151
|
|
152
|
Virus-like particle secretion and genotype-dependent immunogenicity of dengue virus serotype 2 DNA vaccine. J Virol 2014; 88:10813-30. [PMID: 25008922 DOI: 10.1128/jvi.00810-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Dengue virus (DENV), composed of four distinct serotypes, is the most important and rapidly emerging arthropod-borne pathogen and imposes substantial economic and public health burdens. We constructed candidate vaccines containing the DNA of five of the genotypes of dengue virus serotype 2 (DENV-2) and evaluated the immunogenicity, the neutralizing (Nt) activity of the elicited antibodies, and the protective efficacy elicited in mice immunized with the vaccine candidates. We observed a significant correlation between the level of in vitro virus-like particle secretion, the elicited antibody response, and the protective efficacy of the vaccines containing the DNA of the different DENV genotypes in immunized mice. However, higher total IgG antibody levels did not always translate into higher Nt antibodies against homologous and heterologous viruses. We also found that, in contrast to previous reports, more than 50% of total IgG targeted ectodomain III (EDIII) of the E protein, and a substantial fraction of this population was interdomain highly neutralizing flavivirus subgroup-cross-reactive antibodies, such as monoclonal antibody 1B7-5. In addition, the lack of a critical epitope(s) in the Sylvatic genotype virus recognized by interdomain antibodies could be the major cause of the poor protection of mice vaccinated with the Asian 1 genotype vaccine (pVD2-Asian 1) from lethal challenge with virus of the Sylvatic genotype. In conclusion, although the pVD2-Asian 1 vaccine was immunogenic, elicited sufficient titers of Nt antibodies against all DENV-2 genotypes, and provided 100% protection against challenge with virus of the homologous Asian 1 genotype and virus of the heterologous Cosmopolitan genotype, it is critical to monitor the potential emergence of Sylvatic genotype viruses, since vaccine candidates under development may not protect vaccinated humans from these viruses. IMPORTANCE Five genotype-specific dengue virus serotype 2 (DENV-2) DNA vaccine candidates were evaluated for their immunogenicity, homologous and heterologous neutralizing (Nt) antibody titers, and cross-genotype protection in a murine model. The immunity elicited by our prototype vaccine candidate (Asian 1 genotype strain 16681) in mice was protective against viruses of other genotypes but not against virus of the Sylvatic genotype, whose emergence and potential risk after introduction into the human population have previously been demonstrated. The underlying mechanism of a lack of protection elicited by the prototype vaccine may at least be contributed by the absence of a flavivirus subgroup-cross-reactive, highly neutralizing monoclonal antibody 1B7-5-like epitope in DENV-2 of the Sylvatic genotype. The DENV DNA vaccine directs the synthesis and assembly of virus-like particles (VLPs) and induces immune responses similar to those elicited by live-attenuated vaccines, and its flexibility permits the fast deployment of vaccine to combat emerging viruses, such as Sylvatic genotype viruses. The enhanced VLP secretion obtained by replacement of ectodomain I-II (EDI-II) of the Cosmopolitan genotype vaccine construct (VD2-Cosmopolitan) with the Asian 1 EDI-II elicited significantly higher total IgG and Nt antibody titers and suggests a novel approach to enhance the immunogenicity of the DNA vaccine. A DENV vaccine capable of eliciting protective immunity against viruses of existing and emerging genotypes should be the focus of future DENV vaccine development.
Collapse
|
153
|
Pierson TC, Diamond MS. Vaccine Development as a Means to Control Dengue Virus Pathogenesis: Do We Know Enough? Annu Rev Virol 2014; 1:375-98. [PMID: 26958727 DOI: 10.1146/annurev-virology-031413-085453] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dengue virus (DENV) is a mosquito-transmitted RNA virus responsible for 390 million infections each year and significant morbidity and mortality throughout tropical and subtropical regions of the world. Efforts to develop a DENV vaccine span 70 years and include the work of luminaries of the virus vaccine field. Although vaccines have been used to reduce the global health burden of other flaviviruses, the unique requirement for a single vaccine to protect against four different groups of dengue viruses, and the link between secondary infections and DENV disease pathogenesis, has limited success to date. In this review, we discuss several promising DENV vaccine candidates in clinical trials and assess how recent advances in understanding of DENV biology and immunity may expedite efforts toward the development of safe and effective vaccines.
Collapse
Affiliation(s)
- Theodore C Pierson
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892;
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, and Pathology & Immunology, Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri 63110;
| |
Collapse
|
154
|
Abstract
Because of the increasing incidence, geographic expansion and economic burden of dengue transmission, dengue poses major challenges to policy makers. A vaccine against dengue is urgently needed, but vaccine development has been hampered by the lack of an appropriate animal model, poor understanding of correlates of successful human immunity, the fear of immune enhancement, and viral interference in tetravalent combinations. The most suitable target epitopes for vaccines, as well as the role of nonstructural proteins remain elusive. The chimeric yellow fever bone-based live attenuated dengue vaccine is furthest in development, but initial efficacy results have been disappointing. Lessons learnt from this failure will affect the design of future trials, and increase the urgency to identify the best epitope and immune correlates. Dengue vaccine introduction will not be the only strategy to combat dengue, but needs to be "packaged" with novel vector control approaches, with community-based interventions to reduce the number of breeding sites, and reducing the case fatality rate by improving case management.
Collapse
Affiliation(s)
- Annelies Wilder-Smith
- Lee Kong Chian School of Medicine, Nanyang Technological University, Mandalay Road 11, Singapore, Singapore,
| | | |
Collapse
|
155
|
Cassetti MC, Halstead SB. Consultation on dengue vaccines: progress in understanding protection, 26-28 June 2013, Rockville, Maryland. Vaccine 2014; 32:3115-21. [PMID: 24768502 DOI: 10.1016/j.vaccine.2014.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 03/28/2014] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
Abstract
There is an unmet need for a dengue vaccine to further prevent the spread of this disease and contain the growing pandemic. To this end several vaccine companies and academic groups are actively pursuing the development of a tetravalent vaccine to prevent dengue. In the last few years progress has been made in this area, including the first results of a vaccine efficacy trial and improved understanding of the immune responses to the infection. Despite this progress, development of dengue vaccines faces important challenges including the need for a vaccine that induces balanced immune responses against all dengue strains and an incomplete understanding of the mechanism(s) of protection against infection and disease. This is a summary of a Consultation on dengue vaccines held in June 26-28, 2013 by the National Institute of Allergy and Infectious Diseases (part of the US National Institutes of Health) and the Dengue Vaccine Initiative (part of the International Vaccine Institute). The primary goal of this consultation was to review the progress in dengue vaccine development, evaluate the known mechanism of protection of dengue vaccines and discuss avenues for future research.
