151
|
Rackley L, Stewart JM, Salotti J, Krokhotin A, Shah A, Halman JR, Juneja R, Smollett J, Lee L, Roark K, Viard M, Tarannum M, Vivero-Escoto J, Johnson PF, Dobrovolskaia MA, Dokholyan NV, Franco E, Afonin KA. RNA Fibers as Optimized Nanoscaffolds for siRNA Coordination and Reduced Immunological Recognition. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1805959. [PMID: 31258458 PMCID: PMC6599627 DOI: 10.1002/adfm.201805959] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 05/20/2023]
Abstract
RNA is a versatile biomaterial that can be used to engineer nanoassemblies for personalized treatment of various diseases. Despite promising advancements, the design of RNA nanoassemblies with minimal recognition by the immune system remains a major challenge. Here, an approach is reported to engineer RNA fibrous structures to operate as a customizable platform for efficient coordination of siRNAs and for maintaining low immunostimulation. Functional RNA fibers are studied in silico and their formation is confirmed by various experimental techniques and visualized by atomic force microscopy (AFM). It is demonstrated that the RNA fibers offer multiple advantages among which are: i) programmability and modular design that allow for simultaneous controlled delivery of multiple siRNAs and fluorophores, ii) reduced immunostimulation when compared to other programmable RNA nanoassemblies, and iii) simple production protocol for endotoxin-free fibers with the option of their cotranscriptional assembly. Furthermore, it is shown that functional RNA fibers can be efficiently delivered with various organic and inorganic carriers while retaining their structural integrity in cells. Specific gene silencing triggered by RNA fibers is assessed in human breast cancer and melanoma cell lines, with the confirmed ability of functional fibers to selectively target single nucleotide mutations.
Collapse
Affiliation(s)
- Lauren Rackley
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Jaimie Marie Stewart
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Jacqueline Salotti
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Andrey Krokhotin
- Department of Biochemistry and Biophysics, University of North Carolina Chapel Hill, NC 27514, USA
| | - Ankit Shah
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| | - Justin R Halman
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Ridhima Juneja
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Jaclyn Smollett
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Lauren Lee
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Kyle Roark
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Mathias Viard
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mubin Tarannum
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Juan Vivero-Escoto
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Peter F Johnson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina Chapel Hill, NC 27514, USA
| | - Elisa Franco
- Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
152
|
Chang H, Song J, Wu J, Zhang Y. E2F transcription factor 8 promotes cell proliferation via CCND1/p21 in esophageal squamous cell carcinoma. Onco Targets Ther 2018; 11:8165-8173. [PMID: 30532557 PMCID: PMC6241692 DOI: 10.2147/ott.s180938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose E2F transcription factor 8 (E2F8) is a novel member of the E2F family, but its function in esophageal squamous cell carcinoma (ESCC) remains unclear. This study aimed to research the function of E2F8 in ESCC. Materials and methods We used quantitative real-time PCR and Western blot analyses to detect the expression pattern of E2F8 in ESCC. The effects of E2F8 on proliferation were investigated by Cell Counting Kit-8, 5-ethynyl-2′-deoxyuridine, and colony formation assays. We also confirmed the function of E2F8 in vivo. Results E2F8 expression was upregulated in ESCC, and promoted cell proliferation and influenced the expression of CCND1/p21. Downregulation of E2F8 expression inhibited cell proliferation in vivo. Conclusion E2F8 was identified as a new potential oncogene in ESCC.
Collapse
Affiliation(s)
- Huiwen Chang
- Department of Cardiothoracic Surgery, Yancheng Third People's Hospital, The Affiliated Yancheng Hospital of Southeast University, Yancheng, Jiangsu 224001, PR China,
| | - Jianxiang Song
- Department of Cardiothoracic Surgery, Yancheng Third People's Hospital, The Affiliated Yancheng Hospital of Southeast University, Yancheng, Jiangsu 224001, PR China,
| | - Jixiang Wu
- Department of Cardiothoracic Surgery, Yancheng Third People's Hospital, The Affiliated Yancheng Hospital of Southeast University, Yancheng, Jiangsu 224001, PR China,
| | - Yajun Zhang
- Department of Cardiothoracic Surgery, Yancheng Third People's Hospital, The Affiliated Yancheng Hospital of Southeast University, Yancheng, Jiangsu 224001, PR China,
| |
Collapse
|
153
|
Holdt LM, Kohlmaier A, Teupser D. Circular RNAs as Therapeutic Agents and Targets. Front Physiol 2018; 9:1262. [PMID: 30356745 PMCID: PMC6189416 DOI: 10.3389/fphys.2018.01262] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/21/2018] [Indexed: 12/26/2022] Open
Abstract
It has recently been reported that thousands of covalently linked circular RNAs (circRNAs) are expressed from human genomes. circRNAs emerge during RNA splicing. circRNAs are circularized in a reaction termed "backsplicing," whereby the spliceosome fuses a splice donor site in a downstream exon to a splice acceptor site in an upstream exon. Although a young field of research, first studies indicate that backsplicing is not an erroneous reaction of the spliceosome. Instead, circRNAs are produced in cells with high cell-type specificity and can exert biologically meaningful and specific functions. These observations and the finding that circRNAs are stable against exonucleolytic decay are raising the question whether circRNAs may be relevant as therapeutic agents and targets. In this review, we start out with a short introduction into classification, biogenesis and general molecular mechanisms of circRNAs. We then describe reports, where manipulating circRNA abundance has been shown to have therapeutic value in animal disease models in vivo, with a focus on cardiovascular disease (CVD). Starting from existing approaches, we outline particular challenges and opportunities for future circRNA-based therapeutic approaches that exploit stability and molecular effector functions of native circRNAs. We end with considerations which designer functions could be engineered into artificial therapeutic circular RNAs.
Collapse
Affiliation(s)
| | | | - Daniel Teupser
- Institute of Laboratory Medicine, University Hospital, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| |
Collapse
|
154
|
Abstract
Electrotransfection (ET) is a nonviral method for delivery of various types of molecules into cells both in vitro and in vivo. Close to 90 clinical trials that involve the use of ET have been performed, and approximately half of them are related to cancer treatment. Particularly, ET is an attractive technique for cancer immunogene therapy because treatment of cells with electric pulses alone can induce immune responses to solid tumors, and the responses can be further enhanced by ET of plasmid DNA (pDNA) encoding therapeutic genes. Compared to other gene delivery methods, ET has several unique advantages. It is relatively inexpensive, flexible, and safe in clinical applications, and introduces only naked pDNA into cells without the use of additional chemicals or viruses. However, the efficiency of ET is still low, partly because biological mechanisms of ET in cells remain elusive. In previous studies, it was believed that pDNA entered the cells through transient pores created by electric pulses. As a result, the technique is commonly referred to as electroporation. However, recent discoveries have suggested that endocytosis plays an important role in cellular uptake and intracellular transport of electrotransfected pDNA. This review will discuss current progresses in the study of biological mechanisms underlying ET and future directions of research in this area. Understanding the mechanisms of pDNA transport in cells is critical for the development of new strategies for improving the efficiency of gene delivery in tumors.
Collapse
Affiliation(s)
- Lisa D Cervia
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| | - Fan Yuan
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| |
Collapse
|
155
|
Shin H, Park SJ, Yim Y, Kim J, Choi C, Won C, Min DH. Recent Advances in RNA Therapeutics and RNA Delivery Systems Based on Nanoparticles. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800065] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hojeong Shin
- Center for RNA Research; Institute for Basic Science; Seoul National University; Seoul 08826 Republic of Korea
- Department of Chemistry; Seoul National University; Seoul 08826 Republic of Korea
| | - Se-Jin Park
- Center for RNA Research; Institute for Basic Science; Seoul National University; Seoul 08826 Republic of Korea
- Department of Chemistry; Seoul National University; Seoul 08826 Republic of Korea
| | - Yeajee Yim
- Center for RNA Research; Institute for Basic Science; Seoul National University; Seoul 08826 Republic of Korea
- Department of Chemistry; Seoul National University; Seoul 08826 Republic of Korea
| | - Jungho Kim
- Department of Chemistry; Seoul National University; Seoul 08826 Republic of Korea
- Institute of Biotherapeutics Convergence Technology; Lemonex Inc.; Seoul 08826 Republic of Korea
| | - Chulwon Choi
- Center for RNA Research; Institute for Basic Science; Seoul National University; Seoul 08826 Republic of Korea
- Department of Chemistry; Seoul National University; Seoul 08826 Republic of Korea
| | - Cheolhee Won
- Institute of Biotherapeutics Convergence Technology; Lemonex Inc.; Seoul 08826 Republic of Korea
| | - Dal-Hee Min
- Center for RNA Research; Institute for Basic Science; Seoul National University; Seoul 08826 Republic of Korea
- Department of Chemistry; Seoul National University; Seoul 08826 Republic of Korea
- Institute of Biotherapeutics Convergence Technology; Lemonex Inc.; Seoul 08826 Republic of Korea
| |
Collapse
|
156
|
Antipina AY, Gurtovenko AA. Toward Understanding Liposome-Based siRNA Delivery Vectors: Atomic-Scale Insight into siRNA-Lipid Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8685-8693. [PMID: 29932659 DOI: 10.1021/acs.langmuir.8b01211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Liposome carriers for delivering small interfering RNA (siRNA) into target cells are of tremendous importance because the siRNA-based therapy offers a completely new approach for treating a wide range of diseases, including cancer and viral infections. In this paper, we employ the state-of-the-art computer simulations to get an atomic-scale insight into the interactions of siRNA with zwitterionic (neutral) lipids. Our computational findings clearly demonstrate that siRNA does adsorb on the surface of a neutral lipid bilayer. The siRNA adsorption, being rather weak and unstable, is driven by attractive interactions of overhanging unpaired nucleotides with choline moieties of lipid molecules. It is the presence of the unpaired terminal nucleotides that underlies a drastic difference between siRNA and DNA; the latter is not able to bind to the zwitterionic lipid bilayer. We also show that adding divalent Ca ions leads to the formation of stable siRNA-lipid system complexes; these complexes are stabilized by Ca-mediated aggregates of siRNA and lipid molecules rather than by the overhanging siRNA nucleotides. Furthermore, the molecular mechanism of interactions between siRNA and the lipid bilayer in the presence of divalent cations seems to involve exchange of Ca ions between the outer mouth of the major groove of siRNA and the lipid/water interface. Overall, our findings contribute significantly to a deeper understanding of the structure and function of liposome carriers used for siRNA delivery and can be used as a theoretical basis for further development of siRNA-based therapeutics.
