151
|
Kuboniwa M, Tribble GD, Hendrickson EL, Amano A, Lamont RJ, Hackett M. Insights into the virulence of oral biofilms: discoveries from proteomics. Expert Rev Proteomics 2013; 9:311-23. [PMID: 22809209 DOI: 10.1586/epr.12.16] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review covers developments in the study of polymicrobial communities, biofilms and selected areas of host response relevant to dental plaque and related areas of oral biology. The emphasis is on recent studies in which proteomic methods, particularly those using mass spectrometry as a readout, have played a major role in the investigation. The last 5-10 years have seen a transition of such methods from the periphery of oral biology to the mainstream, as in other areas of biomedical science. For reasons of focus and space, the authors do not discuss biomarker studies relevant to improved diagnostics for oral health, as this literature is rather substantial in its own right and deserves a separate treatment. Here, global gene regulation studies of plaque-component organisms, biofilm formation, multispecies interactions and host-microbe interactions are discussed. Several aspects of proteomics methodology that are relevant to the studies of multispecies systems are commented upon.
Collapse
Affiliation(s)
- Masae Kuboniwa
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | |
Collapse
|
152
|
Abstract
Lactic acid bacteria (LAB) are of profound importance in food production and infection medicine. LAB do not rely on heme (protoheme IX) for growth and are unable to synthesize this cofactor but are generally able to assemble a small repertoire of heme-containing proteins if heme is provided from an exogenous source. These features are in contrast to other bacteria, which synthesize their heme or depend on heme for growth. We here present the cellular function of heme proteins so far identified in LAB and discuss their biogenesis as well as applications of the extraordinary heme physiology of LAB.
Collapse
|
153
|
Letzel AC, Pidot SJ, Hertweck C. A genomic approach to the cryptic secondary metabolome of the anaerobic world. Nat Prod Rep 2012; 30:392-428. [PMID: 23263685 DOI: 10.1039/c2np20103h] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A total of 211 complete and published genomes from anaerobic bacteria are analysed for the presence of secondary metabolite biosynthesis gene clusters, in particular those tentatively coding for polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS). We investigate the distribution of these gene clusters according to bacterial phylogeny and, if known, correlate these to the type of metabolic pathways they encode. The potential of anaerobes as secondary metabolite producers is highlighted.
Collapse
Affiliation(s)
- Anne-Catrin Letzel
- Leibniz Institute for Natural Product Research and Infection Biology HKI, Beutenbergstr. 11a, Jena, 07745, Germany
| | | | | |
Collapse
|
154
|
Goetting-Minesky MP, Godovikova V, Li JJ, Seshadrinathan S, Timm JC, Kamodia SS, Fenno JC. Conservation and revised annotation of the Treponema denticola prcB-prcA-prtP locus encoding the dentilisin (CTLP) protease complex. Mol Oral Microbiol 2012; 28:181-91. [PMID: 23253337 DOI: 10.1111/omi.12013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2012] [Indexed: 12/19/2022]
Abstract
Interstrain differences in antigenic surface proteins may reflect immunological pressure or differences in receptor specificity of the antigen. Treponema denticola exhibits considerable interstrain variability in its major surface protein (Msp), but no studies have addressed this issue in dentilisin (CTLP), a surface protease complex that has a significant role in T. denticola-host interactions in periodontal disease. Furthermore, the genome annotation of the prcB-prcA-prtP operon encoding dentilisin contains apparent errors and lacks a deduced PrtP amino acid sequence. To address these issues we analysed the protease operon from diverse T. denticola strains, as well as clones of the ATCC 35405 Type strain from which the genome sequence and original GenBank prtP sequence were derived. 6xHis-tagging of the PrtP C-terminus in ATCC 35405 demonstrated absence of the 'authentic frameshift' in PrtP reported in the genome databases. We propose that T. denticola genome annotations be updated to reflect this new information. PrcB and the PrtP N-terminal region that includes the catalytic domain were highly conserved in common laboratory strains and clinical isolates of T. denticola. Dentilisin proteolytic activity varied considerably between strains. Antibodies against PrcB, PrcA and PrtP from the type strain recognized these proteins in most T. denticola strains. PrtP varied up to 20% over the C-terminal 270 residues between strains. The PrtP C-terminal eight-residues (DWFYVEYP) was present in all strains, with two strains containing an additional Y-residue preceding the stop codon. Such conserved PrtP domains may be required for interactions with PrcA and PrcB, or for substrate interactions.
Collapse
Affiliation(s)
- M P Goetting-Minesky
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | | | | | | | | | | | | |
Collapse
|
155
|
Cugini C, Stephens DN, Nguyen D, Kantarci A, Davey ME. Arginine deiminase inhibits Porphyromonas gingivalis surface attachment. MICROBIOLOGY-SGM 2012; 159:275-285. [PMID: 23242802 DOI: 10.1099/mic.0.062695-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The oral cavity is host to a complex microbial community whose maintenance depends on an array of cell-to-cell interactions and communication networks, with little known regarding the nature of the signals or mechanisms by which they are sensed and transmitted. Determining the signals that control attachment, biofilm development and outgrowth of oral pathogens is fundamental to understanding pathogenic biofilm development. We have previously identified a secreted arginine deiminase (ADI) produced by Streptococcus intermedius that inhibited biofilm development of the commensal pathogen Porphyromonas gingivalis through downregulation of genes encoding the major (fimA) and minor (mfa1) fimbriae, both of which are required for proper biofilm development. Here we report that this inhibitory effect is dependent on enzymic activity. We have successfully cloned, expressed and defined the conditions to ensure that ADI from S. intermedius is enzymically active. Along with the cloning of the wild-type allele, we have created a catalytic mutant (ADIC399S), in which the resulting protein is not able to catalyse the hydrolysis of l-arginine to l-citrulline. P. gingivalis is insensitive to the ADIC399S catalytic mutant, demonstrating that enzymic activity is required for the effects of ADI on biofilm formation. Biofilm formation is absent under l-arginine-deplete conditions, and can be recovered by the addition of the amino acid. Taken together, the results indicate that arginine is an important signal that directs biofilm formation by this anaerobe. Based on our findings, we postulate that ADI functions to reduce arginine levels and, by a yet to be identified mechanism, signals P. gingivalis to alter biofilm development. ADI release from the streptococcal cell and its cross-genera effects are important findings in understanding the nature of inter-bacterial signalling and biofilm-mediated diseases of the oral cavity.
Collapse
Affiliation(s)
- Carla Cugini
- Department of Oral Medicine Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA.,Department of Molecular Genetics, The Forsyth Institute, Cambridge, MA, USA
| | | | - Daniel Nguyen
- Department of Periodontology, The Forsyth Institute, Cambridge, MA, USA
| | - Alpdogan Kantarci
- Department of Periodontology, The Forsyth Institute, Cambridge, MA, USA
| | - Mary E Davey
- Department of Oral Medicine Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA.,Department of Molecular Genetics, The Forsyth Institute, Cambridge, MA, USA
| |
Collapse
|
156
|
|
157
|
Rouf SMA, Ohara-Nemoto Y, Hoshino T, Fujiwara T, Ono T, Nemoto TK. Discrimination based on Gly and Arg/Ser at position 673 between dipeptidyl-peptidase (DPP) 7 and DPP11, widely distributed DPPs in pathogenic and environmental gram-negative bacteria. Biochimie 2012; 95:824-32. [PMID: 23246913 DOI: 10.1016/j.biochi.2012.11.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/30/2012] [Indexed: 10/27/2022]
Abstract
Porphyromonas gingivalis, an asaccharolytic gram-negative rod-shaped bacterium, expresses the novel Asp/Glu-specific dipeptidyl-peptidase (DPP) 11 (Ohara-Nemoto, Y. et al. (2011) J. Biol. Chem. 286, 38115-38127), which has been categorized as a member of the S46/DPP7 family that is preferential for hydrophobic residues at the P1 position. From that finding, 129 gene products constituting five clusters from the phylum Bacteroidetes have been newly annotated to either DPP7 or DPP11, whereas the remaining 135 members, mainly from the largest phylum Proteobacteria, have yet to be assigned. In this study, the substrate specificities of the five clusters and an unassigned group were determined with recombinant DPPs from typical species, i.e., P. gingivalis, Capnocytophaga gingivalis, Flavobacterium psychrophilum, Bacteroides fragilis, Bacteroides vulgatus, and Shewanella putrefaciens. Consequently, clusters 1, 3, and 5 were found to be DPP7 with rather broad substrate specificity, and clusters 2 and 4 were DPP11. An unassigned S. putrefaciens DPP carrying Ser(673) exhibited Asp/Glu-specificity more preferable to Glu, in contrast to the Asp preference of DPP11 with Arg(673) from Bacteroidetes species. Mutagenesis experiments revealed that Arg(673)/Ser(673) were indispensable for the Asp/Glu-specificity of DPP11, and that the broad specificity of DPP7 was mediated by Gly(673). Taken together with the distribution of the two genes, all 264 members of the S46 family could be attributed to either DPP7 or DPP11 by an amino acid at position 673. A more compelling phylogenic tree based on the conserved C-terminal region suggested two gene duplication events in the phylum Bacteroidetes, one causing the development of DPP7 and DPP11 with altered substrate specificities, and the other producing an additional DPP7 in the genus Bacteroides.
