151
|
Eliasson B, Ericsson Å, Fridhammar A, Nilsson A, Persson S, Chubb B. Long-Term Cost Effectiveness of Oral Semaglutide Versus Empagliflozin and Sitagliptin for the Treatment of Type 2 Diabetes in the Swedish Setting. PHARMACOECONOMICS - OPEN 2022; 6:343-354. [PMID: 35064550 PMCID: PMC9043066 DOI: 10.1007/s41669-021-00317-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/05/2021] [Indexed: 05/27/2023]
Abstract
OBJECTIVE The aim of this study was to assess the cost effectiveness of oral semaglutide versus other oral glucose-lowering drugs for the management of type 2 diabetes (T2D) in Sweden. METHODS The Swedish Institute for Health Economics Diabetes Cohort Model was used to assess the cost effectiveness of oral semaglutide 14 mg versus empagliflozin 25 mg and oral semaglutide 14 mg versus sitagliptin 100 mg, using data from the head-to-head PIONEER 2 and 3 trials, respectively, in which these treatments were added to metformin (± sulphonylurea). Base-case and scenario analyses were conducted. Robustness was evaluated with deterministic and probabilistic sensitivity analyses. RESULTS In the base-case analyses, greater initial lowering of glycated haemoglobin levels with oral semaglutide versus empagliflozin and oral semaglutide versus sitagliptin, respectively, resulted in reduced incidences of micro- and macrovascular complications and was associated with lower costs of complications and indirect costs. Treatment costs were higher for oral semaglutide, resulting in higher total lifetime costs than with empagliflozin (Swedish Krona [SEK] 1,245,570 vs. 1,210,172) and sitagliptin (SEK1,405,789 vs. 1,377,381). Oral semaglutide was shown to be cost effective, with an incremental cost-effectiveness ratio (ICER) of SEK239,001 per quality-adjusted life-year (QALY) compared with empagliflozin and SEK120,848 per QALY compared with sitagliptin, from a payer perspective. ICERs were lower at SEK191,721 per QALY compared with empagliflozin and SEK95,234 per QALY compared with sitagliptin from a societal perspective. Results were similar in scenario analyses that incorporated cardiovascular effects, and also in sensitivity analyses. CONCLUSIONS In a Swedish setting, oral semaglutide was cost effective compared with empagliflozin and sitagliptin for patients with T2D inadequately controlled on oral glucose-lowering drugs. TRIAL REGISTRATION ClinicalTrials.gov: NCT02863328 (PIONEER 2; registered 11 August 2016) and NCT02607865 (PIONEER 3; registered 18 November 2015).
Collapse
Affiliation(s)
- Björn Eliasson
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, 41345, Gothenburg, Sweden.
| | | | | | | | - Sofie Persson
- The Swedish Institute for Health Economics, Lund, Sweden
- Department of Clinical Sciences, Lund University, Health Economics Unit, Lund, Sweden
| | | |
Collapse
|
152
|
Digested protein from chia seed (Salvia hispanica L) prevents obesity and associated inflammation of adipose tissue in mice fed a high-fat diet. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
153
|
Ionic Liquids: Promising Approach for Oral Drug Delivery. Pharm Res 2022; 39:2353-2365. [PMID: 35449344 DOI: 10.1007/s11095-022-03260-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/06/2022] [Indexed: 12/22/2022]
Abstract
Oral administration is the most preferred route for drug administration in clinic. However, due to unsatisfactory physicochemical properties of drugs and various physiological barriers, the oral bioavailability of most poorly water-soluble and macromolecules drugs is low and the therapeutic effect is unsatisfactory. Ionic liquids (ILs), molten salts with unique properties, show amazing potential for oral delivery. In addition to being able to form active pharmaceutical ingredients based ILs (API-ILs) to overcome drug solubility and polymorphism issues, ILs have also been used to enhance the solubility of poorly soluble drugs, enhance drug stability in the gastrointestinal environment, improve drug permeability in intestinal mucus, and facilitate drug penetration across the intestinal epithelial barrier. Furthermore, ILs were attempted as formulation components to develop novel oral drug delivery systems. This review focus on the application progress of ILs in oral drug delivery and the mechanisms. The challenges and perspectives of the development of ILs-based oral delivery systems are also discussed. This article reviews the latest advances of ionic liquids for oral drug delivery, focusing on the application and related mechanisms of ionic liquids in improving the drug physicochemical properties and enhancing drug delivery across physiological barriers.
Collapse
|
154
|
Chu JN, Traverso G. Foundations of gastrointestinal-based drug delivery and future developments. Nat Rev Gastroenterol Hepatol 2022; 19:219-238. [PMID: 34785786 DOI: 10.1038/s41575-021-00539-w] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/07/2021] [Indexed: 12/12/2022]
Abstract
Gastrointestinal-based drug delivery is considered the preferred mode of drug administration owing to its convenience for patients, which improves adherence. However, unique characteristics of the gastrointestinal tract (such as the digestive environment and constraints on transport across the gastrointestinal mucosa) limit the absorption of drugs. As a result, many medications, in particular biologics, still exist only or predominantly in injectable form. In this Review, we examine the fundamentals of gastrointestinal drug delivery to inform clinicians and pharmaceutical scientists. We discuss general principles, including the challenges that need to be overcome for successful drug formulation, and describe the unique features to consider for each gastrointestinal compartment when designing drug formulations for topical and systemic applications. We then discuss emerging technologies that seek to address remaining obstacles to successful gastrointestinal-based drug delivery.
Collapse
Affiliation(s)
- Jacqueline N Chu
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giovanni Traverso
- Massachusetts Institute of Technology, Cambridge, MA, USA.
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
155
|
Meier JJ, Granhall C, Hoevelmann U, Navarria A, Plum-Moerschel L, Ramesh C, Tannapfel A, Kapitza C. Effect of upper gastrointestinal disease on the pharmacokinetics of oral semaglutide in subjects with type 2 diabetes. Diabetes Obes Metab 2022; 24:684-692. [PMID: 34957654 DOI: 10.1111/dom.14632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/06/2021] [Accepted: 12/22/2021] [Indexed: 12/29/2022]
Abstract
AIM To investigate whether upper gastrointestinal (GI) disease has any effect on the exposure of oral semaglutide, an important consideration given that its absorption occurs primarily in the stomach. MATERIALS AND METHODS In an open-label, parallel-group trial (NCT02877355), subjects aged 18-80 years with type 2 diabetes with mild-to-moderate upper GI disease (N = 36; chronic gastritis [n = 5], gastroesophageal reflux disease [n = 8], and both [n = 23]) or without upper GI disease (N = 19) received oral semaglutide 3 mg once daily for 5 days, followed by 7 mg for 5 days. The primary and key supportive endpoints were the area under the semaglutide plasma concentration-time curve (AUC) from 0 to 24 hours after last trial product administration on day 10 (AUC0-24h,day10 ) and the maximum semaglutide plasma concentration (Cmax,day10 ), respectively. RESULTS Semaglutide exposure was not statistically significantly different between subjects with and without upper GI disease. Estimated group ratios (subjects with/without upper GI disease) were 1.18 (95% confidence interval [CI], 0.80, 1.75) for AUC0-24h,day10 and 1.16 (95% CI, 0.77, 1.76) for Cmax . Time to Cmax and semaglutide half-life were similar in subjects with and without upper GI disease. Oral semaglutide was well tolerated; all adverse events were mild-to-moderate, with no withdrawals because of adverse events. CONCLUSIONS There was no significant difference in exposure to oral semaglutide in subjects with or without upper GI disease, hence no dose adjustment is required.
Collapse
Affiliation(s)
- Juris J Meier
- Diabetes Division, Department of Medicine I, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | | | | | | | | | - Chethana Ramesh
- Novo Nordisk Service Centre India Private Ltd, Novo Nordisk, Bangalore, India
| | - Andrea Tannapfel
- Diabetes Division, Department of Medicine I, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | | |
Collapse
|
156
|
Feng Z, Liu Y, Kuang Y, Yang S, Li J, Ye L, Huang J, Pei Q, Huang Y, Yang G. Open-Label, Phase I, Pharmacokinetic Studies in Healthy Chinese Subjects to Evaluate the Bioequivalence and Food Effect of a Novel Formulation of Abiraterone Acetate Tablets. Drug Des Devel Ther 2022; 16:3-12. [PMID: 35018094 PMCID: PMC8740623 DOI: 10.2147/dddt.s339305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/14/2021] [Indexed: 01/07/2023] Open
Abstract
Purpose Abiraterone acetate tablets (I)(N-AbA) is a novel tablet co-formulated with the absorption enhancer sodium N-(8-[2-hydroxybenzoyl] amino) caprylate (SNAC). This study aimed to compare the pharmacokinetics, bioequivalence, safety, and food effects of N-AbA with the reference ZYTIGA® (R-AbA) in healthy Chinese male subjects. Patients and Methods This study was conducted in three parts. Part I was an open, dose-escalation trial conducted in 16 Chinese healthy males; Part II was a randomized, open-label, 2 × 4 crossover, single-dose bioequivalence trial conducted in 36 subjects; Part III was a randomized, 3 × 3 crossover trial conducted on 24 volunteers to investigate the effect of food on the pharmacokinetics of N-AbA. Results The exposure (AUC0-∞) and maximum concentration (Cmax) of abiraterone and excipient SNAC were linear in the range of 75–450 mg dose. The bioavailability of N-AbA 300 mg was equivalent to that of R-AbA 1000 mg. The drug exposure of prednisone and prednisolone was not affected by SNAC co-administration. The Cmax of orally administered abiraterone as R-AbA in a modified fed state was 5.9 times and AUC0-∞ was 4.3 times, respectively, higher than those in of orally administered abiraterone as N-AbA in a high-fat diet. The Cmax and AUC0-∞ of orally administered abiraterone as N-AbA on a high-fat diet were 2.2 times and 2 times, respectively, higher than those on a fasting state. All adverse events reported in the three parts of the study were grade 1 or 2, and no serious adverse events were reported. Conclusion These three Phase I trials showed that N-AbA and excipient SNAC had excellent linear pharmacokinetic characteristics. A single dose of N-AbA 300 mg was bioequivalent to R-AbA 1000 mg in healthy subjects under fasting conditions. Meanwhile, SNAC had no effect on the pharmacokinetics of prednisone and prednisolone. The effect of food on N-AbA was significantly lower than that on R-AbA.