Collapse
Affiliation(s)
- Alexandra Yu Antipina
- Department of Photonics and Optical Information Technology , ITMO University , 49 Kronverksky Pr. , St. Petersburg 197101 , Russia
| | - Andrey A Gurtovenko
- Institute of Macromolecular Compounds , Russian Academy of Sciences , Bolshoi Prospect V.O. 31 , St. Petersburg 199004 , Russia
- Faculty of Physics , St. Petersburg State University , Ulyanovskaya Street 3, Petrodvorets , St. Petersburg 198504 , Russia
| |
Collapse
|
157
|
Aptamers that bind to the human complement component receptor hC5aR1 interfere with hC5aR1 interaction to its hC5a ligand. Mol Biol Rep 2018; 45:851-864. [PMID: 29981048 DOI: 10.1007/s11033-018-4231-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/28/2018] [Indexed: 12/21/2022]
Abstract
The complement system plays an important role in inflammation and immunity. In this system, a potent inflammatory ligand is C5a, which initiates its effects by activating its core receptor C5aR1. Thus, compounds that interfere with the C5a-C5aR1 interaction could alleviate some inflammatory conditions. Consequently, several ligands that bind to either C5a or C5aR1 have previously been isolated and evaluated. In the present study, two RNA aptamers, aptamer 1 and aptamer 9, that specifically bind to hC5aR1 with much higher affinity than antibodies were isolated. These two aptamers were tested for their ability to interfere with the cognate ligand of hC5aR1, C5a, using a chemotaxis assay. Both aptamer 1 and 9 interfered with the C5a interaction, suggesting that the aptamers recognized the extracellular domain of hC5aR1 responsible for hC5a ligand binding. Considering the higher affinity of aptamers to the hC5aR1 and their interference with hC5a ligand binding, further study is warranted to explore not only their applications in the diagnosis of inflammatory diseases but also their usefulness in modulating hC5a and hC5aR1 interactions.
Collapse
|
158
|
Moore CT, Christie KA, Marshall J, Nesbit MA. Personalised genome editing – The future for corneal dystrophies. Prog Retin Eye Res 2018; 65:147-165. [DOI: 10.1016/j.preteyeres.2018.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 12/21/2022]
|
159
|
Abstract
Aging-related neurodegenerative diseases are progressive and fatal neurological diseases that are characterized by irreversible neuron loss and gliosis. With a growing population of aging individuals, there is a pressing need to better understand the basic biology underlying these diseases. Although diverse disease mechanisms have been implicated in neurodegeneration, a common theme of altered RNA processing has emerged as a unifying contributing factor to neurodegenerative disease. RNA processing includes a series of distinct processes, including RNA splicing, transport and stability, as well as the biogenesis of non-coding RNAs. Here, we highlight how some of these mechanisms are altered in neurodegenerative disease, including the mislocalization of RNA-binding proteins and their sequestration induced by microsatellite repeats, microRNA biogenesis alterations and defective tRNA biogenesis, as well as changes to long-intergenic non-coding RNAs. We also highlight potential therapeutic interventions for each of these mechanisms. Summary: In this At a Glance review, Edward Lee and co-authors provide an overview of RNA metabolism defects, including mislocalization of RNA-binding proteins and microRNA biogenesis alterations, that contribute to neurodegenerative disease pathology.
Collapse
Affiliation(s)
- Elaine Y Liu
- Translational Neuropathology Research Laboratories, Perelman School of Med. Univ. of Pennsylvania, 613A Stellar Chance Laboratories, Philadelphia, PA 19104, USA
| | - Christopher P Cali
- Translational Neuropathology Research Laboratories, Perelman School of Med. Univ. of Pennsylvania, 613A Stellar Chance Laboratories, Philadelphia, PA 19104, USA
| | - Edward B Lee
- Translational Neuropathology Research Laboratories, Perelman School of Med. Univ. of Pennsylvania, 613A Stellar Chance Laboratories, Philadelphia, PA 19104, USA
| |
Collapse
|
160
|
Abstract
Long non-coding RNAs (lncRNAs) refer to functional cellular RNAs molecules longer than 200 nucleotides in length. Unlike microRNAs, which have been widely studied, little is known about the enigmatic role of lncRNAs. However, lncRNAs have motivated extensively attention in the past few years and are emerging as potentially important regulators in pathological processes, including in cancer. We now understand that lncRNAs play role in cancer through their interactions with DNA, protein, and RNA in many instances. Moreover, accumulating evidence has recognized that large classes of lncRNAs are functional for ovarian cancer. Nevertheless, the biological phenomena and molecular mechanisms of lncRNAs in ovarian cancer remain to be better identified. In this review, we outline the dysregulated expression of lncRNAs and their potential clinical implications in ovarian cancer, with a particular emphasis on discussing the well characterized mechanisms underlying lncRNAs in ovarian cancer.
Collapse
Affiliation(s)
- Lei Zhan
- Department of gynecology and obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601 China
| | - Jun Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032 China
| | - Bing Wei
- Department of gynecology and obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601 China
| |
Collapse
|
161
|
Wang M, Sun X, Yang Y, Jiao W. Long non-coding RNA OIP5-AS1 promotes proliferation of lung cancer cells and leads to poor prognosis by targeting miR-378a-3p. Thorac Cancer 2018; 9:939-949. [PMID: 29897167 PMCID: PMC6068457 DOI: 10.1111/1759-7714.12767] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 01/09/2023] Open
Abstract
Background The antisense of the OIP5‐AS1 gene is a long non‐coding RNA (lncRNA) that is reported to be upregulated and promotes cell proliferation in multiple human cancers; however, its function in lung cancer is unknown. We investigated the regulatory function and underlying mechanisms of OIP5‐AS1 in lung cancer. Methods OIP5‐AS1 and microRNA (miR)‐378a‐3p expression were assayed by quantitative real‐time PCR, and proliferation‐related protein expression was measured by Western blotting. Cell viability was detected using methyl thiazolyl tetrazolium assay. Luciferase reporter assay and RNA immunoprecipitation were used to detect the direct regulation of miR‐378a‐3p by OIP5‐AS1. Nude mice were used to test the function of OIP5‐AS1 in vivo. Results OIP5‐AS1 was highly expressed in lung cancer tissues and was correlated with tumor size and tumor growth speed. OIP5‐AS1 overexpression increased lung cancer cell proliferation in vitro. Further investigation revealed that OIP5‐AS1 functions as a competing endogenous RNA of miR‐378a‐3p. MiR‐378a‐3p overexpression inhibited cell proliferation and caused proliferation‐associated proteins CDK4 and CDK6 to decrease in A549 cells. Overexpression of wild type OIP5‐AS1 led to strong CDK4 and CDK6 expression; however, these two proteins did not change when mutated OIP5‐AS1 was upregulated. Finally, in vivo assay showed that the speed of tumor growth was increased and decreased when OIP5‐AS1 was upregulated and downregulated, respectively. Conclusion Our results revealed that OIP5‐AS1 acts as a growth‐promoting lncRNA in lung cancer by suppressing miR‐378a‐3p function. OIP5‐AS1 and miR‐378a‐3p interaction may provide a potential target for lung cancer treatment.
Collapse
Affiliation(s)
- Maolong Wang
- Department of Thoracic Surgery, Affiliated Hospital, Qingdao University, Qingdao, China
| | - Xiao Sun
- Department of Thoracic Surgery, Affiliated Hospital, Qingdao University, Qingdao, China
| | - Yuling Yang
- Department of Infectious Disease, Affiliated Hospital, Qingdao University, Qingdao, China
| | - Wenjie Jiao
- Department of Thoracic Surgery, Affiliated Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
162
|
Zhang QY, Ho PY, Tu MJ, Jilek JL, Chen QX, Zeng S, Yu AM. Lipidation of polyethylenimine-based polyplex increases serum stability of bioengineered RNAi agents and offers more consistent tumoral gene knockdown in vivo. Int J Pharm 2018; 547:537-544. [PMID: 29894758 DOI: 10.1016/j.ijpharm.2018.06.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/04/2018] [Accepted: 06/08/2018] [Indexed: 01/30/2023]
Abstract
Recently we have established a novel approach to produce bioengineered noncoding RNA agents (BERAs) in living cells that carry target RNAi molecules (e.g., siRNA and miRNA) and thus act as "prodrugs". Using GFP-siRNA-loaded BERA (BERA/GFP-siRNA) as a model molecule, this study was to define the in vitro and in vivo knockdown efficiency of BERAs delivered by liposome-polyethylenimine nanocomplex (lipopolyplex or LPP). Compared to in vivo-jetPEI® (IVJ-PEI) and polyplex formulations, LPP offered greater protection of BERA/GFP-siRNA against degradation by serum RNases. Particle sizes and zeta potentials of LPP nanocomplex remained stable over 28 days when stored at 4 °C. Furthermore, comparable levels of BERA/GFP-siRNA were delivered by LPP and IVJ-PEI to luciferase/GFP-expressing human SK-Hep1-Luc-GFP or A549-Luc-GFP cells, which were selectively processed into target GFP-siRNA and subsequently knocked down GFP mRNA and protein levels. In addition, LPP-carried BERA/GFP-siRNA was successfully delivered into xenograft tumors and offered more consistent knockdown of tumoral GFP mRNA level in an orthotopic hepatocellular carcinoma (HCC) SK-Hep1-Luc-GFP xenograft mouse model, while IVJ-PEI formulation showed larger variation. These findings demonstrated that lipidation of polyplexes improved serum stability of biologic RNAi molecules, which was efficiently delivered to orthotopic HCC tissues to knock down target gene expression.