Collapse
Affiliation(s)
- Shakh M A Rouf
- Department of Oral Molecular Biology, Course of Medical and Dental of Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | | | | | | | | | | |
Collapse
|
158
|
Gliding motility and Por secretion system genes are widespread among members of the phylum bacteroidetes. J Bacteriol 2012; 195:270-8. [PMID: 23123910 DOI: 10.1128/jb.01962-12] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The phylum Bacteroidetes is large and diverse, with rapid gliding motility and the ability to digest macromolecules associated with many genera and species. Recently, a novel protein secretion system, the Por secretion system (PorSS), was identified in two members of the phylum, the gliding bacterium Flavobacterium johnsoniae and the nonmotile oral pathogen Porphyromonas gingivalis. The components of the PorSS are not similar in sequence to those of other well-studied bacterial secretion systems. The F. johnsoniae PorSS genes are a subset of the gliding motility genes, suggesting a role for the secretion system in motility. The F. johnsoniae PorSS is needed for assembly of the gliding motility apparatus and for secretion of a chitinase, and the P. gingivalis PorSS is involved in secretion of gingipain protease virulence factors. Comparative analysis of 37 genomes of members of the phylum Bacteroidetes revealed the widespread occurrence of gliding motility genes and PorSS genes. Genes associated with other bacterial protein secretion systems were less common. The results suggest that gliding motility is more common than previously reported. Microscopic observations confirmed that organisms previously described as nonmotile, including Croceibacter atlanticus, "Gramella forsetii," Paludibacter propionicigenes, Riemerella anatipestifer, and Robiginitalea biformata, exhibit gliding motility. Three genes (gldA, gldF, and gldG) that encode an apparent ATP-binding cassette transporter required for F. johnsoniae gliding were absent from two related gliding bacteria, suggesting that the transporter may not be central to gliding motility.
Collapse
|
159
|
Klein BA, Tenorio EL, Lazinski DW, Camilli A, Duncan MJ, Hu LT. Identification of essential genes of the periodontal pathogen Porphyromonas gingivalis. BMC Genomics 2012; 13:578. [PMID: 23114059 PMCID: PMC3547785 DOI: 10.1186/1471-2164-13-578] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/24/2012] [Indexed: 01/09/2023] Open
Abstract
Background Porphyromonas gingivalis is a Gram-negative anaerobic bacterium associated with periodontal disease onset and progression. Genetic tools for the manipulation of bacterial genomes allow for in-depth mechanistic studies of metabolism, physiology, interspecies and host-pathogen interactions. Analysis of the essential genes, protein-coding sequences necessary for survival of P. gingivalis by transposon mutagenesis has not previously been attempted due to the limitations of available transposon systems for the organism. We adapted a Mariner transposon system for mutagenesis of P. gingivalis and created an insertion mutant library. By analyzing the location of insertions using massively-parallel sequencing technology we used this mutant library to define genes essential for P. gingivalis survival under in vitro conditions. Results In mutagenesis experiments we identified 463 genes in P. gingivalis strain ATCC 33277 that are putatively essential for viability in vitro. Comparing the 463 P. gingivalis essential genes with previous essential gene studies, 364 of the 463 are homologues to essential genes in other species; 339 are shared with more than one other species. Twenty-five genes are known to be essential in P. gingivalis and B. thetaiotaomicron only. Significant enrichment of essential genes within Cluster of Orthologous Groups ‘D’ (cell division), ‘I’ (lipid transport and metabolism) and ‘J’ (translation/ribosome) were identified. Previously, the P. gingivalis core genome was shown to encode 1,476 proteins out of a possible 1,909; 434 of 463 essential genes are contained within the core genome. Thus, for the species P. gingivalis twenty-two, seventy-seven and twenty-three percent of the genome respectively are devoted to essential, core and accessory functions. Conclusions A Mariner transposon system can be adapted to create mutant libraries in P. gingivalis amenable to analysis by next-generation sequencing technologies. In silico analysis of genes essential for in vitro growth demonstrates that although the majority are homologous across bacterial species as a whole, species and strain-specific subsets are apparent. Understanding the putative essential genes of P. gingivalis will provide insights into metabolic pathways and niche adaptations as well as clinical therapeutic strategies.
Collapse
Affiliation(s)
- Brian A Klein
- Department of Molecular Biology and Microbiology, Tufts University Sackler School of Biomedical Sciences, Boston, MA 02111, USA
| | | | | | | | | | | |
Collapse
|
160
|
Shillitoe E, Weinstock R, Kim T, Simon H, Planer J, Noonan S, Cooney R. The oral microflora in obesity and type-2 diabetes. J Oral Microbiol 2012; 4:19013. [PMID: 23119124 PMCID: PMC3485401 DOI: 10.3402/jom.v4i0.19013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 09/13/2012] [Accepted: 10/01/2012] [Indexed: 12/28/2022] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is prevalent in people with obesity. It has been proposed that these conditions are related to specific features of the microflora of the mouth and lower gastrointestinal (GI) tract. Hyperglycemia often resolves quickly after Roux-en-Y gastric bypass (RYGB) but the role of the GI microflora cannot be examined easily because of reduced intestinal mobility. We propose that the study of microorganisms present in the mouth of patients undergoing RYGB will contribute to our understanding of the role of bacteria in the pathogenesis of T2DM. Objective To conduct a feasibility study to examine differences in oral microbes in obese patients with and without T2DM and to determine whether it is feasible to measure changes after gastric bypass surgery. Methods Individuals with morbid obesity (n=29), of whom 13 had T2DM, were studied. Oral rinses, stool samples, and blood samples were obtained before RYGB, and oral rinses and blood samples were obtained at 2 and 12 weeks postsurgery. Results Prior to surgery, participants with T2DM had slightly higher total levels of oral bacteria than those without diabetes. Those with HbA1c > 6.5% had rather lower levels of Bifidobacteria in the mouth and stool. At 2 weeks post-RYGB, patients with T2DM were able to reduce or discontinue their hypoglycemic medications. Stool samples could not be obtained but oral rinses were readily available. The levels of oral Bifidobacteria had increased tenfold and levels of circulating endotoxin and tumor necrosis factor-alpha had decreased. Conclusions The study of oral bacteria before and after RYGB is feasible and should be tested in larger patient populations to increase our understanding of the role of microorganisms in the pathogenesis of obesity and T2DM.
Collapse
Affiliation(s)
- Edward Shillitoe
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| | | | | | | | | | | | | |
Collapse
|
161
|
Inactivation of epidermal growth factor by Porphyromonas gingivalis as a potential mechanism for periodontal tissue damage. Infect Immun 2012; 81:55-64. [PMID: 23090954 DOI: 10.1128/iai.00830-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis is a Gram-negative bacterium associated with the development of periodontitis. The evolutionary success of this pathogen results directly from the presence of numerous virulence factors, including peptidylarginine deiminase (PPAD), an enzyme that converts arginine to citrulline in proteins and peptides. Such posttranslational modification is thought to affect the function of many different signaling molecules. Taking into account the importance of tissue remodeling and repair mechanisms for periodontal homeostasis, which are orchestrated by ligands of the epidermal growth factor receptor (EGFR), we investigated the ability of PPAD to distort cross talk between the epithelium and the epidermal growth factor (EGF) signaling pathway. We found that EGF preincubation with purified recombinant PPAD, or a wild-type strain of P. gingivalis, but not with a PPAD-deficient isogenic mutant, efficiently hindered the ability of the growth factor to stimulate epidermal cell proliferation and migration. In addition, PPAD abrogated EGFR-EGF interaction-dependent stimulation of expression of suppressor of cytokine signaling 3 and interferon regulatory factor 1. Biochemical analysis clearly showed that the PPAD-exerted effects on EGF activities were solely due to deimination of the C-terminal arginine. Interestingly, citrullination of two internal Arg residues with human endogenous peptidylarginine deiminases did not alter EFG function, arguing that the C-terminal arginine is essential for EGF biological activity. Cumulatively, these data suggest that the PPAD-activity-abrogating EGF function in gingival pockets may at least partially contribute to tissue damage and delayed healing within P. gingivalis-infected periodontia.
Collapse
|
162
|
Shoji M. [Study of transportation and localization of cell surface proteins in Porphyromoans gingivalis]. Nihon Saikingaku Zasshi 2012; 67:245-55. [PMID: 22975929 DOI: 10.3412/jsb.67.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Mikio Shoji
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
163
|
Porphyromonas gingivalis FimA fimbriae: fimbrial assembly by fimA alone in the fim gene cluster and differential antigenicity among fimA genotypes. PLoS One 2012; 7:e43722. [PMID: 22970139 PMCID: PMC3436787 DOI: 10.1371/journal.pone.0043722] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/23/2012] [Indexed: 11/19/2022] Open
Abstract
The periodontal pathogen Porphyromonas gingivalis colonizes largely through FimA fimbriae, composed of polymerized FimA encoded by fimA. fimA exists as a single copy within the fim gene cluster (fim cluster), which consists of seven genes: fimX, pgmA and fimA-E. Using an expression vector, fimA alone was inserted into a mutant from which the whole fim cluster was deleted, and the resultant complement exhibited a fimbrial structure. Thus, the genes of the fim cluster other than fimA were not essential for the assembly of FimA fimbriae, although they were reported to influence FimA protein expression. It is known that there are various genotypes for fimA, and it was indicated that the genotype was related to the morphological features of FimA fimbriae, especially the length, and to the pathogenicity of the bacterium. We next complemented the fim cluster-deletion mutant with fimA genes cloned from P. gingivalis strains including genotypes I to V. All genotypes showed a long fimbrial structure, indicating that FimA itself had nothing to do with regulation of the fimbrial length. In FimA fimbriae purified from the complemented strains, types I, II, and III showed slightly higher thermostability than types IV and V. Antisera of mice immunized with each purified fimbria principally recognized the polymeric, structural conformation of the fimbriae, and showed low cross-reactivity among genotypes, indicating that FimA fimbriae of each genotype were antigenically different. Additionally, the activity of a macrophage cell line stimulated with the purified fimbriae was much lower than that induced by Escherichia coli lipopolysaccharide.
