151
|
Pochapsky TC, Kazanis S, Dang M. Conformational plasticity and structure/function relationships in cytochromes P450. Antioxid Redox Signal 2010; 13:1273-96. [PMID: 20446763 PMCID: PMC2959183 DOI: 10.1089/ars.2010.3109] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cytochrome P450s are a superfamily of enzymes that are found in all kingdoms of living organisms, and typically catalyze the oxidative addition of atomic oxygen to an unactivated C-C or C-H bond. Over 8000 nonredundant sequences of putative and confirmed P450 enzymes have been identified, but three-dimensional structures have been determined for only a small fraction of these. While all P450 enzymes for which structures have been determined share a common global fold, the flexibility and modularity of structure around the active site account for the ability of P450 enzymes to accommodate a vast number of structurally dissimilar substrates and support a wide range of selective oxidations. In this review, known P450 structures are compared, and some structural criteria for prediction of substrate selectivity and reaction type are suggested. The importance of dynamic processes such as redox-dependent and effector-induced conformational changes in determining catalytic competence and regio- and stereoselectivity is discussed, and noncrystallographic methods for characterizing P450 structures and dynamics, in particular, mass spectrometry and nuclear magnetic resonance spectroscopy are reviewed.
Collapse
Affiliation(s)
- Thomas C Pochapsky
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, USA.
| | | | | |
Collapse
|
152
|
Thornton LE, Rupasinghe SG, Peng H, Schuler MA, Neff MM. Arabidopsis CYP72C1 is an atypical cytochrome P450 that inactivates brassinosteroids. PLANT MOLECULAR BIOLOGY 2010; 74:167-81. [PMID: 20669042 DOI: 10.1007/s11103-010-9663-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 07/06/2010] [Indexed: 05/20/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) are a diverse family of proteins that have specialized roles in secondary metabolism and in normal cell development. Two P450s in particular, CYP734A1 and CYP72C1, have been identified as brassinosteroid-inactivating enzymes important for steroid-mediated signal transduction in Arabidopsis thaliana. Genetic analyses have demonstrated that these P450s modulate growth throughout plant development. While members of the CYP734A subfamily inactivate brassinosteroids through C-26 hydroxylation, the biochemical activity of CYP72C1 is unknown. Because CYP734A1 and CYP72C1 in Arabidopsis diverge more than brassinosteroid inactivating P450s in other plants, this study examines the structure and biochemistry of each enzyme. Three-dimensional models were generated to examine the substrate binding site structures and determine how they might affect the function of each P450. These models have indicated that the active site of CYP72C1 does not contain several conserved amino acids typically needed for substrate hydroxylation. Heterologous expression of these P450s followed by substrate binding analyses have indicated that CYP734A1 binds active brassinosteroids, brassinolide and castasterone, as well as their upstream precursors whereas CYP72C1 binds precursors more effectively. Seedling growth assays have demonstrated that the genetic state of CYP734A1, but not CYP72C1, affected responsiveness to high levels of exogenous brassinolide supporting our observations that CYP72C1 acts on brassinolide precursors. Although there may be some overlap in their physiological function, the distinct biochemical functions of these proteins in Arabidopsis has significant potential to fine-tune the levels of different brassinosteroid hormones throughout plant growth and development.
Collapse
Affiliation(s)
- Leeann E Thornton
- Department of Biology, The College of New Jersey, Ewing, 08628, USA.
| | | | | | | | | |
Collapse
|
153
|
Axarli I, Prigipaki A, Labrou NE. Cytochrome P450 102A2 Catalyzes Efficient Oxidation of Sodium Dodecyl Sulphate: A Molecular Tool for Remediation. Enzyme Res 2010; 2010:125429. [PMID: 21048857 PMCID: PMC2956967 DOI: 10.4061/2010/125429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 04/11/2010] [Accepted: 05/21/2010] [Indexed: 11/25/2022] Open
Abstract
Bacterial cytochrome P450s (CYPs) constitute an important family of monooxygenase enzymes that carry out essential roles in the metabolism of endogenous compounds and foreign chemicals. In the present work we report the characterization of CYP102A2 from B. subtilis with a focus on its substrate specificity. CYP102A2 is more active in oxidation of sodium dodecyl sulphate (SDS) than any other characterized CYP. The effect of SDS and NADPH concentration on reaction rate showed nonhyperbolic and hyperbolic dependence, respectively. The enzyme was found to exhibit a bell-shaped curve for plots of activity versus pH, over pH values 5.9–8.5. The rate of SDS oxidation reached the maximum value approximately at pH 7.2 and the pH transition observed controlled by two pKas in the acidic (pKa = 6.7 ± 0.08) and basic (pKa = 7.3 ± 0.06) pH range. The results are discussed in relation to the future biotechnology applications of CYPs.
Collapse
Affiliation(s)
- Irene Axarli
- Laboratory of Enzyme Technology, Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | | | | |
Collapse
|
154
|
Schlangen K, Miosic S, Thill J, Halbwirth H. Cloning, functional expression, and characterization of a chalcone 3-hydroxylase from Cosmos sulphureus. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3451-9. [PMID: 20566567 DOI: 10.1093/jxb/erq169] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A chalcone 3-hydroxylase (CH3H) cDNA clone was isolated and characterized from Cosmos sulphureus petals accumulating butein (2',3,4,4'-tetrahydroxychalcone) derivatives as yellow flower pigments. The recombinant protein catalyses the introduction of an additional hydroxyl group in the B-ring of chalcones, a reaction with high similarity to the hydroxylation of flavonoids catalysed by the well-studied flavonoid 3'-hydroxylase (F3'H). CH3H shows high specificity for chalcones, but a low F3'H activity was also detected. By contrast, the common F3'H from C. sulphureus does not accept chalcones as substrates and is therefore unlikely to be involved in the creation of the B-ring hydroxylation pattern of the yellow flower pigments. CH3H was primarily expressed in young buds, the main tissue for chalcone pigment formation. Expression levels in open flowers and 3-d-old seedlings were lower and almost no CH3H expression was observed in leaves. F3'H, in contrast, showed the highest expression also in buds, but comparable expression rates in all other tissues tested. Recombinant hybrid proteins constructed from CH3H and F3'H fragments demonstrated that amino acid residues at a substrate recognition site and an insertion of four amino acid residues in a putative loop region have an impact on chalcone acceptance. This is the first identification of a CH3H cDNA from any plant species.
Collapse
Affiliation(s)
- Karin Schlangen
- Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften, Technische Universität Wien, Getreidemarkt 9/1665, A-1060 Wien, Austria
| | | | | | | |
Collapse
|
155
|
Haider SM, Patel JS, Poojari CS, Neidle S. Molecular modeling on inhibitor complexes and active-site dynamics of cytochrome P450 C17, a target for prostate cancer therapy. J Mol Biol 2010; 400:1078-98. [PMID: 20595043 DOI: 10.1016/j.jmb.2010.05.069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 05/21/2010] [Accepted: 05/27/2010] [Indexed: 10/19/2022]
Abstract
A molecular model for the P450 enzyme cytochrome P450 C17 (CYP17) is presented based on sequence alignments of multiple template structures and homology modeling. This enzyme plays a central role in the biosynthesis of testosterone and is emerging as a major target in prostate cancer, with the recently developed inhibitor abiraterone currently in advanced clinical trials. The model is described in detail, together with its validation, by providing structural explanations to available site-directed mutagenesis data. The CYP17 molecule in this model is in the form of a triangular prism, with an edge of approximately 55 A and a thickness of approximately 37 A. It is predominantly helical, comprising 13 alpha helices interspersed by six 3(10) helices and 11 beta-sheets. Multinanosecond molecular dynamics simulations in explicit solvent have been carried out, and principal components analysis has been used to reveal the details of dynamics around the active site. Coarse-grained methods have also been used to verify low-frequency motions, which have been correlated with active-site gating. The work also describes the results of docking synthetic inhibitors, including the drug abiraterone and the natural substrate pregnenolone, in the CYP17 active site together with molecular dynamics simulations on the complexes.
Collapse
Affiliation(s)
- Shozeb M Haider
- CRUK Biomolecular Structure Group, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | | | | | | |
Collapse
|
156
|
Kühnel K, Ke N, Cryle MJ, Sligar SG, Schuler MA, Schlichting I. Crystal structures of substrate-free and retinoic acid-bound cyanobacterial cytochrome P450 CYP120A1. Biochemistry 2010; 47:6552-9. [PMID: 18512957 DOI: 10.1021/bi800328s] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The crystal structures of substrate-free and all-trans-retinoic acid-bound CYP120A1 from Synechocystis sp. PCC 6803 were determined at 2.4 and 2.1 A resolution, respectively, representing the first structural characterization of a cyanobacterial P450. Features of CYP120A1 not observed in other P450 structures include an aromatic ladder flanking the channel leading to the active site and a triple-glycine motif within SRS5. Using spectroscopic methods, CYP120A1 is shown to bind 13-cis-retinoic acid, 9-cis-retinoic acid, and retinal with high affinity and dissociation constants of less than 1 microM. Metabolism of retinoic acid by CYP120A1 suggests that CYP120A1 hydroxylates a variety of retinoid derivatives in vivo. On the basis of the retinoic acid-bound CYP120A1 crystal structure, we propose that either carbon 2 or the methyl groups (C16 or C17) of the beta-ionone ring are modified by CYP120A1.
