151
|
Roccasecca R, Ansuini H, Vitelli A, Meola A, Scarselli E, Acali S, Pezzanera M, Ercole BB, McKeating J, Yagnik A, Lahm A, Tramontano A, Cortese R, Nicosia A. Binding of the hepatitis C virus E2 glycoprotein to CD81 is strain specific and is modulated by a complex interplay between hypervariable regions 1 and 2. J Virol 2003; 77:1856-67. [PMID: 12525620 PMCID: PMC140892 DOI: 10.1128/jvi.77.3.1856-1867.2003] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The envelope glycoprotein E2 of hepatitis C virus (HCV) is the target of neutralizing antibodies and is presently being evaluated as an HCV vaccine candidate. HCV binds to human cells through the interaction of E2 with the tetraspanin CD81, a putative viral receptor component. We have analyzed four different E2 proteins from 1a and 1b viral isolates for their ability to bind to recombinant CD81 in vitro and to the native receptor displayed on the surface of Molt-4 cells. A substantial difference in binding efficiency between these E2 variants was observed, with proteins derived from 1b subtypes showing significantly lower binding than the 1a protein. To elucidate the mechanism of E2-CD81 interaction and to identify critical regions responsible for the different binding efficiencies of the E2 variants, several mutants were generated in E2 protein regions predicted by computer modeling to be exposed on the protein surface. Functional analysis of these E2 derivatives revealed that at least two distinct domains are responsible for interaction with CD81. A first segment centered around amino acid residues 613 to 618 is essential for recognition, while a second element including the two hypervariable regions (HVRs) modulates E2 receptor binding. Binding inhibition experiments with anti-HVR monoclonal antibodies confirmed this mapping and supported the hypothesis that a complex interplay between the two HVRs of E2 is responsible for modulating receptor binding, possibly through intramolecular interactions. Finally, E2 proteins from different isolates displayed a profile of binding to human hepatic cells different from that observed on Molt-4 cells or isolated recombinant CD81, indicating that additional factors are involved in viral recognition by target liver cells.
Collapse
Affiliation(s)
- RosaMaria Roccasecca
- Istituto di Ricerche di Biologia Molecolare P. Angeletti, 00040 Pomezia (Rome), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Molenkamp R, Kooi EA, Lucassen MA, Greve S, Thijssen JCP, Spaan WJM, Bredenbeek PJ. Yellow fever virus replicons as an expression system for hepatitis C virus structural proteins. J Virol 2003; 77:1644-8. [PMID: 12502883 PMCID: PMC140782 DOI: 10.1128/jvi.77.2.1644-1648.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chimeric yellow fever virus (YF) RNAs were constructed in which the YF structural genes were replaced by the hepatitis C virus (HCV) structural genes or fusions between the YF and HCV structural genes. Interestingly, RNA replication required nucleotide complementarity between the 3'-located conserved sequence 1 and an RNA sequence located in the 5' end of the YF capsid sequence. The (chimeric-)HCV structural proteins were efficiently expressed and processed, and the native E1/E2 heterodimer was formed. However, no indication for the production of HCV-like particles was obtained.
Collapse
Affiliation(s)
- Richard Molenkamp
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
153
|
Cocquerel L, Quinn ER, Flint M, Hadlock KG, Foung SKH, Levy S. Recognition of native hepatitis C virus E1E2 heterodimers by a human monoclonal antibody. J Virol 2003; 77:1604-9. [PMID: 12502876 PMCID: PMC140849 DOI: 10.1128/jvi.77.2.1604-1609.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The majority of hepatitis C virus (HCV)-infected individuals progress from acute to chronic disease, despite the presence of a strong humoral immune response to the envelope glycoproteins E1 and E2. When expressed in mammalian cells, E1 and E2 form both noncovalently linked E1E2 heterodimers, believed to be properly folded, and disulfide-linked, high-molecular-weight aggregates that are misfolded. Previously, we identified 10 human monoclonal antibodies (HMAbs) that bind E2 glycoproteins from different genotypes. Here we demonstrate that one of these HMAbs, CBH-2, is unique in its ability to distinguish between properly folded and misfolded envelope proteins. This HMAb recognizes HCV-E2 only when complexed with E1. The E1E2 complexes recognized by CBH-2 are noncovalently linked heterodimers and not misfolded disulfide-linked, high-molecular-weight aggregates. The E1E2 heterodimers seen by CBH-2 no longer associate with the endoplasmic reticulum chaperone calnexin and are likely to represent the prebudding form of the HCV virion.