Collapse
Affiliation(s)
- Zeying Feng
- XiangYa School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Yaxin Liu
- XiangYa School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Yun Kuang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Shuang Yang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Jinlei Li
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Ling Ye
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Jie Huang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Qi Pei
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Yuanyuan Huang
- XiangYa School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Clinical Research and Develpment Division II, Jiangsu Hengrui Medicine Co., Ltd., Shanghai, 201200, People's Republic of China
| | - Guoping Yang
- XiangYa School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| |
Collapse
|
157
|
Liu C, Chen B, Shi W, Huang W, Qian H. Ionic Liquids for Enhanced Drug Delivery: Recent Progress and Prevailing Challenges. Mol Pharm 2022; 19:1033-1046. [PMID: 35274963 DOI: 10.1021/acs.molpharmaceut.1c00960] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ionic liquids (ILs) are a class of nonmolecular compounds composed only of ions. Compared with traditional organic solvents, ILs have the advantages of wide chemical space, diverse and flexible structures, negligible vapor pressure, and high thermal stability, which make them widely used in many fields of modern science, such as chemical synthesis and catalytic decomposition, electrochemistry, biomass conversion, and biotransformation biotechnology. Because of their special characteristics, ILs have been favored in the pharmaceutical field recently, especially for the development of efficient drug delivery systems. So far, ILs have been successfully designed to promote the dissolution of poorly soluble drugs and the destruction of physiological barriers, such as the tight junction between the stratum corneum and the intestinal epithelium. In addition, ILs can also be combined with other drug strategies to stabilize the structure of small molecules. This Review mainly introduces the application of ILs in drug delivery, emphasizes the potential mechanism of ILs, and presents the key research directions of ILs in the future.
Collapse
Affiliation(s)
- Chunxia Liu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Bin Chen
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Wei Shi
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Wenlong Huang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| |
Collapse
|
158
|
Tran H, ElSayed MEH. Progress and limitations of oral peptide delivery as a potentially transformative therapy. Expert Opin Drug Deliv 2022; 19:163-178. [PMID: 35255753 DOI: 10.1080/17425247.2022.2051476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The oral delivery of peptides offers advantages over the injectable route of administration due to patient convenience. However, oral delivery remains challenging due to physiological barriers. Numerous formulation technologies have been developed to overcome these challenges, and understanding the advantages and limitations of each technology is important for the development of new delivery systems to enable oral delivery of peptides designed for parenteral administration. AREAS COVERED This review summarizes key learnings from the use of permeation enhancers (PEs) for oral peptide delivery associated with solid dosage form optimization to maximize the PE effect. Furthermore, we will highlight the most recent emerging delivery strategies to improve oral peptide bioavailability such as nanoparticles, self-emulsifying drug delivery systems, gut shuttles, and ingestible devices. In addition, advantages and limitations of these technologies will be compared with the permeation enhancer technology. EXPERT OPINION Despite the success of permeation enhancer technology in the FDA approved oral peptide products for gastric and intestinal delivery, oral peptide delivery is still facing the immense challenge of low-to-single digit oral bioavailability and the impact of food and water intake on oral absorption. Optimization of drug product attributes such as dissolution kinetics is critical to overcome spreading and dilution effects in vivo to improve permeation enhancer efficacy. The next frontiers to substantially increase oral bioavailability and transform injectable peptides to oral deliverables may be ingestible devices and gut shuttles. In addition, ingestible devices may have potential to overcome the impact of food on oral bioavailability. However, clinical studies are necessary to inform the safety and efficacy of these emerging technologies.
Collapse
|
159
|
Oral delivery of therapeutic peptides and proteins: Technology landscape of lipid-based nanocarriers. Adv Drug Deliv Rev 2022; 182:114097. [PMID: 34999121 DOI: 10.1016/j.addr.2021.114097] [Citation(s) in RCA: 190] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/04/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022]
Abstract
The oral administration of therapeutic peptides and proteins is favoured from a patient and commercial point of view. In order to reach the systemic circulation after oral administration, these drugs have to overcome numerous barriers including the enzymatic, sulfhydryl, mucus and epithelial barrier. The development of oral formulations for therapeutic peptides and proteins is therefore necessary. Among the most promising formulation approaches are lipid-based nanocarriers such as oil-in-water nanoemulsions, self-emulsifying drug delivery systems (SEDDS), solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), liposomes and micelles. As the lipophilic character of therapeutic peptides and proteins can be tremendously increased such as by the formation of hydrophobic ion pairs (HIP) with hydrophobic counter ions, they can be incorporated in the lipophilic phase of these carriers. Since gastrointestinal (GI) peptidases as well as sulfhydryl compounds such as glutathione and dietary proteins are too hydrophilic to enter the lipophilic phase of these carriers, the incorporated therapeutic peptide or protein is protected towards enzymatic degradation as well as unintended thiol/disulfide exchange reactions. Stability of lipid-based nanocarriers towards lipases can be provided by the use to excipients that are not or just poorly degraded by these enzymes. Nanocarriers with a size <200 nm and a mucoinert surface such as PEG or zwitterionic surfaces exhibit high mucus permeating properties. Having reached the underlying absorption membrane, lipid-based nanocarriers enable paracellular and lymphatic drug uptake, induce endocytosis and transcytosis or simply fuse with the cell membrane releasing their payload into the systemic circulation. Numerous in vivo studies provide evidence for the potential of these delivery systems. Within this review we provide an overview about the different barriers for oral peptide and protein delivery, highlight the progress made on lipid-based nanocarriers in order to overcome them and discuss strengths and weaknesses of these delivery systems in comparison to other technologies.
Collapse
|
160
|
Synthetic Antimicrobial Peptides for Controlling Fungi in Foods. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
161
|
Müller TD, Blüher M, Tschöp MH, DiMarchi RD. Anti-obesity drug discovery: advances and challenges. Nat Rev Drug Discov 2022; 21:201-223. [PMID: 34815532 PMCID: PMC8609996 DOI: 10.1038/s41573-021-00337-8] [Citation(s) in RCA: 485] [Impact Index Per Article: 161.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 12/27/2022]
Abstract
Enormous progress has been made in the last half-century in the management of diseases closely integrated with excess body weight, such as hypertension, adult-onset diabetes and elevated cholesterol. However, the treatment of obesity itself has proven largely resistant to therapy, with anti-obesity medications (AOMs) often delivering insufficient efficacy and dubious safety. Here, we provide an overview of the history of AOM development, focusing on lessons learned and ongoing obstacles. Recent advances, including increased understanding of the molecular gut-brain communication, are inspiring the pursuit of next-generation AOMs that appear capable of safely achieving sizeable and sustained body weight loss.
Collapse
Affiliation(s)
- Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Matthias H Tschöp
- Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, München, Germany
| | | |
Collapse
|
162
|
Singh AK, Singh R, Misra A. Oral semaglutide in type 2 diabetes mellitus: Comprehensive review, critical appraisal and clinical consideration of its use in India. Diabetes Metab Syndr 2022; 16:102436. [PMID: 35245858 DOI: 10.1016/j.dsx.2022.102436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS Oral semaglutide is the first glucagon-like petide-1 receptor agonist (GLP-1RA) approved for oral use in the treatment of type 2 diabetes mellitus (T2DM). We aim to conduct a comprehensive review of literature to find out the efficacy and safety of oral semaglutide in T2DM, to lay out a clinical consideration for its use in India. METHODS We searched the electronic database of PubMed and Google Scholar from inception until January 31, 2022, using several MeSH keywords and retrieved all available granular details of phase 1, 2 and 3 randomized controlled trials (RCTs) of oral semaglutide. Subsequently, we reviewed the results critically to lay down the clinical recommendation of its use. RESULTS Ten phase 3 randomized, placebo- and or active-controlled studies of oral semaglutide (PIONEER programs) are currently published. Seven global trials of oral semaglutide (PIONEER 1-5, 7 and 8) that exclusively studied the efficacy (lowering of HbA1c and body weight, achieving target of HbA1c <7% and other composites of HbA1c and weight) outcomes, found 14 mg oral semaglutide to be superior to placebo or active comparators (empagliflozin, sitagliptin and liraglutide). Efficacy was similar in Asians, although no separate data exists for Indians due to the low number of participants. Expectedly, gastrointestinal intolerance were the most commonly observed side effects with oral semaglutide and the main reason for drug discontinuation. CONCLUSION Oral semaglutide 14 mg is an effective agent in the treatment of T2DM. Real-world studies of semaglutide are clearly needed in India in absence of meaningful data from RCTs in Indians.
Collapse
Affiliation(s)
| | - Ritu Singh
- G. D Hospital & Diabetes Institute, Kolkata, West Bengal, India
| | - Anoop Misra
- Fortis C-DOC Hospital for Diabetes & Allied Sciences, New Delhi, India; National Diabetes, Obesity and Cholesterol Foundation, New Delhi, India; Diabetes Foundation (India), New Delhi, India
| |
Collapse
|
163
|
Kalra S, Das S, Zargar AH. A Review of Oral Semaglutide Available Evidence: A New Era of Management of Diabetes with Peptide in a Pill Form. Indian J Endocrinol Metab 2022; 26:98-105. [PMID: 35873937 PMCID: PMC9302409 DOI: 10.4103/ijem.ijem_522_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/28/2022] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
Glucagon-like peptide 1 receptor agonists (GLP-1RAs) have gained an important place in the management of diabetes management because of their exceptional glucose-lowering, weight lowering and cardiovascular (CV) benefits. Despite recommendations by various clinical practice guidelines and benefits, their usage in clinical practice was limited because of being injectable in nature. Oral semaglutide is a novel GLP-1RA with 94% homology to human GLP-1 which is co-formulated with absorption enhancer sodium N-(8-[2-hydroxybenzoyl] amino) caprylate (SNAC), that overcomes the challenges of peptide absorption in the acidic conditions of the stomach. Oral semaglutide has been evaluated in an extensive phase 3 clinical trial programme named Peptide Innovation for Early Diabetes Treatment (PIONEER) which demonstrated its robust glucose and weight lowering effects against other comparators. The evolution of the GLP-1RA class to include an oral pill will facilitate the use of this class of agents much earlier in the diabetes treatment cascade owing to wider acceptance from patients and clinicians alike. The current review discusses the various aspects of oral semaglutide and its place in clinical practice.