Collapse
Affiliation(s)
- Karin Kühnel
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
157
|
Glutamate–haem ester bond formation is disfavoured in flavocytochrome P450 BM3: characterization of glutamate substitution mutants at the haem site of P450 BM3. Biochem J 2010; 427:455-66. [DOI: 10.1042/bj20091603] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bacillus megaterium flavocytochrome P450 BM3 (CYP102A1) is a biotechnologically important cytochrome P450/P450 reductase fusion enzyme. Mutants I401E, F261E and L86E were engineered near the haem 5-methyl group, to explore the ability of the glutamate carboxylates to form ester linkages with the methyl group, as observed for eukaryotic CYP4 relatives. Although no covalent linkage was detected, mutants displayed marked alterations in substrate/inhibitor affinity, with L86E and I401E mutants having lower Kd values for arachidonic acid and dodecanoic (lauric) acid than WT (wild-type) BM3. All mutations induced positive shifts in haem Fe(III)/Fe(II) potential, with substrate-free I401E (−219 mV) being >170 mV more positive than WT BM3. The elevated potential stimulated FMN-to-haem electron transfer ~2-fold (to 473 s−1) in I401E, and resulted in stabilization of Fe(II)O2 complexes in the I401E and L86E P450s. EPR demonstrated some iron co-ordination by glutamate carboxylate in L86E and F261E mutants, indicating structural plasticity in the haem domains. The Fe(II)O2 complex is EPR-silent, probably resulting from antiferromagnetic coupling between Fe(III) and bound superoxide in a ferric superoxo species. Structural analysis of mutant haem domains revealed modest rearrangements, including altered haem propionate interactions that may underlie the thermodynamic perturbations observed. The mutant flavocytochromes demonstrated WT-like hydroxylation of dodecanoic acid, but regioselectivity was skewed towards ω−3 hydroxydodecanoate formation in F261E and towards ω−1 hydroxydodecanoate production in I401E. Our data point strongly to a likelihood that glutamate–haem linkages are disfavoured in this most catalytically efficient P450, possibly due to the absence of a methylene radical species during catalysis.
Collapse
|
158
|
Swart AC, Storbeck KH, Swart P. A single amino acid residue, Ala 105, confers 16alpha-hydroxylase activity to human cytochrome P450 17alpha-hydroxylase/17,20 lyase. J Steroid Biochem Mol Biol 2010; 119:112-20. [PMID: 20043997 DOI: 10.1016/j.jsbmb.2009.12.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/17/2009] [Accepted: 12/21/2009] [Indexed: 11/19/2022]
Abstract
In adrenal steroidogenesis, CYP17 catalyses the 17alpha-hydroxylation of pregnenolone and progesterone and the subsequent 17,20-lyase reaction, yielding adrenal androgens. The enzyme exhibits distinctly different selectivities towards these substrates in various species. CYP17 has also been shown to exhibit 16alpha-hydroxylase activity towards progesterone in some species, with only human and chimp CYP17 catalysing the biosynthesis of substantial amounts of 16-OHprogesterone. The 16alpha-hydroxylase activity was investigated by introducing an Ala105Leu substitution into human CYP17. The converse mutation, Leu105Ala was introduced into the baboon, goat and pig enzymes. Wt human CYP17 converted approximately 30% progesterone to 16-OHprogesterone while the Ala105Leu mutant converted negligible amounts to 16-OHprogesterone ( approximately 9%), comparable to wt CYP17 of the other three species when expressed in COS-1 cells. The ratio of 17-hydroxylated products to 16-OHprogesterone of human CYP17 was 2.7 and that of the mutant human construct 10.5. Similar ratios were observed for human and goat CYP17 with the corresponding Ala or Leu residues. Although the Leu105Ala mutation of both baboon and pig CYP17 exhibited the same trend regarding the ratios, the rate of progesterone conversion was reduced. Coexpression with cytochrome b(5) significantly decreased the ratio of 17-hydroxylated products to 16-OHprogesterone in the Leu105 constructs, while effects were negligible with Ala at this position. Homology models show that Ala105 faces towards the active pocket in the predicted B'-C domain of CYP17. The smaller residue allows more flexibility of movement in the active pocket than Leu, presenting both the C16 and C17 of progesterone to the iron-oxy complex.
Collapse
Affiliation(s)
- Amanda C Swart
- Department of Biochemistry, University of Stellenbosch, Stellenbosch 7600, South Africa.
| | | | | |
Collapse
|
159
|
Lin HL, Zhang H, Jushchyshyn M, Hollenberg PF. Covalent modification of Thr302 in cytochrome P450 2B1 by the mechanism-based inactivator 4-tert-butylphenylacetylene. J Pharmacol Exp Ther 2010; 333:663-9. [PMID: 20200115 DOI: 10.1124/jpet.109.164350] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanism of inactivation of cytochrome P450 2B1 (CYP2B1) by 4-tert-butylphenylacetylene (BPA) has been characterized previously to be caused by the covalent binding of a reactive intermediate to the apoprotein rather than heme destruction (J Pharmacol Exp Ther 331:392-403, 2009). The identification of a BPA-glutathione conjugate and the increase in the mass of the BPA-adducted apoprotein have indicated that the mass of adduct is 174 Da, equivalent to the mass of BPA plus one oxygen atom. To identify the adducted residue, BPA-inactivated CYP2B1 was digested with trypsin, and the digest was then analyzed by using capillary liquid chromatography with a LTQ linear ion trap mass spectrometer as the detector. A mass shift of 174 Da was used for a SEQUEST database search. The tandem mass spectrometry fragmentation of the modified peptide and the identity of modified residue were determined. The results revealed a mass increase of 174 Da for the peptide sequence (296)FFAGTSSTTLR(308) in the I-helix of CYP2B1 and that the site of adduction formation is Thr302. Homology modeling and ligand docking studies showed that BPA binds in close proximity to both the heme iron and Thr302 with the distances being 2.96 and 3.42 A, respectively. The identification of Thr302 in the CYP2B1 active site as the site of covalent modification leading to inactivation by BPA supports previous hypotheses that this conserved Thr residue may play a crucial role for various functions in P450s.
Collapse
Affiliation(s)
- Hsia-lien Lin
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109-5632, USA
| | | | | | | |
Collapse
|
160
|
Tardy V, Menassa R, Sulmont V, Lienhardt-Roussie A, Lecointre C, Brauner R, David M, Morel Y. Phenotype-genotype correlations of 13 rare CYP21A2 mutations detected in 46 patients affected with 21-hydroxylase deficiency and in one carrier. J Clin Endocrinol Metab 2010; 95:1288-300. [PMID: 20080860 DOI: 10.1210/jc.2009-1202] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Steroid 21-hydroxylase deficiency is the most common enzymatic defect causing congenital adrenal hyperplasia with genotype/phenotype relationships for common mutations. Novel mutations of the CYP21A2 gene must be well studied to propose right genetic counseling for patients. OBJECTIVE Thirteen CYP21 mutations have been studied. A detailed description of phenotype was performed for all mutations (p.I77T, p.L167P, p.I230T, p.R233K, p.G291S, p.G292D, p.E320K, p.R341P, p.R354H, p.R369W, p.R408C, p.G424S, and p.R426H). In vitro and in silico studies were performed only for those not previously described (p.L167P, p.I230T, p.R233K, p.G292D, p.E320K, and p.R369W). RESULTS Regarding phenotype, patients with 10 of these mutations had a classical form. A patient with isolated p.I230T presented with nonclassical form and a patient with the association p.I230T + p.V281L in cis presented with a more severe phenotype. The p.R233K mutation was detected in a carrier partner. A patient with p.R369W presented with an intermediate form. Functional studies showed that all mutations except p.I230T and p.R369W decreased enzyme activity more than p.P30L: severity of p.R369W was intermediate between p.P30L and p.V281L, and finally p.I230T was less severe than p.V281L. Mutation analysis in a three-dimensional model structure of the CYP21 protein explained the observed in vitro effects, severe mutations being implicated in important functional domains of the protein. CONCLUSION According to phenotype and functional studies, 11 of the mutations described, except the isolated p.R369W and p.I230T, may be responsible for a severe phenotype underlying the necessity to manage children having them. The p.I230T is a nonclassical mutation, and for the p.R369W, we need more cases to precise its severity.