Collapse
Affiliation(s)
- Qian-Yu Zhang
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Pui Yan Ho
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Mei-Juan Tu
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Joseph L Jilek
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Qiu-Xia Chen
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Su Zeng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ai-Ming Yu
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA.
| |
Collapse
|
163
|
Wei C, Wang H, Xu F, Liu Z, Jiang R. LncRNA SOX21-AS1 is associated with progression of hepatocellular carcinoma and predicts prognosis through epigenetically silencing p21. Biomed Pharmacother 2018; 104:137-144. [PMID: 29772433 DOI: 10.1016/j.biopha.2018.05.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/24/2018] [Accepted: 05/07/2018] [Indexed: 12/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been widely reported in various cancers due to their special molecular mechanisms. LncRNA SOX21-AS1 has been discovered to be a tumor facilitator in several types of human cancers. However, the expression pattern, clinical value and biological effects in hepatocellular carcinoma (HCC) are still unknown. In this study, we detected the high expression level of SOX21-AS1 in tumor tissues and cell lines through performing qRT-PCR analysis. The prognostic value of SOX21-AS1 was identified. Moreover, the biological effects of SOX21-AS1 on HCC cell activities were evaluated by functional assays, such as MTT, colony formation assay and transwell assay. As a result, silenced SOX21-AS1 suppressed cell proliferation and metastasis, resulted in cell cycle arrest, and induced apoptosis in hepatocellular carcinoma. Mechanically, RIP was conducted to prove that SOX21-AS1 could bind with EZH2. ChIp assay was carried out and manifested that SOX21-AS1 epigenetically silenced p21 via recruiting EZH2 to the promoter of p21. Finally, rescue assays were designed and carefully conducted to investigate whether SOX21-AS1 can interact with p21 to affect hepatocellular carcinoma progression. Generally, our results suggested that SOX21-AS1 could be a potential prognostic biomarker or a therapeutic target for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Congxin Wei
- Department of Radiology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Hong Wang
- Department of Anesthesiology, Yidu Central Hospital, Weifang Medical University, Qingzhou, 262500, China
| | - Fei Xu
- Department of Anesthesiology, Yidu Central Hospital, Weifang Medical University, Qingzhou, 262500, China
| | - Zeng Liu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Runde Jiang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250012, China.
| |
Collapse
|
164
|
|
165
|
Tunable cytotoxic aptamer-drug conjugates for the treatment of prostate cancer. Proc Natl Acad Sci U S A 2018; 115:4761-4766. [PMID: 29666232 DOI: 10.1073/pnas.1717705115] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Therapies that can eliminate both local and metastatic prostate tumor lesions while sparing normal organ tissue are desperately needed. With the goal of developing an improved drug-targeting strategy, we turned to a new class of targeted anticancer therapeutics: aptamers conjugated to highly toxic chemotherapeutics. Cell selection for aptamers with prostate cancer specificity yielded the E3 aptamer, which internalizes into prostate cancer cells without targeting normal prostate cells. Chemical conjugation of E3 to the drugs monomethyl auristatin E (MMAE) and monomethyl auristatin F (MMAF) yields a potent cytotoxic agent that efficiently kills prostate cancer cells in vitro but does not affect normal prostate epithelial cells. Importantly, the E3 aptamer targets tumors in vivo and treatment with the MMAF-E3 conjugate significantly inhibits prostate cancer growth in mice, demonstrating the in vivo utility of aptamer-drug conjugates. Additionally, we report the use of antidotes to block E3 aptamer-drug conjugate cytotoxicity, providing a safety switch in the unexpected event of normal cell killing in vivo.
Collapse
|
166
|
Abstract
The emergence of functional cooperation between the three main classes of biomolecules - nucleic acids, peptides and lipids - defines life at the molecular level. However, how such mutually interdependent molecular systems emerged from prebiotic chemistry remains a mystery. A key hypothesis, formulated by Crick, Orgel and Woese over 40 year ago, posits that early life must have been simpler. Specifically, it proposed that an early primordial biology lacked proteins and DNA but instead relied on RNA as the key biopolymer responsible not just for genetic information storage and propagation, but also for catalysis, i.e. metabolism. Indeed, there is compelling evidence for such an 'RNA world', notably in the structure of the ribosome as a likely molecular fossil from that time. Nevertheless, one might justifiably ask whether RNA alone would be up to the task. From a purely chemical perspective, RNA is a molecule of rather uniform composition with all four bases comprising organic heterocycles of similar size and comparable polarity and pK a values. Thus, RNA molecules cover a much narrower range of steric, electronic and physicochemical properties than, e.g. the 20 amino acid side-chains of proteins. Herein we will examine the functional potential of RNA (and other nucleic acids) with respect to self-replication, catalysis and assembly into simple protocellular entities.
Collapse
|
167
|
Gelofusine Attenuates Tubulointerstitial Injury Induced by cRGD-Conjugated siRNA by Regulating the TLR3 Signaling Pathway. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 11:300-311. [PMID: 29858065 PMCID: PMC5889698 DOI: 10.1016/j.omtn.2018.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 12/14/2022]
Abstract
Integrin αvβ3, which is selectively targeted by cyclic arginine-glycine-aspartic acid (cRGD) peptides, is significantly upregulated in tumors. Previous studies showed that small interfering RNA (siRNA) modified with cRGD (cRGD-siRNA) could significantly inhibit tumor growth through RNAi with oncogene expression. However, cRGD-siRNA is partially reabsorbed and trapped in the kidneys, causing renal injury in an unpredictable manner. This study aimed to investigate the influence of Gelofusine on tubulointerstitial injury induced by cRGD-siRNA in vitro and in vivo. The effect of Gelofusine on the distribution of cRGD-siRNA in tumor-bearing nude mice and wild-type mice was also explored. We found that Gelofusine inhibited apoptosis and activation of the innate immune response of human tubular epithelial cells induced by cRGD-siRNA in vitro. In addition, co-injection of Gelofusine efficiently reduced renal retention of cRGD-siRNA without affecting its tumor targeting in vivo. Further in vivo studies indicated that Gelofusine significantly attenuated tubulointerstitial injury induced by cRGD-siRNA through regulating Toll-like receptor 3 (TLR3)-mediated activation of the nuclear factor κ B (NF-κB) and caspase-3 apoptotic pathway. In conclusion, Gelofusine, acting as a novel and effective renal protective agent, could form a compound preparation with siRNA drugs for future clinical applications.
Collapse
|
168
|
Nordestgaard BG, Nicholls SJ, Langsted A, Ray KK, Tybjærg-Hansen A. Advances in lipid-lowering therapy through gene-silencing technologies. Nat Rev Cardiol 2018; 15:261-272. [PMID: 29417937 DOI: 10.1038/nrcardio.2018.3] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
New treatment opportunities are emerging in the field of lipid-lowering therapy through gene-silencing approaches. Both antisense oligonucleotide inhibition and small interfering RNA technology aim to degrade gene mRNA transcripts to reduce protein production and plasma lipoprotein levels. Elevated levels of LDL, remnant lipoproteins, and lipoprotein(a) all cause cardiovascular disease, whereas elevated levels of triglyceride-rich lipoproteins in some patients can cause acute pancreatitis. The levels of each of these lipoproteins can be reduced using gene-silencing therapies by targeting proteins that have an important role in lipoprotein production or removal (for example, the protein products of ANGPTL3, APOB, APOC3, LPA, and PCSK9). Using this technology, plasma levels of these lipoproteins can be reduced by 50-90% with 2-12 injections per year; such dramatic reductions are likely to reduce the incidence of cardiovascular disease or acute pancreatitis in at-risk patients. The reported adverse effects of these new therapies include injection-site reactions, flu-like symptoms, and low blood platelet counts. However, newer-generation drugs are more efficiently delivered to liver cells, requiring lower drug doses, which leads to fewer adverse effects. Although these findings are promising, robust evidence of cardiovascular disease reduction and long-term safety is needed before these gene-silencing technologies can have widespread implementation. Before the availability of such evidence, these drugs might have roles in patients with unmet medical needs through orphan indications.
Collapse
Affiliation(s)
- Børge G Nordestgaard
- Department of Clinical Biochemistry and The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Herlev Ringvej 75, 2730 Herlev, Denmark
| | - Stephen J Nicholls
- South Australian Health and Medical Research Institute, University of Adelaide, North Terrace, Adelaide 5000, South Australia, Australia
| | - Anne Langsted
- Department of Clinical Biochemistry and The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Herlev Ringvej 75, 2730 Herlev, Denmark
| | - Kausik K Ray
- Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, Imperial College, Reynolds Building, St Dunstan's Road, London W6 8RP, UK
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsveg 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
169
|
Zhao C, Tolkach Y, Schmidt D, Kristiansen G, Müller SC, Ellinger J. 5′-tRNA Halves are Dysregulated in Clear Cell Renal Cell Carcinoma. J Urol 2018; 199:378-383. [DOI: 10.1016/j.juro.2017.07.082] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2017] [Indexed: 10/19/2022]
Affiliation(s)
- Chenming Zhao
- Departments of Urology and Pathology (YT, GK), University Hospital Bonn, Bonn, Germany
| | - Yuri Tolkach
- Departments of Urology and Pathology (YT, GK), University Hospital Bonn, Bonn, Germany
| | - Doris Schmidt
- Departments of Urology and Pathology (YT, GK), University Hospital Bonn, Bonn, Germany
| | - Glen Kristiansen
- Departments of Urology and Pathology (YT, GK), University Hospital Bonn, Bonn, Germany
| | - Stefan C. Müller
- Departments of Urology and Pathology (YT, GK), University Hospital Bonn, Bonn, Germany
| | - Jörg Ellinger
- Departments of Urology and Pathology (YT, GK), University Hospital Bonn, Bonn, Germany
| |
Collapse
|
170
|
Gangwar RS, Rajagopalan S, Natarajan R, Deiuliis JA. Noncoding RNAs in Cardiovascular Disease: Pathological Relevance and Emerging Role as Biomarkers and Therapeutics. Am J Hypertens 2018; 31:150-165. [PMID: 29186297 DOI: 10.1093/ajh/hpx197] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022] Open
Abstract
Noncoding RNAs (ncRNA) include a diverse range of functional RNA species-microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) being most studied in pathophysiology. Cardiovascular morbidity is associated with differential expression of myriad miRNAs; miR-21, miR-155, miR-126, miR-146a/b, miR-143/145, miR-223, and miR-221 are the top 9 most reported miRNAs in hypertension and atherosclerotic disease. A single miRNA may have hundreds of messenger RNA targets, which makes a full appreciation of the physiologic ramifications of such broad-ranging effects a challenge. miR-21 is the most prominent ncRNA associated with hypertension and atherosclerotic disease due to its role as a "mechano-miR", responding to arterial shear stresses. "Immuno-miRs", such as miR-155 and miR-223, affect cardiovascular disease (CVD) via regulation of hematopoietic cell differentiation, chemotaxis, and activation in response to many pro-atherogenic stimuli. "Myo-miRs", such as miR-1 and miR-133, affect cardiac muscle plasticity and remodeling in response to mechanical overload. This in-depth review analyzes observational and experimental reports of ncRNAs in CVD, including future applications of ncRNA-based strategies in diagnosis, prediction (e.g., survival and response to small molecule therapy), and biologic therapy.
