151
|
Rentsch CT, Beckman JA, Tomlinson L, Gellad WF, Alcorn C, Kidwai-Khan F, Skanderson M, Brittain E, King JT, Ho YL, Eden S, Kundu S, Lann MF, Greevy RA, Ho PM, Heidenreich PA, Jacobson DA, Douglas IJ, Tate JP, Evans SJW, Atkins D, Justice AC, Freiberg MS. Early initiation of prophylactic anticoagulation for prevention of COVID-19 mortality: a nationwide cohort study of hospitalized patients in the United States. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.12.09.20246579. [PMID: 33330896 PMCID: PMC7743107 DOI: 10.1101/2020.12.09.20246579] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IMPORTANCE Deaths among patients with coronavirus disease 2019 (COVID-19) are partially attributed to venous thromboembolism and arterial thromboses. Anticoagulants prevent thrombosis formation, possess anti-inflammatory and anti-viral properties, and may be particularly effective for treating patients with COVID-19. OBJECTIVE To evaluate whether initiation of prophylactic anticoagulation within 24 hours of admission is associated with decreased risk of death among patients hospitalized with COVID-19. DESIGN Observational cohort study. SETTING Nationwide cohort of patients receiving care in the Department of Veterans Affairs, the largest integrated healthcare system in the United States. PARTICIPANTS All patients hospitalized with laboratory-confirmed SARS-CoV-2 infection March 1 to July 31, 2020, without a history of therapeutic anticoagulation. EXPOSURES Prophylactic doses of subcutaneous heparin, low-molecular-weight heparin, or direct oral anticoagulants. MAIN OUTCOMES AND MEASURES 30-day mortality. Secondary outcomes: inpatient mortality and initiating therapeutic anticoagulation. RESULTS Of 4,297 patients hospitalized with COVID-19, 3,627 (84.4%) received prophylactic anticoagulation within 24 hours of admission. More than 99% (n=3,600) received subcutaneous heparin or enoxaparin. We observed 622 deaths within 30 days of admission, 513 among those who received prophylactic anticoagulation. Most deaths (510/622, 82%) occurred during hospitalization. In inverse probability of treatment weighted analyses, cumulative adjusted incidence of mortality at 30 days was 14.3% (95% CI 13.1-15.5) among those receiving prophylactic anticoagulation and 18.7% (95% CI 15.1-22.9) among those who did not. Compared to patients who did not receive prophylactic anticoagulation, those who did had a 27% decreased risk for 30-day mortality (HR 0.73, 95% CI 0.66-0.81). Similar associations were found for inpatient mortality and initiating therapeutic anticoagulation. Quantitative bias analysis demonstrated that results were robust to unmeasured confounding (e-value lower 95% CI 1.77). Results persisted in a number of sensitivity analyses. CONCLUSIONS AND RELEVANCE Early initiation of prophylactic anticoagulation among patients hospitalized with COVID-19 was associated with a decreased risk of mortality. These findings provide strong real-world evidence to support guidelines recommending the use of prophylactic anticoagulation as initial therapy for COVID-19 patients upon hospital admission.
Collapse
Affiliation(s)
- Christopher T Rentsch
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK, WC1E 7HT
- VA Connecticut Healthcare System, US Department of Veterans Affairs, West Haven, CT, 06516
| | - Joshua A Beckman
- Cardiovascular Division, Vanderbilt University Medical Center and Vanderbilt Translational and Clinical Cardiovascular Research Center, Nashville, TN, 37232
| | - Laurie Tomlinson
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK, WC1E 7HT
| | - Walid F Gellad
- Center for Pharmaceutical Policy and Prescribing, Health Policy Institute, University of Pittsburgh, Pittsburgh, PA, 15261
- Division of General Internal Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213
- Veterans Affairs Pittsburgh Healthcare System, US Department of Veterans Affairs, Pittsburgh, PA, 15240
| | - Charles Alcorn
- Center for Occupational Biostatistics and Epidemiology, Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15260
| | - Farah Kidwai-Khan
- VA Connecticut Healthcare System, US Department of Veterans Affairs, West Haven, CT, 06516
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06510
| | - Melissa Skanderson
- VA Connecticut Healthcare System, US Department of Veterans Affairs, West Haven, CT, 06516
| | - Evan Brittain
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt Translational and Clinical Cardiovascular Research Center, Nashville, TN, 37232
| | - Joseph T King
- VA Connecticut Healthcare System, US Department of Veterans Affairs, West Haven, CT, 06516
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, 06510
| | - Yuk-Lam Ho
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA
| | - Svetlana Eden
- Faculty of Biostatistics, Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN, 37212
| | - Suman Kundu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232
| | - Michael F Lann
- Center for Occupational Biostatistics and Epidemiology, Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15260
| | - Robert A Greevy
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37232
| | - P. Michael Ho
- Rocky Mountain Regional VA Medical Center, US Department of Veterans Affairs, Aurora, CO, 80045