Collapse
Affiliation(s)
- Laurence Cocquerel
- Department of Medicine/Division of Oncology, Stanford University Medical Center, California 94305, USA
| | | | | | | | | | | |
Collapse
|
154
|
Saunier B, Triyatni M, Ulianich L, Maruvada P, Yen P, Kohn LD. Role of the asialoglycoprotein receptor in binding and entry of hepatitis C virus structural proteins in cultured human hepatocytes. J Virol 2003; 77:546-59. [PMID: 12477859 PMCID: PMC140572 DOI: 10.1128/jvi.77.1.546-559.2003] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We used a baculovirus-based system to prepare structural proteins of hepatitis C virus (HCV) genotype 1a. Binding of this preparation to cultured human hepatic cells was both dose dependent and saturable. This binding was decreased by calcium depletion and was partially prevented by ligands of the asialoglycoprotein receptor (ASGP-R), thyroglobulin, asialothyroglobulin, and antibody against a peptide in the carbohydrate recognition domain of ASGP-R but not preimmune antibody. Uptake by hepatocytes was observed with both radiolabeled and dye-labeled HCV structural proteins. With hepatocytes expressing the hH1 subunit of the ASGP-R fused to green fluorescent protein, we could show by confocal microscopy that dye stain cointernalized with the fusion protein in an area surrounding the nucleus. Internalization was more efficient with a preparation containing p7 than with one that did not. The two preparations bound to transfected 3T3-L1 cells expressing either both (hH1 and hH2) subunits of the ASGP-R (3T3-22Z cells) or both hH1 and a functionally defective variant of hH2 (3T3-24X cells) but not to parental cells. Additionally, uptake of dye-labeled preparation containing p7 was observed with 3T3-22Z cells but not with 3T3-L1 or 3T3-24X cells or with the preparation lacking p7, suggesting that p7 regulates the internalization properties of HCV structural proteins. Our observations suggest that HCV structural proteins bind to and cointernalize with the ASGP-R in cultured human hepatocytes.
Collapse
Affiliation(s)
- Bertrand Saunier
- Edison Biotechnology Institute and College of Osteopathic Medicine, Ohio University, Athens 45701, USA.
| | | | | | | | | | | |
Collapse
|
155
|
Ma HC, Ke CH, Hsieh TY, Lo SY. The first hydrophobic domain of the hepatitis C virus E1 protein is important for interaction with the capsid protein. J Gen Virol 2002; 83:3085-3092. [PMID: 12466485 DOI: 10.1099/0022-1317-83-12-3085] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The interaction between the hepatitis C virus capsid protein and the envelope protein E1 has been demonstrated previously in vivo. To determine the binding region of the E1 protein with the capsid protein, this interaction was characterized in vitro. This study shows that the interaction between these proteins should occur in the endoplasmic reticulum membrane rather than in the cytosol and that the first hydrophobic domain of the E1 protein (aa 261-291) is important for the interaction with the capsid protein.
Collapse
Affiliation(s)
- Hsin-Chieh Ma
- Institute of Medical Research1 and Department of Medical Technology2, Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien, Taiwan 970, Republic of China
| | - Cheng-Hung Ke
- Institute of Medical Research1 and Department of Medical Technology2, Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien, Taiwan 970, Republic of China
| | - Tsai-Yuan Hsieh
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China4
| | - Shih-Yen Lo
- Department of Medical Technology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, Republic of China3
- Institute of Medical Research1 and Department of Medical Technology2, Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien, Taiwan 970, Republic of China
| |
Collapse
|
156
|
Dubuisson J, Penin F, Moradpour D. Interaction of hepatitis C virus proteins with host cell membranes and lipids. Trends Cell Biol 2002; 12:517-23. [PMID: 12446113 DOI: 10.1016/s0962-8924(02)02383-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
For replication, viruses depend on specific components and energy supplies from the host cell. The main steps in the lifecycle of positive-strand RNA viruses depend on cellular membranes. Interest is increasing in studying the interactions between host cell membranes and viral proteins to understand how such viruses replicate their genome and produce infectious particles. These studies should also lead to a better knowledge of the different mechanisms underlying membrane-protein associations. The various molecular interactions of hepatitis C virus proteins with the membranes and lipids of the infected cell highlight how a virus can exploit the diversity of interactions that occur between proteins and membranes or lipid structures.
Collapse
Affiliation(s)
- Jean Dubuisson
- CNRS-UPR2511, Institut de Biologie de Lille, 1 rue Calmette, BP447, 59021 Lille Cedex, France.