Collapse
Affiliation(s)
- Roopesh S Gangwar
- Cardiovascular Research Institute (CVRI), Case Western Reserve University, Cleveland, Ohio, USA
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute (CVRI), Case Western Reserve University, Cleveland, Ohio, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Jeffrey A Deiuliis
- Cardiovascular Research Institute (CVRI), Case Western Reserve University, Cleveland, Ohio, USA
- Department of Medicine, Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
171
|
Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov 2018; 17:261-279. [PMID: 29326426 DOI: 10.1038/nrd.2017.243] [Citation(s) in RCA: 2437] [Impact Index Per Article: 406.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
mRNA vaccines represent a promising alternative to conventional vaccine approaches because of their high potency, capacity for rapid development and potential for low-cost manufacture and safe administration. However, their application has until recently been restricted by the instability and inefficient in vivo delivery of mRNA. Recent technological advances have now largely overcome these issues, and multiple mRNA vaccine platforms against infectious diseases and several types of cancer have demonstrated encouraging results in both animal models and humans. This Review provides a detailed overview of mRNA vaccines and considers future directions and challenges in advancing this promising vaccine platform to widespread therapeutic use.
Collapse
Affiliation(s)
- Norbert Pardi
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Michael J Hogan
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Frederick W Porter
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
172
|
Wang ZY, Hu M, Dai MH, Xiong J, Zhang S, Wu HJ, Zhang SS, Gong ZJ. Upregulation of the long non-coding RNA AFAP1-AS1 affects the proliferation, invasion and survival of tongue squamous cell carcinoma via the Wnt/β-catenin signaling pathway. Mol Cancer 2018; 17:3. [PMID: 29310682 PMCID: PMC5757289 DOI: 10.1186/s12943-017-0752-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/26/2017] [Indexed: 02/08/2023] Open
Abstract
Background Long non-coding RNA (lncRNA) actin filament associated protein 1 antisense RNA1 (AFAP1-AS1) is oriented in an antisense direction to the protein-coding gene AFAP1 in the opposite strand. Previous studies showed that lncRNA AFAP1-AS1 was upregulated and acted as an oncogene in a variety of tumors. However, the expression and biological functions of lncRNA AFAP1-AS1 in tongue squamous cell carcinoma (TSCC) are still unknown. Methods The expression level of AFAP1-AS1 was measured in 103 pairs of human TSCC tissues and corresponding adjacent normal tongue mucous tissues. The correlation between AFAP1-AS1 and the clinicopathological features was evaluated using the chi-square test. The effects of AFAP1-AS1 on TSCC cells were determined via a CCK-8 assay, clone formation assay, flow cytometry, wound healing assay and transwell assay. Furthermore, the effect of AFAP1-AS1 knockdown on the activation of the Wnt/β-catenin signaling pathway was investigated. Finally, CAL-27 cells with AFAP1-AS1 knockdown were subcutaneously injected into nude mice to evaluate the effect of AFAP1-AS1 on tumor growth in vivo. Results In this study, we found that lncRNA AFAP1-AS1 was increased in TSCC tissues and that patients with high AFAP1-AS1 expression had a shorter overall survival. Short hairpin RNA (shRNA)-mediated AFAP1-AS1 knockdown significantly decreased the proliferation of TSCC cells. Furthermore, AFAP1-AS1 silencing partly inhibited cell migration and invasion. Inhibition of AFAP1-AS1 decreased the activity of the Wnt/β-catenin pathway and suppressed the expression of EMT-related genes (SLUG, SNAIL1, VIM, CADN, ZEB1, ZEB2, SMAD2 and TWIST1) in TSCC cells. In addition, CAL-27 cells with AFAP1-AS1 knockdown were injected into nude mice to investigate the effect of AFAP1-AS1 on tumorigenesis in vivo. Downregulation of AFAP1-AS1 suppressed tumor growth and inhibited the expression of EMT-related genes (SLUG, SNIAL1, VIM, ZEB1, NANOG, SMAD2, NESTIN and SOX2) in vivo. Conclusions Taken together, our findings present a road map for targeting the newly identified lncRNA AFAP1-AS1 to suppress TSCC progression, and these results elucidate a novel potential therapeutic strategy for TSCC.
Collapse
Affiliation(s)
- Ze-You Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Min Hu
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Min-Hui Dai
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jing Xiong
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shuai Zhang
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, 350100, China.,Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Han-Jiang Wu
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Shan-Shan Zhang
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China. .,Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Zhao-Jian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
173
|
Chen H, Ma Y, Lan H, Zhao Y, Zhi D, Cui S, Du J, Zhang Z, Zhen Y, Zhang S. Dual stimuli-responsive saccharide core based nanocarrier for efficient Birc5-shRNA delivery. J Mater Chem B 2018; 6:7530-7542. [DOI: 10.1039/c8tb01683f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Stimuli-responsive delivery systems show great promise in meeting the requirements of several delivery stages to achieve satisfactory gene transfection.
Collapse
Affiliation(s)
- Huiying Chen
- Key Laboratory of Biotechnology and Bioresources Utilization
- Ministry of Education
- Dalian Minzu University
- Dalian
- P. R. China
| | - Yu Ma
- College of Life Science
- Dalian Minzu University
- Dalian
- P. R. China
| | - Haoming Lan
- College of Life Science
- Dalian Minzu University
- Dalian
- P. R. China
| | - Yinan Zhao
- College of Life Science
- Dalian Minzu University
- Dalian
- P. R. China
| | - Defu Zhi
- College of Life Science
- Dalian Minzu University
- Dalian
- P. R. China
| | - Shaohui Cui
- Key Laboratory of Biotechnology and Bioresources Utilization
- Ministry of Education
- Dalian Minzu University
- Dalian
- P. R. China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Zhen Zhang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Yuhong Zhen
- College of Pharmacy
- Dalian Medical University
- Dalian
- P. R. China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization
- Ministry of Education
- Dalian Minzu University
- Dalian
- P. R. China
| |
Collapse
|
174
|
Non-protein biologic therapeutics. Curr Opin Biotechnol 2017; 53:65-75. [PMID: 29289799 DOI: 10.1016/j.copbio.2017.12.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/10/2017] [Accepted: 12/11/2017] [Indexed: 01/15/2023]
Abstract
While the therapeutic biologics are dominated by therapeutic proteins, particularly monoclonal antibodies, a wide range of non-protein therapeutic biologics are rapidly gaining ground both in clinical studies and approved products. Many of these first-in-class therapies provide novel treatment modalities and address previously untreatable conditions or undruggable targets. In particular, novel treatments for rare genetic disorders and qualitatively different oncology therapeutics have been approved in the last two years. This review discusses recent advances in peptide, nucleic acid, carbohydrate, vaccine, and cell-based therapies as well as the manufacturing and commercialization challenges associated with these novel therapeutics.
Collapse
|
175
|
Wang D, Lu X, Jia F, Tan X, Sun X, Cao X, Wai F, Zhang C, Zhang K. Precision Tuning of DNA- and Poly(ethylene glycol)-Based Nanoparticles via Coassembly for Effective Antisense Gene Regulation. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2017; 29:9882-9886. [PMID: 30739990 PMCID: PMC6366845 DOI: 10.1021/acs.chemmater.7b03520] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Affiliation(s)
- Dali Wang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Xueguang Lu
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Fei Jia
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Xuyu Tan
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Xiaoya Sun
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Xueyan Cao
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Francesco Wai
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Ke Zhang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
176
|
Yu G, Lin J, Liu C, Hou K, Liang M, Shi B. Long non-coding RNA SPRY4-IT1 promotes development of hepatic cellular carcinoma by interacting with ERRα and predicts poor prognosis. Sci Rep 2017; 7:17176. [PMID: 29214989 PMCID: PMC5719451 DOI: 10.1038/s41598-017-16781-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 10/05/2017] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has become one of the most common leading causes of cancer-related deaths worldwide. This study investigates the role of lncRNA, SPRY4-IT1 in the development of HCC. Quantitative real-time PCR (qRT-PCR) was performed and the results showed that SPRY4-IT1 expression was up-regulated in HCC tissues and high expression of SPRY4-IT1 was associated with poor 5-year overall survival in the HCC patient cohort. Clinicopathological analysis showed that the expression of SPRY4-IT1 was significantly correlated with TNM stage in HCC patients. In vitro CCK-8 assay, colony formation assay, cell invasion and migration assays demonstrated that knock-down of SPRY4-IT1 suppressed cell proliferation, colony formation, cell invasion and migration in HCC cells. Flow cytometric analysis showed that knock-down of SPRY4-IT1 induced cell cycle arrest at G0/G1 phase and induced apoptosis. In addition, knock-down of SPRY4-IT1 also suppressed the mRNA and protein expression of estrogen-related receptor α (ERRα). Similarly, knock-down of ERRα inhibited cell proliferation, colony formation, cell invasion and migration in HCC cells. More importantly, ERRα overexpression antagonized the effects of SPRY4-IT1 knock-down on cell proliferation, colony formation, cell invasion and migration in HCC cells. Taken together, our data highlights the pivotal role of SPRY4-IT1 in the tumorigenesis of HCC.
Collapse
Affiliation(s)
- Guifang Yu
- The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou, Guangdong, China.
| | - Jieheng Lin
- The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou, Guangdong, China
| | - Chengcheng Liu
- The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou, Guangdong, China
| | - Kailian Hou
- The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou, Guangdong, China
| | - Min Liang
- The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou, Guangdong, China
| | - Boyun Shi
- The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou, Guangdong, China
| |
Collapse
|
177
|
Yang F, Zhu P, Guo J, Liu X, Wang S, Wang G, Liu W, Wang S, Ge N. Circular RNAs in thoracic diseases. J Thorac Dis 2017; 9:5382-5389. [PMID: 29312749 DOI: 10.21037/jtd.2017.10.143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Circular RNAs (circRNAs) are a class of noncoding RNAs with continuous, covalently closed circular structures. Investigators have shown previously that circRNAs are regulators of gene expression in mammals. These tissue-specific transcripts are produced primarily by exonic or intronic sequences of housekeeping genes. Several biosynthetic models have been proposed for circRNAs, and consensus is lacking. CircRNAs are widely expressed in the cytoplasm and highly conserved, what is more, unlike other noncoding RNAs, circRNAs are relatively stable. These properties suggest special roles of circRNAs, such as microRNA (miRNA) sponges, regulators of selective splicing, or even protein-coding sequences. The expression of circRNAs is associated with many pathologic conditions; therefore, circRNAs may have utility as biomarker for the diagnosis or prediction of diseases. Authors previously have demonstrated that circRNAs can regulate the expression of a variety of disease-related miRNAs. The circRNA-miRNA-target gene interaction network regulates several pathways that inhibit or promote the occurrence of certain diseases. Based on their potential clinical relevance, circRNAs are a crucial topic of disease prevention and treatment research. Herein, we review current research regarding circRNAs and explore their potential clinical applications for thoracic diseases diagnosis and treatment.