Collapse
|
164
|
Bertelli C, Greub G. Lateral gene exchanges shape the genomes of amoeba-resisting microorganisms. Front Cell Infect Microbiol 2012; 2:110. [PMID: 22919697 PMCID: PMC3423634 DOI: 10.3389/fcimb.2012.00110] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 08/01/2012] [Indexed: 12/05/2022] Open
Abstract
Based on Darwin's concept of the tree of life, vertical inheritance was thought to be dominant, and mutations, deletions, and duplication were streaming the genomes of living organisms. In the current genomic era, increasing data indicated that both vertical and lateral gene inheritance interact in space and time to trigger genome evolution, particularly among microorganisms sharing a given ecological niche. As a paradigm to their diversity and their survival in a variety of cell types, intracellular microorganisms, and notably intracellular bacteria, were considered as less prone to lateral genetic exchanges. Such specialized microorganisms generally have a smaller gene repertoire because they do rely on their host's factors for some basic regulatory and metabolic functions. Here we review events of lateral gene transfer (LGT) that illustrate the genetic exchanges among intra-amoebal microorganisms or between the microorganism and its amoebal host. We tentatively investigate the functions of laterally transferred genes in the light of the interaction with their host as they should confer a selective advantage and success to the amoeba-resisting microorganisms (ARMs).
Collapse
Affiliation(s)
- Claire Bertelli
- Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne Lausanne, Switzerland
| | | |
Collapse
|
165
|
Saiki K, Konishi K. Strategies for targeting the gingipain secretion system of Porphyromonas gingivalis. J Oral Biosci 2012. [DOI: 10.1016/j.job.2012.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
166
|
Nagano K, Abiko Y, Yoshida Y, Yoshimura F. Porphyromonas gingivalis FimA fimbriae: Roles of the fim gene cluster in the fimbrial assembly and antigenic heterogeneity among fimA genotypes. J Oral Biosci 2012. [DOI: 10.1016/j.job.2012.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
167
|
OxyR activation in Porphyromonas gingivalis in response to a hemin-limited environment. Infect Immun 2012; 80:3471-80. [PMID: 22825453 DOI: 10.1128/iai.00680-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis is a Gram-negative obligately anaerobic bacterium associated with several forms of periodontal disease, most closely with chronic periodontitis. Previous studies demonstrated that OxyR plays an important role in the aerotolerance of P. gingivalis by upregulating the expression of oxidative-stress genes. Increases in oxygen tension and in H(2)O(2) both induce activation of OxyR. It is also known that P. gingivalis requires hemin as an iron source for its growth. In this study, we found that a hemin-limited growth environment significantly enhanced OxyR activity in P. gingivalis. As a result, expression of sod, dps, and ahpC was also upregulated. Using a chromatin immunoprecipitation quantitative PCR (qPCR) analysis, DNA binding of activated OxyR to the promoter of the sod gene was enhanced in P. gingivalis grown under hemin-limited conditions compared to excess-hemin conditions. Cellular tolerance of H(2)O(2) was also enhanced when hemin was limited in the growth medium of P. gingivalis. Our work supports a model in which hemin serves as a signal for the regulation of OxyR activity and indicates that P. gingivalis coordinately regulates expression of oxidative-stress-related genes by this hemin concentration-dependent pathway.
Collapse
|
168
|
Hevener KE, Mehboob S, Boci T, Truong K, Santarsiero BD, Johnson ME. Expression, purification and characterization of enoyl-ACP reductase II, FabK, from Porphyromonas gingivalis. Protein Expr Purif 2012; 85:100-8. [PMID: 22820244 DOI: 10.1016/j.pep.2012.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 07/02/2012] [Accepted: 07/05/2012] [Indexed: 12/01/2022]
Abstract
The rapid rise in bacterial drug resistance coupled with the low number of novel antimicrobial compounds in the discovery pipeline has led to a critical situation requiring the expedient discovery and characterization of new antimicrobial drug targets. Enzymes in the bacterial fatty acid synthesis pathway, FAS-II, are distinct from their mammalian counterparts, FAS-I, in terms of both structure and mechanism. As such, they represent attractive targets for the design of novel antimicrobial compounds. Enoyl-acyl carrier protein reductase II, FabK, is a key, rate-limiting enzyme in the FAS-II pathway for several bacterial pathogens. The organism, Porphyromonas gingivalis, is a causative agent of chronic periodontitis that affects up to 25% of the US population and incurs a high national burden in terms of cost of treatment. P. gingivalis expresses FabK as the sole enoyl reductase enzyme in its FAS-II cycle, which makes this a particularly appealing target with potential for selective antimicrobial therapy. Herein we report the molecular cloning, expression, purification and characterization of the FabK enzyme from P. gingivalis, only the second organism from which this enzyme has been isolated. Characterization studies have shown that the enzyme is a flavoprotein, the reaction dependent upon FMN and NADPH and proceeding via a Ping-Pong Bi-Bi mechanism to reduce the enoyl substrate. A sensitive assay measuring the fluorescence decrease of NADPH as it is converted to NADP(+) during the reaction has been optimized for high-throughput screening. Finally, protein crystallization conditions have been identified which led to protein crystals that diffract x-rays to high resolution.
Collapse
Affiliation(s)
- Kirk E Hevener
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607-7173, USA.
| | | | | | | | | | | |
Collapse
|
169
|
Henry LG, McKenzie RME, Robles A, Fletcher HM. Oxidative stress resistance in Porphyromonas gingivalis. Future Microbiol 2012; 7:497-512. [PMID: 22439726 DOI: 10.2217/fmb.12.17] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Porphyromonas gingivalis, a black-pigmented, Gram-negative anaerobe, is an important etiologic agent of periodontal disease. The harsh inflammatory condition of the periodontal pocket implies that this organism has properties that will facilitate its ability to respond and adapt to oxidative stress. Because the stress response in the pathogen is a major determinant of its virulence, a comprehensive understanding of its oxidative stress resistance strategy is vital. We discuss multiple mechanisms and systems that clearly work in synergy to defend and protect P. gingivalis against oxidative damage caused by reactive oxygen species. The involvement of multiple hypothetical proteins and/or proteins of unknown function in this process may imply other unique mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Leroy G Henry
- Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | |
Collapse
|
170
|
HcpR of Porphyromonas gingivalis is required for growth under nitrosative stress and survival within host cells. Infect Immun 2012; 80:3319-31. [PMID: 22778102 DOI: 10.1128/iai.00561-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although the Gram-negative, anaerobic periodontopathogen Porphyromonas gingivalis must withstand nitrosative stress, which is particularly high in the oral cavity, the mechanisms allowing for protection against such stress are not known in this organism. In this study, microarray analysis of P. gingivalis transcriptional response to nitrite and nitric oxide showed drastic upregulation of the PG0893 gene coding for hybrid cluster protein (Hcp), which is a putative hydroxylamine reductase. Although regulation of hcp has been shown to be OxyR dependent in Escherichia coli, here we show that in P. gingivalis its expression is dependent on the Fnr-like regulator designated HcpR. Growth of the isogenic mutant V2807, containing an ermF-ermAM insertion within the hcpR (PG1053) gene, was significantly reduced in the presence of nitrite (P < 0.002) and nitric oxide-generating nitrosoglutathione (GSNO) (P < 0.001), compared to that of the wild-type W83 strain. Furthermore, the upregulation of PG0893 (hcp) was abrogated in V2807 exposed to nitrosative stress. In addition, recombinant HcpR bound DNA containing the hcp promoter sequence, and the binding was hemin dependent. Finally, V2807 was not able to survive with host cells, demonstrating that HcpR plays an important role in P. gingivalis virulence. This work gives insight into the molecular mechanisms of protection against nitrosative stress in P. gingivalis and shows that the regulatory mechanisms differ from those in E. coli.
Collapse
|
171
|
Chun MJ, Park KJ, Ohk SH. Putative down-stream signaling molecule of GTPase in Porphyromonas gingivalis. APPL BIOCHEM MICRO+ 2012. [DOI: 10.1134/s0003683812030039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
172
|
McKenzie RME, Johnson NA, Aruni W, Dou Y, Masinde G, Fletcher HM. Differential response of Porphyromonas gingivalis to varying levels and duration of hydrogen peroxide-induced oxidative stress. MICROBIOLOGY-SGM 2012; 158:2465-2479. [PMID: 22745271 DOI: 10.1099/mic.0.056416-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Porphyromonas gingivalis, an anaerobic oral pathogen implicated in adult periodontitis, can exist in an environment of oxidative stress. To evaluate its adaptation to this environment, we have assessed the response of P. gingivalis W83 to varying levels and durations of hydrogen peroxide (H(2)O(2))-induced stress. When P. gingivalis was initially exposed to a subinhibitory concentration of H(2)O(2) (0.1 mM), an adaptive response to higher concentrations could be induced. Transcriptome analysis demonstrated that oxidative stress can modulate several functional classes of genes depending on the severity and duration of the exposure. A 10 min exposure to H(2)O(2) revealed increased expression of genes involved in DNA damage and repair, while after 15 min, genes involved in protein fate, protein folding and stabilization were upregulated. Approximately 9 and 2.8% of the P. gingivalis genome displayed altered expression in response to H(2)O(2) exposure at 10 and 15 min, respectively. Substantially more genes were upregulated (109 at 10 min; 47 at 15 min) than downregulated (76 at 10 min; 11 at 15 min) by twofold or higher in response to H(2)O(2) exposure. The majority of these modulated genes were hypothetical or of unknown function. One of those genes (pg1372) with DNA-binding properties that was upregulated during prolonged oxidative stress was inactivated by allelic exchange mutagenesis. The isogenic mutant P. gingivalis FLL363 (pg1372 : : ermF) showed increased sensitivity to H(2)O(2) compared with the parent strain. Collectively, our data indicate the adaptive ability of P. gingivalis to oxidative stress and further underscore the complex nature of its resistance strategy under those conditions.