| | | | | |
Collapse
|
157
|
Triyatni M, Saunier B, Maruvada P, Davis AR, Ulianich L, Heller T, Patel A, Kohn LD, Liang TJ. Interaction of hepatitis C virus-like particles and cells: a model system for studying viral binding and entry. J Virol 2002; 76:9335-44. [PMID: 12186916 PMCID: PMC136469 DOI: 10.1128/jvi.76.18.9335-9344.2002] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis C virus-like particles (HCV-LPs) containing the structural proteins of HCV H77 strain (1a genotype) was used as a model for HCV virion to study virus-cell interaction. HCV-LPs showed a buoyant density of 1.17 to 1.22 g/cm(3) in a sucrose gradient and formed double-shelled particles 35 to 49 nm in diameter. Flow cytometry analysis by an indirect method (detection with anti-E2 antibody) and a direct method (use of dye-labeled HCV-LPs) showed that HCV-LPs binds to several human hepatic (primary hepatocytes, HepG2, HuH7, and NKNT-3) and T-cell (Molt-4) lines. HCV-LPs binding to cells occurred in a dose- and calcium-dependent manner and was not mediated by CD81. Scatchard plot analysis suggests the presence of two binding sites for HCV-LPs with high (K(d) approximately 1 microg/ml) and low (K(d) approximately 50 to 60 microg/ml) affinities of binding. Anti-E1 and -E2 antibodies inhibited HCV-LPs binding to cells. While preincubation of HCV-LPs with very-low-density lipoprotein (VLDL), low-density lipoprotein (LDL), or high-density lipoprotein (HDL) blocked its binding to cells, preincubation of cells with VLDL, LDL, HDL, or anti-LDL-R antibody did not. Confocal microscopy analysis showed that, after binding to cells, dye-labeled HCV-LPs were internalized into the cytoplasm. This process could be inhibited with anti-E1 or anti-E2 antibodies, suggesting that E1 and E2 proteins mediate HCV-LPs binding and, subsequently, their entry into cells. Altogether, our results indicate that HCV-LPs can be used to further characterize the mechanisms involved in the early steps of HCV infection.
Collapse
Affiliation(s)
- Miriam Triyatni
- Liver Diseases Section, National Institute of Diabetes and DigestiveKidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Jacob R, Pürschel B, Naim HY. Sucrase is an intramolecular chaperone located at the C-terminal end of the sucrase-isomaltase enzyme complex. J Biol Chem 2002; 277:32141-8. [PMID: 12055199 DOI: 10.1074/jbc.m204116200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sucrase-isomaltase enzyme complex (pro-SI) is a type II integral membrane glycoprotein of the intestinal brush border membrane. Its synthesis commences with the isomaltase (IM) subunit and ends with sucrase (SUC). Both domains reveal striking structural similarities, suggesting a pseudo-dimeric assembly of a correctly folded and an enzymatically active pro-SI. The impact of each domain on the folding and function of pro-SI has been analyzed by individual expression and coexpression of the individual subunits. SUC acquires correct folding, enzymatic activity and transport competence and is secreted into the external milieu independent of the presence of IM. By contrast, IM persists as a mannose-rich polypeptide that interacts with the endoplasmic reticulum resident molecular chaperone calnexin. This interaction is disrupted when SUC is coexpressed with IM, indicating that SUC competes with calnexin for binding of IM. The interaction between SUC and the membrane-anchored IM leads to maturation of IM and blocks the secretion of SUC into the external milieu. We conclude that SUC plays a role as an intramolecular chaperone in the context of the pro-SI protein. To our knowledge all intramolecular chaperones so far identified are located at the N-terminal end. SUC is therefore the first C-terminally located intramolecular chaperone in mammalian cells.
Collapse
Affiliation(s)
- Ralf Jacob
- Department of Physiological Chemistry, School of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | | | | |
Collapse
|
159
|
Clayton RF, Owsianka A, Aitken J, Graham S, Bhella D, Patel AH. Analysis of antigenicity and topology of E2 glycoprotein present on recombinant hepatitis C virus-like particles. J Virol 2002; 76:7672-82. [PMID: 12097581 PMCID: PMC136371 DOI: 10.1128/jvi.76.15.7672-7682.2002] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2002] [Accepted: 04/25/2002] [Indexed: 12/24/2022] Open
Abstract
Purification of hepatitis C virus (HCV) from sera of infected patients has proven elusive, hampering efforts to perform structure-function analysis of the viral components. Recombinant forms of the viral glycoproteins have been used instead for functional studies, but uncertainty exists as to whether they closely mimic the virion proteins. Here, we used HCV virus-like particles (VLPs) generated in insect cells infected with a recombinant baculovirus expressing viral structural proteins. Electron microscopic analysis revealed a population of pleomorphic VLPs that were at least partially enveloped with bilayer membranes and had viral glycoprotein spikes protruding from the surface. Immunogold labeling using specific monoclonal antibodies (MAbs) demonstrated these protrusions to be the E1 and E2 glycoproteins. A panel of anti-E2 MAbs was used to probe the surface topology of E2 on the VLPs and to compare the antigenicity of the VLPs with that of truncated E2 (E2(660)) or the full-length (FL) E1E2 complex expressed in mammalian cells. While most MAbs bound to all forms of antigen, a number of others showed striking differences in their abilities to recognize the various E2 forms. All MAbs directed against hypervariable region 1 (HVR-1) recognized both native and denatured E2(660) with comparable affinities, but most bound either weakly or not at all to the FL E1E2 complex or to VLPs. HVR-1 on VLPs was accessible to these MAbs only after denaturation. Importantly, a subset of MAbs specific for amino acids 464 to 475 and 524 to 535 recognized E2(660) but not VLPs or FL E1E2 complex. The antigenic differences between E2(660,) FL E1E2, and VLPs strongly point to the existence of structural differences, which may have functional relevance. Trypsin treatment of VLPs removed the N-terminal part of E2, resulting in a 42-kDa fragment. In the presence of detergent, this was further reduced to a trypsin-resistant 25-kDa fragment, which could be useful for structural studies.