Collapse
Affiliation(s)
- Fan Yang
- Endoscopy Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ping Zhu
- Endoscopy Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jintao Guo
- Endoscopy Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiang Liu
- Endoscopy Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Sheng Wang
- Endoscopy Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Guoxin Wang
- Endoscopy Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Wen Liu
- Endoscopy Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Shupeng Wang
- Endoscopy Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Nan Ge
- Endoscopy Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
178
|
Ransohoff JD, Wei Y, Khavari PA. The functions and unique features of long intergenic non-coding RNA. Nat Rev Mol Cell Biol 2017; 19:143-157. [PMID: 29138516 DOI: 10.1038/nrm.2017.104] [Citation(s) in RCA: 888] [Impact Index Per Article: 126.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Long intergenic non-coding RNA (lincRNA) genes have diverse features that distinguish them from mRNA-encoding genes and exercise functions such as remodelling chromatin and genome architecture, RNA stabilization and transcription regulation, including enhancer-associated activity. Some genes currently annotated as encoding lincRNAs include small open reading frames (smORFs) and encode functional peptides and thus may be more properly classified as coding RNAs. lincRNAs may broadly serve to fine-tune the expression of neighbouring genes with remarkable tissue specificity through a diversity of mechanisms, highlighting our rapidly evolving understanding of the non-coding genome.
Collapse
Affiliation(s)
- Julia D Ransohoff
- Program in Epithelial Biology, Stanford University School of Medicine, California 94305, USA
| | - Yuning Wei
- Program in Epithelial Biology, Stanford University School of Medicine, California 94305, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University School of Medicine, California 94305, USA.,Veterans Affairs Palo Alto Healthcare System, Palo Alto, California 94304, USA
| |
Collapse
|
179
|
Beckers AB, Weerts ZZRM, Helyes Z, Masclee AAM, Keszthelyi D. Review article: transient receptor potential channels as possible therapeutic targets in irritable bowel syndrome. Aliment Pharmacol Ther 2017; 46:938-952. [PMID: 28884838 DOI: 10.1111/apt.14294] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/06/2017] [Accepted: 08/17/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Abdominal pain in irritable bowel syndrome (IBS) remains challenging to treat effectively. Researchers have attempted to elucidate visceral nociceptive processes in order to guide treatment development. Transient receptor potential (TRP) channels have been implied in the generation (TRPV1, TRPV4, TRPA1) and inhibition (TRPM8) of visceral pain signals. Pathological changes in their functioning have been demonstrated in inflammatory conditions, and appear to be present in IBS as well. AIM To provide a comprehensive review of the current literature on TRP channels involved in visceral nociception. In particular, we emphasise the clinical implications of these nociceptors in the treatment of IBS. METHODS Evidence to support this review was obtained from an electronic database search via PubMed using the search terms "visceral nociception," "visceral hypersensitivity," "irritable bowel syndrome" and "transient receptor potential channels." After screening the abstracts the articles deemed relevant were cross-referenced for additional manuscripts. RESULTS Recent studies have resulted in significant advances in our understanding of TRP channel mediated visceral nociception. The diversity of TRP channel sensitization pathways is increasingly recognised. Endogenous TRP agonists, including poly-unsaturated fatty acid metabolites and hydrogen sulphide, have been implied in augmented visceral pain generation in IBS. New potential targets for treatment development have been identified (TRPA1 and TRPV4,) and alternative means of affecting TRP channel signalling (partial antagonists, downstream targeting and RNA-based therapy) are currently being explored. CONCLUSIONS The improved understanding of mechanisms involved in visceral nociception provides a solid basis for the development of new treatment strategies for abdominal pain in IBS.
Collapse
Affiliation(s)
- A B Beckers
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Limburg, The Netherlands
| | - Z Z R M Weerts
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Limburg, The Netherlands
| | - Z Helyes
- Department of Pharmacology and Pharmacotherapy, Molecular Pharmacology Research Team, University of Pécs Medical School, János Szentágothai Research Centre, University of Pécs, Pécs, Baranya, Hungary
| | - A A M Masclee
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Limburg, The Netherlands
| | - D Keszthelyi
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Limburg, The Netherlands
| |
Collapse
|
180
|
Lutz J, Lazzaro S, Habbeddine M, Schmidt KE, Baumhof P, Mui BL, Tam YK, Madden TD, Hope MJ, Heidenreich R, Fotin-Mleczek M. Unmodified mRNA in LNPs constitutes a competitive technology for prophylactic vaccines. NPJ Vaccines 2017; 2:29. [PMID: 29263884 PMCID: PMC5648897 DOI: 10.1038/s41541-017-0032-6] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 09/18/2017] [Accepted: 09/26/2017] [Indexed: 01/01/2023] Open
Abstract
mRNA represents a promising new vaccine technology platform with high flexibility in regard to development and production. Here, we demonstrate that vaccines based on sequence optimized, chemically unmodified mRNA formulated in optimized lipid nanoparticles (LNPs) are highly immunogenic and well tolerated in non-human primates (NHPs). Single intramuscular vaccination of NHPs with LNP-formulated mRNAs encoding rabies or influenza antigens induced protective antibody titers, which could be boosted and remained stable during an observation period of up to 1 year. First mechanistic insights into the mode of action of the LNP-formulated mRNA vaccines demonstrated a strong activation of the innate immune response at the injection site and in the draining lymph nodes (dLNs). Activation of the innate immune system was reflected by a transient induction of pro-inflammatory cytokines and chemokines and activation of the majority of immune cells in the dLNs. Notably, our data demonstrate that mRNA vaccines can compete with licensed vaccines based on inactivated virus or are even superior in respect of functional antibody and T cell responses. Importantly, we show that the developed LNP-formulated mRNA vaccines can be used as a vaccination platform allowing multiple, sequential vaccinations against different pathogens. These results provide strong evidence that the mRNA technology is a valid approach for the development of effective prophylactic vaccines to prevent infectious diseases.
Collapse
Affiliation(s)
- Johannes Lutz
- CureVac AG, Paul-Ehrlich-Str. 15, 72076 Tübingen, Germany
| | - Sandra Lazzaro
- CureVac AG, Paul-Ehrlich-Str. 15, 72076 Tübingen, Germany
| | | | | | | | | | - Ying K. Tam
- Acuitas Therapeutics, Vancouver, BC V6T 1Z3 Canada
| | | | | | | | | |
Collapse
|
181
|
Granot Y, Peer D. Delivering the right message: Challenges and opportunities in lipid nanoparticles-mediated modified mRNA therapeutics-An innate immune system standpoint. Semin Immunol 2017; 34:68-77. [PMID: 28890238 DOI: 10.1016/j.smim.2017.08.015] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022]
Abstract
mRNA molecules hold tremendous potential as a tool for gene therapy of a wide range of diseases. However, the main hurdle in implementation of mRNA for therapeutics, the systemic delivery of mRNA molecules to target cells, remains a challenge. A feasible solution for this challenge relies in the rapidly evolving field of nucleic acid-loaded nanocarriers and specifically in the established family of lipid-based nanoparticles (LNPs). Herein, we will discuss the main factors, which determine the fate of modified mRNA (mmRNA)-loaded LNPs in-vivo, and will focus on their interactions with the innate immune system as a main consideration in the design of lipid-based mmRNA delivery platforms.
Collapse
Affiliation(s)
- Yasmin Granot
- Laboratory of Precision NanoMedicine, Dept. of Cell Research & Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv 69978, Israel; Dept. of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Dept. of Cell Research & Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv 69978, Israel; Dept. of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
182
|
Kaczmarek JC, Kowalski PS, Anderson DG. Advances in the delivery of RNA therapeutics: from concept to clinical reality. Genome Med 2017; 9:60. [PMID: 28655327 PMCID: PMC5485616 DOI: 10.1186/s13073-017-0450-0] [Citation(s) in RCA: 456] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The rapid expansion of the available genomic data continues to greatly impact biomedical science and medicine. Fulfilling the clinical potential of genetic discoveries requires the development of therapeutics that can specifically modulate the expression of disease-relevant genes. RNA-based drugs, including short interfering RNAs and antisense oligonucleotides, are particularly promising examples of this newer class of biologics. For over two decades, researchers have been trying to overcome major challenges for utilizing such RNAs in a therapeutic context, including intracellular delivery, stability, and immune response activation. This research is finally beginning to bear fruit as the first RNA drugs gain FDA approval and more advance to the final phases of clinical trials. Furthermore, the recent advent of CRISPR, an RNA-guided gene-editing technology, as well as new strides in the delivery of messenger RNA transcribed in vitro, have triggered a major expansion of the RNA-therapeutics field. In this review, we discuss the challenges for clinical translation of RNA-based therapeutics, with an emphasis on recent advances in delivery technologies, and present an overview of the applications of RNA-based drugs for modulation of gene/protein expression and genome editing that are currently being investigated both in the laboratory as well as in the clinic.