Collapse
Affiliation(s)
- Rachelle M E McKenzie
- Center for Dental Research, School of Dentistry, Loma Linda University, Loma Linda, CA 92350, USA.,Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Neal A Johnson
- Department of Oral Diagnosis, Radiology, and Pathology, School of Dentistry, Loma Linda University, Loma Linda, CA 92350, USA.,Center for Dental Research, School of Dentistry, Loma Linda University, Loma Linda, CA 92350, USA
| | - Wilson Aruni
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Yuetan Dou
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Godfred Masinde
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Hansel M Fletcher
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
173
|
Cogo K, de Andrade A, Labate CA, Bergamaschi CC, Berto LA, Franco GCN, Gonçalves RB, Groppo FC. Proteomic analysis ofPorphyromonas gingivalisexposed to nicotine and cotinine. J Periodontal Res 2012; 47:766-75. [DOI: 10.1111/j.1600-0765.2012.01494.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
174
|
Yanamandra SS, Sarrafee SS, Anaya-Bergman C, Jones K, Lewis JP. Role of the Porphyromonas gingivalis extracytoplasmic function sigma factor, SigH. Mol Oral Microbiol 2012; 27:202-19. [PMID: 22520389 DOI: 10.1111/j.2041-1014.2012.00643.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Little is known about the regulatory mechanisms that allow Porphyromonas gingivalis to survive in the oral cavity. Here we characterize the sigma (σ) factor SigH, one of six extracytoplasmic function (ECF) σ factors encoded in the P. gingivalis genome. Our results indicate that sigH expression is upregulated by exposure to molecular oxygen, suggesting that sigH plays a role in adaptation of P. gingivalis to oxygen. Furthermore, several genes involved in oxidative stress protection, such as sod, trx, tpx, ftn, feoB2 and the hemin uptake hmu locus, are downregulated in a mutant deficient in SigH designated as V2948. ECF σ consensus sequences were identified upstream of the transcriptional start sites of these genes, consistent with the SigH-dependent regulation of these genes. Growth of V2948 was inhibited in the presence of 6% oxygen when compared with the wild-type W83 strain, whereas in anaerobic conditions both strains were able to grow. In addition, reduced growth of V2948 was observed in the presence of peroxide and the thiol-oxidizing reagent diamide when compared with the W83 strain. The SigH-deficient strain V2948 also exhibited reduced hemin uptake, consistent with the observed reduced expression of genes involved in hemin uptake. Finally, survival of V2948 was reduced in the presence of host cells compared with the wild-type W83 strain. Collectively, our studies demonstrate that SigH is a positive regulator of gene expression required for survival of the bacterium in the presence of oxygen and oxidative stress, hemin uptake and virulence.
Collapse
Affiliation(s)
- S S Yanamandra
- The Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298-0566, USA
| | | | | | | | | |
Collapse
|
175
|
Chiang SM, Schellhorn HE. Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria. Arch Biochem Biophys 2012; 525:161-9. [PMID: 22381957 DOI: 10.1016/j.abb.2012.02.007] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 01/31/2012] [Accepted: 02/12/2012] [Indexed: 01/24/2023]
Abstract
Oxidative stress, through the production of reactive oxygen species, is a natural consequence of aerobic metabolism. Escherichia coli has several major regulators activated during oxidative stress, including OxyR, SoxRS, and RpoS. OxyR and SoxR undergo conformation changes when oxidized in the presence of hydrogen peroxide and superoxide radicals, respectively, and subsequently control the expression of cognate genes. In contrast, the RpoS regulon is induced by an increase in RpoS levels. Current knowledge regarding the activation and function of these regulators and their dependent genes in E. coli during oxidative stress forms the scope of this review. Despite the enormous genomic diversity of bacteria, oxidative stress response regulators in E. coli are functionally conserved in a wide range of bacterial groups, possibly reflecting positive selection of these regulators. SoxRS and RpoS homologs are present and respond to oxidative stress in Proteobacteria, and OxyR homologs are present and function in H(2)O(2) resistance in a range of bacteria, from gammaproteobacteria to Actinobacteria. Bacteria have developed complex, adapted gene regulatory responses to oxidative stress, perhaps due to the prevalence of reactive oxygen species produced endogenously through metabolism or due to the necessity of aerotolerance mechanisms in anaerobic bacteria exposed to oxygen.
Collapse
Affiliation(s)
- Sarah M Chiang
- Department of Biology, McMaster University, 1280 Main St. West, Life Sciences Building, Hamilton, ON, Canada L8S 4K1
| | | |
Collapse
|
176
|
Bélanger M, Kozarov E, Song H, Whitlock J, Progulske-Fox A. Both the unique and repeat regions of the Porphyromonas gingivalis hemagglutin A are involved in adhesion and invasion of host cells. Anaerobe 2012; 18:128-34. [PMID: 22100486 PMCID: PMC3278541 DOI: 10.1016/j.anaerobe.2011.10.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 10/07/2011] [Accepted: 10/29/2011] [Indexed: 12/22/2022]
Abstract
Porphyromonas gingivalis is one of the major etiologic agents of adult periodontitis and has been associated with cardiovascular diseases. It expresses multiple hemagglutinins that are significant virulence factors and play an important role in bacterial attachment and invasion of host cells. The objective of this study was to determine the impact of P. gingivalis hemagglutinin A (HagA) on the attachment to and invasion of human coronary artery endothelial cells (HCAEC) and gingival epithelial cells (GEC). Bacterial strains expressing the HagA protein (or subunits), including Escherichia coli carrying plasmid pEKS5, E. coli carrying plasmid ST2, and Salmonella enterica serovar Typhimurium with plasmid pNM1.1 were used in this study. The strains were tested for their ability to attach to and invade HCAEC and GEC using antibiotic protection assays. In addition, the unique 5' N-terminal non-repeated segment of HagA was purified in recombinant form and a monoclonal antibody was created against the polypeptide. The monoclonal antibody against the unique portion of HagA was tested for inhibitory activity in these assays. The attachment of both E. coli strains expressing HagA fragment to host cells was significantly increased compared to their respective controls. However, they did not invade GEC or HCAEC. Interestingly, HagA expression in the Salmonella strain increased both adherence to and invasion of HCAEC, which may be due to the presence of the entire hagA ORF. A monoclonal antibody against the unique 5' N-terminal portion of HagA reduced invasion. Further experiments are needed to determine the role of the unique and the repeat segments of P. gingivalis HagA.
Collapse
Affiliation(s)
- Myriam Bélanger
- University of Florida, Center for Molecular Microbiology and Department of Oral Biology, Box 100424, Gainesville, FL 32610-0424, USA
| | - Emil Kozarov
- University of Florida, Center for Molecular Microbiology and Department of Oral Biology, Box 100424, Gainesville, FL 32610-0424, USA
| | - Hong Song
- University of Florida, Center for Molecular Microbiology and Department of Oral Biology, Box 100424, Gainesville, FL 32610-0424, USA
| | - Joan Whitlock
- University of Florida, Center for Molecular Microbiology and Department of Oral Biology, Box 100424, Gainesville, FL 32610-0424, USA
| | - Ann Progulske-Fox
- University of Florida, Center for Molecular Microbiology and Department of Oral Biology, Box 100424, Gainesville, FL 32610-0424, USA
| |
Collapse
|
177
|
Natural competence is a major mechanism for horizontal DNA transfer in the oral pathogen Porphyromonas gingivalis. mBio 2012; 3:mBio.00231-11. [PMID: 22294679 PMCID: PMC3268665 DOI: 10.1128/mbio.00231-11] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Porphyromonas gingivalis is a Gram-negative anaerobe that resides exclusively in the human oral cavity. Long-term colonization by P. gingivalis requires the bacteria to evade host immune responses while adapting to the changing host physiology and alterations in the composition of the oral microflora. The genetic diversity of P. gingivalis appears to reflect the variability of its habitat; however, little is known about the molecular mechanisms generating this diversity. Previously, our research group established that chromosomal DNA transfer occurs between P. gingivalis strains. In this study, we examine the role of putative DNA transfer genes in conjugation and transformation and demonstrate that natural competence mediated by comF is the dominant form of chromosomal DNA transfer, with transfer by a conjugation-like mechanism playing a minor role. Our results reveal that natural competence mechanisms are present in multiple strains of P. gingivalis, and DNA uptake is not sensitive to DNA source or modification status. Furthermore, extracellular DNA was observed for the first time in P. gingivalis biofilms and is predicted to be the major DNA source for horizontal transfer and allelic exchange between strains. We propose that exchange of DNA in plaque biofilms by a transformation-like process is of major ecological importance in the survival and persistence of P. gingivalis in the challenging oral environment. P. gingivalis colonizes the oral cavities of humans worldwide. The long-term persistence of these bacteria can lead to the development of chronic periodontitis and host morbidity associated with tooth loss. P. gingivalis is a genetically diverse species, and this variability is believed to contribute to its successful colonization and survival in diverse human hosts, as well as evasion of host immune defenses and immunization strategies. We establish here that natural competence is the major driving force behind P. gingivalis DNA exchange and that conjugative DNA transfer plays a minor role. Furthermore, we reveal for the first time the presence of extracellular DNA in P. gingivalis biofilms, which is most likely the source of DNA exchanged between strains within dental plaque. These studies expand our understanding of the mechanisms used by this important member of the human oral flora to transition its relationship with the host from a commensal to a pathogenic relationship.
