151
|
C5L2 is required for C5a-triggered receptor internalization and ERK signaling. Cell Signal 2014; 26:1409-19. [PMID: 24631530 DOI: 10.1016/j.cellsig.2014.02.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 02/24/2014] [Indexed: 12/26/2022]
Abstract
C5L2 is a receptor that binds to C5a and belongs to the family of G protein-coupled receptors, but its role in physiological C5a-mediated responses remains under debate. Here we show that, like the canonical C5a receptor C5aR, C5L2 plays a pro-inflammatory role in a murine model of acute experimental colitis. We demonstrate that C5L2 physically interacts with C5aR and is required for optimal C5a-mediated C5aR internalization and associated ERK activation. Abrogation of C5a-induced receptor internalization by treatment with the dynamin inhibitor dynasore(TM) impaired C5a-induced MEK and ERK signaling. Although the presence of C5aR alone was sufficient to recruit the scaffold protein β-arrestin1 to the cell membrane in response to C5a stimulation, it was inadequate to mediate AP2 recruitment and subsequent C5aR internalization. Expression of C5L2 allowed normal internalization of C5aR in response to C5a stimulation, followed by normal ERK signaling. Thus, our work reveals an essential role for C5L2 in C5a-triggered, AP2-dependent C5aR internalization and downstream ERK signaling.
Collapse
|
152
|
Sangkhae V, Saur SJ, Kaushansky A, Kaushansky K, Hitchcock IS. Phosphorylated c-Mpl tyrosine 591 regulates thrombopoietin-induced signaling. Exp Hematol 2014; 42:477-86.e4. [PMID: 24607955 DOI: 10.1016/j.exphem.2014.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 02/05/2014] [Accepted: 02/21/2014] [Indexed: 01/17/2023]
Abstract
Thrombopoietin (TPO) is the primary regulator of platelet production, affecting cell survival, proliferation, and differentiation through binding to and stimulation of the cell surface receptor the cellular myeloproliferative leukemia virus oncogene (c-Mpl). Activating mutations in c-Mpl constitutively stimulate downstream signaling pathways, leading to aberrant hematopoiesis, and contribute to development of myeloproliferative neoplasms. Several studies have mapped the tyrosine residues within the cytoplasmic domain of c-Mpl that mediate these cellular signals; however, secondary signaling pathways are incompletely understood. In this study, we focused on c-Mpl tyrosine 591 (Y591). We found Y591 of wild-type c-Mpl to be phosphorylated in the presence of TPO. Additionally, eliminating Y591 phosphorylation by mutation to Phe resulted in decreased total receptor phosphorylation. Using a Src homology 2/phosphotyrosine-binding (SH2/PTB) domain binding microarray, we identified novel c-Mpl binding partners for phosphorylated Y591, including Src homology region 2 domain-containing phosphatase-1 (SHP-1), spleen tyrosine kinase (SYK) and Bruton's tyrosine kinase (BTK). The functional significance of binding partners was determined through small interfering RNA treatment of Ba/F3-Mpl cells, confirming that the increase in pERK1/2 resulting from removal of Y591 may be mediated by spleen tyrosine kinase. These findings identify a novel negative regulatory pathway that controls TPO-mediated signaling, advancing our understanding of the mechanisms required for successful maintenance of hematopoietic stem cells and megakaryocyte development.
Collapse
Affiliation(s)
- Veena Sangkhae
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Sebastian Jonas Saur
- Department of Hematology/Oncology, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | | | - Ian Stuart Hitchcock
- Department of Hematology/Oncology, Eberhard Karls University Tübingen, Tübingen, Germany.
| |
Collapse
|
153
|
Chapa-y-Lazo B, Allwood EG, Smaczynska-de Rooij II, Snape ML, Ayscough KR. Yeast endocytic adaptor AP-2 binds the stress sensor Mid2 and functions in polarized cell responses. Traffic 2014; 15:546-57. [PMID: 24460703 PMCID: PMC4282331 DOI: 10.1111/tra.12155] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 12/25/2022]
Abstract
The AP-2 complex is a heterotetrameric endocytic cargo-binding adaptor that facilitates uptake of membrane proteins during mammalian clathrin-mediated endocytosis. While budding yeast has clear homologues of all four AP-2 subunits which form a complex and localize to endocytic sites in vivo, the function of yeast AP-2 has remained enigmatic. Here, we demonstrate that AP-2 is required for hyphal growth in Candida albicans and polarized cell responses in Saccharomyces cerevisiae. Deletion of APM4, the cargo-binding mu subunit of AP-2, causes defects in pseudohyphal growth, generation of a mating projection and the cell wall damage response. In an apm4 null mutant, the cell wall stress sensor Mid2 is unable to relocalize to the tip of a mating projection following pheromone addition, or to the mother bud neck in response to cell wall damage. A direct binding interaction between Mid2 and the mu homology domain of Apm4 further supports a model in which AP-2 binds Mid2 to facilitate its internalization and relocalization in response to specific signals. Thus, Mid2 is the first cargo for AP-2 identified in yeast. We propose that endocytic recycling of Mid2 and other components is required for polarized cell responses ensuring cell wall deposition and is tightly monitored during cell growth.
Collapse
|
154
|
Ross BH, Lin Y, Corales EA, Burgos PV, Mardones GA. Structural and functional characterization of cargo-binding sites on the μ4-subunit of adaptor protein complex 4. PLoS One 2014; 9:e88147. [PMID: 24498434 PMCID: PMC3912200 DOI: 10.1371/journal.pone.0088147] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 01/06/2014] [Indexed: 11/20/2022] Open
Abstract
Adaptor protein (AP) complexes facilitate protein trafficking by playing key roles in the selection of cargo molecules to be sorted in post-Golgi compartments. Four AP complexes (AP-1 to AP-4) contain a medium-sized subunit (μ1-μ4) that recognizes YXXØ-sequences (Ø is a bulky hydrophobic residue), which are sorting signals in transmembrane proteins. A conserved, canonical region in μ subunits mediates recognition of YXXØ-signals by means of a critical aspartic acid. Recently we found that a non-canonical YXXØ-signal on the cytosolic tail of the Alzheimer's disease amyloid precursor protein (APP) binds to a distinct region of the μ4 subunit of the AP-4 complex. In this study we aimed to determine the functionality of both binding sites of μ4 on the recognition of the non-canonical YXXØ-signal of APP. We found that substitutions in either binding site abrogated the interaction with the APP-tail in yeast-two hybrid experiments. Further characterization by isothermal titration calorimetry showed instead loss of binding to the APP signal with only the substitution R283D at the non-canonical site, in contrast to a decrease in binding affinity with the substitution D190A at the canonical site. We solved the crystal structure of the C-terminal domain of the D190A mutant bound to this non-canonical YXXØ-signal. This structure showed no significant difference compared to that of wild-type μ4. Both differential scanning fluorimetry and limited proteolysis analyses demonstrated that the D190A substitution rendered μ4 less stable, suggesting an explanation for its lower binding affinity to the APP signal. Finally, in contrast to overexpression of the D190A mutant, and acting in a dominant-negative manner, overexpression of μ4 with either a F255A or a R283D substitution at the non-canonical site halted APP transport at the Golgi apparatus. Together, our analyses support that the functional recognition of the non-canonical YXXØ-signal of APP is limited to the non-canonical site of μ4.
Collapse
Affiliation(s)
- Breyan H. Ross
- Instituto de Fisiología, Facultad de Medicina, and Centro de Investigación Sur-Austral en Enfermedades del Sistema Nervioso, Universidad Austral de Chile, Valdivia, Chile
| | - Yimo Lin
- Instituto de Fisiología, Facultad de Medicina, and Centro de Investigación Sur-Austral en Enfermedades del Sistema Nervioso, Universidad Austral de Chile, Valdivia, Chile
| | - Esteban A. Corales
- Instituto de Fisiología, Facultad de Medicina, and Centro de Investigación Sur-Austral en Enfermedades del Sistema Nervioso, Universidad Austral de Chile, Valdivia, Chile
| | - Patricia V. Burgos
- Instituto de Fisiología, Facultad de Medicina, and Centro de Investigación Sur-Austral en Enfermedades del Sistema Nervioso, Universidad Austral de Chile, Valdivia, Chile
| | - Gonzalo A. Mardones
- Instituto de Fisiología, Facultad de Medicina, and Centro de Investigación Sur-Austral en Enfermedades del Sistema Nervioso, Universidad Austral de Chile, Valdivia, Chile
- * E-mail:
| |
Collapse
|
155
|
Guo X, Mattera R, Ren X, Chen Y, Retamal C, González A, Bonifacino JS. The adaptor protein-1 μ1B subunit expands the repertoire of basolateral sorting signal recognition in epithelial cells. Dev Cell 2014; 27:353-66. [PMID: 24229647 DOI: 10.1016/j.devcel.2013.10.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 07/15/2013] [Accepted: 10/10/2013] [Indexed: 01/05/2023]
Abstract
An outstanding question in protein sorting is why polarized epithelial cells express two isoforms of the μ1 subunit of the AP-1 clathrin adaptor complex: the ubiquitous μ1A and the epithelial-specific μ1B. Previous studies led to the notion that μ1A and μ1B mediate basolateral sorting predominantly from the trans-Golgi network (TGN) and recycling endosomes, respectively. Using improved analytical tools, however, we find that μ1A and μ1B largely colocalize with each other. They also colocalize to similar extents with TGN and recycling endosome markers, as well as with basolateral cargoes transiting biosynthetic and endocytic-recycling routes. Instead, the two isoforms differ in their signal-recognition specificity. In particular, μ1B preferentially binds a subset of signals from cargoes that are sorted basolaterally in a μ1B-dependent manner. We conclude that expression of distinct μ1 isoforms in epithelial cells expands the repertoire of signals recognized by AP-1 for sorting of a broader range of cargoes to the basolateral surface.