Collapse
Affiliation(s)
- V Tardy
- Laboratoire d'Endocrinologie Moléculaire et Maladies Rares, Centre de Biologie et de Pathologie Est, 69677 Bron Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
161
|
Ghosh D, Griswold J, Erman M, Pangborn W. X-ray structure of human aromatase reveals an androgen-specific active site. J Steroid Biochem Mol Biol 2010; 118:197-202. [PMID: 19808095 PMCID: PMC2826573 DOI: 10.1016/j.jsbmb.2009.09.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 09/13/2009] [Accepted: 09/24/2009] [Indexed: 11/30/2022]
Abstract
Aromatase is a unique cytochrome P450 that catalyzes the removal of the 19-methyl group and aromatization of the A-ring of androgens for the synthesis of estrogens. All human estrogens are synthesized via this enzymatic aromatization pathway. Aromatase inhibitors thus constitute a frontline therapy for estrogen-dependent breast cancer. Despite decades of intense investigation, this enzyme of the endoplasmic reticulum membrane has eluded all structure determination efforts. We have determined the crystal structure of the highly active aromatase purified from human placenta, in complex with its natural substrate androstenedione. The structure shows the binding mode of androstenedione in the catalytically active oxidized high-spin ferric state of the enzyme. Hydrogen bond-forming interactions and tight packing hydrophobic side chains that complement the puckering of the steroid backbone provide the molecular basis for the exclusive androgenic specificity of aromatase. Locations of catalytic residues and water molecules shed new light on the mechanism of the aromatization step. The structure also suggests a membrane integration model indicative of the passage of steroids through the lipid bilayer.
Collapse
Affiliation(s)
- Debashis Ghosh
- Hauptman-Woodward Medical Research Institute, Buffalo, NY 14203, USA.
| | | | | | | |
Collapse
|
162
|
Directed evolution of a magnetic resonance imaging contrast agent for noninvasive imaging of dopamine. Nat Biotechnol 2010; 28:264-70. [PMID: 20190737 DOI: 10.1038/nbt.1609] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 01/27/2010] [Indexed: 11/08/2022]
Abstract
The development of molecular probes that allow in vivo imaging of neural signaling processes with high temporal and spatial resolution remains challenging. Here we applied directed evolution techniques to create magnetic resonance imaging (MRI) contrast agents sensitive to the neurotransmitter dopamine. The sensors were derived from the heme domain of the bacterial cytochrome P450-BM3 (BM3h). Ligand binding to a site near BM3h's paramagnetic heme iron led to a drop in MRI signal enhancement and a shift in optical absorbance. Using an absorbance-based screen, we evolved the specificity of BM3h away from its natural ligand and toward dopamine, producing sensors with dissociation constants for dopamine of 3.3-8.9 microM. These molecules were used to image depolarization-triggered neurotransmitter release from PC12 cells and in the brains of live animals. Our results demonstrate the feasibility of molecular-level functional MRI using neural activity-dependent sensors, and our protein engineering approach can be generalized to create probes for other targets.
Collapse
|
163
|
Jensen K, Møller BL. Plant NADPH-cytochrome P450 oxidoreductases. PHYTOCHEMISTRY 2010; 71:132-41. [PMID: 19931102 DOI: 10.1016/j.phytochem.2009.10.017] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 10/21/2009] [Indexed: 05/23/2023]
Abstract
NADPH-cytochrome P450 oxidoreductase (CPR) serves as the electron donor to almost all eukaryotic cytochromes P450. It belongs to a small family of diflavin proteins and is built of cofactor binding domains with high structural homology to those of bacterial flavodoxins and to ferredoxin-NADP(+) oxidoreductases. CPR shuttles electrons from NADPH through the FAD and FMN-cofactors into the central heme-group of the P450s. Mobile domains in CPR are essential for electron transfer between FAD and FMN and for P450 interaction. Blast searches identified 54 full-length gene sequences encoding CPR derived from a total of 35 different plant species. CPRs from vascular plants cluster into two major phylogenetic groups. Depending on the species, plants contain one, two or three paralogs of which one is inducible. The nature of the CPR-P450 interacting domains is well conserved as demonstrated by the ability of CPRs from different species or even from different kingdoms to at least partially complement each other functionally. This makes CPR an ideal bio-brick in synthetic biology approaches to re-design or develop entirely different combinations of existing biological systems to gain improved or completely altered functionalities based on the "share your parts" principle.
Collapse
Affiliation(s)
- Kenneth Jensen
- Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | | |
Collapse
|
164
|
Wang B, Yang LP, Zhang XZ, Huang SQ, Bartlam M, Zhou SF. New insights into the structural characteristics and functional relevance of the human cytochrome P450 2D6 enzyme. Drug Metab Rev 2010; 41:573-643. [PMID: 19645588 DOI: 10.1080/03602530903118729] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To date, the crystal structures of at least 12 human CYPs (1A2, 2A6, 2A13, 2C8, 2C9, 2D6, 2E1, 2R1, 3A4, 7A1, 8A1, and 46A1) have been determined. CYP2D6 accounts for only a small percentage of all hepatic CYPs (< 2%), but it metabolizes approximately 25% of clinically used drugs with significant polymorphisms. CYP2D6 also metabolizes procarcinogens and neurotoxins, such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, 1,2,3,4-tetrahydroquinoline, and indolealkylamines. Moreover, the enzyme utilizes hydroxytryptamines and neurosteroids as endogenous substrates. Typical CYP2D6 substrates are usually lipophilic bases with an aromatic ring and a nitrogen atom, which can be protonated at physiological pH. Substrate binding is generally followed by oxidation (5-7 A) from the proposed nitrogen-Asp301 interaction. A number of homology models have been constructed to explore the structural features of CYP2D6, while antibody studies also provide useful structural information. Site-directed mutagenesis studies have demonstrated that Glu216, Asp301, Phe120, Phe481, and Phe483 play important roles in determining the binding of ligands to CYP2D6. The structure of human CYP2D6 has been recently determined and shows the characteristic CYP fold observed for other members of the CYP superfamily. The lengths and orientations of the individual secondary structural elements in the CYP2D6 structure are similar to those seen in other human CYP2 members, such as CYP2C9 and 2C8. The 2D6 structure has a well-defined active-site cavity located above the heme group with a volume of approximately 540 A(3), which is larger than equivalent cavities in CYP2A6 (260 A(3)), 1A2 (375 A(3)), and 2E1 (190 A(3)), but smaller than those in CYP3A4 (1385 A(3)) and 2C8 (1438 A(3)). Further studies are required to delineate the molecular mechanisms involved in CYP2D6 ligand interactions and their implications for drug development and clinical practice.
Collapse
Affiliation(s)
- Bo Wang
- Department of Pediatrics, Guangdong Women and Children's Hospital, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
165
|
Tanaka R. Oxidation of Alkyl C-H Bonds Using Iron Complexes. J SYN ORG CHEM JPN 2010. [DOI: 10.5059/yukigoseikyokaishi.68.964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
166
|
Mowat CG, Gazur B, Campbell LP, Chapman SK. Flavin-containing heme enzymes. Arch Biochem Biophys 2010; 493:37-52. [DOI: 10.1016/j.abb.2009.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 10/13/2009] [Accepted: 10/13/2009] [Indexed: 11/25/2022]
|
167
|
Schlangen K, Miosic S, Halbwirth H. Allelic variants from Dahlia variabilis encode flavonoid 3'-hydroxylases with functional differences in chalcone 3-hydroxylase activity. Arch Biochem Biophys 2009; 494:40-5. [PMID: 19931222 DOI: 10.1016/j.abb.2009.11.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 11/09/2009] [Accepted: 11/13/2009] [Indexed: 11/27/2022]
Abstract
In the petals of Dahlia variabilis, hydroxylation of chalcones at position 3 can be detected, except the well-known flavonoid 3'-hydroxylation. Although the reaction is well characterized at the enzymatic level, it remained unclear whether it is catalyzed by a flavonoid 3'-hydroxylase (F3'H, EC1.14.13.21, CYP75B) with broad substrate specificity. Two novel allelic variants of F3'H were cloned from D. variabilis, which differ only in three amino acids within their 508 residues. The corresponding recombinant enzymes show significant differences in their chalcone 3-hydroxylase (CH3H) activity. A substitution of alanine at position 425 with valine enables CH3H activity, whereas the reciprocal substitution leads to a loss of CH3H activity. Interaction of the valine at position 425 with not yet identified structural properties seems to be decisive for chalcone acceptance. This is the first identification of an F3'H which is able to catalyze chalcone 3-hydroxylation to a physiologically relevant extent from any plant species.