Collapse
Affiliation(s)
- Sanjay Kalra
- Department of Endocrinology, Bharti Hospital, Karnal, Haryana, India
| | - Sambit Das
- Senior Consultant Endocrinologist Apollo Hospitals, Bhubaneshwar, Odisha, India
| | - Abdul H. Zargar
- Senior Consultant Endocrinologist, Center for Diabetes and Endocrine Care, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
164
|
Wang M, Amakye WK, Gong C, Ren Z, Yuan E, Ren J. Effect of oral and intraperitoneal administration of walnut-derived pentapeptide PW5 on cognitive impairments in APP SWE/PS1 ΔE9 mice. Free Radic Biol Med 2022; 180:191-197. [PMID: 35077820 DOI: 10.1016/j.freeradbiomed.2022.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022]
Abstract
Food-derived bioactive peptides, encrypted in native protein sequence, have attracted enormous research attention due to its potential in the prevention and/or treatment of a broad range of diseases. However, administration route poses a great challenge to their development and commercial applications. Patient-friendly delivery of bioactive peptides which also enhances its efficacy urgently remain to be addressed. Here we compared the effects of oral administration (PO) to intraperitoneal injection (IP) of a walnut-derived bioactive pentapeptide PW5 (Pro-Pro-Lys-Asn-Trp) in cognitive improvement capacity in APPSWE/PS1ΔE9 transgenic mice. Strikingly, we found that only PO administration of PW5 could effectively ameliorate cognitive impairments and reduce the β-amyloid deposits in the brain compared to the IP administration. This may be attributable to alterations in the gut microbiota communities, including alterations in microbial α- and β-diversities after PO treatment, leading to the reversal of the relative abundances of ten differential genera (e.g. Acinetobacter, Lactobacillus, Akkermansia, Allobaculum, Adlercreutzia, Coriobacteriaceae, unclassified_p_ Firmicutes, Desulfovibrionaceae, Oscillospira and Anaeroplasma) which are highly correlated with disease progression. Thus, this study has leveraged on PW5 to proof the superior efficacy of oral delivery to injection delivery in improving cognitive impairments in vivo, suggesting that oral delivery might be highly recommended as a prioritized delivery route in the development of food-derived peptides.
Collapse
Affiliation(s)
- Min Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - William Kwame Amakye
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Congcong Gong
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Zhengyu Ren
- College of Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| | - Erdong Yuan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China; Research Institute for Food Nutrition and Human Health, Guangzhou, China.
| |
Collapse
|
165
|
Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther 2022; 7:48. [PMID: 35165272 PMCID: PMC8844085 DOI: 10.1038/s41392-022-00904-4] [Citation(s) in RCA: 730] [Impact Index Per Article: 243.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/08/2023] Open
Abstract
Peptide drug development has made great progress in the last decade thanks to new production, modification, and analytic technologies. Peptides have been produced and modified using both chemical and biological methods, together with novel design and delivery strategies, which have helped to overcome the inherent drawbacks of peptides and have allowed the continued advancement of this field. A wide variety of natural and modified peptides have been obtained and studied, covering multiple therapeutic areas. This review summarizes the efforts and achievements in peptide drug discovery, production, and modification, and their current applications. We also discuss the value and challenges associated with future developments in therapeutic peptides.
Collapse
|
166
|
Evans M, Morgan AR, Bain SC, Davies S, Hicks D, Brown P, Yousef Z, Dashora U, Viljoen A, Beba H, Strain WD. Meeting the Challenge of Virtual Diabetes Care: A Consensus Viewpoint on the Positioning and Value of Oral Semaglutide in Routine Clinical Practice. Diabetes Ther 2022; 13:225-240. [PMID: 35044569 PMCID: PMC8767360 DOI: 10.1007/s13300-021-01201-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
While glucagon-like peptide-1 receptor agonists (GLP-1 RAs), such as semaglutide, are among the most effective drugs for treating people with type 2 diabetes (T2D), they are clinically under-utilised. Until recently, the only route for semaglutide administration was via subcutaneous injection. However, an oral formulation of semaglutide was recently licensed, with the potential to address therapy inertia and increase patient adherence to treatment, which is essential in controlling blood glucose and reducing complications. The availability of oral semaglutide provides a new option for both clinicians and patients who are reluctant to use an injectable agent. This has been of particular importance in addressing the challenge of virtual diabetes care during the COVID-19 pandemic, circumventing the logistical problems that are often associated with subcutaneous medication administration. However, there remains limited awareness of the clinical and economic value of oral semaglutide in routine clinical practice. In this article, we present our consensus opinion on the role of oral semaglutide in routine clinical practice and discuss its value in reducing the burden of delivering diabetes care in the post-COVID-19 pandemic period of chronic disease management.
Collapse
Affiliation(s)
- Marc Evans
- Diabetes Resource Centre, University Hospital Llandough, Penlan Road, Llandough, Cardiff, CF64 2XX, UK.
| | | | - Stephen C Bain
- Diabetes Research Unit, Swansea University Medical School, Swansea, UK
| | | | | | | | - Zaheer Yousef
- Wales Heart Research Institute, Cardiff University, Cardiff, UK
| | | | - Adie Viljoen
- East and North Hertfordshire NHS Trust, Stevenage, UK
| | - Hannah Beba
- County Durham and Darlington NHS Foundation Trust, Durham, UK
| | - W David Strain
- Diabetes and Vascular Research Centre, University of Exeter Medical School, Exeter, UK
- The Academic Department of Healthcare for Older Adults, Royal Devon and Exeter Hospital, Exeter, UK
| |
Collapse
|
167
|
Chen W, Wainer J, Ryoo SW, Qi X, Chang R, Li J, Lee SH, Min S, Wentworth A, Collins JE, Tamang S, Ishida K, Hayward A, Langer R, Traverso G. Dynamic omnidirectional adhesive microneedle system for oral macromolecular drug delivery. SCIENCE ADVANCES 2022; 8:eabk1792. [PMID: 34985942 PMCID: PMC8730401 DOI: 10.1126/sciadv.abk1792] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/11/2021] [Indexed: 05/31/2023]
Abstract
Oral drug administration remains the preferred route for patients and health care providers. Delivery of macromolecules through this route remains challenging because of limitations imposed by the transport across the gastrointestinal epithelium and the dynamic and degradative environment. Here, we present the development of a delivery system that combines physical (microneedle) and nonphysical (enhancer) modes of drug delivery enhancement for a macromolecule in a large animal model. Inspired by the thorny-headed intestinal worm, we report a dynamic omnidirectional mucoadhesive microneedle system capable of prolonged gastric mucosa fixation. Moreover, we incorporate sodium N-[8-(2-hydroxybenzoyl) amino] caprylate along with semaglutide and demonstrate enhanced absorption in swine resistant to physical displacement in the gastric cavity. Meanwhile, we developed a targeted capsule system capable of deploying intact microneedle-containing systems. These systems stand to enable the delivery of a range of drugs through the generation and maintenance of a privileged region in the gastrointestinal tract.
Collapse
Affiliation(s)
- Wei Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jacob Wainer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Si Won Ryoo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xiaoyue Qi
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rong Chang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jason Li
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Seung Ho Lee
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Seokkee Min
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Adam Wentworth
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joy E. Collins
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Siddartha Tamang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Keiko Ishida
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alison Hayward
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Langer
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Giovanni Traverso
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
168
|
Page S, Khan T, Kühl P, Schwach G, Storch K, Chokshi H. Patient Centricity Driving Formulation Innovation: Improvements in Patient Care Facilitated by Novel Therapeutics and Drug Delivery Technologies. Annu Rev Pharmacol Toxicol 2022; 62:341-363. [PMID: 34990203 DOI: 10.1146/annurev-pharmtox-052120-093517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Innovative formulation technologies can play a crucial role in transforming a novel molecule to a medicine that significantly enhances patients' lives. Improved mechanistic understanding of diseases has inspired researchers to expand the druggable space using new therapeutic modalities such as interfering RNA, protein degraders, and novel formats of monoclonal antibodies. Sophisticated formulation strategies are needed to deliver the drugs to their sites of action and to achieve patient centricity, exemplified by messenger RNA vaccines and oral peptides. Moreover, access to medical information via digital platforms has resulted in better-informed patient groups that are requesting consideration of their needs during drug development. This request is consistent with health authority efforts to upgrade their regulations to advance age-appropriate product development for patients. This review describes formulation innovations contributingto improvements in patient care: convenience of administration, preferred route of administration, reducing dosing burden, and achieving targeted delivery of new modalities.
Collapse
Affiliation(s)
- Susanne Page
- Pharma Technical Development, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
| | - Tarik Khan
- Pharma Technical Development, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
| | - Peter Kühl
- Pharma Technical Development, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
| | - Gregoire Schwach
- Pharma Technical Development, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
| | - Kirsten Storch
- Pharma Technical Development, Roche Diagnostics GmbH, 68305 Mannheim, Germany
| | - Hitesh Chokshi
- Pharma Technical Development, Roche TCRC Inc., Little Falls, New Jersey 07424, USA
| |
Collapse
|
169
|
Kneiszl R, Hossain S, Larsson P. In Silico-Based Experiments on Mechanistic Interactions between Several Intestinal Permeation Enhancers with a Lipid Bilayer Model. Mol Pharm 2022; 19:124-137. [PMID: 34913341 PMCID: PMC8728740 DOI: 10.1021/acs.molpharmaceut.1c00689] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 01/07/2023]
Abstract
Oral administration of drugs is generally considered convenient and patient-friendly. However, oral administration of biological drugs exhibits low oral bioavailability (BA) due to enzymatic degradation and low intestinal absorption. A possible approach to circumvent the low BA of oral peptide drugs is to coformulate the drugs with permeation enhancers (PEs). PEs have been studied since the 1960s and are molecules that enhance the absorption of hydrophilic molecules with low permeability over the gastrointestinal epithelium. In this study, we investigated the impact of six PEs on the structural properties of a model membrane using molecular dynamics (MD) simulations. The PEs included were the sodium salts of the medium chain fatty acids laurate, caprate, and caprylate and the caprylate derivative SNAC─all with a negative charge─and neutral caprate and neutral sucrose monolaurate. Our results indicated that the PEs, once incorporated into the membrane, could induce membrane leakiness in a concentration-dependent manner. Our simulations suggest that a PE concentration of at least 70-100 mM is needed to strongly affect transcellular permeability. The increased aggregation propensity seen for neutral PEs might provide a molecular-level mechanism for the membrane disruptions seen at higher concentrations in vivo. The ability for neutral PEs to flip-flop across the lipid bilayer is also suggestive of possible intracellular modes of action other than increasing membrane fluidity. Taken together, our results indicate that MD simulations are useful for gaining insights relevant to the design of oral dosage forms based around permeability enhancer molecules.