Collapse
Affiliation(s)
- Xiaoli Guo
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
156
|
The Nef-like effect of murine leukemia virus glycosylated gag on HIV-1 infectivity is mediated by its cytoplasmic domain and depends on the AP-2 adaptor complex. J Virol 2014; 88:3443-54. [PMID: 24403584 DOI: 10.1128/jvi.01933-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Human immunodeficiency virus type 1 (HIV-1) Nef enhances the infectivity of progeny virions. However, Nef is dispensable for the production of HIV-1 virions of optimal infectivity if the producer cells are superinfected with certain gammaretroviruses. In the case of the ecotropic Moloney murine leukemia virus (M-MLV), the Nef-like effect is mediated by the glycosylated Gag (glycoGag) protein. We now show that the N-terminal intracellular domain of the type II transmembrane protein glycoGag is responsible for its effect on HIV-1 infectivity. In the context of a fully active minimal M-MLV glycoGag construct, truncations of the cytoplasmic domain led to a near total loss of activity. Furthermore, the cytoplasmic domain of M-MLV glycoGag was fully sufficient to transfer the activity to an unrelated type II transmembrane protein. Although the intracellular region of glycoGag is relatively poorly conserved even among ecotropic and xenotropic MLVs, it was also fully sufficient for the rescue of nef-deficient HIV-1 when derived from a xenotropic virus. A mutagenic analysis showed that only a core region of the intracellular domain that exhibits at least some conservation between murine and feline leukemia viruses is crucial for activity. In particular, a conserved YXXL motif in the center of this core region was critical. In addition, expression of the μ2 subunit of the AP-2 adaptor complex in virus producer cells was essential for activity. We conclude that the ability to enhance HIV-1 infectivity is a conserved property of the MLV glycoGag cytoplasmic domain and involves AP-2-mediated endocytosis. IMPORTANCE The Nef protein of HIV-1 and the entirely unrelated glycosylated Gag (glycoGag) protein of a murine leukemia virus (MLV) similarly enhance the infectiousness of HIV-1 particles by an unknown mechanism. MLV glycoGag is an alternative version of the structural viral Gag protein with an extra upstream region that provides a cytosolic domain and a plasma membrane anchor. We now show for the first time that the cytosolic domain of MLV glycoGag contains all the information needed to enhance HIV-1 infectivity and that this function of the cytosolic domain is conserved despite limited sequence conservation. Within the cytosolic domain, a motif that resembles a cellular sorting signal is critical for activity. Furthermore, the enhancement of HIV-1 infectivity depends on an endocytic cellular protein that is known to interact with such sorting signals. Together, our findings implicate the endocytic machinery in the enhancement of HIV-1 infectivity by MLV glycoGag.
Collapse
|
157
|
Abstract
Hepatocytes, like other epithelia, are situated at the interface between the organism's exterior and the underlying internal milieu and organize the vectorial exchange of macromolecules between these two spaces. To mediate this function, epithelial cells, including hepatocytes, are polarized with distinct luminal domains that are separated by tight junctions from lateral domains engaged in cell-cell adhesion and from basal domains that interact with the underlying extracellular matrix. Despite these universal principles, hepatocytes distinguish themselves from other nonstriated epithelia by their multipolar organization. Each hepatocyte participates in multiple, narrow lumina, the bile canaliculi, and has multiple basal surfaces that face the endothelial lining. Hepatocytes also differ in the mechanism of luminal protein trafficking from other epithelia studied. They lack polarized protein secretion to the luminal domain and target single-spanning and glycosylphosphatidylinositol-anchored bile canalicular membrane proteins via transcytosis from the basolateral domain. We compare this unique hepatic polarity phenotype with that of the more common columnar epithelial organization and review our current knowledge of the signaling mechanisms and the organization of polarized protein trafficking that govern the establishment and maintenance of hepatic polarity. The serine/threonine kinase LKB1, which is activated by the bile acid taurocholate and, in turn, activates adenosine monophosphate kinase-related kinases including AMPK1/2 and Par1 paralogues has emerged as a key determinant of hepatic polarity. We propose that the absence of a hepatocyte basal lamina and differences in cell-cell adhesion signaling that determine the positioning of tight junctions are two crucial determinants for the distinct hepatic and columnar polarity phenotypes.
Collapse
Affiliation(s)
- Aleksandr Treyer
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, New York, USA
| | | |
Collapse
|
158
|
Traub LM, Bonifacino JS. Cargo recognition in clathrin-mediated endocytosis. Cold Spring Harb Perspect Biol 2013; 5:a016790. [PMID: 24186068 DOI: 10.1101/cshperspect.a016790] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The endosomal system is expansive and complex, characterized by swift morphological transitions, dynamic remodeling of membrane constituents, and intracellular positioning changes. To properly navigate this ever-altering membrane labyrinth, transmembrane protein cargoes typically require specific sorting signals that are decoded by components of protein coats. The best-characterized sorting process within the endosomal system is the rapid internalization of select transmembrane proteins within clathrin-coated vesicles. Endocytic signals consist of linear motifs, conformational determinants, or covalent modifications in the cytosolic domains of transmembrane cargo. These signals are interpreted by a diverse set of clathrin-associated sorting proteins (CLASPs) that translocate from the cytosol to the inner face of the plasma membrane. Signal recognition by CLASPs is highly cooperative, involving additional interactions with phospholipids, Arf GTPases, other CLASPs, and clathrin, and is regulated by large conformational changes and covalent modifications. Related sorting events occur at other endosomal sorting stations.
Collapse
Affiliation(s)
- Linton M Traub
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | | |
Collapse
|
159
|
Hu G, Suo Y, Huang J. A crucial role of the RGS domain in trans-Golgi network export of AtRGS1 in the protein secretory pathway. MOLECULAR PLANT 2013; 6:1933-1944. [PMID: 23793400 DOI: 10.1093/mp/sst109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The secretory pathway is responsible for the transport of newly synthesized transmembrane proteins from the endoplasmic reticulum to their destinations via the Golgi/trans-Golgi network (TGN). Cargo proteins at each station are actively sorted by specific sorting signals on the cargo and the corresponding coat complexes. Here, we used the Arabidopsis regulator of G-protein signaling (AtRGS1), which contains an N-terminal potentially sensing glucose seven-transmembrane domain and a C-terminal RGS domain, as a model to uncover sorting motifs required for its cell surface expression. Expression of wild-type and truncated or mutated AtRGS1 fluorescent fusion proteins identified two cysteine residues in the extracellular N-terminus that are essential for endoplasmic reticulum exit and/or correct folding of AtRGS1. The linker between the seven-transmembrane and RGS domains contains an endoplasmic reticulum export signal, whereas the C-terminus is dispensable for the plasma membrane expression of AtRGS1. Interestingly, deletion of the RGS domain results in Golgi/TGN localization of the truncated AtRGS1. Further analysis using site-directed mutagenesis showed that a tyrosine-based motif embedded in the RGS domain is essential for Golgi/TGN export of AtRGS1. These results reveal a new role for the RGS domain in regulating AtRGS1 trafficking from the Golgi/TGN to the plasma membrane and explain the interaction between the seven-transmembrane and RGS domains.
Collapse
Affiliation(s)
- Guangzhen Hu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Feng Lin Road, Shanghai 200032, China
| | | | | |
Collapse
|
160
|
Pérez MJ, Fernandez N, Pasquini JM. Oligodendrocyte differentiation and signaling after transferrin internalization: A mechanism of action. Exp Neurol 2013; 248:262-74. [DOI: 10.1016/j.expneurol.2013.06.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 06/12/2013] [Accepted: 06/14/2013] [Indexed: 01/06/2023]
|
161
|
Tseng LTL, Lin CL, Tzen KY, Chang SC, Chang MF. LMBD1 protein serves as a specific adaptor for insulin receptor internalization. J Biol Chem 2013; 288:32424-32432. [PMID: 24078630 DOI: 10.1074/jbc.m113.479527] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Energy homeostasis is crucial for maintaining normally functioning cells; disturbances in this balance often cause various diseases. The limb region 1 (LMBR1) domain containing 1 gene (lmbrd1) encodes the LMBD1 protein that possesses 9 putative transmembrane domains. LMBD1 has been suggested to be involved in the lysosome in aiding the export of cobalamin. In this study, we determined that LMBD1 plays a regulatory role in the plasma membrane. A micro-positron emission tomography analysis showed that a single-allele knock-out of lmbrd1 increased the (18)F-fluorodeoxyglucose uptake in murine hearts. In addition, the knockdown of lmbrd1 resulted in an up-regulated signaling of the insulin receptor (IR) and its downstream signaling molecule, Akt. Confocal and live total internal reflection fluorescence microscopy showed that LMBD1 co-localized and co-internalized with clathrin and the IR, but not with the transferrin receptor. The results of the mutation analysis and phenotypic rescue experiments indicate that LMBD1 interacts with adaptor protein-2 and is involved in the unique clathrin-mediated endocytosis of the IR. LMBD1 selectively interacts with the IR. The knockdown of lmbrd1 attenuated IR endocytosis, resulting in the perturbation of the IR recycling pathway and consequential enhancement of the IR signaling cascade. In summary, LMBD1 plays an imperative role in mediating and regulating the endocytosis of the IR.
Collapse
Affiliation(s)
| | | | - Kai-Yuan Tzen
- the Department of Nuclear Medicine, National Taiwan University Hospital, Taipei 10041, Taiwan
| | - Shin C Chang
- the Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Ming-Fu Chang
- From the Institute of Biochemistry and Molecular Biology.
| |
Collapse
|
162
|
Abstract
Shootin1 has been ascribed a role in regulating polarization of primary hippocampal neurons. To better understand the possible role of Shootin1 in the developing brain, we identified a member of the kinesin superfamily, KIF20B, as a novel Shootin1 interacting protein and a potential mediator of Shootin1 interaction with microtubules. KIF20B/Shootin1 binding was mapped to a 57 aa KIF20B sequence, which was used as a dominant-negative fragment. Direct interaction between that peptide (MBD) and Shootin1 was confirmed by surface plasmon resonance-based technology and the affinity was determined in the 10⁻⁷ m range. The proteins are expressed in the developing brain and formed a complex in vivo based on coimmunoprecipitation experiments and coimmunostaining in primary neurons. In primary hippocampal neurons Kif20b knockdown reduced Shootin1 mobilization to the developing axon, as evidenced by immunostaining and fluorescence recovery after photobleaching analysis, suggesting that Shootin1 is a novel KIF20B cargo. shRNA targeting of Shootin1 reduced PIP3 accumulation in the growth cone, as did Kif20b shRNA. In the developing mouse brain, Kif20b knockdown or expression of the KIF20B minimal binding domain inhibited neuronal migration, and in vivo migration assays suggested that Shootin1/Kif20b acts in the same genetic pathway. Time-lapse imaging of multipolar cells in the subventricular zone revealed that downregulating levels of either Shootin1 or Kif20b hindered the transition from multipolar to bipolar cells. Collectively, our data demonstrate the importance of the Shootin1/KIF20B interaction to the dynamic process of pyramidal neuronal polarization and migration.