Collapse
Affiliation(s)
- Reginald F Clayton
- MRC Virology Unit, Institute of Virology. IBLS, University of Glasgow, Glasgow G11 5JR, United Kingdom
| | | | | | | | | | | |
Collapse
|
160
|
Triyatni M, Vergalla J, Davis AR, Hadlock KG, Foung SKH, Liang TJ. Structural features of envelope proteins on hepatitis C virus-like particles as determined by anti-envelope monoclonal antibodies and CD81 binding. Virology 2002; 298:124-32. [PMID: 12093180 DOI: 10.1006/viro.2002.1463] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The envelope glycoprotein E2 of hepatitis C virus (HCV) is a major component of the viral envelope. Knowledge of its topologic features and antigenic determinants in virions is crucial in understanding the viral binding sites to cellular receptor(s) and the induction of neutralizing antibodies. The lack of a robust cell culture system for virus propagation has hampered the characterization of E2 presented on the virion. Here we report the structural features of hepatitis C virus-like particles (HCV-LPs) of the 1a and 1b genotypes as determined by various mouse and human monoclonal anti-envelope antibodies. Our results show that the E2 protein of HCV-LPs reacts with human monoclonal antibodies recognizing conformational determinants. Monoclonal antibodies (mAbs) specific for the hypervariable region 1 (HVR-1) sequence reacted strongly with HCV-LPs, suggesting that the HVR-1 is exposed on the viral surface. Several mAbs recognized both HCV-LPs with equally high affinity, indicating that the corresponding epitopes [amino acids (aa) 192-217 of E1 and aa 412-423, aa 522-531, and aa 640-653 of E2] are conserved in both genotypes and exposed on the surface of the HCV-LP. The E2 and E1/E2 dimers of 1a bound strongly to the recombinant large extracellular loop (LEL) of CD81 (CD81-LEL) of human and African green monkey, while the HCV-LP of 1a bound weakly to human CD81-LEL. E1/E2 dimers and the HCV-LPs of 1b did not bind CD81-LEL, consistent with the notion that CD81 recognition by E2 is strain-specific and does not correlate with permissiveness of infection. A model of the topology and exposed antigenic determinants of the envelope proteins of HCV is proposed.
Collapse
Affiliation(s)
- Miriam Triyatni
- Liver Diseases Section, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
161
|
Cocquerel L, Op de Beeck A, Lambot M, Roussel J, Delgrange D, Pillez A, Wychowski C, Penin F, Dubuisson J. Topological changes in the transmembrane domains of hepatitis C virus envelope glycoproteins. EMBO J 2002; 21:2893-902. [PMID: 12065403 PMCID: PMC125386 DOI: 10.1093/emboj/cdf295] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hepatitis C virus proteins are synthesized as a polyprotein cleaved by a signal peptidase and viral proteases. The behaviour of internal signal sequences at the C-terminus of the transmembrane domains of hepatitis C virus envelope proteins E1 and E2 is essential for the topology of downstream polypeptides. We determined the topology of these transmembrane domains before and after signal sequence cleavage by tagging E1 and E2 with epitopes and by analysing their accessibility in selectively permeabilized cells. We showed that, after cleavage by signal peptidase in the endoplasmic reticulum, the C-terminal orientation of these transmembrane domains changed from luminal to cytosolic. The dynamic behaviour of these transmembrane domains is unique and it is linked to their multifunctionality. By reorienting their C-terminus toward the cytosol and being part of a transmembrane domain, the signal sequences at the C-terminus of E1 and E2 contribute to new functions: (i) membrane anchoring; (ii) E1E2 heterodimerization; and (iii) endoplasmic reticulum retention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - François Penin
- CNRS-UPR2511, Institut de Biologie de Lille and Institut Pasteur de Lille, 1 rue Calmette, BP447, 59021 Lille Cedex and
CNRS-UMR5086, Institut de Biologie et de Chimie des Protéines, 69367 Lyon Cedex 07, France Corresponding author e-mail: L.Cocquerel and A.Op de Beeck contributed equally to this work
| | - Jean Dubuisson
- CNRS-UPR2511, Institut de Biologie de Lille and Institut Pasteur de Lille, 1 rue Calmette, BP447, 59021 Lille Cedex and
CNRS-UMR5086, Institut de Biologie et de Chimie des Protéines, 69367 Lyon Cedex 07, France Corresponding author e-mail: L.Cocquerel and A.Op de Beeck contributed equally to this work
| |
Collapse
|
162
|
Lambot M, Frétier S, Op De Beeck A, Quatannens B, Lestavel S, Clavey V, Dubuisson J. Reconstitution of hepatitis C virus envelope glycoproteins into liposomes as a surrogate model to study virus attachment. J Biol Chem 2002; 277:20625-30. [PMID: 11937498 DOI: 10.1074/jbc.m111020200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The envelope glycoproteins, E1 and E2, of hepatitis C virus (HCV) assemble intracellularly to form a noncovalent heterodimer that is expected to be essential for viral assembly and entry. However, due to the lack of a cell culture system supporting efficient HCV replication, it is very difficult to obtain relevant information on the functions of this glycoprotein oligomer. To get better insights into its biological and biochemical properties, HCV envelope glycoprotein heterodimer expressed by a vaccinia virus recombinant was purified by immunoaffinity. Purified E1E2 heterodimer was recognized by conformation-dependent monoclonal antibodies, showing that the proteins were properly folded. In addition, it interacted with human CD81, a putative HCV receptor, as well as with human low and very low density lipoproteins, which have been shown to be associated with infectious HCV particles isolated from patients. Purified E1E2 heterodimer was also reconstituted into liposomes. E1E2-liposomes were recognized by a conformation-dependent monoclonal antibody as well as by human CD81. Together, these data indicate that E1E2-liposomes are a valuable tool to study the molecular requirements for HCV binding to target cells.