Collapse
Affiliation(s)
- M Cristina Cassetti
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Scott B Halstead
- Dengue Vaccine Initiative, International Vaccine Institute, Seoul, South Korea.
| |
Collapse
|
156
|
Edeling MA, Austin SK, Shrestha B, Dowd KA, Mukherjee S, Nelson CA, Johnson S, Mabila MN, Christian EA, Rucker J, Pierson TC, Diamond MS, Fremont DH. Potent dengue virus neutralization by a therapeutic antibody with low monovalent affinity requires bivalent engagement. PLoS Pathog 2014; 10:e1004072. [PMID: 24743696 PMCID: PMC3990716 DOI: 10.1371/journal.ppat.1004072] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 03/03/2014] [Indexed: 01/07/2023] Open
Abstract
We recently described our most potently neutralizing monoclonal antibody, E106, which protected against lethal Dengue virus type 1 (DENV-1) infection in mice. To further understand its functional properties, we determined the crystal structure of E106 Fab in complex with domain III (DIII) of DENV-1 envelope (E) protein to 2.45 Å resolution. Analysis of the complex revealed a small antibody-antigen interface with the epitope on DIII composed of nine residues along the lateral ridge and A-strand regions. Despite strong virus neutralizing activity of E106 IgG at picomolar concentrations, E106 Fab exhibited a ∼20,000-fold decrease in virus neutralization and bound isolated DIII, E, or viral particles with only a micromolar monovalent affinity. In comparison, E106 IgG bound DENV-1 virions with nanomolar avidity. The E106 epitope appears readily accessible on virions, as neutralization was largely temperature-independent. Collectively, our data suggest that E106 neutralizes DENV-1 infection through bivalent engagement of adjacent DIII subunits on a single virion. The isolation of anti-flavivirus antibodies that require bivalent binding to inhibit infection efficiently may be a rare event due to the unique icosahedral arrangement of envelope proteins on the virion surface.
Collapse
Affiliation(s)
- Melissa A. Edeling
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - S. Kyle Austin
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Bimmi Shrestha
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kimberly A. Dowd
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Swati Mukherjee
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christopher A. Nelson
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Syd Johnson
- MacroGenics, Rockville, Maryland, United States of America
| | - Manu N. Mabila
- Integral Molecular, Philadelphia, Pennsylvania, United States of America
| | | | - Joseph Rucker
- Integral Molecular, Philadelphia, Pennsylvania, United States of America
| | - Theodore C. Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael S. Diamond
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Daved H. Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
157
|
Wan SW, Lu YT, Huang CH, Lin CF, Anderson R, Liu HS, Yeh TM, Yen YT, Wu-Hsieh BA, Lin YS. Protection against dengue virus infection in mice by administration of antibodies against modified nonstructural protein 1. PLoS One 2014; 9:e92495. [PMID: 24658118 PMCID: PMC3962419 DOI: 10.1371/journal.pone.0092495] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 02/21/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Infection with dengue virus (DENV) may cause life-threatening disease with thrombocytopenia and vascular leakage which are related to dysfunction of platelets and endothelial cells. We previously showed that antibodies (Abs) against DENV nonstructural protein 1 (NS1) cross-react with human platelets and endothelial cells, leading to functional disturbances. Based on sequence homology analysis, the C-terminal region of DENV NS1 protein contains cross-reactive epitopes. For safety in vaccine development, the cross-reactive epitopes of DENV NS1 protein should be deleted or modified. METHODOLOGY/PRINCIPAL FINDINGS We tested the protective effects of Abs against full-length DENV NS1, NS1 lacking the C-terminal amino acids (a.a.) 271-352 (designated ΔC NS1), and chimeric DJ NS1 consisting of N-terminal DENV NS1 (a.a. 1-270) and C-terminal Japanese encephalitis virus NS1 (a.a. 271-352). The anti-ΔC NS1 and anti-DJ NS1 Abs showed a lower binding activity to endothelial cells and platelets than that of anti-DENV NS1 Abs. Passive immunization with anti-ΔC NS1 and anti-DJ NS1 Abs reduced DENV-induced prolonged mouse tail bleeding time. Treatment with anti-DENV NS1, anti-ΔC NS1 and anti-DJ NS1 Abs reduced local skin hemorrhage, controlled the viral load of DENV infection in vivo, synergized with complement to inhibit viral replication in vitro, as well as abolished DENV-induced macrophage infiltration to the site of skin inoculation. Moreover, active immunization with modified NS1 protein, but not with unmodified DENV NS1 protein, reduced DENV-induced prolonged bleeding time, local skin hemorrhage, and viral load. CONCLUSIONS/SIGNIFICANCE These results support the idea that modified NS1 proteins may represent an improved strategy for safe and effective vaccine development against DENV infection.
Collapse
Affiliation(s)
- Shu-Wen Wan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Tien Lu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Hui Huang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chiou-Feng Lin
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Robert Anderson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hsiao-Sheng Liu
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Trai-Ming Yeh
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ting Yen
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Betty A. Wu-Hsieh
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail: (BAWH); (YSL)
| | - Yee-Shin Lin
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (BAWH); (YSL)
| |
Collapse
|
158
|
|
159
|
Messer WB, de Alwis R, Yount BL, Royal SR, Huynh JP, Smith SA, Crowe JE, Doranz BJ, Kahle KM, Pfaff JM, White LJ, Sariol CA, de Silva AM, Baric RS. Dengue virus envelope protein domain I/II hinge determines long-lived serotype-specific dengue immunity. Proc Natl Acad Sci U S A 2014; 111:1939-44. [PMID: 24385585 PMCID: PMC3918811 DOI: 10.1073/pnas.1317350111] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The four dengue virus (DENV) serotypes, DENV-1, -2, -3, and -4, are endemic throughout tropical and subtropical regions of the world, with an estimated 390 million acute infections annually. Infection confers long-term protective immunity against the infecting serotype, but secondary infection with a different serotype carries a greater risk of potentially fatal severe dengue disease, including dengue hemorrhagic fever and dengue shock syndrome. The single most effective measure to control this threat to global health is a tetravalent DENV vaccine. To date, attempts to develop a protective vaccine have progressed slowly, partly because the targets of type-specific human neutralizing antibodies (NAbs), which are critical for long-term protection, remain poorly defined, impeding our understanding of natural immunity and hindering effective vaccine development. Here, we show that the envelope glycoprotein domain I/II hinge of DENV-3 and DENV-4 is the primary target of the long-term type-specific NAb response in humans. Transplantation of a DENV-4 hinge into a recombinant DENV-3 virus showed that the hinge determines the serotype-specific neutralizing potency of primary human and nonhuman primate DENV immune sera and that the hinge region both induces NAbs and is targeted by protective NAbs in rhesus macaques. These results suggest that the success of live dengue vaccines may depend on their ability to stimulate NAbs that target the envelope glycoprotein domain I/II hinge region. More broadly, this study shows that complex conformational antibody epitopes can be transplanted between live viruses, opening up similar possibilities for improving the breadth and specificity of vaccines for influenza, HIV, hepatitis C virus, and other clinically important viral pathogens.