Collapse
|
163
|
Adaptor complex AP2/PICALM, through interaction with LC3, targets Alzheimer's APP-CTF for terminal degradation via autophagy. Proc Natl Acad Sci U S A 2013; 110:17071-6. [PMID: 24067654 DOI: 10.1073/pnas.1315110110] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The hallmarks of Alzheimer's disease (AD) are the aggregates of amyloid-β (Aβ) peptides and tau protein. Autophagy is a major cellular pathway leading to the removal of aggregated proteins. We have reported recently that autophagy was responsible for amyloid precursor protein cleaved C-terminal fragment (APP-CTF) degradation and amyloid β clearance in an Atg5-dependent manner. Here we aimed to elucidate the molecular mechanism by which autophagy mediates the degradation of APP-CTF and the clearance of amyloid β. Through affinity purification followed by mass spectrum analysis, we identified adaptor protein (AP) 2 together with phosphatidylinositol clathrin assembly lymphoid-myeloid leukemia (PICALM) as binding proteins of microtubule-associated protein 1 light chain 3 (LC3). Further analysis showed that AP2 regulated the cellular levels of APP-CTF. Knockdown of AP2 reduced autophagy-mediated APP-CTF degradation. Immunoprecipitation and live imaging analysis demonstrated that AP2 and PICALM cross-link LC3 with APP-CTF. These data suggest that the AP-2/PICALM complex functions as an autophagic cargo receptor for the recognition and shipment of APP-CTF from the endocytic pathway to the LC3-marked autophagic degradation pathway. This molecular mechanism linking AP2/PICALM and AD is consistent with genetic evidence indicating a role for PICALM as a risk factor for AD.
Collapse
|
164
|
Abascal-Palacios G, Schindler C, Rojas AL, Bonifacino JS, Hierro A. Structural basis for the interaction of the Golgi-Associated Retrograde Protein Complex with the t-SNARE Syntaxin 6. Structure 2013; 21:1698-706. [PMID: 23932592 PMCID: PMC4788097 DOI: 10.1016/j.str.2013.06.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 06/27/2013] [Accepted: 06/27/2013] [Indexed: 01/07/2023]
Abstract
The Golgi-Associated Retrograde Protein (GARP) complex is a tethering factor involved in the fusion of endosome-derived transport vesicles to the trans-Golgi network through interaction with components of the Syntaxin 6/Syntaxin 16/Vti1a/VAMP4 SNARE complex. The mechanisms by which GARP and other tethering factors engage the SNARE fusion machinery are poorly understood. Herein, we report the structural basis for the interaction of the human Ang2 subunit of GARP with the Syntaxin 6 and the closely related Syntaxin 10. The crystal structure of the Syntaxin 6 Habc domain in complex with a peptide from the N terminus of Ang2 shows a binding mode in which a dityrosine motif of Ang2 interacts with a highly conserved groove in Syntaxin 6. Structure-based mutational analyses validate the crystal structure and support the phylogenetic conservation of this interaction.
Collapse
Affiliation(s)
| | - Christina Schindler
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adriana L Rojas
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Juan S. Bonifacino
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA,To whom correspondence should be addressed: Aitor Hierro: ; phone: +34-946-572-522; fax: +34-946-572-502. Juan S. Bonifacino: ; phone: +1-301-496-6368; fax: +1-301-402-0078
| | - Aitor Hierro
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain,IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain,To whom correspondence should be addressed: Aitor Hierro: ; phone: +34-946-572-522; fax: +34-946-572-502. Juan S. Bonifacino: ; phone: +1-301-496-6368; fax: +1-301-402-0078
| |
Collapse
|
165
|
Hase K, Nakatsu F, Ohmae M, Sugihara K, Shioda N, Takahashi D, Obata Y, Furusawa Y, Fujimura Y, Yamashita T, Fukuda S, Okamoto H, Asano M, Yonemura S, Ohno H. AP-1B-mediated protein sorting regulates polarity and proliferation of intestinal epithelial cells in mice. Gastroenterology 2013; 145:625-35. [PMID: 23684748 DOI: 10.1053/j.gastro.2013.05.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/10/2013] [Accepted: 05/14/2013] [Indexed: 12/28/2022]
Abstract
BACKGROUND & AIMS In epithelial cells, protein sorting mechanisms regulate localization of plasma membrane proteins that generate and maintain cell polarity. The clathrin-adaptor protein (AP) complex AP-1B is expressed specifically in polarized epithelial cells, where it regulates basolateral sorting of membrane proteins. However, little is known about its physiological significance. METHODS We analyzed the intestinal epithelia of mice deficient in Ap1m2 (Ap1m2(-/-) mice), which encodes the AP-1B μ1B subunit, and compared it with 129/B6/CD1 littermates (controls). Notch signaling was inhibited by intraperitoneal injection of dibenzazepine, and β-catenin signaling was inhibited by injection of IWR1. Intestinal tissue samples were collected and analyzed by immunofluorescence analysis. RESULTS Ap1m2(-/-) mice developed intestinal epithelial cell hyperplasia. The polarity of intestinal epithelial cells was disrupted, as indicated by the appearance of ectopic microvilli-like structures on the lateral plasma membrane and mislocalization of basolateral membrane proteins, including the low-density lipoprotein receptor and E-cadherin. The E-cadherin-β-catenin complex therefore was disrupted at the adherens junction, resulting in nuclear translocation of β-catenin. This resulted in up-regulation of genes regulated by β-catenin/transcription factor 4 (Tcf4) complex, and increased the proliferation of intestinal epithelial cells. CONCLUSIONS AP-1B is required for protein sorting and polarization of intestinal cells in mice. Loss of AP-1B in the intestinal epithelia results in mislocalization of E-cadherin, activation of β-catenin/Tcf4 complex, proliferation, and hyperplasia.
Collapse
Affiliation(s)
- Koji Hase
- The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Fong JT, Kells RM, Falk MM. Two tyrosine-based sorting signals in the Cx43 C-terminus cooperate to mediate gap junction endocytosis. Mol Biol Cell 2013; 24:2834-48. [PMID: 23885125 PMCID: PMC3771946 DOI: 10.1091/mbc.e13-02-0111] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Three tyrosine-based sorting signals in the gap junction protein connexin 43 were identified, two of which function cooperatively as adaptor protein complex-2 binding sites. The analyses provide a molecular model for clathrin to efficiently internalize large plasma membrane structures and suggest a mechanism for regulating constitutive versus acute gap junction internalization. Gap junction (GJ) channels that electrically and chemically couple neighboring cells are formed when two hemichannels (connexons) of apposed cells dock head-on in the extracellular space. Remarkably, docked connexons are inseparable under physiological conditions, and we and others have shown that GJs are internalized in whole, utilizing the endocytic clathrin machinery. Endocytosis generates double-membrane vesicles (annular GJs or connexosomes) in the cytoplasm of one of the apposed cells that are degraded by autophagosomal and, potentially, endo/lysosomal pathways. In this study, we investigated the structural motifs that mediate Cx43 GJ endocytosis. We identified three canonical tyrosine-based sorting signals of the type “YXXΦ” in the Cx43 C-terminus, two of which function cooperatively as AP-2 binding sites. We generated a set of green fluorescent protein–tagged and untagged Cx43 mutants that targeted these two sites either individually or together. Mutating both sites completely abolished Cx43-AP-2/Dab2/clathrin interaction and resulted in increased GJ plaque size, longer Cx43 protein half-lives, and impaired GJ internalization. Interestingly, Dab2, an accessory clathrin adaptor found earlier to be important for GJ endocytosis, interacts indirectly with Cx43 via AP-2, permitting the recruitment of up to four clathrin complexes per Cx43 protein. Our analyses provide a mechanistic model for clathrin's efficient internalization of large plasma membrane structures, such as GJs.
Collapse
Affiliation(s)
- John T Fong
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | | | | |
Collapse
|
167
|
Byrne SL, Buckett PD, Kim J, Luo F, Sanford J, Chen J, Enns C, Wessling-Resnick M. Ferristatin II promotes degradation of transferrin receptor-1 in vitro and in vivo. PLoS One 2013; 8:e70199. [PMID: 23894616 PMCID: PMC3720890 DOI: 10.1371/journal.pone.0070199] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 06/14/2013] [Indexed: 12/13/2022] Open
Abstract
Previous studies have shown that the small molecule iron transport inhibitor ferristatin (NSC30611) acts by down-regulating transferrin receptor-1 (TfR1) via receptor degradation. In this investigation, we show that another small molecule, ferristatin II (NSC8679), acts in a similar manner to degrade the receptor through a nystatin-sensitive lipid raft pathway. Structural domains of the receptor necessary for interactions with the clathrin pathway do not appear to be necessary for ferristatin II induced degradation of TfR1. While TfR1 constitutively traffics through clathrin-mediated endocytosis, with or without ligand, the presence of Tf blocked ferristatin II induced degradation of TfR1. This effect of Tf was lost in a ligand binding receptor mutant G647A TfR1, suggesting that Tf binding to its receptor interferes with the drug’s activity. Rats treated with ferristatin II have lower TfR1 in liver. These effects are associated with reduced intestinal 59Fe uptake, lower serum iron and transferrin saturation, but no change in liver non-heme iron stores. The observed hypoferremia promoted by degradation of TfR1 by ferristatin II appears to be due to induced hepcidin gene expression.
Collapse
Affiliation(s)
- Shaina L. Byrne
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Peter D. Buckett
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Jonghan Kim
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Flora Luo
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Jack Sanford
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Juxing Chen
- Department of Cell Biology, Oregon Health Sciences Center, Portland, Oregon, United States of America
| | - Caroline Enns
- Department of Cell Biology, Oregon Health Sciences Center, Portland, Oregon, United States of America
| | - Marianne Wessling-Resnick
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
168
|
Teh OK, Shimono Y, Shirakawa M, Fukao Y, Tamura K, Shimada T, Hara-Nishimura I. The AP-1 µ Adaptin is Required for KNOLLE Localization at the Cell Plate to Mediate Cytokinesis in Arabidopsis. ACTA ACUST UNITED AC 2013; 54:838-47. [DOI: 10.1093/pcp/pct048] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
169
|
Tyrosine phosphorylation regulates the endocytosis and surface expression of GluN3A-containing NMDA receptors. J Neurosci 2013; 33:4151-64. [PMID: 23447623 DOI: 10.1523/jneurosci.2721-12.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Selective control of receptor trafficking provides a mechanism for remodeling the receptor composition of excitatory synapses, and thus supports synaptic transmission, plasticity, and development. GluN3A (formerly NR3A) is a nonconventional member of the NMDA receptor (NMDAR) subunit family, which endows NMDAR channels with low calcium permeability and reduced magnesium sensitivity compared with NMDARs comprising only GluN1 and GluN2 subunits. Because of these special properties, GluN3A subunits act as a molecular brake to limit the plasticity and maturation of excitatory synapses, pointing toward GluN3A removal as a critical step in the development of neuronal circuitry. However, the molecular signals mediating GluN3A endocytic removal remain unclear. Here we define a novel endocytic motif (YWL), which is located within the cytoplasmic C-terminal tail of GluN3A and mediates its binding to the clathrin adaptor AP2. Alanine mutations within the GluN3A endocytic motif inhibited clathrin-dependent internalization and led to accumulation of GluN3A-containing NMDARs at the cell surface, whereas mimicking phosphorylation of the tyrosine residue promoted internalization and reduced cell-surface expression as shown by immunocytochemical and electrophysiological approaches in recombinant systems and rat neurons in primary culture. We further demonstrate that the tyrosine residue is phosphorylated by Src family kinases, and that Src-activation limits surface GluN3A expression in neurons. Together, our results identify a new molecular signal for GluN3A internalization that couples the functional surface expression of GluN3A-containing receptors to the phosphorylation state of GluN3A subunits, and provides a molecular framework for the regulation of NMDAR subunit composition with implications for synaptic plasticity and neurodevelopment.