Collapse
Affiliation(s)
- Michel Lambot
- CNRS-Institut de Biologie de Lille & Institut Pasteur de Lille, 59021 Lille Cedex, France
| | | | | | | | | | | | | |
Collapse
|
163
|
Lorenz IC, Allison SL, Heinz FX, Helenius A. Folding and dimerization of tick-borne encephalitis virus envelope proteins prM and E in the endoplasmic reticulum. J Virol 2002; 76:5480-91. [PMID: 11991976 PMCID: PMC137023 DOI: 10.1128/jvi.76.11.5480-5491.2002] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Flavivirus envelope proteins are synthesized as part of large polyproteins that are co- and posttranslationally cleaved into their individual chains. To investigate whether the interaction of neighboring proteins within the precursor protein is required to ensure proper maturation of the individual components, we have analyzed the folding of the flavivirus tick-borne encephalitis (TBE) virus envelope glycoproteins prM and E by using a recombinant plasmid expression system and virus-infected cells. When expressed in their polyprotein context, prM and E achieved their native folded structures with half-times of approximately 4 min for prM and about 15 min for E. They formed heterodimeric complexes within a few minutes after synthesis that were required for the final folding of E but not for that of prM. Heterodimers could also be formed in trans when these proteins were coexpressed from separate constructs. When expressed without prM, E could form disulfide bonds but did not express a specific conformational epitope and remained sensitive to reduction by dithiothreitol. This is consistent with a chaperone-like role for prM in the folding of E. PrM was able to achieve its native folded structure without coexpression of E, but signal sequence cleavage at the N terminus was delayed. Our results show that prM is an especially rapidly folding viral glycoprotein, that polyprotein cleavage and folding of the TBE virus envelope proteins occurs in a coordinated sequence of processing steps, and that proper and efficient maturation of prM and E can only be achieved by cosynthesis of these two proteins.
Collapse
Affiliation(s)
- Ivo C Lorenz
- Institute of Biochemistry, Swiss Federal Institute of Technology, CH-8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
164
|
Pietschmann T, Lohmann V, Kaul A, Krieger N, Rinck G, Rutter G, Strand D, Bartenschlager R. Persistent and transient replication of full-length hepatitis C virus genomes in cell culture. J Virol 2002; 76:4008-21. [PMID: 11907240 PMCID: PMC136109 DOI: 10.1128/jvi.76.8.4008-4021.2002] [Citation(s) in RCA: 290] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The recently developed subgenomic hepatitis C virus (HCV) replicons were limited by the fact that the sequence encoding the structural proteins was missing. Therefore, important information about a possible influence of these proteins on replication and pathogenesis and about the mechanism of virus formation could not be obtained. Taking advantage of three cell culture-adaptive mutations that enhance RNA replication synergistically, we generated selectable full-length HCV genomes that amplify to high levels in the human hepatoma cell line Huh-7 and can be stably propagated for more than 6 months. The structural proteins are efficiently expressed, with the viral glycoproteins E1 and E2 forming heterodimers which are stable under nondenaturing conditions. No disulfide-linked glycoprotein aggregates were observed, suggesting that the envelope proteins fold productively. Electron microscopy studies indicate that cell lines harboring these full-length HCV RNAs contain lipid droplets. The majority of the core protein was found on the surfaces of these structures, whereas the glycoproteins appear to localize to the endoplasmic reticulum and cis-Golgi compartments. In agreement with this distribution, no endoglycosidase H-resistant forms of these proteins were detectable. In a search for the production of viral particles, we noticed that these cells release substantial amounts of nuclease-resistant HCV RNA-containing structures with a buoyant density of 1.04 to 1.1 g/ml in iodixanol gradients. The same observation was made in transient-replication assays using an authentic highly adapted full-length HCV genome that lacks heterologous sequences. However, the fact that comparable amounts of such RNA-containing structures were found in the supernatant of cells carrying subgenomic replicons demonstrates a nonspecific release independent of the presence of the structural proteins. These results suggest that Huh-7 cells lack host cell factors that are important for virus particle assembly and/or release.