| | - Paul A Heidenreich
- VA Palo Alto Healthcare System, US Department of Veterans Affairs, Palo Alto, CA 94304
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94304
| | - Daniel A Jacobson
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, 37831
| | - Ian J Douglas
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK, WC1E 7HT
| | - Janet P Tate
- VA Connecticut Healthcare System, US Department of Veterans Affairs, West Haven, CT, 06516
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06510
| | - Stephen JW Evans
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK, WC1E 7HT
| | - David Atkins
- Health Services Research and Development, US Department of Veterans Affairs, Washington, DC, 20420
| | - Amy C Justice
- VA Connecticut Healthcare System, US Department of Veterans Affairs, West Haven, CT, 06516
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06510
- Center for Interdisciplinary Research on AIDS, Yale School of Public Health, New Haven, CT, 06510
| | - Matthew S Freiberg
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232
- Geriatric Research Education and Clinical Center, Tennessee Valley Healthcare System, US Department of Veterans Affairs, Nashville, TN, 37212
| |
Collapse
|
152
|
Gasbarri M, V’kovski P, Torriani G, Thiel V, Stellacci F, Tapparel C, Cagno V. SARS-CoV-2 Inhibition by Sulfonated Compounds. Microorganisms 2020; 8:E1894. [PMID: 33265927 PMCID: PMC7760145 DOI: 10.3390/microorganisms8121894] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) depends on angiotensin converting enzyme 2 (ACE2) for cellular entry, but it might also rely on attachment receptors such as heparan sulfates. Several groups have recently demonstrated an affinity of the SARS-CoV2 spike protein for heparan sulfates and a reduced binding to cells in the presence of heparin or heparinase treatment. Here, we investigated the inhibitory activity of several sulfated and sulfonated molecules, which prevent interaction with heparan sulfates, against vesicular stomatitis virus (VSV)-pseudotyped-SARS-CoV-2 and the authentic SARS-CoV-2. Sulfonated cyclodextrins and nanoparticles that have recently shown broad-spectrum non-toxic virucidal activity against many heparan sulfates binding viruses showed inhibitory activity in the micromolar and nanomolar ranges, respectively. In stark contrast with the mechanisms that these compounds present for these other viruses, the inhibition against SARS-CoV-2 was found to be simply reversible.
Collapse
Affiliation(s)
- Matteo Gasbarri
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (M.G.); (F.S.)
| | - Philip V’kovski
- Institute of Virology and Immunology (IVI), Länggassstrasse 122, 3012 Bern, Switzerland; (P.V.); (V.T.)
- Institute for Infectious Diseases, University of Bern, Hochschulstrasse 6, 3012 Bern, Switzerland
| | - Giulia Torriani
- Department of Microbiology and Molecular Medicine, University of Geneva, 1211 Geneve, Switzerland; (G.T.); (C.T.)
| | - Volker Thiel
- Institute of Virology and Immunology (IVI), Länggassstrasse 122, 3012 Bern, Switzerland; (P.V.); (V.T.)
- Institute for Infectious Diseases, University of Bern, Hochschulstrasse 6, 3012 Bern, Switzerland
| | - Francesco Stellacci
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (M.G.); (F.S.)
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva, 1211 Geneve, Switzerland; (G.T.); (C.T.)
| | - Valeria Cagno
- Department of Microbiology and Molecular Medicine, University of Geneva, 1211 Geneve, Switzerland; (G.T.); (C.T.)
| |
Collapse
|
153
|
Clausen TM, Sandoval DR, Spliid CB, Pihl J, Perrett HR, Painter CD, Narayanan A, Majowicz SA, Kwong EM, McVicar RN, Thacker BE, Glass CA, Yang Z, Torres JL, Golden GJ, Bartels PL, Porell RN, Garretson AF, Laubach L, Feldman J, Yin X, Pu Y, Hauser BM, Caradonna TM, Kellman BP, Martino C, Gordts PLSM, Chanda SK, Schmidt AG, Godula K, Leibel SL, Jose J, Corbett KD, Ward AB, Carlin AF, Esko JD. SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. Cell 2020; 183:1043-1057.e15. [PMID: 32970989 PMCID: PMC7489987 DOI: 10.1016/j.cell.2020.09.033] [Citation(s) in RCA: 829] [Impact Index Per Article: 165.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/16/2020] [Accepted: 09/10/2020] [Indexed: 12/28/2022]
Abstract
We show that SARS-CoV-2 spike protein interacts with both cellular heparan sulfate and angiotensin-converting enzyme 2 (ACE2) through its receptor-binding domain (RBD). Docking studies suggest a heparin/heparan sulfate-binding site adjacent to the ACE2-binding site. Both ACE2 and heparin can bind independently to spike protein in vitro, and a ternary complex can be generated using heparin as a scaffold. Electron micrographs of spike protein suggests that heparin enhances the open conformation of the RBD that binds ACE2. On cells, spike protein binding depends on both heparan sulfate and ACE2. Unfractionated heparin, non-anticoagulant heparin, heparin lyases, and lung heparan sulfate potently block spike protein binding and/or infection by pseudotyped virus and authentic SARS-CoV-2 virus. We suggest a model in which viral attachment and infection involves heparan sulfate-dependent enhancement of binding to ACE2. Manipulation of heparan sulfate or inhibition of viral adhesion by exogenous heparin presents new therapeutic opportunities.