Collapse
Affiliation(s)
- William B. Messer
- Department of Molecular Microbiology and Immunology and
- Division of Infectious Diseases, Department of Medicine, Oregon Health and Sciences University, Portland, OR 97239
| | - Ruklanthi de Alwis
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Boyd L. Yount
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599
| | - Scott R. Royal
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599
| | - Jeremy P. Huynh
- Department of Molecular Microbiology and Immunology and
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599
| | | | - James E. Crowe
- Pediatrics, and
- Pathology and
- Vanderbilt Vaccine Center, Vanderbilt University, Nashville, TN 37232
| | | | | | | | - Laura J. White
- Global Vaccines, Inc., Research Triangle Park, NC 27709; and
| | - Carlos A. Sariol
- Caribbean Primate Research Center and
- Departments of Microbiology and Medical Zoology and
- Internal Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico 00936
| | - Aravinda M. de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Ralph S. Baric
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
160
|
Induction of neutralizing antibodies against four serotypes of dengue viruses by MixBiEDIII, a tetravalent dengue vaccine. PLoS One 2014; 9:e86573. [PMID: 24466156 PMCID: PMC3897746 DOI: 10.1371/journal.pone.0086573] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 12/12/2013] [Indexed: 01/14/2023] Open
Abstract
The worldwide expansion of four serotypes of dengue virus (DENV) poses great risk to global public health. Several vaccine candidates are under development. However, none is yet available for humans. In the present study, a novel strategy to produce tetravalent DENV vaccine based on envelope protein domain III (EDIII) was proposed. Tandem EDIIIs of two serotypes (type 1-2 and type 3-4) of DENV connected by a Gly-Ser linker ((Gly4Ser)3) were expressed in E. coli, respectively. Then, the two bivalent recombinant EDIIIs were equally mixed to form the tetravalent vaccine candidate MixBiEDIII, and used to immunize BALB/c mice. The results showed that specific IgG and neutralizing antibodies against all four serotypes of DENV were successfully induced in the MixBiEDIII employing Freund adjuvant immunized mice. Furthermore, in the suckling mouse model, sera from mice immunized with MixBiEDIII provided significant protection against four serotypes of DENV challenge. Our data demonstrated that MixBiEDIII, as a novel form of subunit vaccine candidates, might have the potential to be further developed as a tetravalent dengue vaccine in the near future.
Collapse
|
161
|
Fibriansah G, Tan JL, Smith SA, de Alwis AR, Ng TS, Kostyuchenko VA, Ibarra KD, Wang J, Harris E, de Silva A, Crowe JE, Lok SM. A potent anti-dengue human antibody preferentially recognizes the conformation of E protein monomers assembled on the virus surface. EMBO Mol Med 2014; 6:358-71. [PMID: 24421336 PMCID: PMC3958310 DOI: 10.1002/emmm.201303404] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Dengue virus (DENV), which consists of four serotypes (DENV1-4), infects over 400 million people annually. Previous studies have indicated most human monoclonal antibodies (HMAbs) from dengue patients are cross-reactive and poorly neutralizing. Rare neutralizing HMAbs are usually serotype-specific and bind to quaternary structure-dependent epitopes. We determined the structure of DENV1 complexed with Fab fragments of a highly potent HMAb 1F4 to 6 Å resolution by cryo-EM. Although HMAb 1F4 appeared to bind to virus and not E proteins in ELISAs in the previous study, our structure showed that the epitope is located within an envelope (E) protein monomer, and not across neighboring E proteins. The Fab molecules bind to domain I (DI), and DI-DII hinge of the E protein. We also showed that HMAb 1F4 can neutralize DENV at different stages of viral entry in a cell type and receptor dependent manner. The structure reveals the mechanism by which this potent and specific antibody blocks viral infection.
Collapse
Affiliation(s)
- Guntur Fibriansah
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore City, Singapore
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Koehl P. Mathematics's role in the grand challenge of deciphering the molecular basis of life. Front Mol Biosci 2014; 1:2. [PMID: 25988143 PMCID: PMC4428350 DOI: 10.3389/fmolb.2014.00002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 03/19/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Patrice Koehl
- Department of Computer Science and Genome Center, University of California at Davis Davis, CA, USA
| |
Collapse
|
163
|
Chong MK, Chua AJS, Tan TTT, Tan SH, Ng ML. Microscopy techniques in flavivirus research. Micron 2013; 59:33-43. [PMID: 24530363 DOI: 10.1016/j.micron.2013.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/11/2013] [Accepted: 12/11/2013] [Indexed: 11/29/2022]
Abstract
The Flavivirus genus is composed of many medically important viruses that cause high morbidity and mortality, which include Dengue and West Nile viruses. Various molecular and biochemical techniques have been developed in the endeavour to study flaviviruses. However, microscopy techniques still have irreplaceable roles in the identification of novel virus pathogens and characterization of morphological changes in virus-infected cells. Fluorescence microscopy contributes greatly in understanding the fundamental viral protein localizations and virus-host protein interactions during infection. Electron microscopy remains the gold standard for visualizing ultra-structural features of virus particles and infected cells. New imaging techniques and combinatory applications are continuously being developed to push the limit of resolution and extract more quantitative data. Currently, correlative live cell imaging and high resolution three-dimensional imaging have already been achieved through the tandem use of optical and electron microscopy in analyzing biological specimens. Microscopy techniques are also used to measure protein binding affinities and determine the mobility pattern of proteins in cells. This chapter will consolidate on the applications of various well-established microscopy techniques in flavivirus research, and discuss how recently developed microscopy techniques can potentially help advance our understanding in these membrane viruses.