Collapse
Affiliation(s)
- James C Kaczmarek
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Piotr S Kowalski
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Daniel G Anderson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA. .,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA. .,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA. .,Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA.
| |
Collapse
|
183
|
Hong SL, Wan YT, Tang M, Pang DW, Zhang ZL. Multifunctional Screening Platform for the Highly Efficient Discovery of Aptamers with High Affinity and Specificity. Anal Chem 2017; 89:6535-6542. [DOI: 10.1021/acs.analchem.7b00684] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shao-Li Hong
- Key Laboratory of Analytical
Chemistry for Biology and Medicine (Ministry of Education), College
of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Ya-Tao Wan
- Key Laboratory of Analytical
Chemistry for Biology and Medicine (Ministry of Education), College
of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Man Tang
- Key Laboratory of Analytical
Chemistry for Biology and Medicine (Ministry of Education), College
of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Dai-Wen Pang
- Key Laboratory of Analytical
Chemistry for Biology and Medicine (Ministry of Education), College
of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical
Chemistry for Biology and Medicine (Ministry of Education), College
of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, People’s Republic of China
| |
Collapse
|
184
|
Woodruff RS, Ivanov I, Verhamme IM, Sun MF, Gailani D, Sullenger BA. Generation and characterization of aptamers targeting factor XIa. Thromb Res 2017. [PMID: 28644959 DOI: 10.1016/j.thromres.2017.06.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND The plasma protease factor XIa (FXIa) has become a target of interest for therapeutics designed to prevent or treat thrombotic disorders. METHODS We used a solution-based, directed evolution approach called systematic evolution of ligands by exponential enrichment (SELEX) to isolate RNA aptamers that target the FXIa catalytic domain. RESULTS Two aptamers, designated 11.16 and 12.7, were identified that bound to previously identified anion binding and serpin bindings sites on the FXIa catalytic domain. The aptamers were non-competitive inhibitors of FXIa cleavage of a tripeptide chromogenic substrate and of FXIa activation of factor IX. In normal human plasma, aptamer 12.7 significantly prolonged the aPTT clotting time. CONCLUSIONS The results show that novel inhibitors of FXIa can be prepared using SELEX techniques. RNA aptamers can bind to distinct sites on the FXIa catalytic domain and noncompetitively inhibit FXIa activity toward its primary macromolecular substrate factor IX with different levels of potency. Such compounds can be developed for use as therapeutic inhibitors.
Collapse
Affiliation(s)
- R S Woodruff
- Department of Surgery, Duke University Medical Center, Durham, NC, United States; University Program in Genetics and Genomics, Duke University, Durham, NC, United States
| | - I Ivanov
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - I M Verhamme
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - M-F Sun
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - D Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - B A Sullenger
- Department of Surgery, Duke University Medical Center, Durham, NC, United States.
| |
Collapse
|
185
|
Human DBR1 modulates the recycling of snRNPs to affect alternative RNA splicing and contributes to the suppression of cancer development. Oncogene 2017; 36:5382-5391. [PMID: 28504715 PMCID: PMC5608638 DOI: 10.1038/onc.2017.150] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/03/2017] [Accepted: 04/14/2017] [Indexed: 12/16/2022]
Abstract
The contribution of RNA processing to tumorigenesis is understudied. Here, we report that the human RNA debranching enzyme (hDBR1), when inappropriately regulated, induces oncogenesis by causing RNA processing defects, for example, splicing defects. We found that wild-type p53 and hypoxia-inducible factor 1 co-regulate hDBR1 expression, and insufficient hDBR1 leads to a higher rate of exon skipping. Transcriptomic sequencing confirmed the effect of hDBR1 on RNA splicing, and metabolite profiling supported the observation that neoplasm is triggered by a decrease in hDBR1 expression both in vitro and in vivo. Most importantly, when modulating the expression of hDBR1, which was found to be generally low in malignant human tissues, higher expression of hDBR1 only affected exon-skipping activity in malignant cells. Together, our findings demonstrate previously unrecognized regulation and functions of hDBR1, with immediate clinical implications regarding the regulation of hDBR1 as an effective strategy for combating human cancer.
Collapse
|
186
|
Cha W, Fan R, Miao Y, Zhou Y, Qin C, Shan X, Wan X, Li J. Mesoporous Silica Nanoparticles as Carriers for Intracellular Delivery of Nucleic Acids and Subsequent Therapeutic Applications. Molecules 2017; 22:E782. [PMID: 28492505 PMCID: PMC6154527 DOI: 10.3390/molecules22050782] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 01/17/2023] Open
Abstract
Nucleic acids, including DNA, microRNA (miRNA), small interfering RNA (siRNA), and antisense oligonucleotide (ASO), are powerful gene regulators, which have been demonstrated as promising drug candidates for therapeutic treatments. Nevertheless, poor cellular membrane permeability and serum stability have greatly hindered the applications of nucleic acids in biomedicine. To address these issues, associate carriers that can encapsulate and protect nucleic acids are urgently required. Mesoporous silica nanoparticles (MSNs or MSNPs), which are nanomaterials with excellent biocompatibility, large surface area for functionalization, and tunable pore size for encapsulating different cargos, are emerging as novel and ideal biomaterials for different biomedical applications. In this review paper, we focus on the applications of MSNs in nucleic acid delivery and nucleic acid-guided therapeutic treatments. General strategies for the preparation of nucleic acid-MSN complexes will be firstly introduced, followed by a summary of recent applications of MSNs in nucleic acid delivery and nucleic acid-guided therapeutics.
Collapse
Affiliation(s)
- Wenzhang Cha
- Department of General Surgery, Yancheng City No. 1 People's Hospital, Yancheng 224001, China.
| | - Rengen Fan
- Department of General Surgery, Yancheng City No. 1 People's Hospital, Yancheng 224001, China.
| | - Yufeng Miao
- Department of Medical Oncology, Yancheng City No. 1 People's Hospital, Yancheng 224001, China.
| | - Yong Zhou
- Department of General Surgery, Yancheng City No. 1 People's Hospital, Yancheng 224001, China.
| | - Chenglin Qin
- Department of General Surgery, Yancheng City No. 1 People's Hospital, Yancheng 224001, China.
| | - Xiangxiang Shan
- Department of Gerontology, Yancheng City No. 1 People's Hospital, Yancheng 224001, China.
| | - Xinqiang Wan
- Department of Clinical Medicine, Nantong University Xinglin College, Nantong 226000, China.
| | - Jinbo Li
- School of Chemistry and Chemical Engineering, Nanjing Unviersity, Nanjing 210023, China.
| |
Collapse
|
187
|
The Roles of Carcinoembryonic Antigen in Liver Metastasis and Therapeutic Approaches. Gastroenterol Res Pract 2017; 2017:7521987. [PMID: 28588612 PMCID: PMC5447280 DOI: 10.1155/2017/7521987] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/16/2017] [Indexed: 12/22/2022] Open
Abstract
Metastasis is a highly complicated and sequential process in which primary cancer spreads to secondary organic sites. Liver is a well-known metastatic organ from colorectal cancer. Carcinoembryonic antigen (CEA) is expressed in most gastrointestinal, breast, and lung cancer cells. Overexpression of CEA is closely associated with liver metastasis, which is the main cause of death from colorectal cancer. CEA is widely used as a diagnostic and prognostic tumor marker in cancer patients. It affects many steps of liver metastasis from colorectal cancer cells. CEA inhibits circulating cancer cell death. CEA also binds to heterogeneous nuclear RNA binding protein M4 (hnRNP M4), a Kupffer cell receptor protein, and activates Kupffer cells to secrete various cytokines that change the microenvironments for the survival of colorectal cancer cells in the liver. CEA also activates cell adhesion-related molecules. The close correlation between CEA and cancer has spurred the exploration of many CEA-targeted approaches as anticancer therapeutics. Understanding the detailed functions and mechanisms of CEA in liver metastasis will provide great opportunities for the improvement of anticancer approaches against colorectal cancers. In this report, the roles of CEA in liver metastasis and CEA-targeting anticancer modalities are reviewed.
Collapse
|
188
|
Ma B, Yuan Z, Zhang L, Lv P, Yang T, Gao J, Pan N, Wu Q, Lou J, Han C, Zhang B. Long non-coding RNA AC023115.3 suppresses chemoresistance of glioblastoma by reducing autophagy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1393-1404. [PMID: 28499919 DOI: 10.1016/j.bbamcr.2017.05.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/13/2022]
Abstract
Malignant glioma is an aggressive brain cancer that responds poorly to chemotherapy. However, the molecular mechanism underlying the development of chemoresistance in glioma is not well-understood. In this study, we show that long non-coding RNA AC023115.3 is induced by cisplatin in human glioblastoma cells and that elevated AC023115.3 promotes cisplatin-induced apoptosis by inhibiting autophagy. Further mechanistic studies revealed that AC023115.3 acts as a competing endogenous RNA for miR-26a and attenuates the inhibitory effect of miR-26a on GSK3β, a proline-directed serine-threonine kinase that promotes the degradation of Mcl1, leading to an increase in GSK3β and a decrease in autophagy. Additionally, we discovered that AC023115.3 improves chemosensitivity of glioma cells to cisplatin by regulating the miR-26a-GSK3β-Mcl1 pathway. Thus, these data indicate that the AC023115.3-miR-26a-GSK3β signalling axis plays an important role in reducing the chemoresistance of glioma.
Collapse
Affiliation(s)
- Binbin Ma
- Department of Neurosurgery, Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116027, China
| | - Zhongbo Yuan
- Department of Neurosurgery, Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116027, China
| | - Li Zhang
- Laboratory of Pathogenic Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116027, China
| | - Peng Lv
- Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian 116027, China
| | - Ting Yang
- Department of Neurosurgery, Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116027, China
| | - Jinxia Gao
- Department of Anaesthesiology, Second Affiliated Hospital, Dalian Medical University, 116027, China
| | - Ning Pan
- Department of Anaesthesiology, Second Affiliated Hospital, Dalian Medical University, 116027, China
| | - Qiong Wu
- Department of Neurology of Dalian Municipal Central Hospital Affiliated, Dalian Medical University, 116033, China
| | - Jiacheng Lou
- Department of Neurosurgery, Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116027, China
| | - Chuanchun Han
- Department of Neurosurgery, Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116027, China.
| | - Bo Zhang
- Department of Neurosurgery, Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116027, China.
| |
Collapse
|
189
|
Jaremko WJ, Huang Z, Wen W, Wu A, Karl N, Niu L. Identification and characterization of RNA aptamers: A long aptamer blocks the AMPA receptor and a short aptamer blocks both AMPA and kainate receptors. J Biol Chem 2017; 292:7338-7347. [PMID: 28325839 PMCID: PMC5418036 DOI: 10.1074/jbc.m116.774752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/17/2017] [Indexed: 11/06/2022] Open
Abstract
AMPA and kainate receptors, along with NMDA receptors, represent different subtypes of glutamate ion channels. AMPA and kainate receptors share a high degree of sequence and structural similarities, and excessive activity of these receptors has been implicated in neurological diseases such as epilepsy. Therefore, blocking detrimental activity of both receptor types could be therapeutically beneficial. Here, we report the use of an in vitro evolution approach involving systematic evolution of ligands by exponential enrichment with a single AMPA receptor target (i.e. GluA1/2R) to isolate RNA aptamers that can potentially inhibit both AMPA and kainate receptors. A full-length or 101-nucleotide (nt) aptamer selectively inhibited GluA1/2R with a KI of ∼5 μm, along with GluA1 and GluA2 AMPA receptor subunits. Of note, its shorter version (55 nt) inhibited both AMPA and kainate receptors. In particular, this shorter aptamer blocked equally potently the activity of both the GluK1 and GluK2 kainate receptors. Using homologous binding and whole-cell recording assays, we found that an RNA aptamer most likely binds to the receptor's regulatory site and inhibits it noncompetitively. Our results suggest the potential of using a single receptor target to develop RNA aptamers with dual activity for effectively blocking both AMPA and kainate receptors.