Collapse
|
178
|
Gao L, Xu Y, Meng S, Wu Y, Huang H, Su R, Zhao L. Identification of the putative specific pathogenic genes of Porphyromonas gingivalis with type II fimbriae. DNA Cell Biol 2012; 31:1027-37. [PMID: 22257441 DOI: 10.1089/dna.2011.1487] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Porphyromonas gingivalis, the key etiologic agent of periodontitis, can be classified into six types (I to V and Ib) based on the fimA genes that encode FimA (a subunit of fimbriae). Accumulated evidence indicates that P. gingivalis expressing Type II fimbriae (Pg-II) is the most frequent isolate from severe periodontitis cases and is more virulent than other types of P. gingivalis. However, during the Pg-II infection process, which specific virulence factors play the key role is still unclear. In this study, we examined the capabilities of three Pg-II strains to invade and modulate the inflammatory cytokine expression of human gingival epithelial cells (GECs) compared to two Pg-I strains. P. gingivalis oligo microarrays were used to compare gene expression profiles of Pg-II strains that invade GECs with Pg-I strains. The differential gene expression of Pg-II was confirmed by quantitative reverse transcription-polymerase chain reaction. Our results showed that all of the Pg-II strains could induce interleukin (IL)-1β and IL-6 secretion significantly when compared to Pg-I strains. Thirty-seven genes that were specifically expressed during the pathogenic process of Pg-II were identified by a microarray assay. These findings provide a new insight at the molecular level to explain the specific pathogenic mechanism of Pg-II strains.
Collapse
Affiliation(s)
- Li Gao
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Chengdu, PR China
| | | | | | | | | | | | | |
Collapse
|
179
|
Li C, Kurniyati, Hu B, Bian J, Sun J, Zhang W, Liu J, Pan Y, Li C. Abrogation of neuraminidase reduces biofilm formation, capsule biosynthesis, and virulence of Porphyromonas gingivalis. Infect Immun 2012; 80:3-13. [PMID: 22025518 PMCID: PMC3255687 DOI: 10.1128/iai.05773-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 10/18/2011] [Indexed: 01/27/2023] Open
Abstract
The oral bacterium Porphyromonas gingivalis is a key etiological agent of human periodontitis, a prevalent chronic disease that affects up to 80% of the adult population worldwide. P. gingivalis exhibits neuraminidase activity. However, the enzyme responsible for this activity, its biochemical features, and its role in the physiology and virulence of P. gingivalis remain elusive. In this report, we found that P. gingivalis encodes a neuraminidase, PG0352 (SiaPg). Transcriptional analysis showed that PG0352 is monocistronic and is regulated by a sigma70-like promoter. Biochemical analyses demonstrated that SiaPg is an exo-α-neuraminidase that cleaves glycosidic-linked sialic acids. Cryoelectron microscopy and tomography analyses revealed that the PG0352 deletion mutant (ΔPG352) failed to produce an intact capsule layer. Compared to the wild type, in vitro studies showed that ΔPG352 formed less biofilm and was less resistant to killing by the host complement. In vivo studies showed that while the wild type caused a spreading type of infection that affected multiple organs and all infected mice were killed, ΔPG352 only caused localized infection and all animals survived. Taken together, these results demonstrate that SiaPg is an important virulence factor that contributes to the biofilm formation, capsule biosynthesis, and pathogenicity of P. gingivalis, and it can potentially serve as a new target for developing therapeutic agents against P. gingivalis infection.
Collapse
Affiliation(s)
- Chen Li
- Department of Oral Biology, The State University of New York at Buffalo, New York, USA
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Kurniyati
- Department of Oral Biology, The State University of New York at Buffalo, New York, USA
| | - Bo Hu
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Texas, USA
| | - Jiang Bian
- Department of Oral Biology, The State University of New York at Buffalo, New York, USA
| | - Jianlan Sun
- Department of Pathology and Anatomical Sciences
| | - Weiyan Zhang
- Department of Pharmaceutical Sciences, The State University of New York at Buffalo, New York, USA
| | - Jun Liu
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Texas, USA
| | - Yaping Pan
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Chunhao Li
- Department of Oral Biology, The State University of New York at Buffalo, New York, USA
| |
Collapse
|
180
|
Enersen M. Porphyromonas gingivalis: a clonal pathogen?: Diversities in housekeeping genes and the major fimbriae gene. J Oral Microbiol 2011; 3:JOM-3-8487. [PMID: 22125739 PMCID: PMC3223970 DOI: 10.3402/jom.v3i0.8487] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/20/2011] [Accepted: 10/26/2011] [Indexed: 01/31/2023] Open
Abstract
The introduction of multilocus sequence typing (MLST) in infectious disease research has allowed standardized typing of bacterial clones. Through multiple markers around the genome, it is possible to determine the sequence type (ST) of bacterial isolates to establish the population structure of a species. For the periodontal pathogen, Porphyromonas gingivalis, the MLST scheme has been established at www.pubmlst.org/pgingivalis, and data from the database indicate a high degree of genetic diversity and a weakly clonal population structure comparable with Neisseria menigitidis. The major fimbriae (FimA) have been held responsible for the adhesive properties of P. gingivalis and represent an important virulence factor. The fimA genotyping method (PCR based) indicate that fimA genotype II, IV and Ib are associated with diseased sites in periodontitis and tissue specimens from cardiovascular disease. fimA genotyping of the isolates in the MLST database supports the association of genotypes II and IV with periodontitis. As a result of multiple positive PCR reactions in the fimA genotyping, sequencing of the fimA gene revealed only minor nucleotide variation between isolates of the same and different genotypes, suggesting that the method should be redesigned or re-evaluated. Results from several investigations indicate a higher intraindividual heterogeneity of P. gingivalis than found earlier. Detection of multiple STs from one site in several patients with "refractory" periodontitis, showed allelic variation in two housekeeping genes indicating recombination between different clones within the periodontal pocket.
Collapse
Affiliation(s)
- Morten Enersen
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
181
|
Abstract
Miniature inverted terminal repeat elements (MITEs) are nonautonomous mobile elements that have a significant impact on bacterial evolution. Here we characterize E622, a 611-bp virulence-associated MITE from Pseudomonas syringae, which contains no coding region but has almost perfect 168-bp inverted repeats. Using an antibiotic coupling assay, we show that E622 is transposable and can mobilize an antibiotic resistance gene contained between its borders. Its predicted parent element, designated TnE622, has a typical transposon structure with a three-gene operon, consisting of resolvase, integrase, and exeA-like genes, which is bounded by the same terminal inverted repeats as E622. A broader genome level survey of the E622/TnE622 inverted repeats identified homologs in Pseudomonas, Salmonella, Shewanella, Erwinia, Pantoea, and the cyanobacteria Nostoc and Cyanothece, many of which appear to encompass known virulence genes, including genes encoding toxins, enzymes, and type III secreted effectors. Its association with niche-specific genetic determinants, along with its persistence and evolutionary diversification, indicates that this mobile element family has played a prominent role in the evolution of many agriculturally and clinically relevant pathogenic bacteria.
Collapse
|
182
|
Comprehensive transcriptome analysis of the periodontopathogenic bacterium Porphyromonas gingivalis W83. J Bacteriol 2011; 194:100-14. [PMID: 22037400 DOI: 10.1128/jb.06385-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
High-density tiling microarray and RNA sequencing technologies were used to analyze the transcriptome of the periodontopathogenic bacterium Porphyromonas gingivalis. The compiled P. gingivalis transcriptome profiles were based on total RNA samples isolated from three different laboratory culturing conditions, and the strand-specific transcription profiles generated covered the entire genome, including both protein coding and noncoding regions. The transcription profiles revealed various operon structures, 5'- and 3'-end untranslated regions (UTRs), differential expression patterns, and many novel, not-yet-annotated transcripts within intergenic and antisense regions. Further transcriptome analysis identified the majority of the genes as being expressed within operons and most 5' and 3' ends to be protruding UTRs, of which several 3' UTRs were extended to overlap genes carried on the opposite/antisense strand. Extensive antisense RNAs were detected opposite most insertion sequence (IS) elements. Pairwise comparative analyses were also performed among transcriptome profiles of the three culture conditions, and differentially expressed genes and metabolic pathways were identified. With the growing realization that noncoding RNAs play important biological functions, the discovery of novel RNAs and the comprehensive transcriptome profiles compiled in this study may provide a foundation to further understand the gene regulation and virulence mechanisms in P. gingivalis. The transcriptome profiles can be viewed at and downloaded from the Microbial Transcriptome Database website, http://bioinformatics.forsyth.org/mtd.
Collapse
|
183
|
Transition metal ions induce carnosinase activity in PepD-homologous protein from Porphyromonas gingivalis. Microb Pathog 2011; 52:17-24. [PMID: 22001095 DOI: 10.1016/j.micpath.2011.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 09/06/2011] [Accepted: 09/15/2011] [Indexed: 11/22/2022]
Abstract
Aminoacylhistidine dipeptidase (EC 3.4.13.3; also Xaa-His dipeptidase, carnosinase, or PepD) catalyzes the cleavage and release of an N-terminal amino acid, which is usually a neutral or hydrophobic residue, from an Xaa-His dipeptide or degraded peptide fragment. PepD enzyme is found extensively in prokaryotes and eukaryotes, and belongs to the metallopeptidase family M20, a part of the metallopeptidase H (MH) clan. Carnosine is a naturally occurring dipeptide (β-alanyl-l-histidine) present in mammalian tissues that has protective functions in addition to anti-oxidant and free-radical scavenging roles. During bacterial infections, degradation of l-carnosine via carnosinase or PepD-like enzymes may enhance the destructive potential of bacteria, resulting in a pathological impact. This process has been proposed to act in an anti-oxidant manner in vivo. In the present study, the recombinant PepD protein encoded by Porphyromonas gingivalis TDC60 pepD was generated and biochemically characterized. In addition, a recombinant dipeptidase enzyme was found to function not only as an alanine-aminopeptidase, but also as a carnosinase. Furthermore, when carnosine was used as substrate for PepD, the transition metals, Mn(2+), Fe(2+), Co(2+), and Ni(2+) stimulated the hydrolyzing activity of rPepD with β-alanine and l-histidine. Based on its metal ion specificity, we propose that this enzyme should not only be termed l-aminopeptidase, but also a carnosinase.