Collapse
Affiliation(s)
- Mun Keat Chong
- Flavivirology Laboratory, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 5 Science Drive 2, MD4 Level 3, Singapore 117545, Singapore
| | - Anthony Jin Shun Chua
- Flavivirology Laboratory, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 5 Science Drive 2, MD4 Level 3, Singapore 117545, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Centre for Life Sciences (CeLS), 28 Medical Drive, #05-01, Singapore 117456, Singapore
| | - Terence Tze Tong Tan
- Flavivirology Laboratory, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 5 Science Drive 2, MD4 Level 3, Singapore 117545, Singapore
| | - Suat Hoon Tan
- Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 12 Medical Drive, MD5, Singapore 117597, Singapore
| | - Mah Lee Ng
- Flavivirology Laboratory, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 5 Science Drive 2, MD4 Level 3, Singapore 117545, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Centre for Life Sciences (CeLS), 28 Medical Drive, #05-01, Singapore 117456, Singapore; Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 12 Medical Drive, MD5, Singapore 117597, Singapore.
| |
Collapse
|
164
|
VanBlargan LA, Mukherjee S, Dowd KA, Durbin AP, Whitehead SS, Pierson TC. The type-specific neutralizing antibody response elicited by a dengue vaccine candidate is focused on two amino acids of the envelope protein. PLoS Pathog 2013; 9:e1003761. [PMID: 24348242 PMCID: PMC3857832 DOI: 10.1371/journal.ppat.1003761] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/27/2013] [Indexed: 11/18/2022] Open
Abstract
Dengue viruses are mosquito-borne flaviviruses that circulate in nature as four distinct serotypes (DENV1-4). These emerging pathogens are responsible for more than 100 million human infections annually. Severe clinical manifestations of disease are predominantly associated with a secondary infection by a heterotypic DENV serotype. The increased risk of severe disease in DENV-sensitized populations significantly complicates vaccine development, as a vaccine must simultaneously confer protection against all four DENV serotypes. Eliciting a protective tetravalent neutralizing antibody response is a major goal of ongoing vaccine development efforts. However, a recent large clinical trial of a candidate live-attenuated DENV vaccine revealed low protective efficacy despite eliciting a neutralizing antibody response, highlighting the need for a better understanding of the humoral immune response against dengue infection. In this study, we sought to identify epitopes recognized by serotype-specific neutralizing antibodies elicited by monovalent DENV1 vaccination. We constructed a panel of over 50 DENV1 structural gene variants containing substitutions at surface-accessible residues of the envelope (E) protein to match the corresponding DENV2 sequence. Amino acids that contribute to recognition by serotype-specific neutralizing antibodies were identified as DENV mutants with reduced sensitivity to neutralization by DENV1 immune sera, but not cross-reactive neutralizing antibodies elicited by DENV2 vaccination. We identified two mutations (E126K and E157K) that contribute significantly to type-specific recognition by polyclonal DENV1 immune sera. Longitudinal and cross-sectional analysis of sera from 24 participants of a phase I clinical study revealed a markedly reduced capacity to neutralize a E126K/E157K DENV1 variant. Sera from 77% of subjects recognized the E126K/E157K DENV1 variant and DENV2 equivalently (<3-fold difference). These data indicate the type-specific component of the DENV1 neutralizing antibody response to vaccination is strikingly focused on just two amino acids of the E protein. This study provides an important step towards deconvoluting the functional complexity of DENV serology following vaccination.
Collapse
Affiliation(s)
- Laura A. VanBlargan
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Swati Mukherjee
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kimberly A. Dowd
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Anna P. Durbin
- Johns Hopkins School of Public Health, Baltimore, Maryland, United States of America
| | - Stephen S. Whitehead
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Theodore C. Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
165
|
Smith SA, de Alwis AR, Kose N, Harris E, Ibarra KD, Kahle KM, Pfaff JM, Xiang X, Doranz BJ, de Silva AM, Austin SK, Sukupolvi-Petty S, Diamond MS, Crowe JE. The potent and broadly neutralizing human dengue virus-specific monoclonal antibody 1C19 reveals a unique cross-reactive epitope on the bc loop of domain II of the envelope protein. mBio 2013; 4:e00873-13. [PMID: 24255124 PMCID: PMC3870244 DOI: 10.1128/mbio.00873-13] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 10/15/2013] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Following natural dengue virus (DENV) infection, humans produce some antibodies that recognize only the serotype of infection (type specific) and others that cross-react with all four serotypes (cross-reactive). Recent studies with human antibodies indicate that type-specific antibodies at high concentrations are often strongly neutralizing in vitro and protective in animal models. In general, cross-reactive antibodies are poorly neutralizing and can enhance the ability of DENV to infect Fc receptor-bearing cells under some conditions. Type-specific antibodies at low concentrations also may enhance infection. There is an urgent need to determine whether there are conserved antigenic sites that can be recognized by cross-reactive potently neutralizing antibodies. Here, we describe the isolation of a large panel of naturally occurring human monoclonal antibodies (MAbs) directed to the DENV domain II fusion loop (FL) envelope protein region from subjects following vaccination or natural infection. Most of the FL-specific antibodies exhibited a conventional phenotype, characterized by low-potency neutralizing function and antibody-dependent enhancing activity. One clone, however, recognized the bc loop of domain II adjacent to the FL and exhibited a unique phenotype of ultrahigh potency, neutralizing all four serotypes better than any other previously described MAb recognizing this region. This antibody not only neutralized DENV effectively but also competed for binding against the more prevalent poor-quality antibodies whose binding was focused on the FL. The 1C19 human antibody could be a promising component of a preventative or therapeutic intervention. Furthermore, the unique epitope revealed by 1C19 suggests a focus for rational vaccine design based on novel immunogens presenting cross-reactive neutralizing determinants. IMPORTANCE With no effective vaccine available, the incidence of dengue virus (DENV) infections worldwide continues to rise, with more than 390 million infections estimated to occur each year. Due to the unique roles that antibodies are postulated to play in the pathogenesis of DENV infection and disease, there is consensus that a successful DENV vaccine must protect against all four serotypes. If conserved epitopes recognized by naturally occurring potently cross-neutralizing human antibodies could be identified, monovalent subunit vaccine preparations might be developed. We characterized 30 DENV cross-neutralizing human monoclonal antibodies (MAbs) and identified one (1C19) that recognized a novel conserved site, known as the bc loop. This antibody has several desirable features, as it neutralizes DENV effectively and competes for binding against the more common low-potency fusion loop (FL) antibodies, which are believed to contribute to antibody-mediated disease. To our knowledge, this is the first description of a potent serotype cross-neutralizing human antibody to DENV.
