmt.2014.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 04/07/2014] [Indexed: 11/28/2022]
|
199
|
Abstract
Pharmacologic inhibition of the mechanistic target of rapamycin (mTOR) represents a stress test for tumor cells and T cells. Mechanisms exist that allow cells to survive this stress, including suboptimal target block, alternative signaling pathways, and autophagy. Rapamycin-resistant effector T (T-Rapa) cells have an altered phenotype that associates with increased function. Ex vivo rapamycin, when used in combination with polarizing cytokines and antigen-presenting-cell free costimulation, is a flexible therapeutic approach as polarization to T-helper 1 (Th1)- or Th2-type effectors is possible. Murine T-Rapa cells skewed toward a Th2-type prevented graft rejection and graft-versus-host disease (GVHD) more potently than control Th2 cells and effectively balanced GVHD and graft-versus-tumor (GVT) effects. A phase II clinical trial using low-intensity allogeneic hematopoietic cell transplantation demonstrated that interleukin-4 polarized human T-Rapa cells had a mixed Th2/Th1 phenotype; T-Rapa cell recipients had a balanced Th2/Th1 cytokine profile, conversion of mixed chimerism toward full donor chimerism, and a potentially favorable balance between GVHD and GVT effects. In addition, a phase I clinical trial evaluating autologous T-Rapa cells skewed toward a Th1- and Tc1-type is underway. Use of ex vivo rapamycin to modulate effector T-cell function represents a promising new approach to transplantation therapy.
Collapse
Affiliation(s)
- Daniel H Fowler
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Center for Cancer Research, Bethesda, MD, USA
| |
Collapse
|
200
|
Absence of STAT1 in donor-derived plasmacytoid dendritic cells results in increased STAT3 and attenuates murine GVHD. Blood 2014; 124:1976-86. [PMID: 25079358 DOI: 10.1182/blood-2013-05-500876] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Selective targeting of non-T cells, including antigen-presenting cells (APCs), is a potential strategy to prevent graft-versus-host-disease (GVHD) but to maintain graft-versus-tumor (GVT) effects. Because type I and II interferons signal through signal transducer and activator of transcription-1 (STAT1), and contribute to activation of APCs after allogeneic bone marrow transplant (alloBMT), we examined whether the absence of STAT1 in donor APCs could prevent GVHD while preserving immune competence. Transplantation of STAT1(-/-) bone marrow (BM) prevented GVHD induced by STAT1(+/+) T cells, leading to expansion of B220(+) cells and regulatory T cells. STAT1(-/-) BM also preserved GVT activity and enhanced overall survival of tumor-challenged mice in the setting of GVHD. Furthermore, recipients of allogeneic STAT1(-/-) BM demonstrated increased CD9(-)Siglec H(hi) plasmacytoid dendritic cells (pDCs), and depletion of pDCs after STAT1(-/-) BM transplantation prevented GVHD resistance. STAT1(-/-) pDCs were found to produce decreased free radicals, IFNα, and interleukin (IL)-12, and increased IL-10. Additionally, STAT1(-/-) pDCs that were isolated after alloBMT showed increased gene expression of S100A8 and S100A9, and transplantation of S100A9(-/-) BM reduced GVHD-free survival. Finally, elevated STAT3 was found in STAT1(-/-) pDCs isolated after alloBMT. We conclude that interfering with interferon signaling in APCs such as pDCs provides a novel approach to regulate the GVHD/GVT axis.
Collapse
|