Collapse
Affiliation(s)
- Rosita Kneiszl
- Department
of Pharmacy, Uppsala University, Husargatan 3, Uppsala 751 23, Sweden
- The
Swedish Drug Delivery Center (SweDeliver), Uppsala University, Husargatan 3, Uppsala 751 23, Sweden
| | - Shakhawath Hossain
- Department
of Pharmacy, Uppsala University, Husargatan 3, Uppsala 751 23, Sweden
- The
Swedish Drug Delivery Center (SweDeliver), Uppsala University, Husargatan 3, Uppsala 751 23, Sweden
| | - Per Larsson
- Department
of Pharmacy, Uppsala University, Husargatan 3, Uppsala 751 23, Sweden
- The
Swedish Drug Delivery Center (SweDeliver), Uppsala University, Husargatan 3, Uppsala 751 23, Sweden
| |
Collapse
|
170
|
Tan Q, Akindehin SE, Orsso CE, Waldner RC, DiMarchi RD, Müller TD, Haqq AM. Recent Advances in Incretin-Based Pharmacotherapies for the Treatment of Obesity and Diabetes. Front Endocrinol (Lausanne) 2022; 13:838410. [PMID: 35299971 PMCID: PMC8921987 DOI: 10.3389/fendo.2022.838410] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/07/2022] [Indexed: 01/01/2023] Open
Abstract
The incretin hormone glucagon-like peptide-1 (GLP-1) has received enormous attention during the past three decades as a therapeutic target for the treatment of obesity and type 2 diabetes. Continuous improvement of the pharmacokinetic profile of GLP-1R agonists, starting from native hormone with a half-life of ~2-3 min to the development of twice daily, daily and even once-weekly drugs highlight the pharmaceutical evolution of GLP-1-based medicines. In contrast to GLP-1, the incretin hormone glucose-dependent insulinotropic polypeptide (GIP) received little attention as a pharmacological target, because of conflicting observations that argue activation or inhibition of the GIP receptor (GIPR) provides beneficial effects on systemic metabolism. Interest in GIPR agonism for the treatment of obesity and diabetes was recently propelled by the clinical success of unimolecular dual-agonists targeting the receptors for GIP and GLP-1, with reported significantly improved body weight and glucose control in patients with obesity and type II diabetes. Here we review the biology and pharmacology of GLP-1 and GIP and discuss recent advances in incretin-based pharmacotherapies.
Collapse
Affiliation(s)
- Qiming Tan
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Seun E. Akindehin
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Germany and German Center for Diabetes Research (DZD), Munich, Germany
| | - Camila E. Orsso
- Department of Agricultural Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | | | | | - Timo D. Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Germany and German Center for Diabetes Research (DZD), Munich, Germany
- *Correspondence: Timo D. Müller, ; Andrea M. Haqq,
| | - Andrea M. Haqq
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Department of Agricultural Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Timo D. Müller, ; Andrea M. Haqq,
| |
Collapse
|
171
|
Oral delivery of systemic monoclonal antibodies, peptides and small molecules using gastric auto-injectors. Nat Biotechnol 2022; 40:103-109. [PMID: 34462588 PMCID: PMC8766875 DOI: 10.1038/s41587-021-01024-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/16/2021] [Indexed: 02/07/2023]
Abstract
Oral administration provides a simple and non-invasive approach for drug delivery. However, due to poor absorption and swift enzymatic degradation in the gastrointestinal tract, a wide range of molecules must be parenterally injected to attain required doses and pharmacokinetics. Here we present an orally dosed liquid auto-injector capable of delivering up to 4-mg doses of a bioavailable drug with the rapid pharmacokinetics of an injection, reaching an absolute bioavailability of up to 80% and a maximum plasma drug concentration within 30 min after dosing. This approach improves dosing efficiencies and pharmacokinetics an order of magnitude over our previously designed injector capsules and up to two orders of magnitude over clinically available and preclinical chemical permeation enhancement technologies. We administered the capsules to swine for delivery of clinically relevant doses of four commonly injected medications, including adalimumab, a GLP-1 analog, recombinant human insulin and epinephrine. These multi-day dosing experiments and oral administration in awake animal models support the translational potential of the system.
Collapse
|
172
|
Heise T. Novel Drugs for Diabetes Therapy. Handb Exp Pharmacol 2022; 274:415-438. [PMID: 35112236 DOI: 10.1007/164_2021_574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Since the first use of insulin 100 years ago, there have been marked improvements in diabetes therapy including, but not limited to, the development of oral antidiabetic agents (OADs), incretin mimetics and insulin analogues. Still, there are substantial shortcomings in diabetes therapy: the blood-glucose lowering effect of OADs is often limited, incretin mimetics often induce gastrointestinal side effects and insulins still induce hypoglycaemia and weight gain in many patients.This review evaluates on-going developments of antidiabetic drugs for their potential for future therapy focussing on injectable therapies. Recent data from dual agonists, in particular tirzepatide, a combination of GIP- and GLP-1 receptor agonists, show unprecedented reductions in HbA1c, body weight and cardiovascular risk factors. Once-weekly administrations of incretin mimetics open up the potential of a combination with once-weekly insulins that have been shown to have low peak-to-trough fluctuations. Eventually, it might be feasible to administer incretins and insulins (combinations) orally. While this has already been achieved for incretins, there are still some challenges for the oral application of insulin. Nevertheless, many promising data of novel antidiabetic drugs clearly indicate that therapy of people with diabetes will become easier, safer and more efficacious in the next years.
Collapse
Affiliation(s)
- Tim Heise
- Profil Institut für Stoffwechselforschung GmbH, Neuss, Germany.
| |
Collapse
|
173
|
Explicit-pH Coarse-Grained Molecular Dynamics Simulations Enable Insights into Restructuring of Intestinal Colloidal Aggregates with Permeation Enhancers. Processes (Basel) 2021. [DOI: 10.3390/pr10010029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Permeation enhancers (PEs) can increase the bioavailability of drugs. The mechanisms of action of these PEs are complex, but, typically, when used for oral administration, they can transiently induce the alteration of trans- and paracellular pathways, including increased solubilization and membrane fluidity, or the opening of the tight junctions. To elucidate these mechanistic details, it is important to understand the aggregation behavior of not only the PEs themselves but also other molecules already present in the intestine. Aggregation processes depend critically on, among other factors, the charge state of ionizable chemical groups, which is affected by the pH of the system. In this study, we used explicit-pH coarse-grained molecular dynamics simulations to investigate the aggregation behavior and pH dependence of two commonly used PEs—caprate and SNAC—together with other components of fasted- and fed-state simulated intestinal fluids. We also present and validate a coarse-grained molecular topology for the bile salt taurocholate suitable for the Martini3 force-field. Our results indicate an increase in the number of free molecules as a function of the system pH and for each combination of FaSSIF/FeSSIF and PEs. In addition, there are differences between caprate and SNAC, which are rationalized based on their different molecular structures and critical micelle concentrations.
Collapse
|
174
|
Best practices in current models mimicking drug permeability in the gastrointestinal tract - an UNGAP review. Eur J Pharm Sci 2021; 170:106098. [PMID: 34954051 DOI: 10.1016/j.ejps.2021.106098] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/19/2021] [Accepted: 12/15/2021] [Indexed: 12/21/2022]
Abstract
The absorption of orally administered drug products is a complex, dynamic process, dependent on a range of biopharmaceutical properties; notably the aqueous solubility of a molecule, stability within the gastrointestinal tract (GIT) and permeability. From a regulatory perspective, the concept of high intestinal permeability is intrinsically linked to the fraction of the oral dose absorbed. The relationship between permeability and the extent of absorption means that experimental models of permeability have regularly been used as a surrogate measure to estimate the fraction absorbed. Accurate assessment of a molecule's intestinal permeability is of critical importance during the pharmaceutical development process of oral drug products, and the current review provides a critique of in vivo, in vitro and ex vivo approaches. The usefulness of in silico models to predict drug permeability is also discussed and an overview of solvent systems used in permeability assessments is provided. Studies of drug absorption in humans are an indirect indicator of intestinal permeability, but in vitro and ex vivo tools provide initial screening approaches are important tools for direct assessment of permeability in drug development. Continued refinement of the accuracy of in silico approaches and their validation with human in vivo data will facilitate more efficient characterisation of permeability earlier in the drug development process and will provide useful inputs for integrated, end-to-end absorption modelling.
Collapse
|
175
|
Wilson CG, Aarons L, Augustijns P, Brouwers J, Darwich AS, De Waal T, Garbacz G, Hansmann S, Hoc D, Ivanova A, Koziolek M, Reppas C, Schick P, Vertzoni M, García-Horsman JA. Integration of advanced methods and models to study drug absorption and related processes: An UNGAP perspective. Eur J Pharm Sci 2021; 172:106100. [PMID: 34936937 DOI: 10.1016/j.ejps.2021.106100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 01/09/2023]
Abstract
This collection of contributions from the European Network on Understanding Gastrointestinal Absorption-related Processes (UNGAP) community assembly aims to provide information on some of the current and newer methods employed to study the behaviour of medicines. It is the product of interactions in the immediate pre-Covid period when UNGAP members were able to meet and set up workshops and to discuss progress across the disciplines. UNGAP activities are divided into work packages that cover special treatment populations, absorption processes in different regions of the gut, the development of advanced formulations and the integration of food and pharmaceutical scientists in the food-drug interface. This involves both new and established technical approaches in which we have attempted to define best practice and highlight areas where further research is needed. Over the last months we have been able to reflect on some of the key innovative approaches which we were tasked with mapping, including theoretical, in silico, in vitro, in vivo and ex vivo, preclinical and clinical approaches. This is the product of some of us in a snapshot of where UNGAP has travelled and what aspects of innovative technologies are important. It is not a comprehensive review of all methods used in research to study drug dissolution and absorption, but provides an ample panorama of current and advanced methods generally and potentially useful in this area. This collection starts from a consideration of advances in a priori approaches: an understanding of the molecular properties of the compound to predict biological characteristics relevant to absorption. The next four sections discuss a major activity in the UNGAP initiative, the pursuit of more representative conditions to study lumenal dissolution of drug formulations developed independently by academic teams. They are important because they illustrate examples of in vitro simulation systems that have begun to provide a useful understanding of formulation behaviour in the upper GI tract for industry. The Leuven team highlights the importance of the physiology of the digestive tract, as they describe the relevance of gastric and intestinal fluids on the behaviour of drugs along the tract. This provides the introduction to microdosing as an early tool to study drug disposition. Microdosing in oncology is starting to use gamma-emitting tracers, which provides a link through SPECT to the next section on nuclear medicine. The last two papers link the modelling approaches used by the pharmaceutical industry, in silico to Pop-PK linking to Darwich and Aarons, who provide discussion on pharmacometric modelling, completing the loop of molecule to man.