Collapse
Affiliation(s)
| | - A. Ruklanthi de Alwis
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Nurgun Kose
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Kristie D. Ibarra
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | | | | | - Xiaoxiao Xiang
- Integral Molecular Inc., Philadelphia, Pennsylvania, USA
| | | | - Aravinda M. de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - S. Kyle Austin
- Departments of Medicine, Molecular Microbiology, Pathology, and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Soila Sukupolvi-Petty
- Departments of Medicine, Molecular Microbiology, Pathology, and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael S. Diamond
- Departments of Medicine, Molecular Microbiology, Pathology, and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
166
|
Chan KR, Ong EZ, Ooi EE. Therapeutic antibodies as a treatment option for dengue fever. Expert Rev Anti Infect Ther 2013; 11:1147-57. [PMID: 24093625 DOI: 10.1586/14787210.2013.839941] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Dengue fever is the most prevalent mosquito-borne viral disease globally with about 100 million cases of acute dengue annually. Severe dengue infection can result in a life-threatening illness. In the absence of either a licensed vaccine or antiviral drug against dengue, therapeutic antibodies that neutralize dengue virus (DENV) may serve as an effective medical countermeasure against severe dengue. However, therapeutic antibodies would need to effectively neutralize all four DENV serotypes. It must not induce antibody-dependent enhancement of DENV infection in monocytes/macrophages through Fc gamma receptor (FcγR)-mediated phagocytosis, which is hypothesized to increase the risk of severe dengue. Here, we review the strategies and technologies that can be adopted to develop antibodies for therapeutic applications. We also discuss the mechanism of antibody neutralization in the cells targeted by DENV that express Fc gamma receptor. These studies have provided significant insight toward the use of therapeutic antibodies as a potentially promising bulwark against dengue.
Collapse
Affiliation(s)
- Kuan Rong Chan
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Graduate Medical School, 8 College Road, Singapore 169857
| | | | | |
Collapse
|
167
|
Lai CY, Williams KL, Wu YC, Knight S, Balmaseda A, Harris E, Wang WK. Analysis of cross-reactive antibodies recognizing the fusion loop of envelope protein and correlation with neutralizing antibody titers in Nicaraguan dengue cases. PLoS Negl Trop Dis 2013; 7:e2451. [PMID: 24069496 PMCID: PMC3777924 DOI: 10.1371/journal.pntd.0002451] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 08/14/2013] [Indexed: 11/18/2022] Open
Abstract
Dengue virus (DENV) is the leading cause of arboviral diseases in humans worldwide. The envelope (E) protein of DENV is the major target of neutralizing antibodies (Abs). Previous studies have shown that a significant proportion of anti-E Abs in human serum after DENV infection recognize the highly conserved fusion loop (FL) of E protein. The role of anti-FL Abs in protection against subsequent DENV infection versus pathogenesis remains unclear. A human anti-E monoclonal Ab was used as a standard in a virion-capture ELISA to measure the concentration of anti-E Abs, [anti-E Abs], in dengue-immune sera from Nicaraguan patients collected 3, 6, 12 and 18 months post-infection. The proportion of anti-FL Abs was determined by capture ELISA using virus-like particles containing mutations in FL, and the concentration of anti-FL Abs, [anti-FL Abs], was calculated. Neutralization titers (NT50) were determined using a previously described flow cytometry-based assay. Analysis of sequential samples from 10 dengue patients revealed [anti-E Abs] and [anti-FL Abs] were higher in secondary than in primary DENV infections. While [anti-FL Abs] did not correlate with NT50 against the current infecting serotype, it correlated with NT50 against the serotypes to which patients had likely not yet been exposed (“non-exposed” serotypes) in 14 secondary DENV3 and 15 secondary DENV2 cases. These findings demonstrate the kinetics of anti-FL Abs and provide evidence that anti-FL Abs play a protective role against “non-exposed” serotypes after secondary DENV infection. The four serotypes of dengue virus (DENV) are the leading cause of mosquito-borne viral diseases in humans. Whereas infection with one DENV serotype is thought to confer protection against re-infection with that serotype, it can be either protective or enhance disease severity upon subsequent (“secondary”) infection with a different serotype. The envelope (E) protein of DENV is the major target of neutralizing antibodies. Previously, we and others reported that a significant proportion of anti-E antibodies in human dengue-immune sera recognize the fusion loop (FL) of E protein. The role of anti-FL antibodies in protection against subsequent DENV infections versus pathogenesis remains unclear. In this study, we developed capture ELISAs to measure the concentrations of anti-E and anti-FL antibodies in sera of Nicaraguan dengue patients collected 3, 6, 12 and 18 months post-illness, and investigated the kinetics of these antibodies and their relationship to neutralization activity. While the concentrations of anti-FL antibodies did not correlate with 50% neutralization titers (NT50) against the current infecting serotype, it correlated with NT50 against serotypes to which patients had likely not yet been exposed (“non-exposed” serotypes) in secondary DENV infections. These findings provide evidence that anti-FL antibodies play a protective role against “non-exposed” serotypes after secondary DENV infection.
Collapse
Affiliation(s)
- Chih-Yun Lai
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Katherine L. Williams
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Yi-Chieh Wu
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Sarah Knight
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Angel Balmaseda
- National Virology Laboratory, National Center for Diagnosis and Reference, Ministry of Health, Managua, Nicaragua
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail: (EH); (WKW)
| | - Wei-Kung Wang
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- * E-mail: (EH); (WKW)
| |
Collapse
|
168
|
High-avidity and potently neutralizing cross-reactive human monoclonal antibodies derived from secondary dengue virus infection. J Virol 2013; 87:12562-75. [PMID: 24027331 DOI: 10.1128/jvi.00871-13] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The envelope (E) protein of dengue virus (DENV) is the major target of neutralizing antibodies (Abs) and vaccine development. Previous studies of human dengue-immune sera reported that a significant proportion of anti-E Abs, known as group-reactive (GR) Abs, were cross-reactive to all four DENV serotypes and to one or more other flaviviruses. Based on studies of mouse anti-E monoclonal antibodies (MAbs), GR MAbs were nonneutralizing or weakly neutralizing compared with type-specific MAbs; a GR response was thus not regarded as important for vaccine strategy. We investigated the epitopes, binding avidities, and neutralization potencies of 32 human GR anti-E MAbs. In addition to fusion loop (FL) residues in E protein domain II, human GR MAbs recognized an epitope involving both FL and bc loop residues in domain II. The neutralization potencies and binding avidities of GR MAbs derived from secondary DENV infection were stronger than those derived from primary infection. GR MAbs derived from primary DENV infection primarily blocked attachment, whereas those derived from secondary infection blocked DENV postattachment. Analysis of the repertoire of anti-E MAbs derived from patients with primary DENV infection revealed that the majority were GR, low-avidity, and weakly neutralizing MAbs, whereas those from secondary infection were primarily GR, high-avidity, and potently neutralizing MAbs. Our findings suggest that the weakly neutralizing GR anti-E Abs generated from primary DENV infection become potently neutralizing MAbs against the four serotypes after secondary infection. The observation that the dengue immune status of the host affects the quality of the cross-reactive Abs generated has implications for new strategies for DENV vaccination.