Collapse
|
170
|
Structural basis for recruitment and activation of the AP-1 clathrin adaptor complex by Arf1. Cell 2013; 152:755-67. [PMID: 23415225 DOI: 10.1016/j.cell.2012.12.042] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 10/16/2012] [Accepted: 12/18/2012] [Indexed: 11/23/2022]
Abstract
AP-1 is a clathrin adaptor complex that sorts cargo between the trans-Golgi network and endosomes. AP-1 recruitment to these compartments requires Arf1-GTP. The crystal structure of the tetrameric core of AP-1 in complex with Arf1-GTP, together with biochemical analyses, shows that Arf1 activates cargo binding by unlocking AP-1. Unlocking is driven by two molecules of Arf1 that bridge two copies of AP-1 at two interaction sites. The GTP-dependent switch I and II regions of Arf1 bind to the N terminus of the β1 subunit of one AP-1 complex, while the back side of Arf1 binds to the central part of the γ subunit trunk of a second AP-1 complex. A third Arf1 interaction site near the N terminus of the γ subunit is important for recruitment, but not activation. These observations lead to a model for the recruitment and activation of AP-1 by Arf1.
Collapse
|
171
|
Canto I, Trejo J. Palmitoylation of protease-activated receptor-1 regulates adaptor protein complex-2 and -3 interaction with tyrosine-based motifs and endocytic sorting. J Biol Chem 2013; 288:15900-12. [PMID: 23580642 DOI: 10.1074/jbc.m113.469866] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor for the coagulant protease thrombin. Thrombin binds to and cleaves the N terminus of PAR1, generating a new N terminus that functions as a tethered ligand that cannot diffuse away. In addition to rapid desensitization, PAR1 trafficking is critical for the regulation of cellular responses. PAR1 displays constitutive and agonist-induced internalization. Constitutive internalization of unactivated PAR1 is mediated by the clathrin adaptor protein complex-2 (AP-2), which binds to a distal tyrosine-based motif localized within the C-terminal tail (C-tail) domain. Once internalized, PAR1 is sorted from endosomes to lysosomes via AP-3 interaction with a second C-tail tyrosine motif proximal to the transmembrane domain. However, the regulatory processes that control adaptor protein recognition of PAR1 C-tail tyrosine-based motifs are not known. Here, we report that palmitoylation of PAR1 is critical for regulating proper utilization of tyrosine-based motifs and endocytic sorting. We show that PAR1 is basally palmitoylated at highly conserved C-tail cysteines. A palmitoylation-deficient PAR1 mutant is competent to signal and exhibits a marked increase in constitutive internalization and lysosomal degradation compared with wild type receptor. Intriguingly, enhanced constitutive internalization of PAR1 is mediated by AP-2 and requires the proximal tyrosine-based motif rather than the distal tyrosine motif used by wild type receptor. Moreover, palmitoylation-deficient PAR1 displays increased degradation that is mediated by AP-3. These findings suggest that palmitoylation of PAR1 regulates appropriate utilization of tyrosine-based motifs by adaptor proteins and endocytic trafficking, processes that are critical for maintaining appropriate expression of PAR1 at the cell surface.
Collapse
Affiliation(s)
- Isabel Canto
- Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
172
|
Rosnoblet C, Legrand D, Demaegd D, Hacine-Gherbi H, de Bettignies G, Bammens R, Borrego C, Duvet S, Morsomme P, Matthijs G, Foulquier F. Impact of disease-causing mutations on TMEM165 subcellular localization, a recently identified protein involved in CDG-II. Hum Mol Genet 2013; 22:2914-28. [PMID: 23575229 DOI: 10.1093/hmg/ddt146] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
TMEM165 has recently been identified as a novel protein involved in CDG-II. TMEM165 has no biological function described so far. Different mutations were recently found in patients with Golgi glycosylation defects and harboring a peculiar skeletal phenotype. In this study, we examined the effect of naturally occurring mutations on the intracellular localization of TMEM165 and their abilities to complement the TMEM165-deficient yeast, gdt1▵. Wild-type TMEM165 was present within Golgi compartment, plasma membrane and late endosomes/lysosomes, whereas mutated TMEM165 were found differentially localized according to the mutations. We demonstrated that, in the yeast functional assay with TMEM165 ortholog Gdt1, the homozygous point mutation correlating with a mild phenotype restores the yeast functional assay, whereas the truncated mutation, associated with severe disease, failed to restore Gdt1 function. These studies highly suggest that these clinically relevant point mutations do not affect the protein function but critically changes the subcellular protein localization. Moreover, the data point to a critical role of the YNRL motif in TMEM165 subcellular localization.
Collapse
Affiliation(s)
- Claire Rosnoblet
- CNRS-UMR 8576, Structural and Functional Glycobiology Unit, IFR 147, University of Lille 1, 59655 Villeneuve d’Ascq, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Canagarajah BJ, Ren X, Bonifacino JS, Hurley JH. The clathrin adaptor complexes as a paradigm for membrane-associated allostery. Protein Sci 2013; 22:517-29. [PMID: 23424177 DOI: 10.1002/pro.2235] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 02/13/2013] [Indexed: 11/12/2022]
Abstract
The clathrin-associated adaptor protein (AP) complexes AP-1 and AP-2 are two members of a family of heterotetrameric assemblies that connect transmembrane protein cargo to vesicular coats. Cargo binding by AP-1 is activated by the small GTPase Arf1, while AP-2 is activated by the phosphoinositide PI(4,5)P₂. The structures of both AP-1 and AP-2 have been determined in their locked and unlocked conformations. The structures show how different activators use different mechanisms to trigger similar large scale conformational rearrangements. The details of these mechanisms show how membrane docking and allosteric activation of AP complexes are intimately connected.
Collapse
Affiliation(s)
- Bertram J Canagarajah
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
174
|
The AP-1 complex regulates intracellular localization of insulin receptor substrate 1, which is required for insulin-like growth factor I-dependent cell proliferation. Mol Cell Biol 2013; 33:1991-2003. [PMID: 23478262 DOI: 10.1128/mcb.01394-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The activation of the insulin/insulin-like growth factor I (IGF-I) receptor and the subsequent tyrosine phosphorylation of insulin receptor substrates (IRSs) are key initial events in a variety of insulin/IGF bioactivities, including mitogenesis. It has been reported that IRS-1 associates with intracellular membrane compartments, and this localization is believed to be important for insulin/IGF signal transduction. However, the molecular mechanisms underlying IRS-1 localization remain unclear. Here we show that in L6 myoblasts, IRS-1 associates with μ1A of the ubiquitously expressed AP-1 complex, which packages cargo proteins into clathrin-coated vesicles derived from intracellular membranes. While wild-type IRS-1 was predominantly localized to vesicular structures, IRS-1 mutants lacking three YXXΦ motifs responsible for binding to μ1A were mislocalized to the mannose-6-phosphate receptor-positive structures, suggesting that AP-1-dependent transport to peripheral vesicles is inhibited in these mutants. Furthermore, deletion of AP-1 binding sites in IRS-1 impaired IGF-I-induced cell proliferation, accompanied by reduced tyrosine phosphorylation of IRS-1 and its association with phosphoinositide (PI) 3-kinase. These data demonstrate the importance of AP-1-dependent localization of IRS-1 in mediating IGF-I-stimulated signaling and maximum mitogenic response.
Collapse
|
175
|
PENG DAN, ZUO HOUJUAN, LIU ZHENGXIANG, QIN JIN, ZHOU YUANLIN, LI PENGCHENG, WANG DAOWEN, ZENG HESONG, ZHANG XINA. The tetraspanin CD151-ARSA mutant inhibits angiogenesis via the YRSL sequence. Mol Med Rep 2013; 7:836-42. [PMID: 23292489 PMCID: PMC3981038 DOI: 10.3892/mmr.2012.1250] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 12/10/2012] [Indexed: 11/09/2022] Open
Abstract
Previous studies have shown that the tetraspanin CD151 is essential for pathological or physiological angiogenesis. However, the cellular signaling mechanism and the role of the CD151 YRSL sorting motif in in vitro vasculogenesis remains unknown. In this study, the results showed that both CD151 and CD151-ARSA gene delivery were capable of increasing the expression of CD151 at the protein level in human umbilical vein endothelial cells (HUVECs). Moreover, there was no significant difference in CD151 protein expression between the CD151 group and the CD151-ARSA group. Overexpression of CD151 promoted HUVEC cell proliferation, migration and capillary network formation in vitro. However, in the CD151-ARSA group, the abilities of cell proliferation, migration and capillary network formation were all decreased, compared with the CD151 group. Furthermore, the activation of PI3K, Akt and ERK signaling pathways was attenuated in the CD151-ARSA mutant group compared with the CD151 group. This study suggests that the YRSL motif of CD151 plays a key role in CD151-induced angiogenesis. Our observations provide insights into a new mechanism of CD151 regulating angiogenesis via vesicle trafficking.