Collapse
Affiliation(s)
- Thomas Pietschmann
- Institute for Virology, Johannes-Gutenberg University Mainz, 55131 Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Abstract
Although much is known about the hepatitis C virus (HCV) genome, first cloned in 1989, little is known about HCV structure and assembly due to the lack of an efficient in vitro culture system for HCV. Using a recombinant Semliki forest virus replicon expressing genes encoding HCV structural proteins, we observed for the first time the assembly of these proteins into HCV-like particles in mammalian cells. This system opens up new possibilities for the investigation of viral morphogenesis and virus-host cell interactions.
Collapse
Affiliation(s)
- Emmanuelle Blanchard
- Laboratoire de Virologie, E3M-EA3250, IFR 82, Faculté de Médecine et Centre Hospitalier Universitaire, Tours, France
| | | | | | | | | |
Collapse
|
166
|
Carrère-Kremer S, Montpellier-Pala C, Cocquerel L, Wychowski C, Penin F, Dubuisson J. Subcellular localization and topology of the p7 polypeptide of hepatitis C virus. J Virol 2002; 76:3720-30. [PMID: 11907211 PMCID: PMC136108 DOI: 10.1128/jvi.76.8.3720-3730.2002] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2001] [Accepted: 01/16/2002] [Indexed: 12/11/2022] Open
Abstract
Although biological and biochemical data have been accumulated on most hepatitis C virus proteins, the structure and function of the 63-amino-acid p7 polypeptide of this virus have never been investigated. In this work, sequence analyses predicted that p7 contains two transmembrane passages connected by a short hydrophilic segment. The C-terminal transmembrane domain of p7 was predicted to function as a signal sequence, which was confirmed experimentally by analyzing the translocation of a reporter glycoprotein fused at its C terminus. The p7 polypeptide was tagged either with the ectodomain of CD4 or with a Myc epitope to study its membrane integration, its subcellular localization, and its topology. Alkaline extraction studies confirmed that p7 is an integral membrane polypeptide. The CD4-p7 chimera was detected by immunofluorescence on the surface of nonpermeabilized cells, indicating that it is exported to the plasma membrane. However, pulse-chase analyses showed that only approximately 20% of endoglycosidase H-resistant CD4-p7 was detected after long chase times, suggesting that a large proportion of p7 stays in an early compartment of the secretory pathway. Finally, by inserting a Myc epitope in several positions of p7 and analyzing the accessibility of this epitope on the plasma membrane of HepG2 cells, we showed that p7 has a double membrane-spanning topology, with both its N and C termini oriented toward the extracellular environment. Altogether, these data indicate that p7 is a polytopic membrane protein that could have a functional role in several compartments of the secretory pathway.
Collapse
Affiliation(s)
- Séverine Carrère-Kremer
- CNRS-FRE2369, Institut de Biologie de Lille/Institut Pasteur de Lille, 59021 Lille Cedex, France
| | | | | | | | | | | |
Collapse
|
167
|
|
168
|
Meyer K, Basu A, Przysiecki CT, Lagging LM, Di Bisceglie AM, Conley AJ, Ray R. Complement-mediated enhancement of antibody function for neutralization of pseudotype virus containing hepatitis C virus E2 chimeric glycoprotein. J Virol 2002; 76:2150-8. [PMID: 11836392 PMCID: PMC153822 DOI: 10.1128/jvi.76.5.2150-2158.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We previously reported a number of features of hepatitis C virus (HCV) chimeric glycoproteins related to pseudotype virus entry into mammalian cells. In this study, pseudotype virus was neutralized by HCV E2 glycoprotein-specific antibodies and infected human sera. Neutralization (50% reduction of pseudotype virus plaque formation) was observed with two human immunoglobulin G1 monoclonal antibodies (MAbs) at concentrations of between 2.5 and 10 microg/ml. A hyperimmune rabbit antiserum to an E2 hypervariable region 1 (HVR1) mimotope also exhibited an HCV E2 pseudotype virus neutralization titer of approximately 1/50. An E1 pseudotype virus used as a negative control was not neutralized to a significant level (<1/10) by these MAbs or rabbit antiserum to E2 HVR1. Since HCV probably has a lipid envelope, the role of complement in antibody-mediated virus neutralization was examined. Significant increases in the neutralization titers of the human MAbs (approximately 60- to 160-fold higher) and rabbit antiserum to HVR1 mimotopes (approximately 10-fold higher) were observed upon addition of guinea pig complement. Further, these studies suggested that complement activation occurred primarily by the classical pathway, since a deficiency in the C4 component led to a significant decrease in the level of virus neutralization. This same decrease was not observed with factor B-deficient complement. We also determined that 9 of 56 HCV-infected patient sera (16%) had detectable pseudotype virus neutralization activity at serum dilutions of between 1/20 and 1/50 and that complement addition enhanced the neutralization activity of some of the HCV-infected human sera. Taken together, these results suggest that during infection, HCV E2 glycoprotein induces a weak neutralizing antibody response, that those antibodies can be measured in vitro by the surrogate pseudotype virus plaque reduction assay, and that neutralization function can be augmented by complement.