Collapse
|
169
|
Identifying protective dengue vaccines: Guide to mastering an empirical process. Vaccine 2013; 31:4501-7. [DOI: 10.1016/j.vaccine.2013.06.079] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/17/2013] [Accepted: 06/26/2013] [Indexed: 11/21/2022]
|
170
|
McArthur MA, Sztein MB, Edelman R. Dengue vaccines: recent developments, ongoing challenges and current candidates. Expert Rev Vaccines 2013; 12:933-53. [PMID: 23984962 PMCID: PMC3773977 DOI: 10.1586/14760584.2013.815412] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dengue is among the most prevalent and important arbovirus diseases of humans. To effectively control this rapidly spreading disease, control of the vector mosquito and a safe and efficacious vaccine are critical. Despite considerable efforts, the development of a successful vaccine has remained elusive. Multiple factors have complicated the creation of a successful vaccine, not the least of which are the complex, immune-mediated responses against four antigenically distinct serotypes necessitating a tetravalent vaccine providing long-lasting protective immunity. Despite the multiple impediments, there are currently many promising vaccine candidates in preclinical and clinical development. Here, the recent advances in dengue virus vaccine development are reviewed and the challenges associated with the use of these vaccines as a public health tool are briefly discussed.
Collapse
Affiliation(s)
- Monica A. McArthur
- Department of Pediatrics, University of Maryland School of Medicine, 685 West Baltimore Street, Room 480, Baltimore, MD 21201, USA
- Center for Vaccine Development, University of Maryland School of Medicine, 685 West Baltimore Street, Room 480, Baltimore, MD 21201, USA
| | - Marcelo B. Sztein
- Department of Pediatrics, University of Maryland School of Medicine, 685 West Baltimore Street, Room 480, Baltimore, MD 21201, USA
- Center for Vaccine Development, University of Maryland School of Medicine, 685 West Baltimore Street, Room 480, Baltimore, MD 21201, USA
| | - Robert Edelman
- Department of Medicine, University of Maryland School of Medicine, 685 West Baltimore Street, Room 480, Baltimore, MD 21201, USA
- Center for Vaccine Development, University of Maryland School of Medicine, 685 West Baltimore Street, Room 480, Baltimore, MD 21201, USA
| |
Collapse
|
171
|
Functional analysis of antibodies against dengue virus type 4 reveals strain-dependent epitope exposure that impacts neutralization and protection. J Virol 2013; 87:8826-42. [PMID: 23785205 DOI: 10.1128/jvi.01314-13] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Although prior studies have characterized the neutralizing activities of monoclonal antibodies (MAbs) against dengue virus (DENV) serotypes 1, 2, and 3 (DENV-1, DENV-2, and DENV-3), few reports have assessed the activity of MAbs against DENV-4. Here, we evaluated the inhibitory activity of 81 new mouse anti-DENV-4 MAbs. We observed strain- and genotype-dependent differences in neutralization of DENV-4 by MAbs mapping to epitopes on domain II (DII) and DIII of the envelope (E) protein. Several anti-DENV-4 MAbs inefficiently inhibited at least one strain and/or genotype, suggesting that the exposure or sequence of neutralizing epitopes varies within isolates of this serotype. Remarkably, flavivirus cross-reactive MAbs, which bound to the highly conserved fusion loop in DII and inhibited infection of DENV-1, DENV-2, and DENV-3, more weakly neutralized five different DENV-4 strains encompassing the genetic diversity of the serotype after preincubation at 37°C. However, increasing the time of preincubation at 37°C or raising the temperature to 40°C enhanced the potency of DII fusion loop-specific MAbs and some DIII-specific MAbs against DENV-4 strains. Prophylaxis studies in two new DENV-4 mouse models showed that neutralization titers of MAbs after preincubation at 37°C correlated with activity in vivo. Our studies establish the complexity of MAb recognition against DENV-4 and suggest that differences in epitope exposure relative to other DENV serotypes affect antibody neutralization and protective activity.
Collapse
|
172
|
Chabierski S, Makert GR, Kerzhner A, Barzon L, Fiebig P, Liebert UG, Papa A, Richner JM, Niedrig M, Diamond MS, Palù G, Ulbert S. Antibody responses in humans infected with newly emerging strains of West Nile Virus in Europe. PLoS One 2013; 8:e66507. [PMID: 23776680 PMCID: PMC3680493 DOI: 10.1371/journal.pone.0066507] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 05/06/2013] [Indexed: 11/18/2022] Open
Abstract
Infection with West Nile Virus (WNV) affects an increasing number of countries worldwide. Although most human infections result in no or mild flu-like symptoms, the elderly and those with a weakened immune system are at higher risk for developing severe neurological disease. Since its introduction into North America in 1999, WNV has spread across the continental United States and caused annual outbreaks with a total of 36,000 documented clinical cases and ∼1,500 deaths. In recent years, outbreaks of neuroinvasive disease also have been reported in Europe. The WNV strains isolated during these outbreaks differ from those in North America, as sequencing has revealed that distinct phylogenetic lineages of WNV concurrently circulate in Europe, which has potential implications for the development of vaccines, therapeutics, and diagnostic tests. Here, we studied the human antibody response to European WNV strains responsible for outbreaks in Italy and Greece in 2010, caused by lineage 1 and 2 strains, respectively. The WNV structural proteins were expressed as a series of overlapping fragments fused to a carrier-protein, and binding of IgG in sera from infected persons was analyzed. The results demonstrate that, although the humoral immune response to WNV in humans is heterogeneous, several dominant peptides are recognized.