Collapse
Affiliation(s)
- Karin Schlangen
- Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften, Technische Universität Wien, Getreidemarkt 9/1665, Vienna, Austria
| | | | | |
Collapse
|
168
|
Soardi FC, Penachioni JY, Justo GZ, Bachega TASS, Inácio M, Mendonça BB, de Castro M, de Mello MP. Novel mutations in CYP11B1 gene leading to 11 beta-hydroxylase deficiency in Brazilian patients. J Clin Endocrinol Metab 2009; 94:3481-5. [PMID: 19567537 DOI: 10.1210/jc.2008-2521] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
BACKGROUND Deficiency of 11 beta-hydroxylase results in the impairment of the last step of cortisol synthesis. In females, the phenotype of this disorder includes different degrees of genital ambiguity and arterial hypertension. Mutations in the CYP11B1 gene are responsible for this disease. OBJECTIVE The objective of the study was to screen the CYP11B1 gene for mutations in two unrelated Brazilian females with congenital adrenal hyperplasia due to 11 beta-hydroxylase deficiency. DESIGN The coding and intron-exon junction regions of CYP11B1 were totally sequenced. A putative splice mutation was further investigated by minigene transcription. RESULTS We report two novel CYP11B1 mutations in these Brazilian patients. An Arabian Lebanese descendent female was found to be homozygous for a cytosine insertion at the beginning of exon 8, changing the 404 arginine to proline. It alters the open reading frame, creating a putative truncated protein at 421 residue, which eliminates the domain necessary for the association of heme prosthetic group. A severely virilized female was homozygous for the g.2791G>A transition in the last position of exon 4. This nucleotide is also part of 5' intron 4 donor splice site consensus sequence. Minigene experiments demonstrated that g.2791G>A activated an alternative splice site within exon 4, leading to a 45-bp deletion in the transcript. The putative translation of such modified mRNA indicates a truncated protein at residue 280. CONCLUSIONS We describe two novel mutations, g.4671_4672insC and g.2791G>A, that drastically affects normal protein structure. These mutations abolish normal enzyme activity, leading to a severe phenotype of congenital adrenal hyperplasia due to 11 beta-hydroxylase deficiency.
Collapse
Affiliation(s)
- Fernanda C Soardi
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Caixa Postal 6010, 13083-875 Campinas SP, Brasil
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Savino C, Montemiglio LC, Sciara G, Miele AE, Kendrew SG, Jemth P, Gianni S, Vallone B. Investigating the structural plasticity of a cytochrome P450: three-dimensional structures of P450 EryK and binding to its physiological substrate. J Biol Chem 2009; 284:29170-9. [PMID: 19625248 DOI: 10.1074/jbc.m109.003590] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450s are heme-containing proteins that catalyze the oxidative metabolism of many physiological endogenous compounds. Because of their unique oxygen chemistry and their key role in drug and xenobiotic metabolism, particular attention has been devoted in elucidating their mechanism of substrate recognition. In this work, we analyzed the three-dimensional structures of a monomeric cytochrome P450 from Saccharopolyspora erythraea, commonly called EryK, and the binding kinetics to its physiological ligand, erythromycin D. Three different structures of EryK were obtained: two ligand-free forms and one in complex with its substrate. Analysis of the substrate-bound structure revealed the key structural determinants involved in substrate recognition and selectivity. Interestingly, the ligand-free structures of EryK suggested that the protein may explore an open and a closed conformation in the absence of substrate. In an effort to validate this hypothesis and to investigate the energetics between such alternative conformations, we performed stopped-flow absorbance experiments. Data demonstrated that EryK binds erythromycin D via a mechanism involving at least two steps. Contrary to previously characterized cytochrome P450s, analysis of double jump mixing experiments confirmed that this complex scenario arises from a pre-existing equilibrium between the open and closed subpopulations of EryK, rather than from an induced-fit type mechanism.
Collapse
Affiliation(s)
- Carmelinda Savino
- CNR Institute of Molecular Biology and Pathology, P.le A. Moro 5, 00185 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
170
|
Rupenyan A, Commandeur J, Groot ML. CO Photodissociation Dynamics in Cytochrome P450BM3 Studied by Subpicosecond Visible and Mid-Infrared Spectroscopy. Biochemistry 2009; 48:6104-10. [DOI: 10.1021/bi900351m] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alisa Rupenyan
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Jan Commandeur
- Department of Pharmacochemistry, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Marie Louise Groot
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
171
|
Three-dimensional model of lanosterol 14 alpha-demethylase from Cryptococcus neoformans: active-site characterization and insights into azole binding. Antimicrob Agents Chemother 2009; 53:3487-95. [PMID: 19470512 DOI: 10.1128/aac.01630-08] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cryptococcus neoformans is one of the most important causes of life-threatening fungal infections in immunocompromised patients. Lanosterol 14 alpha-demethylase (CYP51) is the target of azole antifungal agents. This study describes, for the first time, the 3-dimensional model of CYP51 from Cryptococcus neoformans (CnCYP51). The model was further refined by energy minimization and molecular-dynamics simulations. The active site of CnCYP51 was well characterized by multiple-copy simultaneous-search calculations, and four functional regions important for rational drug design were identified. The mode of binding of the natural substrate and azole antifungal agents with CnCYP51 was identified by flexible molecular docking. A G484S substitution mechanism for azole resistance in CnCYP51, which might be important for the conformation of the heme environment, is suggested.
Collapse
|
172
|
Seifert A, Pleiss J. Identification of selectivity-determining residues in cytochrome P450 monooxygenases: a systematic analysis of the substrate recognition site 5. Proteins 2009; 74:1028-35. [PMID: 18814300 DOI: 10.1002/prot.22242] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The large and diverse family of cytochrome P450 monooxygenases (CYPs) was systematically analyzed to identify selectivity- and specificity-determining residues in the substrate recognition site 5, which is located in close vicinity to the heme center. A positively charged heme-interacting residue was identified in the structures of 29 monooxygenases and in 97.7% of the 6379 CYP sequences investigated here. This heme-interacting residue restricts the conformation of the substrate recognition site 5 and is preferentially located at position 10 or 11 after the conserved ExxR motif (in 94.4% of the sequences), in 3.3% of the sequences at position 9 or 12. As a result, a classification by the position of the heme-interacting residue allows to predict residues that are closest to the heme center and restrict its accessibility. In 98.4% of all CYP sequences a preferentially hydrophobic residue is located at position 5 after the ExxR motif that is predicted to point close to the heme center. Replacing this residue by hydrophobic residues of different size has been shown to change substrate specificity and regioselectivity for CYPs of different superfamilies. Twenty-seven percent of all CYPs are predicted to contain a second selectivity-determining residue at position 9 after the ExxR motif that can be identified by the pattern EXXR-X(7)-{P}-x-P-[HKR].
Collapse
Affiliation(s)
- Alexander Seifert
- Institute of Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | | |
Collapse
|
173
|
Holloway CD, MacKenzie SM, Fraser R, Miller S, Barr M, Wilkinson D, Forbes GH, Friel E, Connell JMC, Davies E. Effects of genetic variation in the aldosterone synthase (CYP11B2) gene on enzyme function. Clin Endocrinol (Oxf) 2009; 70:363-71. [PMID: 18710464 DOI: 10.1111/j.1365-2265.2008.03383.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Evidence suggests that high levels of aldosterone lead to hypertension and increased risk of cardiovascular disease. Around 15% of patients with essential hypertension have a raised aldosterone to renin ratio (ARR) suggesting that aldosterone production is inappropriately high in relation to its principal agonist angiotensin II. This may be due to increased activity of aldosterone synthase caused by genetic variation in the CYP11B2 gene. We screened the coding region of human CYP11B2 for genetic variants and tested their effects on function in vitro. PROTOCOL Normotensive subjects (n = 69) were screened for sequence variants in the coding region of CYP11B2 by single-stranded conformation polymorphism (SSCP) analysis and sequencing. The effects of nonsynonymous variants on enzyme activity were assessed in JEG-3 cells transiently transfected with wild-type or variant expression plasmids. The conversion of the substrate 11-deoxycorticosterone (DOC) to corticosterone (B) and aldosterone was measured. RESULTS Twenty variants were detected in CYP11B2 and eight analysed functionally (Arg87Gly, Asn281Thr, Gly288Ser, Lys296Asn, Asp335Asn, Gln404Arg, Ala414Pro and His439Tyr). Corticosterone synthesis was unaltered and aldosterone synthesis reduced in variant Arg87Gly; Asn281Thr increased corticosterone and decreased aldosterone production; Gly288Ser increased corticosterone production and abolished aldosterone production; Lys296Asn reduced both corticosterone and aldosterone production; Asp335Asn increased corticosterone synthesis but did not affect aldosterone production. Variants Gln404Arg, Ala414Pro and His439Tyr showed increases in both corticosterone and aldosterone synthesis compared to the wild-type. CONCLUSION The study confirms the genetic variability of the CYP11B2 gene and provides us with additional valuable structure-function information.