Collapse
Affiliation(s)
- DAN PENG
- Department of Nuclear Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R.China
| | - HOUJUAN ZUO
- Department of Cardiology of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R.China
| | - ZHENGXIANG LIU
- Department of Cardiology of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R.China
| | - JIN QIN
- Department of Cardiology of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R.China
| | - YUANLIN ZHOU
- Department of Cardiology of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R.China
| | - PENGCHENG LI
- Department of Cardiology of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R.China
| | - DAOWEN WANG
- Department of Cardiology of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R.China
| | - HESONG ZENG
- Department of Cardiology of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R.China
| | - XIN A. ZHANG
- Department of Physiology and Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| |
Collapse
|
176
|
Lee KH, Ho WK, Lee SH. Endocytosis of somatodendritic NCKX2 is regulated by Src family kinase-dependent tyrosine phosphorylation. Front Cell Neurosci 2013; 7:14. [PMID: 23431067 PMCID: PMC3576620 DOI: 10.3389/fncel.2013.00014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/05/2013] [Indexed: 11/13/2022] Open
Abstract
We have previously reported that the surface expression of K+-dependent Na+/Ca2+ exchanger 2 (NCKX2) in the somatodendritic compartment is kept low by constitutive endocytosis, which results in the polarization of surface NCKX2 to the axon. Clathrin-mediated endocytosis is initiated by interaction of the μ subunit of adaptor protein complex 2 (AP-2) with the canonical tyrosine motif (YxxΦ) of a target molecule. We examined whether endocytosis of NCKX2 involves two putative tyrosine motifs (365YGKL and 371YDTM) in the cytoplasmic loop of NCKX2. Coimmunoprecipitation assay revealed that the 365YGKL motif is essential for the interaction with the μ subunit of AP-2 (AP2M1). Consistently, either overexpression of NCKX2-Y365A mutant or knockdown of AP2M1 in cultured hippocampal neurons significantly reduced the internalization of NCKX2 from the somatodendritic surface and thus abolished the axonal polarization of surface NCKX2. Next, we tested whether the interaction between the tyrosine motif and AP2M1 is regulated by phosphorylation of the 365th tyrosine residue (Tyr-365). Tyrosine phosphorylation of heterologously expressed NCKX2-WT, but not NCKX2-Y365A, was increased by carbachol (CCh) in PC-12 cells. The effect of CCh was inhibited by PP2, a Src family kinase (SFK) inhibitor. Moreover, PP2 facilitated the endocytosis of NCKX2 in both the somatodendritic and axonal compartments, suggesting that tyrosine phosphorylation of NCKX2 by SFK negatively regulates its endocytosis. Supporting this idea, activation of SFK enhanced the NCKX activity in the proximal dendrites of dentate granule cells (GCs). These results suggest that endocytosis of somatodendritic NCKX2 is regulated by SFK-dependent phosphorylation of Tyr-365.
Collapse
Affiliation(s)
- Kyu-Hee Lee
- Department of Physiology, Biomembrane Plasticity Research Center and Neuroscience Research Institute, Seoul National University College of Medicine Seoul, Republic of Korea
| | | | | |
Collapse
|
177
|
Lee BL, Moon JE, Shu JH, Yuan L, Newman ZR, Schekman R, Barton GM. UNC93B1 mediates differential trafficking of endosomal TLRs. eLife 2013; 2:e00291. [PMID: 23426999 PMCID: PMC3576711 DOI: 10.7554/elife.00291] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/08/2013] [Indexed: 01/19/2023] Open
Abstract
UNC93B1, a multipass transmembrane protein required for TLR3, TLR7, TLR9, TLR11, TLR12, and TLR13 function, controls trafficking of TLRs from the endoplasmic reticulum (ER) to endolysosomes. The mechanisms by which UNC93B1 mediates these regulatory effects remain unclear. Here, we demonstrate that UNC93B1 enters the secretory pathway and directly controls the packaging of TLRs into COPII vesicles that bud from the ER. Unlike other COPII loading factors, UNC93B1 remains associated with the TLRs through post-Golgi sorting steps. Unexpectedly, these steps are different among endosomal TLRs. TLR9 requires UNC93B1-mediated recruitment of adaptor protein complex 2 (AP-2) for delivery to endolysosomes while TLR7, TLR11, TLR12, and TLR13 utilize alternative trafficking pathways. Thus, our study describes a mechanism for differential sorting of endosomal TLRs by UNC93B1, which may explain the distinct roles played by these receptors in certain autoimmune diseases.DOI:http://dx.doi.org/10.7554/eLife.00291.001.
Collapse
Affiliation(s)
- Bettina L Lee
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology , University of California, Berkeley , Berkeley , United States
| | | | | | | | | | | | | |
Collapse
|
178
|
Mardones GA, Burgos PV, Lin Y, Kloer DP, Magadán JG, Hurley JH, Bonifacino JS. Structural basis for the recognition of tyrosine-based sorting signals by the μ3A subunit of the AP-3 adaptor complex. J Biol Chem 2013; 288:9563-71. [PMID: 23404500 DOI: 10.1074/jbc.m113.450775] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tyrosine-based signals fitting the YXXØ motif mediate sorting of transmembrane proteins to endosomes, lysosomes, the basolateral plasma membrane of polarized epithelial cells, and the somatodendritic domain of neurons through interactions with the homologous μ1, μ2, μ3, and μ4 subunits of the corresponding AP-1, AP-2, AP-3, and AP-4 complexes. Previous x-ray crystallographic analyses identified distinct binding sites for YXXØ signals on μ2 and μ4, which were located on opposite faces of the proteins. To elucidate the mode of recognition of YXXØ signals by other members of the μ family, we solved the crystal structure at 1.85 Å resolution of the C-terminal domain of the μ3 subunit of AP-3 (isoform A) in complex with a peptide encoding a YXXØ signal (SDYQRL) from the trans-Golgi network protein TGN38. The μ3A C-terminal domain consists of an immunoglobulin-like β-sandwich organized into two subdomains, A and B. The YXXØ signal binds in an extended conformation to a site on μ3A subdomain A, at a location similar to the YXXØ-binding site on μ2 but not μ4. The binding sites on μ3A and μ2 exhibit similarities and differences that account for the ability of both proteins to bind distinct sets of YXXØ signals. Biochemical analyses confirm the identification of the μ3A site and show that this protein binds YXXØ signals with 14-19 μm affinity. The surface electrostatic potential of μ3A is less basic than that of μ2, in part explaining the association of AP-3 with intracellular membranes having less acidic phosphoinositides.
Collapse
Affiliation(s)
- Gonzalo A Mardones
- Instituto de Fisiología, Facultad de Medicina, and Centro de Investigación Sur-Austral en Enfermedades del Sistema Nervioso, Universidad Austral de Chile, Valdivia 5110566, Chile
| | | | | | | | | | | | | |
Collapse
|
179
|
Kim I, Pan W, Jones SA, Zhang Y, Zhuang X, Wu D. Clathrin and AP2 are required for PtdIns(4,5)P2-mediated formation of LRP6 signalosomes. ACTA ACUST UNITED AC 2013; 200:419-28. [PMID: 23400998 PMCID: PMC3575536 DOI: 10.1083/jcb.201206096] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PtdIns(4,5)P2 promotes the assembly of LRP6 signalosomes at the cell surface via the recruitment of AP2 and clathrin. Canonical Wnt signaling is initiated by the binding of Wnt proteins to their receptors, low-density lipoprotein-related protein 5 and 6 (LRP5/6) and frizzled proteins, leading to phosphatidylinositol (4,5)bisphosphate (PtdIns(4,5)P2) production, signalosome formation, and LRP phosphorylation. However, the mechanism by which PtdIns(4,5)P2 regulates the signalosome formation remains unclear. Here we show that clathrin and adaptor protein 2 (AP2) were part of the LRP6 signalosomes. The presence of clathrin and AP2 in the LRP6 signalosomes depended on PtdIns(4,5)P2, and both clathrin and AP2 were required for the formation of LRP6 signalosomes. In addition, WNT3A-induced LRP6 signalosomes were primarily localized at cell surfaces, and WNT3A did not induce marked LRP6 internalization. However, rapid PtdIns(4,5)P2 hydrolysis induced artificially after WNT3A stimulation could lead to marked LRP6 internalization. Moreover, we observed WNT3A-induced LRP6 and clathrin clustering at cell surfaces using super-resolution fluorescence microscopy. Therefore, we conclude that PtdIns(4,5)P2 promotes the assembly of LRP6 signalosomes via the recruitment of AP2 and clathrin and that LRP6 internalization may not be a prerequisite for Wnt signaling to β-catenin stabilization.
Collapse
Affiliation(s)
- Ingyu Kim
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | |
Collapse
|
180
|
DuBose DR, Wolff SC, Qi AD, Naruszewicz I, Nicholas RA. Apical targeting of the P2Y(4) receptor is directed by hydrophobic and basic residues in the cytoplasmic tail. Am J Physiol Cell Physiol 2013; 304:C228-39. [PMID: 23054062 PMCID: PMC3566436 DOI: 10.1152/ajpcell.00251.2012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 10/03/2012] [Indexed: 11/22/2022]
Abstract
The P2Y(4) receptor is selectively targeted to the apical membrane in polarized epithelial cell lines and has been shown to play a key role in intestinal chloride secretion. In this study, we delimit a 23 amino acid sequence within the P2Y(4) receptor C-tail that directs its apical targeting. Using a mutagenesis approach, we found that four hydrophobic residues near the COOH-terminal end of the signal are necessary for apical sorting, whereas two basic residues near the NH(2)-terminal end of the signal are involved to a lesser extent. Interestingly, mutation of the key hydrophobic residues results in a basolateral enrichment of the receptor construct, suggesting that the apical targeting sequence may prevent insertion or disrupt stability of the receptor at the basolateral membrane. The signal is not sequence specific, as an inversion of the 23 amino acid sequence does not disrupt apical targeting. We also show that the apical targeting sequence is an autonomous signal and is capable of redistributing the normally basolateral P2Y(12) receptor, suggesting that the apical signal is dominant over the basolateral signal in the main body of the P2Y(12) receptor. The targeting sequence is unique to the P2Y(4) receptor, and sequence alignments of the COOH-terminal tail of mammalian orthologs reveal that the hydrophobic residues in the targeting signal are highly conserved. These data define the novel apical sorting signal of the P2Y(4) receptor, which may represent a common mechanism for trafficking of epithelial transmembrane proteins.