Collapse
Affiliation(s)
- Stefan Chabierski
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Gustavo R. Makert
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Alexandra Kerzhner
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Petra Fiebig
- Institute of Virology, Leipzig University, Leipzig, Germany
| | - Uwe G. Liebert
- Institute of Virology, Leipzig University, Leipzig, Germany
| | - Anna Papa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Justin M. Richner
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, Missouri, St. Louis, United States of America
| | | | - Michael S. Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, Missouri, St. Louis, United States of America
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Sebastian Ulbert
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- * E-mail:
| |
Collapse
|
173
|
Protection by immunoglobulin dual-affinity retargeting antibodies against dengue virus. J Virol 2013; 87:7747-53. [PMID: 23658441 DOI: 10.1128/jvi.00327-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Dengue viruses are the most common arthropod-transmitted viral infection, with an estimated 390 million human infections annually and ∼3.6 billion people at risk. Currently, there are no approved vaccines or therapeutics available to control the global dengue virus disease burden. In this study, we demonstrate the binding, neutralizing activity, and therapeutic capacity of a novel bispecific dual-affinity retargeting molecule (DART) that limits infection of all four serotypes of dengue virus.
Collapse
|
174
|
Immature and mature dengue serotype 1 virus structures provide insight into the maturation process. J Virol 2013; 87:7700-7. [PMID: 23637416 DOI: 10.1128/jvi.00197-13] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dengue virus is a major human pathogen that has four serotypes (DENV1 to -4). Here we report the cryoelectron microscopy (cryo-EM) structures of immature and mature DENV1 at 6- and 4.5-Å resolution, respectively. The subnanometer-resolution maps allow accurate placement of all of the surface proteins. Although the immature and mature viruses showed vastly different surface protein organizations, the envelope protein transmembrane (E-TM) regions remain in similar positions. The pivotal role of the E-TM regions leads to the identification of the start and end positions of all surface proteins during maturation.
Collapse
|
175
|
Dengue structure differs at the temperatures of its human and mosquito hosts. Proc Natl Acad Sci U S A 2013; 110:6795-9. [PMID: 23569243 DOI: 10.1073/pnas.1304300110] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report on a conformational transition of dengue virus when changing the temperature from that present in its mosquito vectors to that of its human host. Using cryoelectron microscopy, we show that although the virus has a smooth surface, a diameter of ∼500 Å, and little exposed membrane at room temperature, the virions have a bumpy appearance with a diameter of ∼550 Å and some exposed membrane at 37 °C. The bumpy structure at 37 °C was found to be similar to the previously predicted structure of an intermediate between the smooth mature and fusogenic forms. As humans have a body temperature of 37 °C, the bumpy form of the virus would be the form present in humans. Thus, optimal dengue virus vaccines should induce antibodies that preferentially recognize epitopes exposed on the bumpy form of the virus.
Collapse
|
176
|
Sasaki T, Setthapramote C, Kurosu T, Nishimura M, Asai A, Omokoko MD, Pipattanaboon C, Pitaksajjakul P, Limkittikul K, Subchareon A, Chaichana P, Okabayashi T, Hirai I, Leaungwutiwong P, Misaki R, Fujiyama K, Ono KI, Okuno Y, Ramasoota P, Ikuta K. Dengue virus neutralization and antibody-dependent enhancement activities of human monoclonal antibodies derived from dengue patients at acute phase of secondary infection. Antiviral Res 2013; 98:423-31. [PMID: 23545366 DOI: 10.1016/j.antiviral.2013.03.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/22/2013] [Accepted: 03/24/2013] [Indexed: 10/27/2022]
Abstract
Public health concern about dengue diseases, caused by mosquito-borne infections with four serotypes of dengue virus (DENV-1-DENV-4), is escalating in tropical and subtropical countries. Most of the severe dengue cases occur in patients experiencing a secondary infection with a serotype that is different from the first infection. This is believed to be due to antibody-dependent enhancement (ADE), by which one DENV serotype uses pre-existing anti-DENV antibodies elicited in the primary infection to facilitate entry of a different DENV serotype into the Fc receptor-positive macrophages. Recently, we prepared a number of hybridomas producing human monoclonal antibodies (HuMAbs) by using peripheral blood lymphocytes from Thai patients at acute phase of secondary infection with DENV-2. Here, we characterized 17 HuMAbs prepared from two patients with dengue fever (DF) and one patient with dengue hemorrhagic fever (DHF) that were selected as antibodies recognizing viral envelope protein and showing higher neutralization activity to all serotypes. In vivo evaluation using suckling mice revealed near perfect activity to prevent mouse lethality following intracerebral DENV-2 inoculation. In a THP-1 cell assay, these HuMAbs showed ADE activities against DENV-2 at similar levels between HuMAbs derived from DF and DHF patients. However, the F(ab')2 fragment of the HuMAb showed a similar virus neutralization activity as original, with no ADE activity. Thus, these HuMAbs could be one of the therapeutic candidates against DENV infection.
Collapse
Affiliation(s)
- Tadahiro Sasaki
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Smith SA, de Alwis R, Kose N, Durbin AP, Whitehead SS, de Silva AM, Crowe JE. Human monoclonal antibodies derived from memory B cells following live attenuated dengue virus vaccination or natural infection exhibit similar characteristics. J Infect Dis 2013; 207:1898-908. [PMID: 23526830 DOI: 10.1093/infdis/jit119] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The immunopathogenesis of severe dengue is poorly understood, but there is concern that induction of cross-reactive nonneutralizing antibodies by infection or vaccination may increase the likelihood of severe disease during a subsequent infection. We generated a total of 63 new human monoclonal antibodies to compare the B-cell response of subjects who received the National Institutes of Health live attenuated dengue vaccine rDEN1Δ30 to that of subjects following symptomatic primary infection with DENV1. Both infection and vaccination induced serum neutralizing antibodies and DENV1-reactive peripheral blood B cells, but the magnitude of induction was lower in vaccinated individuals. Serotype cross-reactive weakly neutralizing antibodies dominated the response in both vaccinated and naturally infected subjects. Antigen specificities were very similar, with a slightly greater percentage of antibodies targeting E protein domain I/II than domain III. These data shed light on the similarity of human B-cell response to live attenuated DENV vaccine or natural infection.