Collapse
Affiliation(s)
- William J Jaremko
- From the Department of Chemistry and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Zhen Huang
- From the Department of Chemistry and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Wei Wen
- From the Department of Chemistry and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Andrew Wu
- From the Department of Chemistry and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Nicholas Karl
- From the Department of Chemistry and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Li Niu
- From the Department of Chemistry and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| |
Collapse
|
190
|
Wang Y, Lu Z, Wang N, Zhang M, Zeng X, Zhao W. MicroRNA-1299 is a negative regulator of STAT3 in colon cancer. Oncol Rep 2017; 37:3227-3234. [PMID: 28498395 PMCID: PMC5442392 DOI: 10.3892/or.2017.5605] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 04/10/2017] [Indexed: 12/12/2022] Open
Abstract
Signal transducers and activators of transcription (STAT) is a family of transcription factors which regulate cell proliferation, differentiation, apoptosis, metastasis, immune and inflammatory responses, and angiogenesis. STAT3 is a latent cytoplasmic transcription factor that belongs to STATs. STAT3 has been reported be regulates genes involved with cellular growth, proliferation and metastasis. Worldwide, colon cancer is one of the leading causes of cancer-related deaths. Cumulative evidence has established that STAT3 is essential for colon cancer progression to advanced malignancy. In our study, we showed that microRNA-1299 (miR-1299) was closely related to the TNM stage of colon cancer, and that the expression of miR-1299 was negatively correlated with the expression of STAT3 in colon cancer which means that miR-1299 can be a negative regulator of STAT3 in colon cancer. A total of 60 cases of different grades of colon samples were used to detect the expression of miR-1299. Results showed that miR-1299 was significantly lower in high-grade colons both in mRNA and protein levels. Furthermore, Overall survival (OS) in patients with low miR-1299 is shorter than 25.6 months, as compared with an OS of 28.4 months in patients with high level of miR-1299. We also confirmed that the overexpression of miR-1299 can not only downregulate the STAT3 pathway, but also inhibited colon cancer cell growth. Our findings could provide new insights into the molecular therapeutic of colon cancer.
Collapse
Affiliation(s)
- Yong Wang
- The 4th Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, P.R. China
| | - Zhi Lu
- Department of Nuclear Medicine, The 1st Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Ningning Wang
- The 2nd Department of Cardiology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, P.R. China
| | - Man Zhang
- The 2nd Department of Cardiology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, P.R. China
| | - Xiandong Zeng
- Department of Surgical Oncology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, P.R. China
| | - Wei Zhao
- The 4th Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, P.R. China
| |
Collapse
|
191
|
Abstract
Macroautophagy/autophagy is a catabolic process that is widely found in nature. Over the past few decades, mounting evidence has indicated that noncoding RNAs, ranging from small noncoding RNAs to long noncoding RNAs (lncRNAs) and even circular RNAs (circRNAs), mediate the transcriptional and post-transcriptional regulation of autophagy-related genes by participating in autophagy regulatory networks. The differential expression of noncoding RNAs affects autophagy levels at different physiological and pathological stages, including embryonic proliferation and differentiation, cellular senescence, and even diseases such as cancer. We summarize the current knowledge regarding noncoding RNA dysregulation in autophagy and investigate the molecular regulatory mechanisms underlying noncoding RNA involvement in autophagy regulatory networks. Then, we integrate public resources to predict autophagy-related noncoding RNAs across species and discuss strategies for and the challenges of identifying autophagy-related noncoding RNAs. This article will deepen our understanding of the relationship between noncoding RNAs and autophagy, and provide new insights to specifically target noncoding RNAs in autophagy-associated therapeutic strategies.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Peiyuan Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lin Wan
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China,CONTACT Da Pang ; Shouping Xu Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, No. 150 Haping Road, Harbin, China 150040
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China,Heilongjiang Academy of Medical Sciences, Harbin, China,CONTACT Da Pang ; Shouping Xu Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, No. 150 Haping Road, Harbin, China 150040
| |
Collapse
|
192
|
Wang B, Shao X, Song R, Xu D, Zhang JA. The Emerging Role of Epigenetics in Autoimmune Thyroid Diseases. Front Immunol 2017; 8:396. [PMID: 28439272 PMCID: PMC5383710 DOI: 10.3389/fimmu.2017.00396] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/21/2017] [Indexed: 12/15/2022] Open
Abstract
Autoimmune thyroid diseases (AITD) are a group of both B cell- and T cell-mediated organ-specific autoimmune diseases. Graves’ disease and Hashimoto thyroiditis are the two main clinical presentations of AITD. Both genetic and environmental factors have important roles in the development of AITD. Epigenetics have been considered to exert key roles in integrating those genetic and environmental factors, and epigenetic modifications caused by environmental factors may drive genetically susceptibility individuals to develop AITD. Recent studies on the epigenetics of AITD have provided some novel insights into the pathogenesis of AITD. The aim of this review is to provide an overview of recent advances in the epigenetic mechanisms of AITD, such as DNA methylation, histone modifications, and non-coding RNAs. This review highlights the key roles of epigenetics in the pathogenesis of AITD and potential clinical utility. However, the epigenetic roles in AITD are still not fully elucidated, and more researches are needed to provide further deeper insights into the roles of epigenetics in AITD and to uncover new therapeutic targets. Although there are many studies assessing the epigenetic modifications in AITD patients, the clinical utility of epigenetics in AITD remains poorly defined. More studies are needed to identify the underlying epigenetic modifications that can contribute to accurate diagnosis of AITD, adequate choice of treatment approach, and precise prediction of treatment outcomes.
Collapse
Affiliation(s)
- Bin Wang
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China.,Department of Rheumatology and Immunology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Xiaoqing Shao
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China.,Department of Rheumatology and Immunology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Ronghua Song
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China.,Department of Rheumatology and Immunology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Donghua Xu
- Department of Rheumatology and Immunology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jin-An Zhang
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China.,Department of Rheumatology and Immunology, Jinshan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
193
|
The Race of 10 Synthetic RNAi-Based Drugs to the Pharmaceutical Market. Pharm Res 2017; 34:1339-1363. [PMID: 28389707 DOI: 10.1007/s11095-017-2134-2] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/27/2017] [Indexed: 02/08/2023]
Abstract
Ten years after Fire and Melo's Nobel Prize for discovery of gene silencing by double-stranded RNA, a remarkable progress was achieved in RNA interference (RNAi). Changes in the chemical structure of synthetic oligonucleotides make them more stable and specific, and new delivery strategies became progressively available. The attention of pharmaceutical industry rapidly turned to RNAi, as an opportunity to explore new drug targets. This review addresses nine small-interfering RNAs (siRNAs) and one unique microRNA (miRNA) inhibitor, which entered the phase 2-3 clinical trials. The siRNAs in focus are PF-04523655, TKM-080301, Atu027, SYL040012, SYL1001, siG12D-LODER (phase 2), QPI-1002, QPI-1007, and patisiran (phase 3). Regarding miRNAs, their content can be down- or up-regulated, by using miRNA inhibitors (AntimiRs) or miRNA mimics. Miravirsen is an AntimiR-122 for hepatitis C virus infection. The flexibility of RNAi technology is easily understood taking into account: (i) the different drug targets (i.e. p53, caspase 2, PKN3, β2-adrenergic receptor, mutated KRAS, microRNAs); (ii) therapeutic conditions, including ophthalmic diseases, kidney injury, amyloidosis, pancreatic cancer, viral hepatitis; and (iii) routes of administration (ocular, intravenous, subcutaneous, intratumoral). Although some issues are still matters of concern (delivery, toxicity, cost, and biological barriers), RNAi definitively opens a wide avenue for drug development.
Collapse
|
194
|
Hellmuth I, Freund I, Schlöder J, Seidu-Larry S, Thüring K, Slama K, Langhanki J, Kaloyanova S, Eigenbrod T, Krumb M, Röhm S, Peneva K, Opatz T, Jonuleit H, Dalpke AH, Helm M. Bioconjugation of Small Molecules to RNA Impedes Its Recognition by Toll-Like Receptor 7. Front Immunol 2017; 8:312. [PMID: 28392787 PMCID: PMC5364167 DOI: 10.3389/fimmu.2017.00312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/06/2017] [Indexed: 12/25/2022] Open
Abstract
A fundamental mechanism of the innate immune system is the recognition, via extra- and intracellular pattern-recognition receptors, of pathogen-associated molecular patterns. A prominent example is represented by foreign nucleic acids, triggering the activation of several signaling pathways. Among these, the endosomal toll-like receptor 7 (TLR7) is known to be activated by single-stranded RNA (ssRNA), which can be specifically influenced through elements of sequence structure and posttranscriptional modifications. Furthermore, small molecules TLR7 agonists (smTLRa) are applied as boosting adjuvants in vaccination processes. In this context, covalent conjugations between adjuvant and vaccines have been reported to exhibit synergistic effects. Here, we describe a concept to chemically combine three therapeutic functions in one RNA bioconjugate. This consists in the simultaneous TLR7 stimulation by ssRNA and smTLRa as well as the therapeutic function of the RNA itself, e.g., as a vaccinating or knockdown agent. We have hence synthesized bioconjugates of mRNA and siRNA containing covalently attached smTLRa and tested their function in TLR7 stimulation. Strikingly, the bioconjugates displayed decreased rather than synergistically increased stimulation. The decrease was distinct from the antagonistic action of an siRNA bearing a Gm motive, as observed by direct comparison of the effects in the presence of otherwise stimulatory RNA. In summary, these investigations showed that TRL7 activation can be impeded by bioconjugation of small molecules to RNA.