Collapse
|
184
|
Yukitake H, Naito M, Sato K, Shoji M, Ohara N, Yoshimura M, Sakai E, Nakayama K. Effects of non-iron metalloporphyrins on growth and gene expression of Porphyromonas gingivalis. Microbiol Immunol 2011; 55:141-53. [PMID: 21204951 DOI: 10.1111/j.1348-0421.2010.00299.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The oral anaerobic bacterium Porphyromonas gingivalis, which is implicated as an important pathogen for chronic periodontitis, requires heme for its growth. Non-iron metalloporphyrins, In-PPIX and Ga-PPIX, were examined for antibacterial effects on P. gingivalis. Both In-PPIX and Ga-PPIX caused retardation of P. gingivalis growth in a dose-dependent fashion. Microarray and qPCR analyses revealed that In-PPIX treatment upregulated the expression of several genes encoding proteins including ClpB and ClpC, which are members of the Clp (caseinolytic protease, Hsp100) family, and aRNR, aRNR-activating protein and thioredoxin reductase, whereas In-PPIX treatment had no effect on the expression of genes encoding proteins involved in heme uptake pathways, Hmu-mediated, Iht-mediated and Tlr-mediated pathways. P. gingivalis ihtA and ihtB mutants were more resistant to In-PPIX than was the wild-type parent, whereas hmuR and tlr mutants did not show such resistance to In-PPIX. The results suggest that In-PPIX is incorporated by the Iht-mediated heme uptake pathway and that it influences protein quality control and nucleotide metabolism and retards growth of P. gingivalis.
Collapse
Affiliation(s)
- Hideharu Yukitake
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Ohara-Nemoto Y, Shimoyama Y, Kimura S, Kon A, Haraga H, Ono T, Nemoto TK. Asp- and Glu-specific novel dipeptidyl peptidase 11 of Porphyromonas gingivalis ensures utilization of proteinaceous energy sources. J Biol Chem 2011; 286:38115-38127. [PMID: 21896480 DOI: 10.1074/jbc.m111.278572] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Porphyromonas gingivalis and Porphyromonas endodontalis, asaccharolytic black-pigmented anaerobes, are predominant pathogens of human chronic and periapical periodontitis, respectively. They incorporate di- and tripeptides from the environment as carbon and energy sources. In the present study we cloned a novel dipeptidyl peptidase (DPP) gene of P. endodontalis ATCC 35406, designated as DPP11. The DPP11 gene encoded 717 amino acids with a molecular mass of 81,090 Da and was present as a 75-kDa form with an N terminus of Asp(22). A homology search revealed the presence of a P. gingivalis orthologue, PGN0607, that has been categorized as an isoform of authentic DPP7. P. gingivalis DPP11 was exclusively cell-associated as a truncated 60-kDa form, and the gene ablation retarded cell growth. DPP11 specifically removed dipeptides from oligopeptides with the penultimate N-terminal Asp and Glu and has a P2-position preference to hydrophobic residues. Optimum pH was 7.0, and the k(cat)/K(m) value was higher for Asp than Glu. Those activities were lost by substitution of Ser(652) in P. endodontalis and Ser(655) in P. gingivalis DPP11 to Ala, and they were consistently decreased with increasing NaCl concentration. Arg(670) is a unique amino acid completely conserved in all DPP11 members distributed in the genera Porphyromonas, Bacteroides, and Parabacteroides, whereas this residue is converted to Gly in all authentic DPP7 members. Substitution analysis suggested that Arg(670) interacts with an acidic residue of the substrate. Considered to preferentially utilize acidic amino acids, DPP11 ensures efficient degradation of oligopeptide substrates in these Gram-negative anaerobic rods.
Collapse
Affiliation(s)
- Yuko Ohara-Nemoto
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588.
| | - Yu Shimoyama
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Yahaba-cho 028-3691, Japan
| | - Shigenobu Kimura
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Yahaba-cho 028-3691, Japan
| | - Asako Kon
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Yahaba-cho 028-3691, Japan
| | - Hiroshi Haraga
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Yahaba-cho 028-3691, Japan
| | - Toshio Ono
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588
| | - Takayuki K Nemoto
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588
| |
Collapse
|
186
|
An oral pathogen and psychopathology severity in a sample of Arab patients with schizophrenia. MIDDLE EAST CURRENT PSYCHIATRY 2011. [DOI: 10.1097/01.xme.0000398717.30861.f8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
187
|
Complete genome sequence of the bacterium Porphyromonas gingivalis TDC60, which causes periodontal disease. J Bacteriol 2011; 193:4259-60. [PMID: 21705612 DOI: 10.1128/jb.05269-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis is a black-pigmented asaccharolytic anaerobe and a major causative agent of periodontitis. Here, we report the complete genome sequence of P. gingivalis strain TDC60, which was recently isolated from a severe periodontal lesion in a Japanese patient.
Collapse
|
188
|
Thomas F, Hehemann JH, Rebuffet E, Czjzek M, Michel G. Environmental and gut bacteroidetes: the food connection. Front Microbiol 2011; 2:93. [PMID: 21747801 PMCID: PMC3129010 DOI: 10.3389/fmicb.2011.00093] [Citation(s) in RCA: 701] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 04/14/2011] [Indexed: 12/21/2022] Open
Abstract
Members of the diverse bacterial phylum Bacteroidetes have colonized virtually all types of habitats on Earth. They are among the major members of the microbiota of animals, especially in the gastrointestinal tract, can act as pathogens and are frequently found in soils, oceans and freshwater. In these contrasting ecological niches, Bacteroidetes are increasingly regarded as specialists for the degradation of high molecular weight organic matter, i.e., proteins and carbohydrates. This review presents the current knowledge on the role and mechanisms of polysaccharide degradation by Bacteroidetes in their respective habitats. The recent sequencing of Bacteroidetes genomes confirms the presence of numerous carbohydrate-active enzymes covering a large spectrum of substrates from plant, algal, and animal origin. Comparative genomics reveal specific Polysaccharide Utilization Loci shared between distantly related members of the phylum, either in environmental or gut-associated species. Moreover, Bacteroidetes genomes appear to be highly plastic and frequently reorganized through genetic rearrangements, gene duplications and lateral gene transfers (LGT), a feature that could have driven their adaptation to distinct ecological niches. Evidence is accumulating that the nature of the diet shapes the composition of the intestinal microbiota. We address the potential links between gut and environmental bacteria through food consumption. LGT can provide gut bacteria with original sets of utensils to degrade otherwise refractory substrates found in the diet. A more complete understanding of the genetic gateways between food-associated environmental species and intestinal microbial communities sheds new light on the origin and evolution of Bacteroidetes as animals’ symbionts. It also raises the question as to how the consumption of increasingly hygienic and processed food deprives our microbiota from useful environmental genes and possibly affects our health.
Collapse
Affiliation(s)
- François Thomas
- UMR 7139, Marine Plants and Biomolecules, Station Biologique de Roscoff, UPMC University Paris 6, Roscoff, France
| | | | | | | | | |
Collapse
|
189
|
Naito M, Sato K, Shoji M, Yukitake H, Ogura Y, Hayashi T, Nakayama K. Characterization of the Porphyromonas gingivalis conjugative transposon CTnPg1: determination of the integration site and the genes essential for conjugal transfer. MICROBIOLOGY-SGM 2011; 157:2022-2032. [PMID: 21527470 DOI: 10.1099/mic.0.047803-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In our previous study, extensive genomic rearrangements were found in two strains of the Gram-negative anaerobic bacterium Porphyromonas (Por.) gingivalis, and most of these rearrangements were associated with mobile genetic elements such as insertion sequences and conjugative transposons (CTns). CTnPg1, identified in Por. gingivalis strain ATCC 33277, was the first complete CTn reported for the genus Porphyromonas. In the present study, we found that CTnPg1 can be transferred from strain ATCC 33277 to another Por. gingivalis strain, W83, at a frequency of 10(-7) to 10(-6). The excision of CTnPg1 from the chromosome in a donor cell depends on an integrase (Int; PGN_0094) encoded in CTnPg1, whereas CTnPg1 excision is independent of PGN_0084 (a DNA topoisomerase I homologue; Exc) encoded within CTnPg1 and recA (PGN_1057) on the donor chromosome. Intriguingly, however, the transfer of CTnPg1 between Por. gingivalis strains requires RecA function in the recipient. Sequencing analysis of CTnPg1-integrated sites on the chromosomes of transconjugants revealed that the consensus attachment (att) sequence is a 13 bp sequence, TTTTCNNNNAAAA. We further report that CTnPg1 is able to transfer to two other bacterial species, Bacteroides thetaiotaomicron and Prevotella oralis. In addition, CTnPg1-like CTns are located in the genomes of other oral anaerobic bacteria, Porphyromonas endodontalis, Prevotella buccae and Prevotella intermedia, with the same consensus att sequence. These results suggest that CTns in the CTnPg1 family are widely distributed among oral anaerobic Gram-negative bacteria found in humans and play important roles in horizontal gene transfer among these bacteria.