Collapse
Affiliation(s)
- Keith Meyer
- Department of Internal Medicine, Saint Louis University, 3635 Vista Ave., St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
169
|
Tsitoura E, Lucas M, Revol-Guyot V, Epstein AL, Manservigi R, Mavromara P. Expression of hepatitis C virus envelope glycoproteins by herpes simplex virus type 1-based amplicon vectors. J Gen Virol 2002; 83:561-566. [PMID: 11842251 DOI: 10.1099/0022-1317-83-3-561] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1)-based amplicon vectors expressing hepatitis C virus (HCV) E1 and E2 glycoproteins were investigated. HSV-1 amplicon vectors carrying the E1E2p7- or E2p7-coding sequences of HCV type 1a under the control of the HSV-1 IE4 (alpha22/alpha47) promoter were constructed. Studies of infected HepG2, WRL 68 or Vero cells indicated that HSV-1-based amplicon vectors express high levels of HCV glycoproteins that are processed correctly. Immunofluorescence microscopy combined with immunoprecipitation and endoglycosidase treatment of cells infected with the HSV-1-based vectors expressing E1 and E2 showed that the two glycoproteins were retained in the endoplasmic reticulum and had the expected glycosylation patterns. Furthermore, although most of the E1 and E2 proteins formed disulfide-linked aggregates, significant amounts of monomeric forms of the two proteins were detected by SDS-PAGE under non-reducing conditions, suggesting the presence of non-covalently associated E1 and E2. Similar results were produced by a replication-competent recombinant HSV-1 vector expressing HCV E1 and E2. These results indicated that HSV-1-based amplicon vectors represent a useful expression system for the study of HCV glycoproteins.
Collapse
Affiliation(s)
- Eliza Tsitoura
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 127 Vas, Sofias Avenue, Athens, Greece1
| | - Michaela Lucas
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 127 Vas, Sofias Avenue, Athens, Greece1
| | - Valerie Revol-Guyot
- Centre de Genetique Moleculaire et Cellulaire, UMR 5534 CNRS, Universite Claude Bernard Lyon I, 69622 Villeurbanne Cedex, France2
| | - Alberto L Epstein
- Centre de Genetique Moleculaire et Cellulaire, UMR 5534 CNRS, Universite Claude Bernard Lyon I, 69622 Villeurbanne Cedex, France2
| | - Roberto Manservigi
- Section of Microbiology, University of Ferrara, Via Luigi Borsari 46, Ferrara 1-44100, Italy3
| | - Penelope Mavromara
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 127 Vas, Sofias Avenue, Athens, Greece1
| |
Collapse
|
170
|
Pavio N, Taylor DR, Lai MMC. Detection of a novel unglycosylated form of hepatitis C virus E2 envelope protein that is located in the cytosol and interacts with PKR. J Virol 2002; 76:1265-72. [PMID: 11773402 PMCID: PMC135859 DOI: 10.1128/jvi.76.3.1265-1272.2002] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The hepatitis C virus (HCV) envelope protein E2 has been shown to accumulate in the lumen of the endoplasmic reticulum (ER) as a properly folded glycoprotein as well as large aggregates of misfolded proteins. In the present study, we have identified an additional unglycosylated species, with an apparent molecular mass of 38 kDa (E2-p38). In contrast to the glycosylated E2, E2-p38 is significantly less stable and is degraded through the proteasome pathway. Correspondingly, E2-p38 is found to be ubiquitinated. E2-p38 is localized mostly in the cytosol, in contrast to the glycosylated form, which is exclusively membrane associated. Alpha interferon (IFN-alpha) treatment or overexpression of the double-stranded RNA-activated protein kinase (PKR) significantly increased the stability of E2-p38, consistent with a previous report (D. R. Taylor, S. T. Shi, P. R. Romano, G. N. Barber, and M. M. Lai, Science 285:107-110, 1999) that E2 interacts with PKR and inhibits its kinase activity. Direct interaction between PKR and E2-p38, but not the glycosylated form of E2, was also observed. These results show that E2-p38 is the form of E2 that interacts with PKR in the cytosol and may contribute to the resistance of HCV to IFN-alpha. Thus, an ER protein can exist in the cytosol as an unglycosylated species and impair cellular functions.