Collapse
Affiliation(s)
- D Ross DuBose
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
181
|
Johnson KE, Mitra S, Katoch P, Kelsey LS, Johnson KR, Mehta PP. Phosphorylation on Ser-279 and Ser-282 of connexin43 regulates endocytosis and gap junction assembly in pancreatic cancer cells. Mol Biol Cell 2013; 24:715-33. [PMID: 23363606 PMCID: PMC3596244 DOI: 10.1091/mbc.e12-07-0537] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The molecular mechanisms regulating the assembly of connexins (Cxs) into gap junctions are poorly understood. Using human pancreatic tumor cell lines BxPC3 and Capan-1, which express Cx26 and Cx43, we show that, upon arrival at the cell surface, the assembly of Cx43 is impaired. Connexin43 fails to assemble, because it is internalized by clathrin-mediated endocytosis. Assembly is restored upon expressing a sorting-motif mutant of Cx43, which does not interact with the AP2 complex, and by expressing mutants that cannot be phosphorylated on Ser-279 and Ser-282. The mutants restore assembly by preventing clathrin-mediated endocytosis of Cx43. Our results also document that the sorting-motif mutant is assembled into gap junctions in cells in which the expression of endogenous Cx43 has been knocked down. Remarkably, Cx43 mutants that cannot be phosphorylated on Ser-279 or Ser-282 are assembled into gap junctions only when connexons are composed of Cx43 forms that can be phosphorylated on these serines and forms in which phosphorylation on these serines is abolished. Based on the subcellular fate of Cx43 in single and contacting cells, our results document that the endocytic itinerary of Cx43 is altered upon cell-cell contact, which causes Cx43 to traffic by EEA1-negative endosomes en route to lysosomes. Our results further show that gap-junctional plaques formed of a sorting motif-deficient mutant of Cx43, which is unable to be internalized by the clathrin-mediated pathway, are predominantly endocytosed in the form of annular junctions. Thus the differential phosphorylation of Cx43 on Ser-279 and Ser-282 is fine-tuned to control Cx43's endocytosis and assembly into gap junctions.
Collapse
Affiliation(s)
- Kristen E Johnson
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | | | |
Collapse
|
182
|
Busman-Sahay K, Drake L, Sitaram A, Marks M, Drake JR. Cis and trans regulatory mechanisms control AP2-mediated B cell receptor endocytosis via select tyrosine-based motifs. PLoS One 2013; 8:e54938. [PMID: 23372794 PMCID: PMC3553015 DOI: 10.1371/journal.pone.0054938] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 12/18/2012] [Indexed: 12/20/2022] Open
Abstract
Following antigen recognition, B cell receptor (BCR)-mediated endocytosis is the first step of antigen processing and presentation to CD4+ T cells, a crucial component of the initiation and control of the humoral immune response. Despite this, the molecular mechanism of BCR internalization is poorly understood. Recently, studies of activated B cell-like diffuse large B cell lymphoma (ABC DLBCL) have shown that mutations within the BCR subunit CD79b leads to increased BCR surface expression, suggesting that CD79b may control BCR internalization. Adaptor protein 2 (AP2) is the major mediator of receptor endocytosis via clathrin-coated pits. The BCR contains five putative AP2-binding YxxØ motifs, including four that are present within two immunoreceptor tyrosine-based activation motifs (ITAMs). Using a combination of in vitro and in situ approaches, we establish that the sole mediator of AP2-dependent BCR internalization is the membrane proximal ITAM YxxØ motif in CD79b, which is a major target of mutation in ABC DLBCL. In addition, we establish that BCR internalization can be regulated at a minimum of two different levels: regulation of YxxØ AP2 binding in cis by downstream ITAM-embedded DCSM and QTAT regulatory elements and regulation in trans by the partner cytoplasmic domain of the CD79 heterodimer. Beyond establishing the basic rules governing BCR internalization, these results illustrate an underappreciated role for ITAM residues in controlling clathrin-dependent endocytosis and highlight the complex mechanisms that control the activity of AP2 binding motifs in this receptor system.
Collapse
Affiliation(s)
- Kathleen Busman-Sahay
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Lisa Drake
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Anand Sitaram
- Departments of Pathology and Laboratory Medicine and Physiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Michael Marks
- Departments of Pathology and Laboratory Medicine and Physiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - James R. Drake
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| |
Collapse
|
183
|
Netherton CL, Wileman TE. African swine fever virus organelle rearrangements. Virus Res 2013; 173:76-86. [PMID: 23291273 DOI: 10.1016/j.virusres.2012.12.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 11/30/2012] [Accepted: 12/03/2012] [Indexed: 11/28/2022]
Abstract
Like most viruses African swine fever virus (ASFV) subsumes the host cell apparatus in order to facilitate its replication. ASFV replication is a highly orchestrated process with a least four stages of transcription, immediate-early, early, intermediate and late. As the infective cycle progresses through these stages most if not all of the organelles that comprise a nucleated cell are modified, adapted or in some cases destroyed. The entry of the virus is receptor-mediated, but the precise mechanism of endocytosis is a matter of keen, current debate. Once ASFV has exited from the endosomal-lysosomal complex the virus life-cycle enters into an intimate relationship with the microtubular network. Genome replication is believed to be initiated within the nucleus and ASFV infection completely reorders the structure of this organelle. The majority of replication and assembly occurs in discrete, perinuclear regions of the cell called virus factories and finally progeny virions are transported to the plasma membrane along microtubules where they bud out or are propelled away along actin projections to infect new cells. The generation of ASFV replication sites induces profound reorganisation of the organelles that comprise the secretory pathway and may contribute to the induction of cellular stress responses that ASFV modulates. The level of organisation and complexity of virus factories are not dissimilar to those seen in cellular organelles. Like their cellular counterparts the formation of virus factories, as well as virus entry and exit, are dependent on the various components of the cytoskeleton. This review will summarise these rearrangements, the viral proteins involved and their functional consequences.
Collapse
Affiliation(s)
- Christopher L Netherton
- Vaccinology Group, The Pirbright Institute, Pirbright, Woking, Surrey GU24 0NF, United Kingdom.
| | | |
Collapse
|
184
|
Bonnemaison ML, Eipper BA, Mains RE. Role of adaptor proteins in secretory granule biogenesis and maturation. Front Endocrinol (Lausanne) 2013; 4:101. [PMID: 23966980 PMCID: PMC3743005 DOI: 10.3389/fendo.2013.00101] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 07/31/2013] [Indexed: 12/29/2022] Open
Abstract
In the regulated secretory pathway, secretory granules (SGs) store peptide hormones that are released on demand. SGs are formed at the trans-Golgi network and must undergo a maturation process to become responsive to secretagogues. The production of mature SGs requires concentrating newly synthesized soluble content proteins in granules whose membranes contain the appropriate integral membrane proteins. The mechanisms underlying the sorting of soluble and integral membrane proteins destined for SGs from other proteins are not yet well understood. For soluble proteins, luminal pH and divalent metals can affect aggregation and interaction with surrounding membranes. The trafficking of granule membrane proteins can be controlled by both luminal and cytosolic factors. Cytosolic adaptor proteins (APs), which recognize the cytosolic domains of proteins that span the SG membrane, have been shown to play essential roles in the assembly of functional SGs. Adaptor protein 1A (AP-1A) is known to interact with specific motifs in its cargo proteins and with the clathrin heavy chain, contributing to the formation of a clathrin coat. AP-1A is present in patches on immature SG membranes, where it removes cargo and facilitates SG maturation. AP-1A recruitment to membranes can be modulated by Phosphofurin Acidic Cluster Sorting protein 1 (PACS-1), a cytosolic protein which interacts with both AP-1A and cargo that has been phosphorylated by casein kinase II. A cargo/PACS-1/AP-1A complex is necessary to drive the appropriate transport of several cargo proteins within the regulated secretory pathway. The Golgi-localized, γ-ear containing, ADP-ribosylation factor binding (GGA) family of APs serve a similar role. We review the functions of AP-1A, PACS-1, and GGAs in facilitating the retrieval of proteins from immature SGs and review examples of cargo proteins whose trafficking within the regulated secretory pathway is governed by APs.
Collapse
Affiliation(s)
- Mathilde L. Bonnemaison
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Betty A. Eipper
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT, USA
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Richard E. Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
- *Correspondence: Richard E. Mains, Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3401, USA e-mail:
| |
Collapse
|
185
|
Masaki T. Polarization and myelination in myelinating glia. ISRN NEUROLOGY 2012; 2012:769412. [PMID: 23326681 PMCID: PMC3544266 DOI: 10.5402/2012/769412] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 11/13/2012] [Indexed: 01/13/2023]
Abstract
Myelinating glia, oligodendrocytes in central nervous system and Schwann cells in peripheral nervous system, form myelin sheath, a multilayered membrane system around axons enabling salutatory nerve impulse conduction and maintaining axonal integrity. Myelin sheath is a polarized structure localized in the axonal side and therefore is supposed to be formed based on the preceding polarization of myelinating glia. Thus, myelination process is closely associated with polarization of myelinating glia. However, cell polarization has been less extensively studied in myelinating glia than other cell types such as epithelial cells. The ultimate goal of this paper is to provide insights for the field of myelination research by applying the information obtained in polarity study in other cell types, especially epithelial cells, to cell polarization of myelinating glia. Thus, in this paper, the main aspects of cell polarization study in general are summarized. Then, they will be compared with polarization in oligodendrocytes. Finally, the achievements obtained in polarization study for epithelial cells, oligodendrocytes, and other types of cells will be translated into polarization/myelination process by Schwann cells. Then, based on this model, the perspectives in the study of Schwann cell polarization/myelination will be discussed.
Collapse
Affiliation(s)
- Toshihiro Masaki
- Department of Medical Science, Teikyo University of Science, 2-2-1 Senju-Sakuragi, Adachi-ku, Tokyo 120-0045, Japan
| |
Collapse
|
186
|
Milev MP, Ravichandran M, Khan MF, Schriemer DC, Mouland AJ. Characterization of staufen1 ribonucleoproteins by mass spectrometry and biochemical analyses reveal the presence of diverse host proteins associated with human immunodeficiency virus type 1. Front Microbiol 2012; 3:367. [PMID: 23125841 PMCID: PMC3486646 DOI: 10.3389/fmicb.2012.00367] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/27/2012] [Indexed: 12/02/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) unspliced, 9 kb genomic RNA (vRNA) is exported from the nucleus for the synthesis of viral structural proteins and enzymes (Gag and Gag/Pol) and is then transported to sites of virus assembly where it is packaged into progeny virions. vRNA co-exists in the cytoplasm in the context of the HIV-1 ribonucleoprotein (RNP) that is currently defined by the presence of Gag and several host proteins including the double-stranded RNA-binding protein, Staufen1. In this study we isolated Staufen1 RNP complexes derived from HIV-1-expressing cells using tandem affinity purification and have identified multiple host protein components by mass spectrometry. Four viral proteins, including Gag, Gag/Pol, Env and Nef as well as >200 host proteins were identified in these RNPs. Moreover, HIV-1 induces both qualitative and quantitative differences in host protein content in these RNPs. 22% of Staufen1-associated factors are virion-associated suggesting that the RNP could be a vehicle to achieve this. In addition, we provide evidence on how HIV-1 modulates the composition of cytoplasmic Staufen1 RNPs. Biochemical fractionation by density gradient analyses revealed new facets on the assembly of Staufen1 RNPs. The assembly of dense Staufen1 RNPs that contain Gag and several host proteins were found to be entirely RNA-dependent but their assembly appeared to be independent of Gag expression. Gag-containing complexes fractionated into a lighter and another, more dense pool. Lastly, Staufen1 depletion studies demonstrated that the previously characterized Staufen1 HIV-1-dependent RNPs are most likely aggregates of smaller RNPs that accumulate at juxtanuclear domains. The molecular characterization of Staufen1 HIV-1 RNPs will offer important information on virus-host cell interactions and on the elucidation of the function of these RNPs for the transport of Gag and the fate of the unspliced vRNA in HIV-1-producing cells.