Collapse
Affiliation(s)
- Mariko Naito
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto 1-7-1, Nagasaki 852-8588, Japan
| | - Keiko Sato
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto 1-7-1, Nagasaki 852-8588, Japan
| | - Mikio Shoji
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto 1-7-1, Nagasaki 852-8588, Japan
| | - Hideharu Yukitake
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto 1-7-1, Nagasaki 852-8588, Japan
| | - Yoshitoshi Ogura
- Division of Bioenvironmental Science, Frontier Science Research Center, University of Miyazaki, Kihara 5200, Kiyotake, Miyazaki 889-1692, Japan
| | - Tetsuya Hayashi
- Division of Bioenvironmental Science, Frontier Science Research Center, University of Miyazaki, Kihara 5200, Kiyotake, Miyazaki 889-1692, Japan
| | - Koji Nakayama
- Global COE Program at Nagasaki University, Nagasaki 852-8588, Japan.,Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto 1-7-1, Nagasaki 852-8588, Japan
| |
Collapse
|
190
|
Skottrup PD, Leonard P, Kaczmarek JZ, Veillard F, Enghild JJ, O'Kennedy R, Sroka A, Clausen RP, Potempa J, Riise E. Diagnostic evaluation of a nanobody with picomolar affinity toward the protease RgpB from Porphyromonas gingivalis. Anal Biochem 2011; 415:158-67. [PMID: 21569755 DOI: 10.1016/j.ab.2011.04.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/05/2011] [Accepted: 04/11/2011] [Indexed: 12/23/2022]
Abstract
Porphyromonas gingivalis is one of the major periodontitis-causing pathogens. P. gingivalis secretes a group of proteases termed gingipains, and in this study we have used the RgpB gingipain as a biomarker for P. gingivalis. We constructed a naive camel nanobody library and used phage display to select one nanobody toward RgpB with picomolar affinity. The nanobody was used in an inhibition assay for detection of RgpB in buffer as well as in saliva. The nanobody was highly specific for RgpB given that it did not bind to the homologous gingipain HRgpA. This indicated the presence of a binding epitope within the immunoglobulin-like domain of RgpB. A subtractive inhibition assay was used to demonstrate that the nanobody could bind native RgpB in the context of intact cells. The nanobody bound exclusively to the P. gingivalis membrane-bound RgpB isoform (mt-RgpB) and to secreted soluble RgpB. Further cross-reactivity studies with P. gingivalis gingipain deletion mutants showed that the nanobody could discriminate between native RgpB and native Kgp and RgpA in complex bacterial samples. This study demonstrates that RgpB can be used as a specific biomarker for P. gingivalis detection and that the presented nanobody-based assay could supplement existing methods for P. gingivalis detection.
Collapse
Affiliation(s)
- Peter Durand Skottrup
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmaceutical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Dolgilevich S, Rafferty B, Luchinskaya D, Kozarov E. Genomic comparison of invasive and rare non-invasive strains reveals Porphyromonas gingivalis genetic polymorphisms. J Oral Microbiol 2011; 3. [PMID: 21541093 PMCID: PMC3086587 DOI: 10.3402/jom.v3i0.5764] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/20/2011] [Accepted: 02/03/2011] [Indexed: 11/14/2022] Open
Abstract
Background Porphyromonas gingivalis strains are shown to invade human cells in vitro with different invasion efficiencies, varying by up to three orders of magnitude. Objective We tested the hypothesis that invasion-associated interstrain genomic polymorphisms are present in P. gingivalis and that putative invasion-associated genes can contribute to P. gingivalis invasion. Design Using an invasive (W83) and the only available non-invasive P. gingivalis strain (AJW4) and whole genome microarrays followed by two separate software tools, we carried out comparative genomic hybridization (CGH) analysis. Results We identified 68 annotated and 51 hypothetical open reading frames (ORFs) that are polymorphic between these strains. Among these are surface proteins, lipoproteins, capsular polysaccharide biosynthesis enzymes, regulatory and immunoreactive proteins, integrases, and transposases often with abnormal GC content and clustered on the chromosome. Amplification of selected ORFs was used to validate the approach and the selection. Eleven clinical strains were investigated for the presence of selected ORFs. The putative invasion-associated ORFs were present in 10 of the isolates. The invasion ability of three isogenic mutants, carrying deletions in PG0185, PG0186, and PG0982 was tested. The PG0185 (ragA) and PG0186 (ragB) mutants had 5.1×103-fold and 3.6×103-fold decreased in vitro invasion ability, respectively. Conclusion The annotation of divergent ORFs suggests deficiency in multiple genes as a basis for P. gingivalis non-invasive phenotype.
Collapse
Affiliation(s)
- Svetlana Dolgilevich
- Section Oral and Diagnostic Sciences, Columbia University College of Dental Medicine, New York
| | | | | | | |
Collapse
|
192
|
Chen YY, Peng B, Yang Q, Glew MD, Veith PD, Cross KJ, Goldie KN, Chen D, O'Brien-Simpson N, Dashper SG, Reynolds EC. The outer membrane protein LptO is essential for the O-deacylation of LPS and the co-ordinated secretion and attachment of A-LPS and CTD proteins in Porphyromonas gingivalis. Mol Microbiol 2011; 79:1380-401. [DOI: 10.1111/j.1365-2958.2010.07530.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
193
|
Daep CA, Novak EA, Lamont RJ, Demuth DR. Selective substitution of amino acids limits proteolytic cleavage and improves the bioactivity of an anti-biofilm peptide that targets the periodontal pathogen, Porphyromonas gingivalis. Peptides 2010; 31:2173-8. [PMID: 20800634 PMCID: PMC2967622 DOI: 10.1016/j.peptides.2010.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 08/17/2010] [Accepted: 08/17/2010] [Indexed: 10/19/2022]
Abstract
The interaction of the periodontal pathogen, Porphyromonas gingivalis, with oral streptococci such as Streptococcus gordonii precedes colonization of the subgingival pocket and represents a target for limiting P. gingivalis colonization of the oral cavity. Previous studies showed that a synthetic peptide (designated BAR) derived from the antigen I/II protein of S. gordonii was a potent competitive inhibitor of P. gingivalis adherence to S. gordonii and subsequent biofilm formation. Here we show that despite its inhibitory activity, BAR is rapidly degraded by intact P. gingivalis cells in vitro. However, in the presence of soluble Mfa protein, the P. gingivalis receptor for BAR, the peptide is protected from proteolytic degradation suggesting that the affinity of BAR for Mfa is higher than for P. gingivalis proteases. The rate of BAR degradation was reduced when the P. gingivalis lysine-specific gingipain was inhibited using the specific protease inhibitor, z-FKcK, or when the gene encoding the Lys-gingipain was inactivated. In addition, substituting d-Lys for l-Lys residues in BAR prevented degradation of the peptide when incubated with the Lys-gingipain and increased its specific adherence inhibitory activity in a S. gordonii-P. gingivalis dual species biofilm model. These results suggest that Lys-gingipain accounts in large part for P. gingivalis-mediated degradation of BAR and that more effective peptide inhibitors of P. gingivalis adherence to streptococci can be produced by introducing modifications that limit the susceptibility of BAR to the Lys-gingipain and other P. gingivalis associated proteases.
Collapse
Affiliation(s)
- Carlo Amorin Daep
- Department of Periodontics, Endodontics and Dental Hygiene, University of Louisville, Louisville, KY
| | - Elizabeth A. Novak
- Department of Periodontics, Endodontics and Dental Hygiene, University of Louisville, Louisville, KY
| | | | - Donald R. Demuth
- Department of Periodontics, Endodontics and Dental Hygiene, University of Louisville, Louisville, KY
- Corresponding Author: Donald R. Demuth, Department of Periodontics, Endodontics and Dental Hygiene, University of Louisville School of Dentistry, 501 South Preston Street, Room 209, Louisville, KY 40292, Phone: 502-852-3807, FAX: 502-852-4052,
| |
Collapse
|
194
|
Adsorption of components of the plasma kinin-forming system on the surface of Porphyromonas gingivalis involves gingipains as the major docking platforms. Infect Immun 2010; 79:797-805. [PMID: 21098107 DOI: 10.1128/iai.00966-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Enhanced production of proinflammatory bradykinin-related peptides, the kinins, has been suggested to contribute to the pathogenesis of periodontitis, a common inflammatory disease of human gingival tissues. In this report, we describe a plausible mechanism of activation of the kinin-generating system, also known as the contact system or kininogen-kallikrein-kinin system, by the adsorption of its plasma-derived components such as high-molecular-mass kininogen (HK), prekallikrein (PK), and Hageman factor (FXII) to the cell surface of periodontal pathogen Porphyromonas gingivalis. The adsorption characteristics of mutant strains deficient in selected proteins of the cell envelope suggested that the surface-associated cysteine proteinases, gingipains, bearing hemagglutinin/adhesin domains (RgpA and Kgp) serve as the major platforms for HK and FXII adhesion. These interactions were confirmed by direct binding tests using microplate-immobilized gingipains and biotinylated contact factors. Other bacterial cell surface components such as fimbriae and lipopolysaccharide were also found to contribute to the binding of contact factors, particularly PK. Analysis of kinin release in plasma upon contact with P. gingivalis showed that the bacterial surface-dependent mechanism is complementary to the previously described kinin generation system dependent on HK and PK proteolytic activation by the gingipains. We also found that several P. gingivalis clinical isolates differed in the relative significance of these two mechanisms of kinin production. Taken together, these data show the importance of this specific type of bacterial surface-host homeostatic system interaction in periodontal infections.
Collapse
|
195
|
Johnson NA, McKenzie RME, Fletcher HM. The bcp gene in the bcp-recA-vimA-vimE-vimF operon is important in oxidative stress resistance in Porphyromonas gingivalis W83. Mol Oral Microbiol 2010; 26:62-77. [PMID: 21214873 DOI: 10.1111/j.2041-1014.2010.00596.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability of Porphyromonas gingivalis to overcome oxidative stress in the inflammatory environment of the periodontal pocket is critical for its survival. We have previously demonstrated that the recA locus, which carries the bacterioferritin co-migratory protein (bcp) gene and has a unique genetic architecture, plays a role in virulence regulation and oxidative stress resistance in P. gingivalis. To further characterize the bcp gene, which was confirmed to be part of the bcp-recA-vimA-vimE-vimF operon, we created a P. gingivalis bcp-defective isogenic mutant (FLL302) by allelic exchange. Compared with the wild-type, FLL302 had a similar growth rate, black pigmentation, β-hemolysis and UV sensitivity. Although there was no change in the distribution of gingipain activity, there was a 30% reduction in both Arg-X and Lys-X activities in the mutant strain compared with the wild-type. When exposed to 0.25 mm hydrogen peroxide, P. gingivalis FLL302 was more sensitive than the wild-type. In addition, the cloned P. gingivalis bcp gene increased resistance to 0.25 mm hydrogen peroxide in a bcp-defective Escherichia coli mutant. The mutant also demonstrated decreased aerotolerance when compared with the wild-type. Porphyromonas gingivalis FLL302 and the wild-type strain had similar virulence profiles in a mouse model of virulence. These observations suggest that the bcp gene may play a role in oxidative stress resistance but has a decreased functional significance in the pathogenic potential of P. gingivalis.