Collapse
Affiliation(s)
- Thomas Mandel Clausen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark.
| | - Daniel R Sandoval
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Charlotte B Spliid
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Jessica Pihl
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Hailee R Perrett
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Chelsea D Painter
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California, USA
| | - Anoop Narayanan
- Department of Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Sydney A Majowicz
- Department of Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Elizabeth M Kwong
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Rachael N McVicar
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Bryan E Thacker
- TEGA Therapeutics, Inc., 3550 General Atomics Court, G02-102, San Diego, CA 92121, USA
| | - Charles A Glass
- TEGA Therapeutics, Inc., 3550 General Atomics Court, G02-102, San Diego, CA 92121, USA
| | - Zhang Yang
- Copenhagen Center for Glycomics, Department of Molecular and Cellular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gregory J Golden
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California, USA
| | - Phillip L Bartels
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ryan N Porell
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Aaron F Garretson
- Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Logan Laubach
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jared Feldman
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Xin Yin
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yuan Pu
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Blake M Hauser
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | - Benjamin P Kellman
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cameron Martino
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Philip L S M Gordts
- Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA; Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sumit K Chanda
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Aaron G Schmidt
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Kamil Godula
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA; Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sandra L Leibel
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Joyce Jose
- Department of Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Aaron F Carlin
- Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
154
|
Conzelmann C, Müller JA, Perkhofer L, Sparrer KM, Zelikin AN, Münch J, Kleger A. Inhaled and systemic heparin as a repurposed direct antiviral drug for prevention and treatment of COVID-19. Clin Med (Lond) 2020; 20:e218-e221. [PMID: 32863274 PMCID: PMC7687307 DOI: 10.7861/clinmed.2020-0351] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Here, we advocate a highly favourable opportunity for the treatment of COVID-19 disease by repurposing a long-serving medical agent with an excellent history of clinical use, namely heparin. Heparin is best known as an anticoagulant, but it also exhibits direct antiviral activity against many enveloped viruses and has anti-inflammatory activity. The high incidence of thromboembolic events in COVID-19 patients suggests that coagulopathy plays an important role in the SARS-CoV-2 pathogenesis. This already makes heparin a unique, potentially curative agent that can be used immediately to help resolve the ongoing crisis associated with SARS-CoV-2 infection and COVID-19 disease. We demonstrate here in vitro that heparin does indeed inhibit SARS-CoV-2 infection. The three concurrent modes of activity of heparin (antiviral, anticoagulant and anti-inflammatory) against SARS-CoV-2/COVID-19 form a unique therapeutic combination. Thus, repurposing of heparin to fight SARS-CoV-2 and COVID-19 appears to be a powerful, readily available measure to address the current pandemic.
Collapse
Affiliation(s)
- Carina Conzelmann
- Institute of Molecular Virology, Ulm University Medical Centre, Ulm, Germany
- *equal contributions
| | - Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Centre, Ulm, Germany
- *equal contributions
| | - Lukas Perkhofer
- Department of Internal Medicine, Ulm University Hospital, Ulm, Germany
| | | | - Alexander N Zelikin
- Department of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus, Denmark
- #equal contribution and joint supervision
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Centre, Ulm, Germany
| | - Alexander Kleger
- Department of Internal Medicine, Ulm University Hospital, Ulm, Germany
- #equal contribution and joint supervision
| |
Collapse
|
155
|
Shi C, Tingting W, Li JP, Sullivan MA, Wang C, Wang H, Deng B, Zhang Y. Comprehensive Landscape of Heparin Therapy for COVID-19. Carbohydr Polym 2020; 254:117232. [PMID: 33357843 PMCID: PMC7581413 DOI: 10.1016/j.carbpol.2020.117232] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 01/08/2023]
Abstract
The pandemic coronavirus disease 2019 (COVID-19), caused by the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is rapidly spreading globally. Clinical observations found that systemic symptoms caused by SARS-CoV-2 infection are attenuated when using the anticoagulant agent heparin, indicating that heparin may play other roles in managing COVID-19, in addition to prevention of pulmonary thrombosis. Several biochemical studies show strong binding of heparin and heparin-like molecules to the Spike protein, which resulted in inhibition of viral infection to cells. The clinical observations and in vitro studies argue for a potential multiple-targeting effects of heparin. However, adverse effects of heparin administration and some of the challenges using heparin therapy for SARS-CoV-2 infection need to be considered. This review discusses the pharmacological mechanisms of heparin regarding its anticoagulant, anti-inflammatory and direct antiviral activities, providing current evidence concerning the effectiveness and safety of heparin therapy for this major public health emergency.
Collapse
Affiliation(s)
- Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Wu Tingting
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mitchell A Sullivan
- Glycation and Diabetes Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, QLD, 4072, Australia
| | - Cong Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Hanxiang Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bin Deng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China.
| |
Collapse
|