Collapse
Affiliation(s)
- Scott A Smith
- Department of Medicine, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | | | | | |
Collapse
|
178
|
Costin JM, Zaitseva E, Kahle KM, Nicholson CO, Rowe DK, Graham AS, Bazzone LE, Hogancamp G, Figueroa Sierra M, Fong RH, Yang ST, Lin L, Robinson JE, Doranz BJ, Chernomordik LV, Michael SF, Schieffelin JS, Isern S. Mechanistic study of broadly neutralizing human monoclonal antibodies against dengue virus that target the fusion loop. J Virol 2013; 87:52-66. [PMID: 23077306 PMCID: PMC3536401 DOI: 10.1128/jvi.02273-12] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 10/10/2012] [Indexed: 11/20/2022] Open
Abstract
There are no available vaccines for dengue, the most important mosquito-transmitted viral disease. Mechanistic studies with anti-dengue virus (DENV) human monoclonal antibodies (hMAbs) provide a rational approach to identify and characterize neutralizing epitopes on DENV structural proteins that can serve to inform vaccine strategies. Here, we report a class of hMAbs that is likely to be an important determinant in the human humoral response to DENV infection. In this study, we identified and characterized three broadly neutralizing anti-DENV hMAbs: 4.8A, D11C, and 1.6D. These antibodies were isolated from three different convalescent patients with distinct histories of DENV infection yet demonstrated remarkable similarities. All three hMAbs recognized the E glycoprotein with high affinity, neutralized all four serotypes of DENV, and mediated antibody-dependent enhancement of infection in Fc receptor-bearing cells at subneutralizing concentrations. The neutralization activities of these hMAbs correlated with a strong inhibition of virus-liposome and intracellular fusion, not virus-cell binding. We mapped epitopes of these antibodies to the highly conserved fusion loop region of E domain II. Mutations at fusion loop residues W101, L107, and/or G109 significantly reduced the binding of the hMAbs to E protein. The results show that hMAbs directed against the highly conserved E protein fusion loop block viral entry downstream of virus-cell binding by inhibiting E protein-mediated fusion. Characterization of hMAbs targeting this region may provide new insights into DENV vaccine and therapeutic strategies.
Collapse
Affiliation(s)
- Joshua M. Costin
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Elena Zaitseva
- Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Cindo O. Nicholson
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Dawne K. Rowe
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Amanda S. Graham
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Lindsey E. Bazzone
- Section of Pediatric Infectious Disease, Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Greg Hogancamp
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, USA
| | | | - Rachel H. Fong
- Integral Molecular, Inc., Philadelphia, Pennsylvania, USA
| | - Sung-Tae Yang
- Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Li Lin
- Communicable Disease Center, Tan Tock Seng Hospital, Singapore
| | - James E. Robinson
- Section of Pediatric Infectious Disease, Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | | | - Leonid V. Chernomordik
- Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Scott F. Michael
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - John S. Schieffelin
- Section of Pediatric Infectious Disease, Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Sharon Isern
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, USA
| |
Collapse
|
179
|
Differential targeting of viral components by CD4+ versus CD8+ T lymphocytes in dengue virus infection. J Virol 2012; 87:2693-706. [PMID: 23255803 DOI: 10.1128/jvi.02675-12] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dengue virus (DENV) is the principal arthropod-borne viral pathogen afflicting human populations. While repertoires of antibodies to DENV have been linked to protection or enhanced infection, the role of T lymphocytes in these processes remains poorly defined. This study provides a comprehensive overview of CD4(+) and CD8(+) T cell epitope reactivities against the DENV 2 proteome in adult patients experiencing secondary DENV infection. Dengue virus-specific T cell responses directed against an overlapping 15mer peptide library spanning the DENV 2 proteome were analyzed ex vivo by enzyme-linked immunosorbent spot assay, and recognition of individual peptides was further characterized in specific T cell lines. Thirty novel T cell epitopes were identified, 9 of which are CD4(+) and 21 are CD8(+) T cell epitopes. We observe that whereas CD8(+) T cell epitopes preferentially target nonstructural proteins (NS3 and NS5), CD4(+) epitopes are skewed toward recognition of viral components that are also targeted by B lymphocytes (envelope, capsid, and NS1). Consistently, a large proportion of dengue virus-specific CD4(+) T cells have phenotypic characteristics of circulating follicular helper T cells (CXCR5 expression and production of interleukin-21 or gamma interferon), suggesting that they are interacting with B cells in vivo. This study shows that during a dengue virus infection, the protein targets of human CD4(+) and CD8(+) T cells are largely distinct, thus highlighting key differences in the immunodominance of DENV proteins for these two cell types. This has important implications for our understanding of how the two arms of the human adaptive immune system are differentially targeted and employed as part of our response to DENV infection.
Collapse
|
180
|
Xu M, Hadinoto V, Appanna R, Joensson K, Toh YX, Balakrishnan T, Ong SH, Warter L, Leo YS, Wang CI, Fink K. Plasmablasts Generated during Repeated Dengue Infection Are Virus Glycoprotein–Specific and Bind to Multiple Virus Serotypes. THE JOURNAL OF IMMUNOLOGY 2012; 189:5877-85. [DOI: 10.4049/jimmunol.1201688] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
181
|
Neutralization of dengue virus in the presence of Fc receptor-mediated phagocytosis distinguishes serotype-specific from cross-neutralizing antibodies. Antiviral Res 2012; 96:340-3. [PMID: 23041143 DOI: 10.1016/j.antiviral.2012.09.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/18/2012] [Accepted: 09/23/2012] [Indexed: 11/20/2022]
Abstract
Although several vaccine candidates are presently in various phases of clinical trials, the field still lacks an effective tool to determine protective immunity. The presence of cross-neutralizing antibodies limits a serological approach to identify the etiology and distinguish lifelong from short-lived humoral protection. A recent study indicated that cross-reactive but not serotype-specific antibodies require high antibody concentration to co-ligate FcγRIIB and inhibit infection. Here, we tested if these differences could allow us to distinguish serotype-specific from cross-neutralizing antibodies. Using 30 blinded early convalescent serum samples from patients with virologically confirmed dengue, we demonstrate that neutralization in the presence of FcγR-mediated phagocytosis in THP-1 correctly identifies the DENV serotype of the infection in 93.3% of the cases compared to 76.7% with plaque reduction neutralization test. Our findings could provide a new approach for evaluating DENV neutralization and suggest that in addition to blocking specific ligand-receptor interactions for viral entry, antibodies must prevent viral uncoating during FcγR-mediated phagocytosis for complete humoral protection.
Collapse
|
182
|
Resistance analysis of an antibody that selectively inhibits dengue virus serotype-1. Antiviral Res 2012; 95:216-23. [DOI: 10.1016/j.antiviral.2012.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 06/19/2012] [Accepted: 06/26/2012] [Indexed: 11/20/2022]
|