Collapse
Affiliation(s)
- N A Johnson
- Center for Dental Research, School of Dentistry, Loma Linda University, Loma Linda, CA, USA
| | | | | |
Collapse
|
196
|
|
197
|
Das D, Finn RD, Carlton D, Miller MD, Abdubek P, Astakhova T, Axelrod HL, Bakolitsa C, Chen C, Chiu HJ, Chiu M, Clayton T, Deller MC, Duan L, Ellrott K, Ernst D, Farr CL, Feuerhelm J, Grant JC, Grzechnik A, Han GW, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kozbial P, Krishna SS, Kumar A, Marciano D, McMullan D, Morse AT, Nigoghossian E, Nopakun A, Okach L, Puckett C, Reyes R, Rife CL, Sefcovic N, Tien HJ, Trame CB, van den Bedem H, Weekes D, Wooten T, Xu Q, Hodgson KO, Wooley J, Elsliger MA, Deacon AM, Godzik A, Lesley SA, Wilson IA. The structure of BVU2987 from Bacteroides vulgatus reveals a superfamily of bacterial periplasmic proteins with possible inhibitory function. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1265-73. [PMID: 20944221 PMCID: PMC2954215 DOI: 10.1107/s1744309109046788] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 11/05/2009] [Indexed: 01/25/2023]
Abstract
Proteins that contain the DUF2874 domain constitute a new Pfam family PF11396. Members of this family have predominantly been identified in microbes found in the human gut and oral cavity. The crystal structure of one member of this family, BVU2987 from Bacteroides vulgatus, has been determined, revealing a β-lactamase inhibitor protein-like structure with a tandem repeat of domains. Sequence analysis and structural comparisons reveal that BVU2987 and other DUF2874 proteins are related to β-lactamase inhibitor protein, PepSY and SmpA_OmlA proteins and hence are likely to function as inhibitory proteins.
Collapse
Affiliation(s)
- Debanu Das
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Robert D. Finn
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, England
| | - Dennis Carlton
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Mitchell D. Miller
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Polat Abdubek
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Tamara Astakhova
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Herbert L. Axelrod
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Constantina Bakolitsa
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Burnham Institute for Medical Research, La Jolla, CA, USA
| | - Connie Chen
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Hsiu-Ju Chiu
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Michelle Chiu
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Thomas Clayton
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Marc C. Deller
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Lian Duan
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Kyle Ellrott
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- University of California, San Diego, La Jolla, CA, USA
| | - Dustin Ernst
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Carol L. Farr
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Julie Feuerhelm
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Joanna C. Grant
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Anna Grzechnik
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Gye Won Han
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Lukasz Jaroszewski
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
- Program on Bioinformatics and Systems Biology, Burnham Institute for Medical Research, La Jolla, CA, USA
| | - Kevin K. Jin
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Heath E. Klock
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Mark W. Knuth
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Piotr Kozbial
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Burnham Institute for Medical Research, La Jolla, CA, USA
| | - S. Sri Krishna
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
- Program on Bioinformatics and Systems Biology, Burnham Institute for Medical Research, La Jolla, CA, USA
| | - Abhinav Kumar
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - David Marciano
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Daniel McMullan
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Andrew T. Morse
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Edward Nigoghossian
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Amanda Nopakun
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Linda Okach
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Christina Puckett
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Ron Reyes
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Christopher L. Rife
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Natasha Sefcovic
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Burnham Institute for Medical Research, La Jolla, CA, USA
| | - Henry J. Tien
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Christine B. Trame
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Henry van den Bedem
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Dana Weekes
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Burnham Institute for Medical Research, La Jolla, CA, USA
| | - Tiffany Wooten
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Qingping Xu
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Keith O. Hodgson
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Photon Science, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - John Wooley
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Marc-André Elsliger
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ashley M. Deacon
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Adam Godzik
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
- Program on Bioinformatics and Systems Biology, Burnham Institute for Medical Research, La Jolla, CA, USA
| | - Scott A. Lesley
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Ian A. Wilson
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
198
|
HU protein affects transcription of surface polysaccharide synthesis genes in Porphyromonas gingivalis. J Bacteriol 2010; 192:6217-29. [PMID: 20889748 DOI: 10.1128/jb.00106-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
K-antigen capsule synthesis is an important virulence determinant of the oral anaerobe Porphyromonas gingivalis. We previously reported that the locus required for synthesis of this surface polysaccharide in strain W83 (TIGR identification PG0106 to PG0120) is transcribed as a large (∼16.7-kb) polycistronic message. Through sequence analysis, we have now identified a 77-bp inverted repeat located upstream (206 bp) of the start codon of PG0106 that is capable of forming a large hairpin structure. Further sequence analysis just upstream and downstream of the capsule synthesis genes revealed the presence of two genes oriented in the same direction as the operon that are predicted to encode DNA binding proteins: PG0104, which is highly similar (57%) to DNA topoisomerase III, and PG0121, which has high similarity (72%) to DNA binding protein HU (β-subunit). In this report, we show that these two genes, as well as the 77-bp inverted repeat region, are cotranscribed with the capsule synthesis genes, resulting in a large transcript that is ∼19.4 kb (based on annotation). We also show that a PG0121 recombinant protein is a nonspecific DNA binding protein with strong affinity to the hairpin structure, in vitro, and that transcript levels of the capsule synthesis genes are downregulated in a PG0121 deletion mutant. Furthermore, we show that this decrease in transcript levels corresponds to a decrease in the amount of polysaccharide produced. Interestingly, expression analysis of another polysaccharide synthesis locus (PG1136 to PG1143) encoding genes involved in synthesis of a surface-associated phosphorylated branched mannan (APS) indicated that this locus is also downregulated in the PG0121 mutant. Altogether our data indicate that HU protein modulates expression of surface polysaccharides in P. gingivalis strain W83.
Collapse
|
199
|
Brunner J, Wittink FRA, Jonker MJ, de Jong M, Breit TM, Laine ML, de Soet JJ, Crielaard W. The core genome of the anaerobic oral pathogenic bacterium Porphyromonas gingivalis. BMC Microbiol 2010; 10:252. [PMID: 20920246 PMCID: PMC2955634 DOI: 10.1186/1471-2180-10-252] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 09/29/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Gram negative anaerobic bacterium Porphyromonas gingivalis has long been recognized as a causative agent of periodontitis. Periodontitis is a chronic infectious disease of the tooth supporting tissues eventually leading to tooth-loss. Capsular polysaccharide (CPS) of P. gingivalis has been shown to be an important virulence determinant. Seven capsular serotypes have been described. Here, we used micro-array based comparative genomic hybridization analysis (CGH) to analyze a representative of each of the capsular serotypes and a non-encapsulated strain against the highly virulent and sequenced W83 strain. We defined absent calls using Arabidopsis thaliana negative control probes, with the aim to distinguish between aberrations due to mutations and gene gain/loss. RESULTS Our analyses allowed us to call aberrant genes, absent genes and divergent regions in each of the test strains. A conserved core P. gingivalis genome was described, which consists of 80% of the analyzed genes from the sequenced W83 strain. The percentage of aberrant genes between the test strains and control strain W83 was 8.2% to 13.7%. Among the aberrant genes many CPS biosynthesis genes were found. Most other virulence related genes could be found in the conserved core genome. Comparing highly virulent strains with less virulent strains indicates that hmuS, a putative CobN/Mg chelatase involved in heme uptake, may be a more relevant virulence determinant than previously expected. Furthermore, the description of the 39 W83-specific genes could give more insight in why this strain is more virulent than others. CONCLUSION Analyses of the genetic content of the P. gingivalis capsular serotypes allowed the description of a P. gingivalis core genome. The high resolution data from three types of analysis of triplicate hybridization experiments may explain the higher divergence between P. gingivalis strains than previously recognized.
Collapse
Affiliation(s)
- Jorg Brunner
- Department of Oral Microbiology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Free University Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
200
|
Dou Y, Osbourne D, McKenzie R, Fletcher HM. Involvement of extracytoplasmic function sigma factors in virulence regulation in Porphyromonas gingivalis W83. FEMS Microbiol Lett 2010; 312:24-32. [PMID: 20807237 DOI: 10.1111/j.1574-6968.2010.02093.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Extracytoplasmic function (ECF) sigma factors are known to play an important role in the bacterial response to various environmental stresses and can significantly modulate their pathogenic potential. In the genome of Porphyromonas gingivalis W83, six putative ECF sigma factors were identified. To further evaluate their role in this organism, a PCR-based linear transformation method was used to inactivate five ECF sigma factor genes (PG0162, PG0214, PG0985, PG1660, and PG1827) by allelic exchange mutagenesis. All five isogenic mutants formed black-pigmented colonies on blood agar. Mutants defective in PG0985, PG1660, and PG1827 genes were more sensitive to 0.25 mM of hydrogen peroxide compared with the wild-type strain. Isogenic mutants of PG0162 and PG1660 showed a 50% decrease in gingipain activity. Reverse transcription-PCR analysis showed that there was no alteration in the expression of rgpA, rgpB, and kgp gingipain genes in these mutants. Hemolytic and hemagglutination activities were decreased by more than 50% in the PG0162 mutant compared with the wild type. Taken together, these findings suggest that ECF sigma factors can modulate important virulence factors in P. gingivalis. ECF sigma factors encoded by the PG0162 and PG1660 genes might also be involved in the post-transcriptional regulation of the gingipains.
Collapse
Affiliation(s)
- Yuetan Dou
- Department of Basic Sciences, Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | | | | | | |
Collapse
|