Collapse
Affiliation(s)
- Clive G Wilson
- Strathclyde Institute of Pharmacy & Biomedical Sciences, Glasgow, U.K.
| | | | | | | | | | | | | | | | | | | | - Mirko Koziolek
- NCE Formulation Sciences, Abbvie Deutschland GmbH & Co. KG, Germany
| | | | - Philipp Schick
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | | | | |
Collapse
|
176
|
Saraiva JFK, Franco D. Oral GLP-1 analogue: perspectives and impact on atherosclerosis in type 2 diabetic patients. Cardiovasc Diabetol 2021; 20:235. [PMID: 34911560 PMCID: PMC8675489 DOI: 10.1186/s12933-021-01417-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/07/2021] [Indexed: 01/02/2023] Open
Abstract
Cardiovascular events related to atherosclerosis are responsible for high morbidity and mortality among patients with type 2 diabetes. Improvement in care, especially in early stages, is crucial. Oral semaglutide, a glucagon-like peptide 1 analogue, controls blood glucose and results in significant body weight loss in patients with type 2 diabetes. Beyond these well-known effects, an interesting aspect of this drug is its antiatherogenic activity, which should be further explored in clinical practice. This paper reviews the evidence related to oral semaglutide decreasing cardiovascular risk in patients with type 2 diabetes, focusing on the drug's antiatherosclerotic properties. The glucagon-like peptide 1 analogue restores endothelial dysfunction, induces vasodilatation, and reduces plasma lipids. Oral semaglutide showed cardiovascular safety profile, with significant reduced risk of death from cardiovascular events. Based on current data, clinicians should consider oral semaglutide for type 2 diabetes management.
Collapse
Affiliation(s)
- José Francisco Kerr Saraiva
- Faculdade de Medicina do Centro de Ciências da Vida - Pontifícia, Universidade Católica de Campinas, Av John Boyd Dunlop, s/n - Jd. Ipaussurama, Campinas, SP, CEP: 13060-904, Brazil
| | - Denise Franco
- CPCLIN/DASA Centro de Pesquisas Clínicas, Av Angelica, 2162 - Consolação, São Paulo, SP, CEP: 01228-200, Brazil.
| |
Collapse
|
177
|
Araki E, Terauchi Y, Watada H, Deenadayalan S, Christiansen E, Horio H, Kadowaki T. Efficacy and safety of oral semaglutide in Japanese patients with type 2 diabetes: A post hoc subgroup analysis of the PIONEER 1, 3, 4 and 8 trials. Diabetes Obes Metab 2021; 23:2785-2794. [PMID: 34472698 PMCID: PMC9293331 DOI: 10.1111/dom.14536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 11/26/2022]
Abstract
AIMS To evaluate, through exploratory post hoc subgroup analyses, the efficacy and safety of oral semaglutide versus comparators in Japanese patients enrolled in the global PIONEER 1, 3, 4 and 8 clinical trials. MATERIALS AND METHODS Patients were randomized to once-daily oral semaglutide 3, 7 or 14 mg or comparator (placebo, sitagliptin 100 mg or liraglutide 1.8 mg). Change from baseline in glycated haemoglobin (HbA1c) and body weight, and proportions of patients attaining HbA1c <7.0% (53 mmol/mol) and body weight loss ≥5%, were analysed at week 26 for all Japanese patients in each trial separately using the treatment policy estimand (regardless of treatment discontinuation or rescue medication use). Adverse events (AEs) were analysed descriptively. RESULTS Reductions in HbA1c from baseline in Japanese patients were 1.0% to 1.2% (11.3 mmol/mol to 13.3 mmol/mol) and 1.4% to 1.7% (15.7 mmol/mol to 18.3 mmol/mol) for oral semaglutide 7 mg and 14 mg, respectively. HbA1c reductions were similar or greater than with comparators. Body weight reductions were 1.0% to 2.7% and 3.7% to 4.7% for oral semaglutide 7 mg and 14 mg, respectively, and were generally greater with oral semaglutide than comparators. As expected, the main class of AEs was gastrointestinal, and these AEs comprised most commonly mild-to-moderate constipation, nausea and diarrhoea. CONCLUSIONS Oral semaglutide appears efficacious and well tolerated in Japanese patients across the type 2 diabetes spectrum.
Collapse
Affiliation(s)
- Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | | | - Hirotaka Watada
- Department of Metabolism and EndocrinologyJuntendo University Graduate School of MedicineTokyoJapan
| | | | | | | | | |
Collapse
|
178
|
Yu Y, Wu Z, Wu J, Shen X, Wu R, Zhou M, Li L, Huang Y. Investigation of FcRn‐Mediated Transepithelial Mechanisms for Oral Nanoparticle Delivery Systems. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yinglan Yu
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision IndustrialTechnology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Zhanghan Wu
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision IndustrialTechnology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Jiawei Wu
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision IndustrialTechnology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Xinran Shen
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision IndustrialTechnology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Ruinan Wu
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision IndustrialTechnology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Minglu Zhou
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision IndustrialTechnology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Lian Li
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision IndustrialTechnology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Yuan Huang
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision IndustrialTechnology West China School of Pharmacy Sichuan University Chengdu 610041 China
| |
Collapse
|
179
|
Insulin at 100: still central in protein-based therapy for chronic disease. COMMUNICATIONS MEDICINE 2021; 1:9. [PMID: 35602193 PMCID: PMC9053185 DOI: 10.1038/s43856-021-00004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/29/2021] [Indexed: 11/24/2022] Open
Abstract
Kurtzhals et al. mark the centenary of the discovery of insulin by looking back at how this model protein has changed science and medicine. They discuss how lessons learned from insulin over the last one hundred years are shaping the present and future of protein-based therapies for chronic disease.
Collapse
|
180
|
Kurtzhals P, Gough SCL. The contributions of insulin to science in medicine. Diabet Med 2021; 38:e14623. [PMID: 34133769 PMCID: PMC9292759 DOI: 10.1111/dme.14623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/15/2021] [Indexed: 12/22/2022]
|
181
|
Pechenov S, Revell J, Will S, Naylor J, Tyagi P, Patel C, Liang L, Tseng L, Huang Y, Rosenbaum AI, Balic K, Konkar A, Grimsby J, Subramony JA. Development of an orally delivered GLP-1 receptor agonist through peptide engineering and drug delivery to treat chronic disease. Sci Rep 2021; 11:22521. [PMID: 34795324 PMCID: PMC8602401 DOI: 10.1038/s41598-021-01750-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/01/2021] [Indexed: 01/13/2023] Open
Abstract
Peptide therapeutics are increasingly used in the treatment of disease, but their administration by injection reduces patient compliance and convenience, especially for chronic diseases. Thus, oral administration of a peptide therapeutic represents a significant advance in medicine, but is challenged by gastrointestinal instability and ineffective uptake into the circulation. Here, we have used glucagon-like peptide-1 (GLP-1) as a model peptide therapeutic for treating obesity-linked type 2 diabetes, a common chronic disease. We describe a comprehensive multidisciplinary approach leading to the development of MEDI7219, a GLP-1 receptor agonist (GLP-1RA) specifically engineered for oral delivery. Sites of protease/peptidase vulnerabilities in GLP-1 were removed by amino acid substitution and the peptide backbone was bis-lipidated to promote MEDI7219 reversible plasma protein binding without affecting potency. A combination of sodium chenodeoxycholate and propyl gallate was used to enhance bioavailability of MEDI7219 at the site of maximal gastrointestinal absorption, targeted by enteric-coated tablets. This synergistic approach resulted in MEDI7219 bioavailability of ~ 6% in dogs receiving oral tablets. In a dog model of obesity and insulin resistance, MEDI7219 oral tablets significantly decreased food intake, body weight and glucose excursions, validating the approach. This novel approach to the development of MEDI7219 provides a template for the development of other oral peptide therapeutics.
Collapse
Affiliation(s)
- Sergei Pechenov
- Drug Delivery, Dosage Form Design and Development, AstraZeneca, Gaithersburg, MD, USA
| | | | - Sarah Will
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Jacqueline Naylor
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Puneet Tyagi
- Drug Delivery, Dosage Form Design and Development, AstraZeneca, Gaithersburg, MD, USA
| | - Chandresh Patel
- Drug Delivery, Dosage Form Design and Development, AstraZeneca, Gaithersburg, MD, USA
| | - Lihuan Liang
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Leo Tseng
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, South San Francisco, CA, USA
| | - Yue Huang
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, South San Francisco, CA, USA
| | - Anton I Rosenbaum
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, USA
| | - Kemal Balic
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, USA
| | - Anish Konkar
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Joseph Grimsby
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | | |
Collapse
|
182
|
Burshtein G, Itin C, Tang JCY, Galitzer H, Fraser WD, Schwartz P. The combined effect of permeation enhancement and proteolysis inhibition on the systemic exposure of orally administrated peptides: Salcaprozate sodium, soybean trypsin inhibitor, and teriparatide study in pigs. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2021; 3:100097. [PMID: 34704013 PMCID: PMC8524144 DOI: 10.1016/j.ijpx.2021.100097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/21/2022]
Abstract
Oral delivery of peptides and proteins is hindered by their rapid proteolysis in the gastrointestinal tract and their inability to permeate biological membranes. Various drug delivery approaches are being investigated and implemented to overcome these obstacles. In the discussed study conducted in pigs, an investigation was undertaken to assess the effect of combination of a permeation enhancer – salcaprozate sodium, and a proteolysis inhibitor – soybean trypsin inhibitor, on the systemic exposure of the peptide teriparatide, following intraduodenal administration. Results demonstrate that this combination achieves significantly higher Cmax and AUC (~10- and ~20-fold respectively) compared to each of these methodologies on their own. It was thus concluded that an appropriate combination of different technological approaches may considerably contribute to an efficient oral delivery of biological macromolecules. Soybean trypsin inhibitor (SBTI) protects hPTH(1–34) from proteolysis in the intestine. SNAC/SBTI combination significantly raises plasma exposure of oral hPTH(1–34). Oral formulation hPTH(1–34)/SNAC/SBTI befits the PK profile for osteoporosis treatment. Endoscopic intraduodenal delivery in pigs enables investigation of absorption mechanisms.