Collapse
Affiliation(s)
- C D Holloway
- MRC Blood Pressure Group, BHF Cardiovascular Research Centre, 126 University Place, University of Glasgow, G12 8TA, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Wang LL, Li Y, Zhou SF. A bioinformatics approach for the phenotype prediction of nonsynonymous single nucleotide polymorphisms in human cytochromes P450. Drug Metab Dispos 2009; 37:977-91. [PMID: 19204079 DOI: 10.1124/dmd.108.026047] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nonsynonymous single nucleotide polymorphisms (nsSNPs) in coding regions that can lead to amino acid changes may cause alteration of protein function and account for susceptivity to disease and altered drug response. Identification of deleterious nsSNPs from tolerant nsSNPs is important for characterizing the genetic basis of human disease, assessing individual susceptibility to disease, understanding the pathogenesis of disease, identifying molecular targets for drug treatment, and conducting individualized pharmacotherapy. Numerous nsSNPs have been found in genes coding for human cytochromes P450 (P450s), but there is poor knowledge on the relationship between the genotype and phenotype of nsSNPs in P450s. We have identified 791 validated nsSNPs in 57 validated human CYP genes from the National Center for Biotechnology Information Database of Single Nucleotide Polymorphism and Swiss-Prot database. Using the polymorphism phenotyping (PolyPhen; http://genetics.bwh.harvard.edu/pph) and sorting intolerant from tolerant (SIFT; http://blocks.fhcrc.org/sift/SIFT.html) algorithms, 39 to 43% of nsSNPs in CYP genes were predicted to have functional impacts on protein function. There was a significant concordance between the predicted results using the SIFT and PolyPhen algorithms. A prediction accuracy analysis found that approximately 70% of nsSNPs were predicted correctly as damaging. Of nsSNPs predicted as deleterious, the prediction scores by the SIFT and PolyPhen algorithms were significantly associated with the numbers of nsSNPs with known phenotype confirmed by benchmarking studies, including site-directed mutagenesis analysis and clinical association studies. These amino acid substitutions are supposed to be the pathogenetic basis for the alteration of P450 enzyme activity and the association with disease susceptivity. This prediction analysis of nsSNPs in human CYP genes would be useful for further genotype-phenotype studies on individual differences in drug clearance and clinical response.
Collapse
Affiliation(s)
- Lin-Lin Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | | | | |
Collapse
|
175
|
Kirby J, Keasling JD. Biosynthesis of plant isoprenoids: perspectives for microbial engineering. ANNUAL REVIEW OF PLANT BIOLOGY 2009; 60:335-55. [PMID: 19575586 DOI: 10.1146/annurev.arplant.043008.091955] [Citation(s) in RCA: 305] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Isoprenoids are a large and highly diverse group of natural products with many functions in plant primary and secondary metabolism. Isoprenoids are synthesized from common prenyl diphosphate precursors through the action of terpene synthases and terpene-modifying enzymes such as cytochrome P450 monooxygenases. Many isoprenoids have important applications in areas such as human health and nutrition, and much effort has been directed toward their production in microbial hosts. However, many hurdles must be overcome in the elucidation and functional microbial expression of the genes responsible for biosynthesis of an isoprenoid of interest. Here, we review investigations into isoprenoid function and gene discovery in plants as well as the latest advances in isoprenoid pathway engineering in both plant and microbial hosts.
Collapse
Affiliation(s)
- James Kirby
- California Institute of Quantitative Biomedical Research, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
176
|
Structural insights from a P450 Carrier Protein complex reveal how specificity is achieved in the P450(BioI) ACP complex. Proc Natl Acad Sci U S A 2008; 105:15696-701. [PMID: 18838690 DOI: 10.1073/pnas.0805983105] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytochrome P450(BioI) (CYP107H1) from the biotin operon of Bacillus subtilis forms a seven-carbon diacid through a multistep oxidative cleavage of a fatty acid linked to acyl carrier protein (ACP). Crystal structures of P450(BioI) in complex with three different length fatty acyl-ACP (Escherichia coli) ligands show that P450(BioI) binds the fatty acid such as to force the carbon chain into a U-shape above the active site heme. This positions the C7 and C8 carbons for oxidation, with a large additional cavity extending beyond the heme to accommodate the methyl termini of fatty acids beyond the site of cleavage. The structures explain the experimentally observed lack of stereo- and regiospecificity in the hydroxylation and cleavage of free fatty acids. The P450(BioI)-ACP complexes represent the only structurally characterized P450-carrier protein complexes to date, which has allowed the generation of a model of the interaction of the vancomycin biosynthetic P450 OxyB with its proposed carrier protein bound substrate.
Collapse
|
177
|
Modes of heme binding and substrate access for cytochrome P450 CYP74A revealed by crystal structures of allene oxide synthase. Proc Natl Acad Sci U S A 2008; 105:13883-8. [PMID: 18787124 DOI: 10.1073/pnas.0804099105] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytochrome P450s exist ubiquitously in all organisms and are involved in many biological processes. Allene oxide synthase (AOS) is a P450 enzyme that plays a key role in the biosynthesis of oxylipin jasmonates, which are involved in signal and defense reactions in higher plants. The crystal structures of guayule (Parthenium argentatum) AOS (CYP74A2) and its complex with the substrate analog 13(S)-hydroxyoctadeca-9Z,11E-dienoic acid have been determined. The structures exhibit a classic P450 fold but possess a heme-binding mode with an unusually long heme binding loop and a unique I-helix. The structures also reveal two channels through which substrate and product may access and leave the active site. The entrances are defined by a loop between beta3-2 and beta3-3. Asn-276 in the substrate binding site may interact with the substrate's hydroperoxy group and play an important role in catalysis, and Lys-282 at the entrance may control substrate access and binding. These studies provide both structural insights into AOS and related P450s and a structural basis to understand the distinct reaction mechanism.
Collapse
|
178
|
Niu G, Wen Z, Rupasinghe SG, Zeng RS, Berenbaum MR, Schuler MA. Aflatoxin B1 detoxification by CYP321A1 in Helicoverpa zea. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2008; 69:32-45. [PMID: 18615618 DOI: 10.1002/arch.20256] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The polyphagous corn earworm Helicoverpa zea frequently encounters aflatoxins, mycotoxins produced by the pathogens Aspergillus flavus and A. parasiticus, which infect many of this herbivore's host plants. While aflatoxin B1 metabolism by midgut enzymes isolated from fifth instars feeding on control diets was not detected, this compound was metabolized by midgut enzymes isolated from larvae consuming diets supplemented with xanthotoxin, coumarin, or indole-3-carbinol, phytochemicals that are likely to co-occur with aflatoxin in infected host plants. Of the two metabolites generated, the main derivative identified in midguts induced with these chemicals and in reactions containing heterologously expressed CYP321A1 was aflatoxin P1 (AFP1), an O-demethylated product of AFB1. RT-PCR gel blots indicated that the magnitude of CYP321A1 transcript induction by these chemicals is associated with the magnitude of increase in the metabolic activities of induced midgut enzymes (coumarin>xanthotoxin>indole 3-carbinol). These results indicate that induction of P450s, such as CYP321A1, plays an important role in reducing AFB1 toxicity to H. zea. Docking of AFB1 in the molecular models of CYP321A1 and CYP6B8 highlights differences in their proximal catalytic site volumes that allow only CYP321A1 to generate the AFP1 metabolite.
Collapse
Affiliation(s)
- Guodong Niu
- Department of Entomology, University of Illinois, Urbana, Illinois 61801-3795, USA
| | | | | | | | | | | |
Collapse
|
179
|
Bell SG, Xu F, Forward I, Bartlam M, Rao Z, Wong LL. Crystal structure of CYP199A2, a para-substituted benzoic acid oxidizing cytochrome P450 from Rhodopseudomonas palustris. J Mol Biol 2008; 383:561-74. [PMID: 18762195 DOI: 10.1016/j.jmb.2008.08.033] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 08/13/2008] [Accepted: 08/14/2008] [Indexed: 11/17/2022]
Abstract
CYP199A2, a cytochrome P450 enzyme from Rhodopseudomonas palustris, oxidatively demethylates 4-methoxybenzoic acid to 4-hydroxybenzoic acid. 4-Ethylbenzoic acid is converted to a mixture of predominantly 4-(1-hydroxyethyl)-benzoic acid and 4-vinylbenzoic acid, the latter being a rare example of CC bond dehydrogenation of an unbranched alkyl group. The crystal structure of CYP199A2 has been determined at 2.0-A resolution. The enzyme has the common P450 fold, but the B' helix is missing and the G helix is broken into two (G and G') by a kink at Pro204. Helices G and G' are bent back from the extended BC loop and the I helix to open up a clearly defined substrate access channel. Channel openings in this region of the P450 fold are rare in bacterial P450 enzymes but more common in eukaryotic P450 enzymes. The channel is hydrophobic except for the basic residue Arg246 at the entrance, which probably plays a role in the specificity of this enzyme for charged benzoates over neutral phenols and benzenes. The substrate binding pocket is hydrophobic, with Ser97 and Ser247 being the only polar residues. Computer docking of 4-ethylbenzoic acid into the active site suggests that the substrate carboxylate oxygens interact with Ser97 and Ser247, and the beta-methyl group is located over the heme iron by Phe185, the side chain of which is only 6.35 A above the iron in the native structure. This binding orientation is consistent with the observed product profile of exclusive attack at the para substituent. Putidaredoxin of the CYP101A1 system from Pseudomonas putida supports substrate oxidation by CYP199A2 at approximately 6% of the activity of the physiological ferredoxin. Comparison of the heme proximal faces of CYP199A2 and CYP101A1 suggests that charge reversal surrounding the surface residue Leu369 in CYP199A2 may be a significant factor in this low cross-activity.