Collapse
Affiliation(s)
- Miroslav P Milev
- HIV-1 Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital Montréal, QC, Canada ; Division of Experimental Medicine, Department of Medicine, McGill University Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
187
|
Marks MS, Ohno H, Kirchnausen T, Bonracino JS. Protein sorting by tyrosine-based signals: adapting to the Ys and wherefores. Trends Cell Biol 2012; 7:124-8. [PMID: 17708922 DOI: 10.1016/s0962-8924(96)10057-x] [Citation(s) in RCA: 254] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The endocytic and secretory pathways of eukaryotic cells consist of an array of membrane-bound compartments, each of which contains a characteristic cohort of transmembrane proteins. Understanding how these proteins are targeted to and maintained within their appropriate compartments will be crucial for unravelling the mysteries of organelle biogenesis and function. A common event in the sorting of many transmembrane proteins is the interaction between a sorting signal in the cytosolic domain of the targeted protein and a component of an organellar protein coat. Here, we summarize recent findings on the mechanism of sorting by one type of signal, characterized by the presence of a critical tyrosine (Y) residue, and attempt to integrate these findings into a hypothetical model for protein sorting in the endocytic and late (post-Golgi) secretory pathways.
Collapse
|
188
|
Macro L, Jaiswal JK, Simon SM. Dynamics of clathrin-mediated endocytosis and its requirement for organelle biogenesis in Dictyostelium. J Cell Sci 2012; 125:5721-32. [PMID: 22992464 DOI: 10.1242/jcs.108837] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The protein clathrin mediates one of the major pathways of endocytosis from the extracellular milieu and plasma membrane. In single-cell eukaryotes, such as Saccharomyces cerevisiae, the gene encoding clathrin is not an essential gene, raising the question of whether clathrin conveys specific advantages for multicellularity. Furthermore, in contrast to mammalian cells, endocytosis in S. cerevisiae is not dependent on either clathrin or adaptor protein 2 (AP2), an endocytic adaptor molecule. In this study, we investigated the requirement for components of clathrin-mediated endocytosis (CME) in another unicellular organism, the amoeba Dictyostelium. We identified a heterotetrameric AP2 complex in Dictyostelium that is similar to that which is found in higher eukaryotes. By simultaneously imaging fluorescently tagged clathrin and AP2, we found that, similar to higher eukaryotes, these proteins colocalized to membrane puncta that move into the cell together. In addition, the contractile vacuole marker protein, dajumin-green fluorescent protein (GFP), is trafficked via the cell membrane and internalized by CME in a clathrin-dependent, AP2-independent mechanism. This pathway is distinct from other endocytic mechanisms in Dictyostelium. Our finding that CME is required for the internalization of contractile vacuole proteins from the cell membrane explains the contractile vacuole biogenesis defect in Dictyostelium cells lacking clathrin. Our results also suggest that the machinery for CME and its role in organelle maintenance appeared early during eukaryotic evolution. We hypothesize that dependence of endocytosis on specific components of the CME pathway evolved later, as demonstrated by internalization independent of AP2 function.
Collapse
Affiliation(s)
- Laura Macro
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | | | | |
Collapse
|
189
|
Farías GG, Cuitino L, Guo X, Ren X, Jarnik M, Mattera R, Bonifacino JS. Signal-mediated, AP-1/clathrin-dependent sorting of transmembrane receptors to the somatodendritic domain of hippocampal neurons. Neuron 2012; 75:810-23. [PMID: 22958822 PMCID: PMC3439821 DOI: 10.1016/j.neuron.2012.07.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2012] [Indexed: 11/22/2022]
Abstract
Plasma membranes of the somatodendritic and axonal domains of neurons are known to have different protein compositions, but the molecular mechanisms that determine this polarized protein distribution remain poorly understood. Herein we show that somatodendritic sorting of various transmembrane receptors in rat hippocampal neurons is mediated by recognition of signals within the cytosolic domains of the proteins by the μ1A subunit of the adaptor protein-1 (AP-1) complex. This complex, in conjunction with clathrin, functions in the neuronal soma to exclude somatodendritic proteins from axonal transport carriers. Perturbation of this process affects dendritic spine morphology and decreases the number of synapses. These findings highlight the primary recognition event that underlies somatodendritic sorting and contribute to the evolving view of AP-1 as a global regulator of cell polarity.
Collapse
Affiliation(s)
- Ginny G. Farías
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health, Bethesda, MD 20892, USA
| | - Loreto Cuitino
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaoli Guo
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health, Bethesda, MD 20892, USA
| | - Xuefeng Ren
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health, Bethesda, MD 20892, USA
| | - Michal Jarnik
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health, Bethesda, MD 20892, USA
| | - Rafael Mattera
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health, Bethesda, MD 20892, USA
| | - Juan S. Bonifacino
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
190
|
Tu L, Chen L, Banfield DK. A conserved N-terminal arginine-motif in GOLPH3-family proteins mediates binding to coatomer. Traffic 2012; 13:1496-507. [PMID: 22889169 DOI: 10.1111/j.1600-0854.2012.01403.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/05/2012] [Accepted: 08/13/2012] [Indexed: 01/08/2023]
Abstract
Vps74p, a member of the GOLPH3 protein family, binds directly to coatomer and the cytoplasmic tails of a subset of Golgi-resident glycosyltransferases to mediate their Golgi retention. We identify a cluster of arginine residues at the N-terminal end of GOLPH3 proteins that are necessary and sufficient to mediate coatomer binding. While loss of coatomer binding renders Vps74p non-functional for glycosyltransferase retention, the Golgi membrane-binding capabilities of the mutant protein are not significantly reduced. We establish that the oligomerization status and phosphatidylinositol-4-phosphate-binding properties of Vps74p largely account for the membrane-binding capacity of the protein and identify an Arf1p-Vps74p interaction as a potential contributing factor in Vps74p Golgi membrane association.
Collapse
Affiliation(s)
- Linna Tu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR of China
| | | | | |
Collapse
|
191
|
Kanda VA, Abbott GW. KCNE Regulation of K(+) Channel Trafficking - a Sisyphean Task? Front Physiol 2012; 3:231. [PMID: 22754540 PMCID: PMC3385356 DOI: 10.3389/fphys.2012.00231] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/08/2012] [Indexed: 11/16/2022] Open
Abstract
Voltage-gated potassium (Kv) channels shape the action potentials of excitable cells and regulate membrane potential and ion homeostasis in excitable and non-excitable cells. With 40 known members in the human genome and a variety of homomeric and heteromeric pore-forming α subunit interactions, post-translational modifications, cellular locations, and expression patterns, the functional repertoire of the Kv α subunit family is monumental. This versatility is amplified by a host of interacting proteins, including the single membrane-spanning KCNE ancillary subunits. Here, examining both the secretory and the endocytic pathways, we review recent findings illustrating the surprising virtuosity of the KCNE proteins in orchestrating not just the function, but also the composition, diaspora and retrieval of channels formed by their Kv α subunit partners.
Collapse
Affiliation(s)
- Vikram A Kanda
- Department of Biology, Manhattan College Riverdale, New York, NY, USA
| | | |
Collapse
|
192
|
Abstract
Many studies have documented how extensively HIV-1 and related viruses interact with host cells. Virus-host interactions are of two conceptual types. First, viruses have evolved to make use of numerous host-cell functions to facilitate their own replication. Second, hosts have evolved a number of activities to inhibit virus replication. Understanding the scope and details of HIV-host interactions has been an extraordinary rich scientific endeavor, and in addition to their biomedical importance, studies in this area have established HIV as a model system in virology. Here, I present an overview of how HIV-1 interacts with some key host cell factors during its replication cycle.
Collapse
|
193
|
Ortega B, Mason AK, Welling PA. A tandem Di-hydrophobic motif mediates clathrin-dependent endocytosis via direct binding to the AP-2 ασ2 subunits. J Biol Chem 2012; 287:26867-75. [PMID: 22711530 DOI: 10.1074/jbc.m112.341990] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Select plasma membrane proteins can be marked as cargo for inclusion into clathrin-coated pits by common internalization signals (e.g. YXXΦ, dileucine motifs, NPXY) that serve as universal recognition sites for the AP-2 adaptor complex or other clathrin-associated sorting proteins. However, some surface proteins, such as the Kir2.3 potassium channel, lack canonical signals but are still targeted for clathrin-dependent endocytosis. Here, we explore the mechanism. We found an unusual endocytic signal in Kir2.3 that is based on two consecutive pairs of hydrophobic residues. Characterized by the sequence ΦΦXΦΦ (a tandem di-hydrophobic (TDH) motif, where Φ is a hydrophobic amino acid), the signal shows no resemblance to other endocytic motifs, yet it directly interacts with AP-2 to target the Kir2.3 potassium channel into the endocytic pathway. We found that the tandem di-hydrophobic motif directly binds to the ασ2 subunits of AP-2, interacting within a large hydrophobic cleft that encompasses part of the docking site for di-Leu signals, but includes additional structures. These observations expand the repertoire of clathrin-dependent internalization signals and the ways in which AP-2 can coordinate endocytosis of cargo proteins.