Collapse
Affiliation(s)
| | - Constantin Itin
- Entera Bio Ltd., Jerusalem BioPark, Jerusalem 9112002, Israel
| | - Jonathan C Y Tang
- Bioanalytical Facility, Biomedical Research Centre, Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - Hillel Galitzer
- Entera Bio Ltd., Jerusalem BioPark, Jerusalem 9112002, Israel
| | - William D Fraser
- Bioanalytical Facility, Biomedical Research Centre, Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK.,Departments of Endocrinology and Clinical Biochemistry, Norfolk and Norwich University Hospital, Norwich, UK
| | | |
Collapse
|
183
|
Alotaibi BS, Buabeid M, Ibrahim NA, Kharaba ZJ, Ijaz M, Murtaza G. Recent strategies driving oral biologic administration. Expert Rev Vaccines 2021; 20:1587-1601. [PMID: 34612121 DOI: 10.1080/14760584.2021.1990044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION High patient compliance, noninvasiveness, and self-administration are the leading features of vaccine delivery through the oral route. The implementation of swift mass vaccination campaigns in pandemic outbreaks fascinates the use of oral vaccination. This approach can elicit both mucosal and systemic immune responses to protect against infection at the surface of the mucosa. AREA COVERED As pathogen entry and spread mainly occurs through the gastrointestinal tract (GIT) mucosal surfaces, oral vaccination may protect and limit disease spread. Oral vaccines target various potential mucosal inductive sites in the GIT, such as the oral cavity, gastric area, and small intestine. Orally delivered vaccines having subunit and nucleic acid pass through various GIT-associated risks, such as the biodegradation of biologics and their reduced absorption. This article presents a summarized review of the existing technologies and prospects for oral vaccination. EXPERT OPINION The intestinal mucosa focuses on current approaches, while future strategies target new mucosal sites, i.e. oral cavity and stomach. Recent developments in biologic delivery through the oral route and their potential use in future oral vaccination are mainly considered.
Collapse
Affiliation(s)
- Badriyah Shadid Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Manal Buabeid
- Department of Clinical Sciences, Ajman University, Ajman, 346, UAE.,Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
| | - Nihal Abdalla Ibrahim
- Department of Clinical Sciences, Ajman University, Ajman, 346, UAE.,Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
| | - Zelal Jaber Kharaba
- Department of Clinical Sciences, College of Pharmacy, Al-Ain University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Munazza Ijaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore, 54000, Pakistan
| |
Collapse
|
184
|
Søgaard PP, Lind M, Christiansen CR, Petersson K, Clauss A, Caffarel-Salvador E. Future Perspectives of Oral Delivery of Next Generation Therapies for Treatment of Skin Diseases. Pharmaceutics 2021; 13:1722. [PMID: 34684016 PMCID: PMC8537019 DOI: 10.3390/pharmaceutics13101722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Gene therapies have conspicuously bloomed in recent years as evidenced by the increasing number of cell-, gene-, and oligo-based approved therapies. These therapies hold great promise for dermatological disorders with high unmet need, for example, epidermolysis bullosa or pachyonychia congenita. Furthermore, the recent clinical success of clustered regularly interspaced short palindromic repeats (CRISPR) for genome editing in humans will undoubtedly contribute to defining a new wave of therapies. Like biologics, naked nucleic acids are denatured inside the gastrointestinal tract and need to be administered via injections. For a treatment to be effective, a sufficient amount of a given regimen needs to reach systemic circulation. Multiple companies are racing to develop novel oral drug delivery approaches to circumvent the proteolytic and acidic milieu of the gastrointestinal tract. In this review, we provide an overview of the evolution of the gene therapy landscape, with a deep focus on gene and oligonucleotide therapies in clinical trials aimed at treating skin diseases. We then examine the progress made in drug delivery, with particular attention on the peptide field and drug-device combinations that deliver macromolecules into the gastrointestinal tract. Such novel devices could potentially be applied to administer other therapeutics including genes and CRISPR-based systems.
Collapse
Affiliation(s)
- Pia Pernille Søgaard
- Regenerative Medicine Department, LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark; (P.P.S.); (C.R.C.); (A.C.)
| | - Marianne Lind
- Explorative Formulation and Technologies, LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark; (M.L.); (K.P.)
| | | | - Karsten Petersson
- Explorative Formulation and Technologies, LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark; (M.L.); (K.P.)
| | - Adam Clauss
- Regenerative Medicine Department, LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark; (P.P.S.); (C.R.C.); (A.C.)
| | - Ester Caffarel-Salvador
- Regenerative Medicine Department, LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark; (P.P.S.); (C.R.C.); (A.C.)
- LEO Science & Tech Hub, One Broadway, Cambridge, MA 02142, USA
| |
Collapse
|
185
|
Tyagi P, Trivedi R, Pechenov S, Patel C, Revell J, Wills S, Huang Y, Rosenbaum AI, Subramony JA. Targeted oral peptide delivery using multi-unit particulates: Drug and permeation enhancer layering approach. J Control Release 2021; 338:784-791. [PMID: 34499981 DOI: 10.1016/j.jconrel.2021.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/28/2021] [Accepted: 09/03/2021] [Indexed: 11/30/2022]
Abstract
Oral delivery of peptides is a challenge due to their instability and their limited transport and absorption characteristics within the gastrointestinal tract. In this work, we used layering techniques in a fluidized bed dryer to create a configuration in which the active peptide, permeation enhancers, and polymers are coated to control the release of the peptide. Formulations were developed to disintegrate at pH values of 5.5 and 7.0. In addition, sustained-release or mucoadhesive polymers were coated to trigger release at a desired site in the gastrointestinal tract. Dissolution studies with a USP Type I (basket) apparatus confirmed the duration of release. Pharmacokinetic studies were performed in beagle dogs to evaluate bioavailability. A high-disintegration pH was found to be advantageous in enhancing bioavailability.
Collapse
Affiliation(s)
- Puneet Tyagi
- Dosage Form Design and Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | - Sergei Pechenov
- Dosage Form Design and Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Chandresh Patel
- Dosage Form Design and Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Jefferson Revell
- Antibody Discovery & Protein Engineering, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Sarah Wills
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Yue Huang
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, USA
| | - Anton I Rosenbaum
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, USA
| | - J Anand Subramony
- Antibody Discovery and Protein Engineering, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA.
| |
Collapse
|
186
|
Dahl K, Baekdal TA. Response to the letter from Horowitz et al. to the Editor relating to the publication 'Oral semaglutide improves postprandial glucose and lipid metabolism, and delays gastric emptying, in subjects with type 2 diabetes' by Dahl et al. Diabetes Obes Metab 2021; 23:2414-2416. [PMID: 34212484 DOI: 10.1111/dom.14485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 11/28/2022]
|
187
|
Formulation strategies to improve the efficacy of intestinal permeation enhancers . Adv Drug Deliv Rev 2021; 177:113925. [PMID: 34418495 DOI: 10.1016/j.addr.2021.113925] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023]
Abstract
The use of chemical permeation enhancers (PEs) is the most widely tested approach to improve oral absorption of low permeability active agents, as represented by peptides. Several hundred PEs increase intestinal permeability in preclinical bioassays, yet few have progressed to clinical testing and, of those, only incremental increases in oral bioavailability (BA) have been observed. Still, average BA values of ~1% were sufficient for two recent FDA approvals of semaglutide and octreotide oral formulations. PEs are typically screened in static in vitro and ex-vivo models where co-presentation of active agent and PE in high concentrations allows the PE to alter barrier integrity with sufficient contact time to promote flux across the intestinal epithelium. The capacity to maintain high concentrations of co-presented agents at the epithelium is not reached by standard oral dosage forms in the upper GI tract in vivo due to dilution, interference from luminal components, fast intestinal transit, and possible absorption of the PE per se. The PE-based formulations that have been assessed in clinical trials in either immediate-release or enteric-coated solid dosage forms produce low and variable oral BA due to these uncontrollable physiological factors. For PEs to appreciably increase intestinal permeability from oral dosage forms in vivo, strategies must facilitate co-presentation of PE and active agent at the epithelium for a sustained period at the required concentrations. Focusing on peptides as examples of a macromolecule class, we review physiological impediments to optimal luminal presentation, discuss the efficacy of current PE-based oral dosage forms, and suggest strategies that might be used to improve them.
Collapse
|
188
|
Overgaard RV, Hertz CL, Ingwersen SH, Navarria A, Drucker DJ. Levels of circulating semaglutide determine reductions in HbA1c and body weight in people with type 2 diabetes. Cell Rep Med 2021; 2:100387. [PMID: 34622228 PMCID: PMC8484505 DOI: 10.1016/j.xcrm.2021.100387] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/30/2021] [Accepted: 08/11/2021] [Indexed: 10/25/2022]
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RA) are used for the treatment of type 2 diabetes. Whether clinically important responses and adverse events (AEs) are dependent on the route of administration has not been determined. We demonstrate that nearly identical exposure-response pharmacodynamic relationships are determined by plasma semaglutide levels achieved through oral versus injectable administration for changes in HbA1c, body weight, biomarkers of cardiovascular risk, and AEs such as nausea and vomiting. At typical exposure levels for oral semaglutide, the estimated response is 1.58% (oral) versus -1.62% (subcutaneous) for HbA1c and 3.77% (oral) versus 3.48% (subcutaneous) reduction in body weight relative to baseline after 6 months. Increased body weight is the most important variable associated with reduced semaglutide exposure for both formulations. Hence, interindividual variation in GLP-1R responsivity or route of administration are not major determinants of GLP-1RA effectiveness in the clinic.