Collapse
Affiliation(s)
- Stephen G Bell
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | | | | | | | | | | |
Collapse
|
180
|
Murphy PJ. The development of drug metabolism research as expressed in the publications of ASPET: Part 3, 1984-2008. Drug Metab Dispos 2008; 36:1977-82. [PMID: 18635745 DOI: 10.1124/dmd.108.023226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The dramatic changes in drug metabolism research in the last 25 years are well documented in the publications of the American Society for Pharmacology and Experimental Therapeutics (ASPET). New analytical tools combined with modern molecular biological techniques have provided unprecedented access to the workings of the cell. A field that concentrated on only a handful of primary enzymes now has a list of hundreds in its purview. Genetic variation, environmental impact, and molecular diversity have all come under study in attempts to follow the fate of drugs and chemicals. Examples from ASPET journals will be used to illustrate the dramatic advancements in the field.
Collapse
Affiliation(s)
- Patrick J Murphy
- College of Pharmacy and Health Sciences, Butler University, Indianapolis, Indiana, USA.
| |
Collapse
|
181
|
Cloning, expression and characterisation of CYP102A7, a self-sufficient P450 monooxygenase from Bacillus licheniformis. Appl Microbiol Biotechnol 2008; 79:931-40. [DOI: 10.1007/s00253-008-1500-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 04/08/2008] [Accepted: 04/09/2008] [Indexed: 10/22/2022]
|
182
|
Branco RJ, Seifert A, Budde M, Urlacher VB, Ramos MJ, Pleiss J. Anchoring effects in a wide binding pocket: The molecular basis of regioselectivity in engineered cytochrome P450 monooxygenase from B. megaterium. Proteins 2008; 73:597-607. [DOI: 10.1002/prot.22083] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
183
|
Zhao LQ, Han S, Tian HM. Progress in molecular-genetic studies on congenital adrenal hyperplasia due to 11beta-hydroxylase deficiency. World J Pediatr 2008; 4:85-90. [PMID: 18661760 DOI: 10.1007/s12519-008-0016-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND 11beta-hydroxylase deficiency is one of the main causes of congenital adrenal hyperplasia (CAH). It is caused by the mutation of the CYP11B1 gene that encodes the enzyme. Researches have shown that mutations of the CYP11B1 gene would result in activity decrease or inactivation of the enzyme in classical 11beta-hydroxylase deficiency. DATA SOURCES Articles on CAH and CYP11B1 gene mutation were retrieved from PubMed and MEDLINE published after 1991. RESULTS The prevalence, pathophysiology, and molecular-genetic mechanisms were summarized. CONCLUSIONS The disease is caused by genetic mutations of CYP11B1, and types of the mutations are varied. In classical 11beta-hydroxylase deficiency, genetic mutations of CYP11B1 lead to activity decrease or loss; mutations in unclassical 11beta-hydroxylase deficiency are not definite. And the relationship between genotype and phenotype is not established.
Collapse
Affiliation(s)
- Li-Qiang Zhao
- Department of Endocrinology, West China Hospital of Sichuan University, Chengdu 610000, China
| | | | | |
Collapse
|
184
|
Hata M, Tanaka Y, Kyoda N, Osakabe T, Yuki H, Ishii I, Kitada M, Neya S, Hoshino T. An epoxidation mechanism of carbamazepine by CYP3A4. Bioorg Med Chem 2008; 16:5134-48. [DOI: 10.1016/j.bmc.2008.03.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 03/05/2008] [Accepted: 03/06/2008] [Indexed: 11/25/2022]
|
185
|
Stjernschantz E, van Vugt-Lussenburg BMA, Bonifacio A, de Beer SBA, van der Zwan G, Gooijer C, Commandeur JNM, Vermeulen NPE, Oostenbrink C. Structural rationalization of novel drug metabolizing mutants of cytochrome P450 BM3. Proteins 2008; 71:336-52. [DOI: 10.1002/prot.21697] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
186
|
Haines DC, Chen B, Tomchick DR, Bondlela M, Hegde A, Machius M, Peterson JA. Crystal structure of inhibitor-bound P450BM-3 reveals open conformation of substrate access channel. Biochemistry 2008; 47:3662-70. [PMID: 18298086 DOI: 10.1021/bi7023964] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
P450BM-3 is an extensively studied P450 cytochrome that is naturally fused to a cytochrome P450 reductase domain. Crystal structures of the heme domain of this enzyme have previously generated many insights into features of P450 structure, substrate binding specificity, and conformational changes that occur on substrate binding. Although many P450s are inhibited by imidazole, this compound does not effectively inhibit P450BM-3. Omega-imidazolyl fatty acids have previously been found to be weak inhibitors of the enzyme and show some unusual cooperativity with the substrate lauric acid. We set out to improve the properties of these inhibitors by attaching the omega-imidazolyl fatty acid to the nitrogen of an amino acid group, a tactic that we used previously to increase the potency of substrates. The resulting inhibitors were significantly more potent than their parent compounds lacking the amino acid group. A crystal structure of one of the new inhibitors bound to the heme domain of P450BM-3 reveals that the mode of interaction of the amino acid group with the enzyme is different from that previously observed for acyl amino acid substrates. Further, required movements of residues in the active site to accommodate the imidazole group provide an explanation for the low affinity of imidazole itself. Finally, the previously observed cooperativity with lauric acid is explained by a surprisingly open substrate-access channel lined with hydrophobic residues that could potentially accommodate lauric acid in addition to the inhibitor itself.
Collapse
Affiliation(s)
- Donovan C Haines
- Department of Chemistry, The University of Texas at Dallas, Dallas, Texas 75083-0688, USA
| | | | | | | | | | | | | |
Collapse
|
187
|
Meharenna YT, Slessor KE, Cavaignac SM, Poulos TL, De Voss JJ. The critical role of substrate-protein hydrogen bonding in the control of regioselective hydroxylation in p450cin. J Biol Chem 2008; 283:10804-12. [PMID: 18270198 DOI: 10.1074/jbc.m709722200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450cin (CYP176A1) is a bacterial P450 isolated from Citrobacter braakii that catalyzes the hydroxylation of cineole to (S)-6beta-hydroxycineole. This initiates the biodegradation of cineole, enabling C. braakii to live on cineole as its sole source of carbon and energy. P450cin lacks the almost universally conserved threonine residue believed to be involved in dioxygen activation and instead contains an asparagine at this position (Asn-242). To investigate the role of Asn-242 in P450cin catalysis, it was converted to alanine, and the resultant mutant was characterized. The characteristic CO-bound spectrum and spectrally determined K(D) for substrate binding were unchanged in the mutant. The x-ray crystal structures of the substrate-free and -bound N242A mutant were determined and show that the only significant change is in a reorientation of the substrate such that (R)-6alpha-hydroxycineole should be a major product. Molecular dynamics simulations of both wild type and mutant are consistent with the change in regio- and stereoselectivity predicted from the crystal structure. The mutation has only a modest effect on enzyme activity and on the diversion of the NADPH-reducing equivalent toward unproductive peroxide formation. Product profile analysis shows that (R)-6alpha-hydroxycineole is the main product, which is consistent with the crystal structure. These results demonstrate that Asn-242 is not a functional replacement for the conserved threonine in other P450s but, rather, is critical in controlling regioselective substrate oxidation.
Collapse
Affiliation(s)
- Yergalem T Meharenna
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, USA
| | | | | | | | | |
Collapse
|
188
|
Rupasinghe SG, Duan H, Schuler MA. Molecular definitions of fatty acid hydroxylases in Arabidopsis thaliana. Proteins 2007; 68:279-93. [PMID: 17427946 DOI: 10.1002/prot.21335] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Towards defining the function of Arabidopsis thaliana fatty acid hydroxylases, five members of the CYP86A subfamily have been heterologously expressed in baculovirus-infected Sf9 cells and tested for their ability to bind a range of fatty acids including unsubstituted (lauric acid (C12:0) and oleic acid (C18:1)) and oxygenated (9,10-epoxystearic acid and 9,10-dihydroxystearic acid). Comparison between these five P450s at constant P450 content over a range of concentrations for individual fatty acids indicates that binding of different fatty acids to CYP86A2 always results in a higher proportion of high spin state heme than binding titrations conducted with CYP86A1 or CYP86A4. In comparison to these three, CYP86A7 and CYP86A8 produce extremely low proportions of high spin state heme even with the most effectively bound fatty acids. In addition to their previously demonstrated lauric acid hydroxylase activities, all CYP86A proteins are capable of hydroxylating oleic acid but not oxygenated 9,10-epoxystearic acid. Homology models have been built for these five enzymes that metabolize unsubstituted fatty acids and sometimes bind oxygenated fatty acids. Comparison of the substrate binding modes and predicted substrate access channels indicate that all use channel pw2a consistent with the crystal structures and models of other fatty acid-metabolizing P450s in bacteria and mammals. Among these P450s, those that bind internally oxygenated fatty acids contain polar residues in their substrate binding cavity that help stabilize these charged/polar groups within their largely hydrophobic catalytic site.