Collapse
Affiliation(s)
- Isabell Hellmuth
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Isabel Freund
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg , Heidelberg , Germany
| | - Janine Schlöder
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Salifu Seidu-Larry
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Kathrin Thüring
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Kaouthar Slama
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Jens Langhanki
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Mainz , Germany
| | | | - Tatjana Eigenbrod
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg , Heidelberg , Germany
| | - Matthias Krumb
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Sandra Röhm
- Max Planck Institute for Polymer Research (MPG) , Mainz , Germany
| | - Kalina Peneva
- Max Planck Institute for Polymer Research (MPG) , Mainz , Germany
| | - Till Opatz
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Helmut Jonuleit
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Alexander H Dalpke
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg , Heidelberg , Germany
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz , Mainz , Germany
| |
Collapse
|
195
|
Khvorova A, Watts JK. The chemical evolution of oligonucleotide therapies of clinical utility. Nat Biotechnol 2017; 35:238-248. [PMID: 28244990 PMCID: PMC5517098 DOI: 10.1038/nbt.3765] [Citation(s) in RCA: 762] [Impact Index Per Article: 108.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023]
Abstract
After nearly 40 years of development, oligonucleotide therapeutics are nearing meaningful clinical productivity. One of the key advantages of oligonucleotide drugs is that their delivery and potency are derived primarily from the chemical structure of the oligonucleotide whereas their target is defined by the base sequence. Thus, as oligonucleotides with a particular chemical design show appropriate distribution and safety profiles for clinical gene silencing in a particular tissue, this will open the door to the rapid development of additional drugs targeting other disease-associated genes in the same tissue. To achieve clinical productivity, the chemical architecture of the oligonucleotide needs to be optimized with a combination of sugar, backbone, nucleobase, and 3'- and 5'-terminal modifications. A portfolio of chemistries can be used to confer drug-like properties onto the oligonucleotide as a whole, with minor chemical changes often translating into major improvements in clinical efficacy. One outstanding challenge in oligonucleotide chemical development is the optimization of chemical architectures to ensure long-term safety. There are multiple designs that enable effective targeting of the liver, but a second challenge is to develop architectures that enable robust clinical efficacy in additional tissues.
Collapse
Affiliation(s)
- Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jonathan K Watts
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
196
|
Small Interfering RNA Targeting Mitochondrial Calcium Uniporter Improves Cardiomyocyte Cell Viability in Hypoxia/Reoxygenation Injury by Reducing Calcium Overload. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5750897. [PMID: 28337252 PMCID: PMC5350333 DOI: 10.1155/2017/5750897] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/24/2016] [Accepted: 01/05/2017] [Indexed: 12/16/2022]
Abstract
Intracellular Ca2+ mishandling is an underlying mechanism in hypoxia/reoxygenation (H/R) injury that results in mitochondrial dysfunction and cardiomyocytes death. These events are mediated by mitochondrial Ca2+ (mCa2+) overload that is facilitated by the mitochondrial calcium uniporter (MCU) channel. Along this line, we evaluated the effect of siRNA-targeting MCU in cardiomyocytes subjected to H/R injury. First, cardiomyocytes treated with siRNA demonstrated a reduction of MCU expression by 67%, which resulted in significant decrease in mitochondrial Ca2+ transport. siRNA treated cardiomyocytes showed decreased mitochondrial permeability pore opening and oxidative stress trigger by Ca2+ overload. Furthermore, after H/R injury MCU silencing decreased necrosis and apoptosis levels by 30% and 50%, respectively, and resulted in reduction in caspases 3/7, 9, and 8 activity. Our findings are consistent with previous conclusions that demonstrate that MCU activity is partly responsible for cellular injury induced by H/R and support the concept of utilizing siRNA-targeting MCU as a potential therapeutic strategy.
Collapse
|
197
|
Persano S, Guevara ML, Li Z, Mai J, Ferrari M, Pompa PP, Shen H. Lipopolyplex potentiates anti-tumor immunity of mRNA-based vaccination. Biomaterials 2017; 125:81-89. [PMID: 28231510 DOI: 10.1016/j.biomaterials.2017.02.019] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 10/20/2022]
Abstract
mRNA-based vaccines have the benefit of triggering robust anti-cancer immunity without the potential danger of genome integration from DNA vaccines or the limitation of antigen selection from peptide vaccines. Yet, a conventional mRNA vaccine comprising of condensed mRNA molecules in a positively charged protein core structure is not effectively internalized by the antigen-presenting cells. It cannot offer sufficient protection for mRNA molecules from degradation by plasma and tissue enzymes either. Here, we have developed a lipopolyplex mRNA vaccine that consists of a poly-(β-amino ester) polymer mRNA core encapsulated into a 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine/1,2-dioleoyl-sn-glycero-3-phosphatidyl-ethanolamine/1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000 (EDOPC/DOPE/DSPE-PEG) lipid shell. This core-shell structured mRNA vaccine enters dendritic cells through macropinocytosis. It displayed intrinsic adjuvant activity by potently stimulating interferon-β and interleukin-12 expression in dendritic cells through Toll-like receptor 7/8 signaling. Dendritic cells treated with the mRNA vaccine displayed enhanced antigen presentation capability. Mice bearing lung metastatic B16-OVA tumors expressing the ovalbumin antigen were treated with the lipopolyplex mRNA, and over 90% reduction of tumor nodules was observed. Collectively, this core-shell structure offers a promising platform for mRNA vaccine development.
Collapse
Affiliation(s)
- Stefano Persano
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA; Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego, 30, 16163, Genova, Italy; Università del Salento, Via Provinciale Monteroni, 73100, Lecce, Italy
| | - Maria L Guevara
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA; Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Monterrey, NL, 64849, Mexico
| | - Zhaoqi Li
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Junhua Mai
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA; Department of Medicine, Weill Cornell Medical College, 1330 York Ave, New York, NY, 10065, USA
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego, 30, 16163, Genova, Italy
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA; Department of Cell and Developmental Biology, Weill Cornell Medical College, 1330 York Ave, New York, NY, 10065, USA.
| |
Collapse
|
198
|
Bisaria N, Jarmoskaite I, Herschlag D. Lessons from Enzyme Kinetics Reveal Specificity Principles for RNA-Guided Nucleases in RNA Interference and CRISPR-Based Genome Editing. Cell Syst 2017; 4:21-29. [PMID: 28125791 PMCID: PMC5308874 DOI: 10.1016/j.cels.2016.12.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/15/2016] [Accepted: 12/09/2016] [Indexed: 12/26/2022]
Abstract
RNA-guided nucleases (RGNs) provide sequence-specific gene regulation through base-pairing interactions between a small RNA guide and target RNA or DNA. RGN systems, which include CRISPR-Cas9 and RNA interference (RNAi), hold tremendous promise as programmable tools for engineering and therapeutic purposes. However, pervasive targeting of sequences that closely resemble the intended target has remained a major challenge, limiting the reliability and interpretation of RGN activity and the range of possible applications. Efforts to reduce off-target activity and enhance RGN specificity have led to a collection of empirically derived rules, which often paradoxically include decreased binding affinity of the RNA-guided nuclease to its target. We consider the kinetics of these reactions and show that basic kinetic properties can explain the specificities observed in the literature and the changes in these specificities in engineered systems. The kinetic models described provide a foundation for understanding RGN targeting and a necessary conceptual framework for their rational engineering.
Collapse
Affiliation(s)
- Namita Bisaria
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Inga Jarmoskaite
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
199
|
Weil PP, Jaszczyszyn Y, Baroin-Tourancheau A, Postberg J, Amar L. Holistic and Affordable Analyses of MicroRNA Expression Profiles Using Tagged cDNA Libraries and a Multiplex Sequencing Strategy. Methods Mol Biol 2017; 1654:179-196. [PMID: 28986790 DOI: 10.1007/978-1-4939-7231-9_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Small and long noncoding RNAs (ncRNAs) are key regulators of gene expression. Variations in ncRNA expression patterns can consequently affect the control of many cellular processes. Not just since 2006, when Andrew Z Fire and Craig C Mello were jointly awarded The Nobel Prize in Physiology or Medicine for their discovery of RNA interference, great efforts were undertaken to unleash the biomedical applicability of small noncoding RNAs, in particular microRNAs. With the technological evolution of massive parallel sequencing technologies over the last years, which now are available for an increasing number of scientists, there is a demand for comprehensible and efficient workflows reliable even for unique and valuable clinical specimens. Here we describe a highly reproducible low-cost protocol for analyses of miRNA expression patterns using tagged cDNA libraries and a multiplex sequencing strategy following an Illumina-like protocol. This protocol easily allows the identification of expression differences from samples of tissues of 1-2 mm3 and fluids of 50-200 μL. We further provide entry points into useful computational biology applications, whose target groups explicitly involve non-bioinformaticians.
Collapse
Affiliation(s)
- Patrick P Weil
- Department of Paediatrics, HELIOS Medical Centre Wuppertal, Centre for Clinical and Translational Research (CCTR), Witten/Herdecke University Hospital, Centre for Biomedical Education and Research (ZBAF), Witten, Germany
| | - Yan Jaszczyszyn
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Anne Baroin-Tourancheau
- Institut des Neurosciences Paris-Saclay, Université Paris-Sud, CNRS, UMR 9197, Université Paris-Saclay, Orsay, France
| | - Jan Postberg
- Department of Paediatrics, HELIOS Medical Centre Wuppertal, Centre for Clinical and Translational Research (CCTR), Witten/Herdecke University Hospital, Centre for Biomedical Education and Research (ZBAF), Witten, Germany.
| | - Laurence Amar
- Institut des Neurosciences Paris-Saclay, Université Paris-Sud, CNRS, UMR 9197, Université Paris-Saclay, Orsay, France.
| |
Collapse
|
200
|
Sun L, Yang C, Xu J, Feng Y, Wang L, Cui T. Long Noncoding RNA EWSAT1 Promotes Osteosarcoma Cell Growth and Metastasis Through Suppression of MEG3 Expression. DNA Cell Biol 2016; 35:812-818. [PMID: 27860482 DOI: 10.1089/dna.2016.3467] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Lishan Sun
- Department of Orthopedics, Cangzhou Central Hospital, Hebei, China
| | - Cheng Yang
- Department of Orthopedics, Cangzhou Central Hospital, Hebei, China
| | - Juan Xu
- Department of Ultrasound, Cangzhou Central Hospital, Hebei, China
| | - Yanhong Feng
- Department of Endocrinology, Cangzhou Central Hospital, Hebei, China
| | - Liguo Wang
- Department of Orthopedics, Cangzhou Central Hospital, Hebei, China
| | - Tao Cui
- Department of Orthopedics, Cangzhou Central Hospital, Hebei, China
| |
Collapse
|