Collapse
Affiliation(s)
| | | | | | | | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
189
|
Oral Semaglutide, the First Ingestible Glucagon-Like Peptide-1 Receptor Agonist: Could It Be a Magic Bullet for Type 2 Diabetes? Int J Mol Sci 2021; 22:ijms22189936. [PMID: 34576096 PMCID: PMC8470357 DOI: 10.3390/ijms22189936] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/25/2022] Open
Abstract
The gastrointestinal tract secretes gut hormones in response to food consumption, and some of these stimulate insulin secretion. Glucagon-like peptide-1 (GLP-1) is an incretin peptide hormone released from the lower digestive tract that stimulates insulin secretion, suppresses glucagon secretion, and decreases hunger. GLP-1 receptor agonist (GLP-1RA) mimics the action of endogenous GLP-1, consequently reversing hyperglycemia and causing weight reduction, demonstrating its efficacy as an antidiabetic and antiobesity agent. Previously restricted to injection only, the invention of the absorption enhancer sodium N-(8-[2-hydroxybenzoyl]amino) caprylate resulted in the development of oral semaglutide, the first ingestible GLP-1RA. Oral semaglutide demonstrated its efficacy in glycemic management and body weight loss with a low risk of hypoglycemia as a monotherapy and in combination with other hypoglycemic medications in its clinical trial programs named Peptide Innovation for Early Diabetes Treatment. Consistent with other injectable GLP-1RAs, gastrointestinal side effects were often reported. Additionally, cardiovascular safety was established by demonstrating that oral semaglutide was not inferior to a placebo in terms of cardiovascular outcomes. Thus, oral semaglutide represents a novel treatment option that is particularly well-suited for patients with type 2 diabetes and/or obesity.
Collapse
|
190
|
Bain EK, Bain SC. Recent developments in GLP-1RA therapy: A review of the latest evidence of efficacy and safety and differences within the class. Diabetes Obes Metab 2021; 23 Suppl 3:30-39. [PMID: 34324260 DOI: 10.1111/dom.14487] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/15/2021] [Accepted: 06/30/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Evie K Bain
- Diabetes Research Unit, Swansea University Medical School, Swansea, UK
| | - Stephen C Bain
- Diabetes Research Unit, Swansea University Medical School, Swansea, UK
- Swansea Bay University Health Board, Swansea, UK
| |
Collapse
|
191
|
|
192
|
Kaneko S. Novel approaches to pharmacological management of type 2 diabetes in Japan. Expert Opin Pharmacother 2021; 22:2235-2249. [PMID: 34461791 DOI: 10.1080/14656566.2021.1974401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Newly developed anti-diabetic medications have had multiple activities, beyond a blood glucose-lowering effect. Current drugs for treating type 2 diabetes mellitus (T2DM) are based on the use of gastrointestinal hormones. Representative incretin preparations, such as those with glucagon-like peptide (GLP)-1 or gastric inhibitory polypeptide (GIP) activity, aim to provide new means of controlling blood glucose levels, body weight, and lipid metabolism. AREA COVERED In this manuscript, the pathophysiology of T2DM and the activities and characteristics of novel diabetic drugs are reviewed in the context of the Japanese population. This review also highlights the need for novel medicines to overcome the accompanying challenges. Finally, the author provides the reader with their expert perspectives. EXPERT OPINION The incidence of T2DM has been increasing in the aging of Japanese society. In older people, medical development should focus on safety, easier self-administration, and the relief of caregiver burden in terms of continuous administration. In the young, the focus should be on effectiveness, with a particular emphasis on the protection of organs, increasing the ease of adherence, and safety. Novel medicines will need to push the envelope in these areas.
Collapse
Affiliation(s)
- Shizuka Kaneko
- Department of Diabetes/Endocrinology/Metabolism, Takatsuki Red Cross Hospital, Takatsuki, Osaka, Japan
| |
Collapse
|
193
|
Jordy AB, Albayaty M, Breitschaft A, Anderson TW, Christiansen E, Houshmand-Øregaard A, Manigandan E, Bækdal TA. Effect of Oral Semaglutide on the Pharmacokinetics of Levonorgestrel and Ethinylestradiol in Healthy Postmenopausal Women and Furosemide and Rosuvastatin in Healthy Subjects. Clin Pharmacokinet 2021; 60:1171-1185. [PMID: 33782832 PMCID: PMC8416862 DOI: 10.1007/s40262-020-00976-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND The first oral glucagon-like peptide-1 receptor agonist (GLP-1RA) comprises semaglutide co-formulated with the absorption enhancer, sodium N-(8-[2-hydroxybenzoyl] amino) caprylate (SNAC). Oral semaglutide may alter the pharmacokinetics of co-administered drugs via effects of semaglutide or SNAC. Two separate one-sequence crossover trials investigated the effects of oral semaglutide and SNAC on the pharmacokinetics of ethinylestradiol, levonorgestrel, furosemide and rosuvastatin. METHODS Healthy, postmenopausal women (n = 25) received once-daily combined ethinylestradiol and levonorgestrel (Trial 1) and healthy male and female subjects (n = 41) received single doses of furosemide and rosuvastatin (Trial 2), either alone, with SNAC alone or with oral semaglutide. Lack of drug-drug interaction was concluded if 90% confidence intervals (CIs) for the ratio of area under the plasma concentration-time curve (AUC) or maximum concentration (Cmax), with/without oral semaglutide, were within a pre-specified interval (0.80-1.25). RESULTS The AUC values of ethinylestradiol and levonorgestrel were not affected by oral semaglutide co-administration (estimated ratios [90% CI] 1.06 [1.01-1.10] and 1.06 [0.97-1.17], respectively); Cmax was not affected. The no-effect criterion was not met for furosemide or rosuvastatin for the AUC (1.28 [1.16-1.42] and 1.41 [1.24-1.60], respectively) or Cmax. SNAC alone did not affect the AUC or Cmax of ethinylestradiol, levonorgestrel or rosuvastatin; the Cmax of furosemide was slightly decreased. Adverse events were similar to those previously observed for GLP-1RAs (both trials). CONCLUSION Co-administration with oral semaglutide did not affect the pharmacokinetics of ethinylestradiol or levonorgestrel. There was a small increase in exposure of furosemide and rosuvastatin; however, these increases are not expected to be of clinical relevance. CLINICAL TRIAL REGISTRATION NUMBERS NCT02845219 and NCT03010475.
Collapse
Affiliation(s)
- Andreas B Jordy
- Novo Nordisk A/S, Vandtårnsvej 108-110, 2860, Søborg, Denmark
| | - Muna Albayaty
- Parexel Early Phase Clinical Unit, Northwick Park Hospital, Parexel International, Watford Road, Harrow, HA1 3UJ, UK
| | - Astrid Breitschaft
- Parexel International GmbH, Klinikum Westend, Haus 18, Spandauer Damm 130, 14050, Berlin, Germany
| | | | | | | | - Easwaran Manigandan
- Novo Nordisk Service Centre India Private Ltd., Plot No. 148, 2nd Floor, Prestige Featherlite Tech Park, 2nd Phase, EPIP Area, Whitefield, Bangalore, 560 066, India
| | - Tine A Bækdal
- Novo Nordisk A/S, Vandtårnsvej 108-110, 2860, Søborg, Denmark.
| |
Collapse
|
194
|
Granhall C, Bækdal TA, Breitschaft A, Søndergaard FL, Anderson TW, Thomsen M. Absence of QTc Prolongation with Sodium N-(8-[2-Hydroxybenzoyl] Amino) Caprylate (SNAC), an Absorption Enhancer Co-Formulated with the GLP-1 Analogue Semaglutide for Oral Administration. Diabetes Ther 2021; 12:2599-2610. [PMID: 34319564 PMCID: PMC8384972 DOI: 10.1007/s13300-021-01106-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/23/2021] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Oral delivery of proteins, including glucagon-like peptide 1 (GLP-1) receptor agonists, is impeded by low gastrointestinal permeation. Oral semaglutide has been developed for once-daily oral administration by co-formulation of the GLP-1 analogue semaglutide with an absorption enhancer, sodium N-(8-[2-hydroxybenzoyl] amino) caprylate (SNAC, 300 mg). A randomised, partially double-blind, placebo-controlled thorough QT/corrected QT (QTc) trial was conducted to confirm the absence of unacceptable QTc interval prolongation with SNAC. QT is defined as interval on the electrocardiogram, measured from the start of the QRS complex to the end of the T wave. METHODS Part A of the study sought to identify an appropriate dose of SNAC (which was substantially higher than that used in the oral semaglutide co-formulation) for QTc assessment. Three sequential healthy volunteer cohorts were randomised to escalating single oral doses of SNAC (1.2, 2.4 or 3.6 g) or placebo. Following identification of an appropriate dose, a cross-over trial was conducted (Part B). Healthy volunteers received one of four treatment sequences, including single oral doses of SNAC, moxifloxacin (positive control) and placebo. Primary objectives were to (1) assess adverse events (AEs) with escalating SNAC doses and (2) confirm that SNAC does not cause unacceptable QTc interval prolongation versus placebo, using the Fridericia heart rate-corrected QT interval (QTcF). RESULTS All subjects completed Part A (N = 36) and 46 subjects completed Part B. In Part A, all AEs were mild to moderate in severity; no relationship was identified between AE incidence and SNAC dose. SNAC 3.6 g, the maximum investigated SNAC dose, was selected for Part B. There was no unacceptable prolongation of the QTcF interval with SNAC 3.6 g, and assay sensitivity was demonstrated with moxifloxacin as the positive control. There was no significant exposure-response relationship between SNAC concentration and QTcF interval, and no instances of QTc interval > 450 ms or increases > 30 ms. CONCLUSION This QT/QTc trial demonstrates that SNAC doses 12-fold higher than the 300 mg dose used in the oral formulation of semaglutide do not cause unacceptable prolongation of the QTcF interval. TRIAL REGISTRATION Clinicaltrials.gov identifier: NCT02911870.
Collapse
|
195
|
Durán-Lobato M, López-Estévez AM, Cordeiro AS, Dacoba TG, Crecente-Campo J, Torres D, Alonso MJ. Nanotechnologies for the delivery of biologicals: Historical perspective and current landscape. Adv Drug Deliv Rev 2021; 176:113899. [PMID: 34314784 DOI: 10.1016/j.addr.2021.113899] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/05/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022]
Abstract
Biological macromolecule-based therapeutics irrupted in the pharmaceutical scene generating a great hope due to their outstanding specificity and potency. However, given their susceptibility to degradation and limited capacity to overcome biological barriers new delivery technologies had to be developed for them to reach their targets. This review aims at analyzing the historical seminal advances that shaped the development of the protein/peptide delivery field, along with the emerging technologies on the lead of the current landscape. Particularly, focus is made on technologies with a potential for transmucosal systemic delivery of protein/peptide drugs, followed by approaches for the delivery of antigens as new vaccination strategies, and formulations of biological drugs in oncology, with special emphasis on mAbs. Finally, a discussion of the key challenges the field is facing, along with an overview of prospective advances are provided.