Collapse
Affiliation(s)
- Sangeewa G Rupasinghe
- Department of Cell and Developmental Biology, University of Illinois, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
189
|
Insights into drug metabolism by cytochromes P450 from modelling studies of CYP2D6-drug interactions. Br J Pharmacol 2007; 153 Suppl 1:S82-9. [PMID: 18026129 DOI: 10.1038/sj.bjp.0707570] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The cytochromes P450 (CYPs) comprise a vast superfamily of enzymes found in virtually all life forms. In mammals, xenobiotic metabolizing CYPs provide crucial protection from the effects of exposure to a wide variety of chemicals, including environmental toxins and therapeutic drugs. Ideally, the information on the possible metabolism by CYPs required during drug development would be obtained from crystal structures of all the CYPs of interest. For some years only crystal structures of distantly related bacterial CYPs were available and homology modelling techniques were used to bridge the gap and produce structural models of human CYPs, and thereby obtain useful functional information. A significant step forward in the reliability of these models came seven years ago with the first crystal structure of a mammalian CYP, rabbit CYP2C5, followed by the structures of six human enzymes, CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2D6 and CYP3A4, and a second rabbit enzyme, CYP2B4. In this review we describe as a case study the evolution of a CYP2D6 model, leading to the validation of the model as an in silico tool for predicting binding and metabolism. This work has led directly to the successful design of CYP2D6 mutants with novel activity-including creating a testosterone hydroxylase, converting quinidine from inhibitor to substrate, creating a diclofenac hydroxylase and creating a dextromethorphan O-demethylase. Our modelling-derived hypothesis-driven integrated interdisciplinary studies have given key insight into the molecular determinants of CYP2D6 and other important drug metabolizing enzymes.
Collapse
|
190
|
Hilker BL, Fukushige H, Hou C, Hildebrand D. Comparison of Bacillus monooxygenase genes for unique fatty acid production. Prog Lipid Res 2007; 47:1-14. [PMID: 17964298 DOI: 10.1016/j.plipres.2007.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 09/05/2007] [Accepted: 09/06/2007] [Indexed: 11/26/2022]
Abstract
This paper reviews Bacillus genes encoding monooxygenase enzymes producing unique fatty acid metabolites. Specifically, it examines standard monooxygenase electron transfer schemes and related domain structures of these fused domain enzymes on route to understanding the observed oxygenase activities. A few crystallographic analyses of the standard bearer enzyme P450(BM-3) are discussed to try to rationalize the common chemistries of this important enzyme family. Detailed P450(BM-3) enzyme activities toward different substrates and the unique substrate-specific primary oxidation products are examined. A few orthologs to the recurring P450(BM-3) enzyme as well as related small single-to-triple nucleotides changed mutants are also discussed. Finally, preliminary data characterizing unique in vivo-based primary and secondary products of a novel ortholog, the ALA2 strain, are presented. This later strain synthesizes several unique multi-oxidized reaction products that require additional study to further understand. It is hoped that a better understanding of these oxygenase reactions, particularly the ALA2 strain, will allow for realistically priced production of target multiple-oxygenated compounds with potential uses as specialty chemicals or as therapeutic agents.
Collapse
Affiliation(s)
- B L Hilker
- Department of Plant and Soil Sciences, University of Kentucky, 420 Plant Sciences Building, 1405 Veterans Drive, Lexington, KY 40546-0312, USA
| | | | | | | |
Collapse
|
191
|
Huang WC, Westlake ACG, Maréchal JD, Joyce MG, Moody PCE, Roberts GCK. Filling a Hole in Cytochrome P450 BM3 Improves Substrate Binding and Catalytic Efficiency. J Mol Biol 2007; 373:633-51. [PMID: 17868686 DOI: 10.1016/j.jmb.2007.08.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 07/09/2007] [Accepted: 08/07/2007] [Indexed: 11/19/2022]
Abstract
Cytochrome P450BM3 (CYP102A1) from Bacillus megaterium, a fatty acid hydroxylase, is a member of a very large superfamily of monooxygenase enzymes. The available crystal structures of the enzyme show non-productive binding of substrates with their omega-end distant from the iron in a hydrophobic pocket at one side of the active site. We have constructed and characterised mutants in which this pocket is filled by large hydrophobic side-chains replacing alanine at position 82. The mutants having phenylalanine or tryptophan at this position have very much (approximately 800-fold) greater affinity for substrate, with a greater conversion of the haem iron to the high-spin state, and similarly increased catalytic efficiency. The enzyme as isolated contains bound palmitate, reflecting this much higher affinity. We have determined the crystal structure of the haem domain of the Ala82Phe mutant with bound palmitate; this shows that the substrate is binding differently from the wild-type enzyme but still distant from the haem iron. Detailed analysis of the structure indicates that the tighter binding in the mutant reflects a shift in the conformational equilibrium of the substrate-free enzyme towards the conformation seen in the substrate complex rather than differences in the enzyme-substrate interactions. On this basis, we outline a sequence of events for the initial stages of the catalytic cycle. The Ala82Phe and Ala82Trp mutants are also very much more effective catalysts of indole hydroxylation than the wild-type enzyme, suggesting that they will be valuable starting points for the design of mutants to catalyse synthetically useful hydroxylation reactions.
Collapse
Affiliation(s)
- Wei-Cheng Huang
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester LE1 9HN, UK
| | | | | | | | | | | |
Collapse
|
192
|
Active Iron-Oxo and Iron-Peroxo Species in Cytochromes P450 and Peroxidases; Oxo-Hydroxo Tautomerism with Water-Soluble Metalloporphyrins. STRUCTURE AND BONDING 2007. [DOI: 10.1007/3-540-46592-8_1] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
193
|
Mao W, Schuler MA, Berenbaum MR. Cytochrome P450s in Papilio multicaudatus and the transition from oligophagy to polyphagy in the Papilionidae. INSECT MOLECULAR BIOLOGY 2007; 16:481-90. [PMID: 17651237 DOI: 10.1111/j.1365-2583.2007.00741.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Although substrate-specific CYP6B1 and CYP6B3 enzymes in Papilio polyxenes contribute to specialization on furanocoumarin-containing host plants, CYP6B4 and CYP6B17 enzymes in the polyphagous Papilio glaucus and Papilio canadensis have a broader range of substrates. Papilio multicaudatus, an oligophage with one furanocoumarin-containing host, is putatively ancestral to polyphagous Papilio species. Furanocoumarin-inducible CYP6B33-CYP6B37 and CYP6AB6 were characterized from this species. Heterologous expression of CYP6B33 revealed furanocoumarin metabolism resembling that of CYP6B4-CYP6B17 enzymes from P. glaucus and P. canadensis. Molecular models of CYP6B33 and CYP6B4 indicate that seven conserved aromatic side chains stabilize their hydrophobic catalytic sites and that a Lys484-Ser484 substitution enlarges the CYP6B4 active site pocket to increase the predicted distance between the substrate and reactive oxygen relative to CYP6B1. Loss of specialization in this lineage may have resulted from relatively few mutational changes, allowing acquisition of broader catalytic activities without loss of ancestral furanocoumarin-metabolizing activities.
Collapse
Affiliation(s)
- W Mao
- Department of Entomology, University of Illinoism Urbana, IL, USA.
| | | | | |
Collapse
|
194
|
Li L, Cheng H, Gai J, Yu D. Genome-wide identification and characterization of putative cytochrome P450 genes in the model legume Medicago truncatula. PLANTA 2007; 226:109-23. [PMID: 17273868 DOI: 10.1007/s00425-006-0473-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 12/20/2006] [Indexed: 05/13/2023]
Abstract
In plants, cytochrome P450 is a group of monooxygenases existing as a gene superfamily and plays important roles in metabolizing physiologically important compounds. However, to date only a limited number of P450s have been identified and characterized in legumes. In this study, data mining methods were used, and 151 putative P450 genes in the model legume Medicago truncatula were identified, including 135 novel sequences. These genes were classified into 9 clans and 44 families by sequence similarity, and among those 4 new clans and 21 new families not reported previously in legumes. By comparison of these genes with P450 genes in Arabidopsis and rice, it was found that most of the known P450 families in dicot species exist in M. truncatula. The representative protein sequences of putative P450s were aligned, and the secondary elements were assigned based on the known structure P450BM3. Putative substrate recognition sites (SRSs) and substrate binding sites were also identified in these sequences. In addition, the ESTs-derived expression profiles (digital Northern) of the putative P450 genes were analyzed, which was confirmed by semi-quantitative RT-PCR analyses of several selected P450 genes. These results will provide a base for catalogue information on P450 genes in M. truncatula and for further functional analysis of P450 superfamily genes in legumes.