Collapse
Affiliation(s)
- Bernardo Ortega
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
194
|
Hung WS, Huang CL, Fan JT, Huang DY, Yeh CF, Cheng JC, Tseng CP. The endocytic adaptor protein Disabled-2 is required for cellular uptake of fibrinogen. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1778-88. [PMID: 22705885 DOI: 10.1016/j.bbamcr.2012.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 05/22/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
Abstract
Endocytosis is pivotal for uptake of fibrinogen from plasma into megakaryocytes and platelet α-granules. Due to the complex adaptor and cargo contents in endocytic vehicles, the underlying mechanism of fibrinogen uptake is not yet completely elucidated. In this study, we investigated whether the endocytic adaptor protein Disabled-2 (DAB2) mediates fibrinogen uptake in an adaptor-specific manner. By employing primary megakaryocytes and megakaryocytic differentiating human leukemic K562 cells as the study models, we found that fibrinogen uptake is associated with the expression of integrin αIIbβ3 and DAB2 and is mediated through clathrin-dependent manner. Accordingly, constitutive and inducible knockdown of DAB2 by small interfering RNA reduced fibrinogen uptake for 53.2 ± 9.8% and 59.0 ± 10.7%, respectively. Culturing the cells in hypertonic solution or in the presence of clathrin inhibitor chlorpromazine abrogated clathrin-dependent endocytosis and diminished the uptake of fibrinogen. Consistent with these findings, 72.2 ± 0.2% of cellular DAB2 was colocalized with clathrin, whereas 56.4±4.1% and 54.6 ± 2.0% of the internalized fibrinogen were colocalized with clathrin and DAB2, respectively. To delineate whether DAB2 mediates fibrinogen uptake in an adaptor-specific manner, K562 stable cell lines with knockdown of the adaptor protein-2 (AP-2) or double knockdown of AP-2/DAB2 were established. The AP-2 knockdown cells elicited normal fibrinogen uptake activity but the uptake of collagen was diminished. In addition, collagen uptake was further reduced in DAB2/AP-2 knockdown cells. These findings thereby define an adaptor-specific mechanism in the control of fibrinogen uptake and implicate that DAB2 is the key adaptor in the clathrin-associated endocytic complexes to mediate fibrinogen internalization.
Collapse
Affiliation(s)
- Wei-Shan Hung
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
195
|
Abstract
PAQR10 (progestin and adipoQ receptor 10) is a Golgi-localized protein that is able to enhance the retention and activation of Ras proteins in the Golgi apparatus, subsequently leading to a sustained ERK (extracellular-signal-regulated kinase) signalling. However, little is known about the topology and functional domains of PAQR10. In the present study, we extensively dissected and analysed the structure of PAQR10. The topology analysis reveals that PAQR10 is an integral membrane protein with its N-terminus facing the cytosol. Multiple domains, including the membrane-proximal region at the N-terminus, the membrane-proximal region at the C-terminus and the three loops facing the cytosol, were found to be required for PAQR10 to reside in the Golgi apparatus, to stimulate ERK phosphorylation and to tether Ras to the Golgi apparatus. Furthermore, when PAQR10 was artificially forced to be expressed in the endoplasmic reticulum, it could neither mobilize Ras to the Golgi apparatus nor increase ERK phosphorylation. Finally, the PAQR10 mutants that lost Golgi localization failed to promote differentiation of PC12 cells. Collectively, the results of the present study indicate that Golgi localization is indispensable for PAQR10 to implement its regulatory functions in the Ras signalling cascade.
Collapse
|
196
|
Teckchandani A, Mulkearns EE, Randolph TW, Toida N, Cooper JA. The clathrin adaptor Dab2 recruits EH domain scaffold proteins to regulate integrin β1 endocytosis. Mol Biol Cell 2012; 23:2905-16. [PMID: 22648170 PMCID: PMC3408417 DOI: 10.1091/mbc.e11-12-1007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Endocytic adaptor proteins facilitate cargo recruitment and clathrin-coated pit nucleation. The prototypical clathrin adaptor AP2 mediates cargo recruitment, maturation, and scission of the pit by binding cargo, clathrin, and accessory proteins, including the Eps-homology (EH) domain proteins Eps15 and intersectin. However, clathrin-mediated endocytosis of some cargoes proceeds efficiently in AP2-depleted cells. We found that Dab2, another endocytic adaptor, also binds to Eps15 and intersectin. Depletion of EH domain proteins altered the number and size of clathrin structures and impaired the endocytosis of the Dab2- and AP2-dependent cargoes, integrin β1 and transferrin receptor, respectively. To test the importance of Dab2 binding to EH domain proteins for endocytosis, we mutated the EH domain-binding sites. This mutant localized to clathrin structures with integrin β1, AP2, and reduced amounts of Eps15. Of interest, although integrin β1 endocytosis was impaired, transferrin receptor internalization was unaffected. Surprisingly, whereas clathrin structures contain both Dab2 and AP2, integrin β1 and transferrin localize in separate pits. These data suggest that Dab2-mediated recruitment of EH domain proteins selectively drives the internalization of the Dab2 cargo, integrin β1. We propose that adaptors may need to be bound to their cargo to regulate EH domain proteins and internalize efficiently.
Collapse
Affiliation(s)
- Anjali Teckchandani
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
197
|
KIF21A-mediated axonal transport and selective endocytosis underlie the polarized targeting of NCKX2. J Neurosci 2012; 32:4102-17. [PMID: 22442075 DOI: 10.1523/jneurosci.6331-11.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have previously shown that K(+)-dependent Na(+)/Ca(2+) exchanger (NCKX) is a major calcium clearance mechanism at the large axon terminals of central neurons, whereas their somata display little NCKX activity. We investigated mechanisms underlying the axonal polarization of NCKX2 in rat hippocampal neurons. We identified NCKX2 as the first neuron-specific cargo molecule of kinesin family member 21A (KIF21A). The intracellular loop of NCKX2 specifically interacted with the WD-40 repeats, a putative cargo-binding domain, of KIF21A. Dominant-negative mutant or depletion of KIF21A inhibited the transport of NCKX2-GFP to axon fibers. Knockdown of KIF21A caused calcium dysregulation at axonal boutons but not at somatodendritic regions. Despite the axonal polarization of the NCKX activity, both somatodendritic and axonal regions were immunoreactive to NCKX2. The surface expression of NCKX2 revealed by live-cell immunocytochemistry, however, displayed highly polarized distribution to the axon. Inhibition of endocytosis increased the somatodendritic surface NCKX2 and thus abolished the axonal polarization of surface NCKX2. These results indicate that KIF21A-mediated axonal transport and selective somatodendritic endocytosis underlie the axonal polarized surface expression of NCKX2.
Collapse
|
198
|
Prabhu Y, Burgos PV, Schindler C, Farías GG, Magadán JG, Bonifacino JS. Adaptor protein 2-mediated endocytosis of the β-secretase BACE1 is dispensable for amyloid precursor protein processing. Mol Biol Cell 2012; 23:2339-51. [PMID: 22553349 PMCID: PMC3374752 DOI: 10.1091/mbc.e11-11-0944] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
An adaptor protein complex, AP-2, is involved in the endocytosis of β-secretase (BACE1) via the clathrin-dependent machinery. Endosomal targeting of either the amyloid precursor protein (APP) and/or BACE1 is expendable for the amyloidogenic processing of APP. The β-site amyloid precursor protein (APP)–cleaving enzyme 1 (BACE1) is a transmembrane aspartyl protease that catalyzes the proteolytic processing of APP and other plasma membrane protein precursors. BACE1 cycles between the trans-Golgi network (TGN), the plasma membrane, and endosomes by virtue of signals contained within its cytosolic C-terminal domain. One of these signals is the DXXLL-motif sequence DISLL, which controls transport between the TGN and endosomes via interaction with GGA proteins. Here we show that the DISLL sequence is embedded within a longer [DE]XXXL[LI]-motif sequence, DDISLL, which mediates internalization from the plasma membrane by interaction with the clathrin-associated, heterotetrameric adaptor protein 2 (AP-2) complex. Mutation of this signal or knockdown of either AP-2 or clathrin decreases endosomal localization and increases plasma membrane localization of BACE1. Remarkably, internalization-defective BACE1 is able to cleave an APP mutant that itself cannot be delivered to endosomes. The drug brefeldin A reversibly prevents BACE1-catalyzed APP cleavage, ruling out that this reaction occurs in the endoplasmic reticulum (ER) or ER–Golgi intermediate compartment. Taken together, these observations support the notion that BACE1 is capable of cleaving APP in late compartments of the secretory pathway.
Collapse
Affiliation(s)
- Yogikala Prabhu
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
199
|
Hsu VW, Bai M, Li J. Getting active: protein sorting in endocytic recycling. Nat Rev Mol Cell Biol 2012; 13:323-8. [PMID: 22498832 DOI: 10.1038/nrm3332] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Endocytic recycling returns proteins to the plasma membrane in many physiological contexts. Studies of these events have helped to elucidate fundamental mechanisms that underlie recycling. Recycling was for some time considered to be the exception to a general mechanism of active cargo sorting in multiple intracellular pathways. In recent years, studies have begun to reconcile this seeming disparity and also suggest explanations for why early recycling studies did not detect active sorting. Further articulation of this emerging trend has far-reaching implications for a deeper understanding of many physiological and pathological events that require recycling.
Collapse
Affiliation(s)
- Victor W Hsu
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachsuetts 02115, USA.
| | | | | |
Collapse
|
200
|
Buroker NE, Huang JY, Barboza J, Ledee DR, Eastman RJ, Reinecke H, Ning XH, Bassuk JA, Portman MA. The adaptor-related protein complex 2, alpha 2 subunit (AP2α2) gene is a peroxisome proliferator-activated receptor cardiac target gene. Protein J 2012; 31:75-83. [PMID: 22160327 DOI: 10.1007/s10930-011-9379-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A peroxisome proliferator-actived receptor (PPAR) response element (RE) in the promoter region of the adaptor-related protein complex 2, alpha 2 subunit (AP2α2) of mouse heart has been identified. The steroid hormone nuclear PPARs and the retinoid X receptors (RXRs) are important transcriptional factors that regulate gene expression, cell differentiation and lipid metabolism. They form homo- (RXR) and hetero- (PPAR-RXR) dimers that bind DNA at various REs. The AP2α2 gene is part of complex and process that transports lipids and proteins from the plasma membrane to the endosomal system. A PPAR activator (Wy14643) and DMSO (vehicle) was introduced into control and δ337T thyroid hormone receptor (TRβ1) transgenic mice. Heart tissue was extracted and AP2α2 gene expression was compared using Affymetrix expression arrays and qRT PCR among four groups [control, control with Wy14643, δ337T TRβ1 and δ337T TRβ1 with Wy14643]. The gene expression of AP2α2 in the Wy14643 control and transgenic mouse groups was significantly up regulated over the vehicle mouse groups in both the array (p < 0.01) and qRT PCR (p < 0.01) studies. Duplex oligo DNAs containing the PPAR/RXR motif (AGGTCA/TCCAGT) from the AP2α2 promoter were used in EMSA to verify binding of the PPAR and RXR receptors to their REs. pGL4.0 [Luc] constructs of the AP2α2 promoter with and without the PPAR/RXR motifs were co-transfected with mouse PPARα, β or γ1 into HepG2 cells and used in lucerifase assays to verify gene activation. In conclusion our study revealed that PPARα regulates the mouse cardiac AP2α2 gene in both the control and transgenic mouse.
Collapse
Affiliation(s)
- Norman E Buroker
- Department of Cardiology, Seattle Children's Research Institute, Seattle, WA 98101, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|