Collapse
|
196
|
Bandyopadhyay I, Dave S, Rai A, Nampoothiri M, Chamallamudi MR, Kumar N. Oral semaglutide in the management of type 2 DM: Clinical status and comparative analysis. Curr Drug Targets 2021; 23:311-327. [PMID: 34468297 DOI: 10.2174/1389450122666210901125420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/09/2021] [Accepted: 06/24/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the incretin system, Glucagon-like peptide-1 (GLP-1) is a hormone that inhibits the release of glucagon and regulates glucose-dependent insulin secretion. In type 2 diabetes, correcting the impaired incretin system using GLP-1 agonist is a well-defined therapeutic strategy. OBJECTIVES This review article aims to discuss the mechanism of action, key regulatory events, clinical trials for glycaemic control and comparative analysis of semaglutide with the second-line antidiabetic drugs. DESCRIPTION Semaglutide is a glucagon-like peptide 1 (GLP 1) receptor agonist with enhanced glycaemic control in diabetes patients. In 2019, USFDA approved the first oral GLP-1 receptor agonist, semaglutide to be administered as a once-daily tablet. Further, recent studies highlight the ability of semaglutide to improve the glycaemic control in obese patients with a reduction in body weight. Still, in clinical practice, in type 2 DM treatment paradigm the impact of oral semaglutide remains unidentified. This review article discusses the mechanism of action, pharmacodynamics, key regulatory events, and clinical trials regarding glycaemic control. CONCLUSION The review highlights the comparative analysis of semaglutide with the existing second-line drugs for the management of type 2 diabetes mellitus by stressing on its benefits and adverse events.
Collapse
Affiliation(s)
- Ilora Bandyopadhyay
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Sunny Dave
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Amita Rai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Mallikarjuna Rao Chamallamudi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Nitesh Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| |
Collapse
|
197
|
Hauge C, Breitschaft A, Hartoft-Nielsen ML, Jensen S, Bækdal TA. Effect of oral semaglutide on the pharmacokinetics of thyroxine after dosing of levothyroxine and the influence of co-administered tablets on the pharmacokinetics of oral semaglutide in healthy subjects: an open-label, one-sequence crossover, single-center, multiple-dose, two-part trial. Expert Opin Drug Metab Toxicol 2021; 17:1139-1148. [PMID: 34289755 DOI: 10.1080/17425255.2021.1955856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Oral semaglutide comprises the glucagon-like peptide-1 analog, semaglutide, and sodium N-(8-[2-hydroxybenzoyl] amino) caprylate (SNAC). Levothyroxine has similar dosing conditions to oral semaglutide. This trial investigated if oral semaglutide co-administered with levothyroxine affects thyroxine (T4) exposure and if multiple placebo tablets co-administered with oral semaglutide affect semaglutide exposure. RESEARCH DESIGN AND METHODS In this one-sequence crossover trial, 45 healthy subjects received levothyroxine (600 μg single-dose) alone, or with concomitant SNAC 300 mg or concomitant oral semaglutide 14 mg at steady-state. Subjects also received oral semaglutide 14 mg at steady-state alone or with five placebo tablets once-daily for 5 weeks. RESULTS A 33% increase in total T4 exposure was observed with levothyroxine/oral semaglutide vs levothyroxine alone, but baseline-corrected maximum concentration (Cmax) was unaffected. SNAC alone did not affect total T4 exposure, whereas Cmax was slightly decreased. A 34% decrease in semaglutide exposure was observed when oral semaglutide was co-administered with placebo tablets, and Cmax also decreased. CONCLUSIONS Levothyroxine pharmacokinetics were influenced by co-administration with oral semaglutide. Monitoring of thyroid parameters should be considered when treating patients with both oral semaglutide and levothyroxine. Oral semaglutide exposure was influenced by co-administration with multiple tablets, which is addressed in the dosing guidance.
Collapse
Affiliation(s)
- Camilla Hauge
- Clinical Pharmacology, Novo Nordisk A/S, Søborg, Denmark
| | | | | | - Simon Jensen
- Biostatistics, Novo Nordisk A/S, Søborg, Denmark
| | - Tine A Bækdal
- Clinical Pharmacology, Novo Nordisk A/S, Søborg, Denmark
| |
Collapse
|
198
|
Lima PG, Freitas CDT, Oliveira JTA, Neto NAS, Amaral JL, Silva AFB, Sousa JS, Franco OL, Souza PFN. Synthetic antimicrobial peptides control Penicillium digitatum infection in orange fruits. Food Res Int 2021; 147:110582. [PMID: 34399551 DOI: 10.1016/j.foodres.2021.110582] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/07/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022]
Abstract
Fungal contamination is among the main reasons for food spoilage, affecting food safety and the economy. Among fungi, Penicillium digitatum is a major agent of this problem. Here, the in vitro activity of eight synthetic antimicrobial peptides was assessed against P. digitatum, and their action mechanisms were evaluated. All peptides were able to inhibit fungal growth. Furthermore, atomic force and fluorescence microscopies revealed that all peptides targeted the fungal membrane leading to pore formation, loss of internal content, and death. The induction of high levels of reactive oxygen species (ROS) was also a mechanism employed by some peptides. Interestingly, only three peptides (PepGAT, PepKAA, and Mo-CBP3-PepI) effectively control P. digitatum colonization in orange fruits, at a concentration (50 µg mL-1) 20-fold lower than the commercial food preservative (sodium propionate). Altogether, PepGAT, PepKAA, and Mo-CBP3-PepI showed high biotechnological potential as new food preservatives to control food infection by P. digitatum.
Collapse
Affiliation(s)
- Patrícia G Lima
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará CEP 60.440-554, Brazil
| | - Cleverson D T Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará CEP 60.440-554, Brazil
| | - Jose T A Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará CEP 60.440-554, Brazil
| | - Nilton A S Neto
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará CEP 60.440-554, Brazil
| | - Jackson L Amaral
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará CEP 60.440-554, Brazil; Department of Physics, Federal University of Ceará, Fortaleza, Brazil
| | - Ayrles F B Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará CEP 60.440-554, Brazil; Department of Physics, Federal University of Ceará, Fortaleza, Brazil
| | - Jeanlex S Sousa
- Department of Physics, Federal University of Ceará, Fortaleza, Brazil
| | - Octávio L Franco
- S-Inova Biotech, Programa de Pós Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117900, Brazil; Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília 70790160, Brazil
| | - Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará CEP 60.440-554, Brazil.
| |
Collapse
|
199
|
Di L. An update on the importance of plasma protein binding in drug discovery and development. Expert Opin Drug Discov 2021; 16:1453-1465. [PMID: 34403271 DOI: 10.1080/17460441.2021.1961741] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: Plasma protein binding (PPB) remains a controversial topic in drug discovery and development. Fraction unbound (fu) is a critical parameter that needs to be measured accurately, because it has significant impacts on the predictions of drug-drug interactions (DDI), estimations of therapeutic indices (TI), and developments of PK/PD relationships. However, it is generally not advisable to change PPB through structural modifications, because PPB on its own has little relevance for in vivo efficacy.Areas covered: PPB fundamentals are discussed including the three main classes of drug binding proteins (i.e., albumin, alpha1-acid glycoprotein, and lipoproteins) and their physicochemical properties, in vivo half-life, and synthesis rate. State-of-the-art methodologies for PPB are highlighted. Applications of PPB in drug discovery and development are presented.Expert opinion: PPB is an old topic in pharmacokinetics, but there are still many misconceptions. Improving the accuracy of PPB for highly bound compounds is an ongoing effort in the field with high priority. As the field continues to generate high quality data, the regulatory agencies will increase their confidence in our ability to accurately measure PPB of highly bound compounds, and experimental fu values below 0.01 will more likely be used for DDI predictions in the future.
Collapse
Affiliation(s)
- Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT, US
| |
Collapse
|
200
|
Larsen JB, Taebnia N, Dolatshahi-Pirouz A, Eriksen AZ, Hjørringgaard C, Kristensen K, Larsen NW, Larsen NB, Marie R, Mündler AK, Parhamifar L, Urquhart AJ, Weller A, Mortensen KI, Flyvbjerg H, Andresen TL. Imaging therapeutic peptide transport across intestinal barriers. RSC Chem Biol 2021; 2:1115-1143. [PMID: 34458827 PMCID: PMC8341777 DOI: 10.1039/d1cb00024a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022] Open
Abstract
Oral delivery is a highly preferred method for drug administration due to high patient compliance. However, oral administration is intrinsically challenging for pharmacologically interesting drug classes, in particular pharmaceutical peptides, due to the biological barriers associated with the gastrointestinal tract. In this review, we start by summarizing the pharmacological performance of several clinically relevant orally administrated therapeutic peptides, highlighting their low bioavailabilities. Thus, there is a strong need to increase the transport of peptide drugs across the intestinal barrier to realize future treatment needs and further development in the field. Currently, progress is hampered by a lack of understanding of transport mechanisms that govern intestinal absorption and transport of peptide drugs, including the effects of the permeability enhancers commonly used to mediate uptake. We describe how, for the past decades, mechanistic insights have predominantly been gained using functional assays with end-point read-out capabilities, which only allow indirect study of peptide transport mechanisms. We then focus on fluorescence imaging that, on the other hand, provides opportunities to directly visualize and thus follow peptide transport at high spatiotemporal resolution. Consequently, it may provide new and detailed mechanistic understanding of the interplay between the physicochemical properties of peptides and cellular processes; an interplay that determines the efficiency of transport. We review current methodology and state of the art in the field of fluorescence imaging to study intestinal barrier transport of peptides, and provide a comprehensive overview of the imaging-compatible in vitro, ex vivo, and in vivo platforms that currently are being developed to accelerate this emerging field of research.
Collapse
Affiliation(s)
- Jannik Bruun Larsen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Nayere Taebnia
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Alireza Dolatshahi-Pirouz
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Anne Zebitz Eriksen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Claudia Hjørringgaard
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Kasper Kristensen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Nanna Wichmann Larsen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Niels Bent Larsen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Rodolphe Marie
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Ann-Kathrin Mündler
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Ladan Parhamifar
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Andrew James Urquhart
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Arjen Weller
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Kim I Mortensen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Henrik Flyvbjerg
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Thomas Lars Andresen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| |
Collapse
|