Collapse
Affiliation(s)
- Lingyong Li
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | | | | | | |
Collapse
|
195
|
Yun CH, Kim KH, Kim DH, Jung HC, Pan JG. The bacterial P450 BM3: a prototype for a biocatalyst with human P450 activities. Trends Biotechnol 2007; 25:289-98. [PMID: 17532492 DOI: 10.1016/j.tibtech.2007.05.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 03/20/2007] [Accepted: 05/09/2007] [Indexed: 11/18/2022]
Abstract
The use of cytochrome P450 (P450 or CYP) enzymes as biocatalysts for the production of fine chemicals, including pharmaceuticals, has been of increasing interest, primarily owing to their catalytic diversity and broad substrate range. CYP102A1 (P450 BM3) from Bacillus megaterium integrates an entire monooxygenase system into one polypeptide and represents an appropriate prokaryotic model for industrial applications of mammalian P450 activities. CYP102A1 not only exhibits the highest catalytic activity ever detected in a P450 monooxygenase but also provides a potentially versatile biocatalyst for the production of human P450 metabolites. CYP102A1 can be further engineered to be a drug-metabolizing enzyme, making it a promising candidate to use as a biocatalyst in drug discovery and synthesis.
Collapse
Affiliation(s)
- Chul-Ho Yun
- School of Biological Sciences and Technology and Hormone Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea.
| | | | | | | | | |
Collapse
|
196
|
Morant M, Jørgensen K, Schaller H, Pinot F, Møller BL, Werck-Reichhart D, Bak S. CYP703 is an ancient cytochrome P450 in land plants catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen. THE PLANT CELL 2007; 19:1473-87. [PMID: 17496121 PMCID: PMC1913723 DOI: 10.1105/tpc.106.045948] [Citation(s) in RCA: 280] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
CYP703 is a cytochrome P450 family specific to land plants. Typically, each plant species contains a single CYP703. Arabidopsis thaliana CYP703A2 is expressed in the anthers of developing flowers. Expression is initiated at the tetrad stage and restricted to microspores and to the tapetum cell layer. Arabidopsis CYP703A2 knockout lines showed impaired pollen development and a partial male-sterile phenotype. Scanning electron and transmission electron microscopy of pollen from the knockout plants showed impaired pollen wall development with absence of exine. The fluorescent layer around the pollen grains ascribed to the presence of phenylpropanoid units in sporopollenin was absent in the CYP703A2 knockout lines. Heterologous expression of CYP703A2 in yeast cells demonstrated that CYP703 catalyzes the conversion of medium-chain saturated fatty acids to the corresponding monohydroxylated fatty acids, with a preferential hydroxylation of lauric acid at the C-7 position. Incubation of recombinant CYP703 with methanol extracts from developing flowers confirmed that lauric acid and in-chain hydroxy lauric acids are the in planta substrate and product, respectively. These data demonstrate that in-chain hydroxy lauric acids are essential building blocks in sporopollenin synthesis and enable the formation of ester and ether linkages with phenylpropanoid units. This study identifies CYP703 as a P450 family specifically involved in pollen development.
Collapse
Affiliation(s)
- Marc Morant
- Plant Biochemistry Laboratory, Department of Plant Biology and Center for Molecular Plant Physiology, Faculty of Life Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
197
|
Girvan HM, Heyes DJ, Scrutton NS, Munro AW. Laser photoexcitation of NAD(P)H induces reduction of P450 BM3 heme domain on the microsecond time scale. J Am Chem Soc 2007; 129:6647-53. [PMID: 17465554 DOI: 10.1021/ja071355m] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We demonstrate that photoexcitation of NAD(P)H at 355 nm using a Nd:YAG laser leads to rapid reduction of the heme domain of the Bacillus megaterium fatty acid hydroxylase flavocytochrome P450 BM3. An aqueous electron derived from photoexcited NAD(P)H is rapidly transferred to the heme domain, enabling the formation of a carbon monoxy complex of the ferrous P450 (FeII-CO) on the microsecond time scale. Using this approach we have determined the limiting rate constant (1770 s-1 for substrate-free heme domain) for formation of the FeII-CO complex. We find no dependence of the observed rate of FeII-CO complex formation on NAD(P)H concentration but demonstrate a hyperbolic dependence on carbon monoxide concentration. The apparent dissociation constant for the complex of carbon monoxide bound noncovalently to the ferric form of the BM3 heme domain (and with NADH as reductant) is 323 microM. Binding of a P450 substrate (N-palmitoylglycine) weakened the complex between carbon monoxide and the ferric BM3 heme domain (Kd increased to 1404 microM) but enhanced the rate of formation of the FeII-CO complex (3036 s-1 for substrate-free heme domain). This study demonstrates the applicability of NAD(P)H photoexcitation as a method for rapid electron delivery to P450 enzymes and provides a new route to probing the P450 catalytic cycle and its transient intermediates.
Collapse
Affiliation(s)
- Hazel M Girvan
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | | | | | | |
Collapse
|
198
|
Mansuy D. A brief history of the contribution of metalloporphyrin models to cytochrome P450 chemistry and oxidation catalysis. CR CHIM 2007. [DOI: 10.1016/j.crci.2006.11.001] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
199
|
Feenstra KA, Starikov EB, Urlacher VB, Commandeur JNM, Vermeulen NPE. Combining substrate dynamics, binding statistics, and energy barriers to rationalize regioselective hydroxylation of octane and lauric acid by CYP102A1 and mutants. Protein Sci 2007; 16:420-31. [PMID: 17322527 PMCID: PMC2203314 DOI: 10.1110/ps.062224407] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Hydroxylations of octane and lauric acid by Cytochrome P450-BM3 (CYP102A1) wild-type and three active site mutants--F87A, L188Q/A74G, and F87V/L188Q/A74G--were rationalized using a combination of substrate orientation from docking, substrate binding statistics from molecular dynamics simulations, and barrier energies for hydrogen atom abstraction from quantum mechanical calculations. Wild-type BM3 typically hydroxylates medium- to long-chain fatty acids on subterminal (omega-1, omega-2, omega-3) but not the terminal (omega) positions. The known carboxylic anchoring site Y51/R47 for lauric acid, and hydrophobic interactions and steric exclusion, mainly by F87, for octane as well as lauric acid, play a role in the binding modes of the substrates. Electrostatic interactions between the protein and the substrate strongly modulate the substrate's regiodependent activation barriers. A combination of the binding statistics and the activation barriers of hydrogen-atom abstraction in the substrates is proposed to determine the product formation. Trends observed in experimental product formation for octane and lauric acid by wild-type BM3 and the three active site mutants were qualitatively explained. It is concluded that the combination of substrate binding statistics and hydrogen-atom abstraction barrier energies is a valuable tool to rationalize substrate binding and product formation and constitutes an important step toward prediction of product ratios.
Collapse
Affiliation(s)
- K Anton Feenstra
- Leiden/Amsterdam Center for Drug Research, Division of Molecular Toxicology, Vrije Universiteit, 1081HV Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
200
|
Otyepka M, Skopalík J, Anzenbacherová E, Anzenbacher P. What common structural features and variations of mammalian P450s are known to date? Biochim Biophys Acta Gen Subj 2007; 1770:376-89. [PMID: 17069978 DOI: 10.1016/j.bbagen.2006.09.013] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 09/04/2006] [Accepted: 09/21/2006] [Indexed: 11/17/2022]
Abstract
Sufficient structural information on mammalian cytochromes P450 has now been published (including seventeen X-ray structures of these enzymes by June 2006) to allow characteristic features of these enzymes to be identified, including: (i) the presence of a common fold, typical of all P450s, (ii) similarities in the positioning of the heme cofactor, (iii) the spatial arrangement of certain structural elements, and (iv) the access/egress paths for substrates and products, (v) probably common orientation in the membrane, (vi) characteristic properties of the active sites with networks of water molecules, (vii) mode of interaction with redox partners and (viii) a certain degree of flexibility of the structure and active site determining the ease with which the enzyme may bind the substrates. As well as facilitating the identification of common features, comparison of the available structures allows differences among the structures to be identified, including variations in: (i) preferred access/egress paths to/from the active site, (ii) the active site volume and (iii) flexible regions. The availability of crystal structures provides opportunities for molecular dynamic simulations, providing data that are apparently complementary to experimental findings but also allow the dynamic behavior of access/egress paths and other dynamic features of the enzymes to be explored.
Collapse
Affiliation(s)
- Michal Otyepka
- Department of Physical Chemistry, Faculty of Sciences, Palacky University, Svobody 26, 771 46 Olomouc, Czech Republic.
| | | | | | | |
Collapse
|