Collapse
Affiliation(s)
- Nicole Pavio
- Howard Hughes Medical Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | | | |
Collapse
|
171
|
Wellnitz S, Klumpp B, Barth H, Ito S, Depla E, Dubuisson J, Blum HE, Baumert TF. Binding of hepatitis C virus-like particles derived from infectious clone H77C to defined human cell lines. J Virol 2002; 76:1181-93. [PMID: 11773394 PMCID: PMC135804 DOI: 10.1128/jvi.76.3.1181-1193.2002] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) is a leading cause of chronic hepatitis in the world. The study of viral entry and infection has been hampered by the inability to efficiently propagate the virus in cultured cells and the lack of a small-animal model. Recent studies have shown that in insect cells, the HCV structural proteins assemble into HCV-like particles (HCV-LPs) with morphological, biophysical, and antigenic properties similar to those of putative virions isolated from HCV-infected humans. In this study, we used HCV-LPs derived from infectious clone H77C as a tool to examine virus-cell interactions. The binding of partially purified particles to human cell lines was analyzed by fluorescence-activated cell sorting with defined monoclonal antibodies to envelope glycoprotein E2. HCV-LPs demonstrated dose-dependent and saturable binding to defined human lymphoma and hepatoma cell lines but not to mouse cell lines. Binding could be inhibited by monoclonal anti-E2 antibodies, indicating that the HCV-LP-cell interaction was mediated by envelope glycoprotein E2. Binding appeared to be CD81 independent and did not correlate with low-density lipoprotein receptor expression. Heat denaturation of HCV-LPs drastically reduced binding, indicating that the interaction of HCV-LPs with target cells was dependent on the proper conformation of the particles. In conclusion, our data demonstrate that insect cell-derived HCV-LPs bind specifically to defined human cell lines. Since the envelope proteins of HCV-LPs are presumably presented in a virion-like conformation, the binding of HCV-LPs to target cells may allow the study of virus-host cell interactions, including the isolation of HCV receptor candidates and antibody-mediated neutralization of binding.
Collapse
Affiliation(s)
- Sabine Wellnitz
- Department of Medicine II, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
172
|
Charloteaux B, Lins L, Moereels H, Brasseur R. Analysis of the C-terminal membrane anchor domains of hepatitis C virus glycoproteins E1 and E2: toward a topological model. J Virol 2002; 76:1944-58. [PMID: 11799189 PMCID: PMC135876 DOI: 10.1128/jvi.76.4.1944-1958.2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The hepatitis C virus (HCV) glycoproteins E1 and E2 should be anchored in the viral membrane by their C-terminal domains. During synthesis, they are translocated to the endoplasmic reticulum (ER) lumen where they remain. The 31 C-terminal residues of the E1 protein and the 29 C-terminal residues of the E2 protein are implicated in the ER retention. Moreover, the E1 and E2 C termini are implicated in E1-E2 heterodimerization. We studied the E1 and E2 C-terminal sequences of 25 HCV strains in silico using molecular modeling techniques. We conclude that both C-terminal domains should adopt a similar and peculiar configuration: one amphipathic alpha-helix followed by a pair of transmembrane beta-strands. Several three-dimensional (3-D) models were generated. After energy minimization, their ability to interact with membranes was studied using the molecular hydrophobicity potentials calculation and the IMPALA procedure. The latter simulates interactions with a membrane by a Monte Carlo minimization of energy. These methods suggest that the beta-hairpins could anchor the glycoproteins in the ER membrane at least transiently. Anchoring could be stabilized by the adsorption of the nearby amphipathic alpha-helices at the membrane surface. The 3-D models correlate with experimental results which indicate that the E1-E2 transmembrane domains are involved in the heterodimerization and have ER retention properties.
Collapse
Affiliation(s)
- Benoit Charloteaux
- Centre de Biophysique Moléculaire Numérique, Faculté Universitaire des Sciences Agronomiques de Gembloux, B-5030 Gembloux, Belgium
| | | | | | | |
Collapse
|
173
|
Duvet S, Op De Beeck A, Cocquerel L, Wychowski C, Cacan R, Dubuisson J. Glycosylation of the hepatitis C virus envelope protein E1 occurs posttranslationally in a mannosylphosphoryldolichol-deficient CHO mutant cell line. Glycobiology 2002; 12:95-101. [PMID: 11886842 DOI: 10.1093/glycob/12.2.95] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The addition of N-linked glycans to a protein is catalyzed by oligosaccharyltransferase, an enzyme closely associated with the translocon. N-glycans are believed to be transferred as the protein is being synthesized and cotranslationally translocated in the lumen of the endoplasmic reticulum. We used a mannosylphosphoryldolichol-deficient Chinese hamster ovary mutant cell line (B3F7 cells) to study the temporal regulation of N-linked core glycosylation of hepatitis C virus envelope protein E1. In this cell line, truncated Glc(3)Man(5)GlcNAc(2) oligosaccharides are transferred onto nascent proteins. Pulse-chase analyses of E1 expressed in B3F7 cells show that the N-glycosylation sites of E1 are slowly occupied until up to 1 h after protein translation is completed. This posttranslational glycosylation of E1 indicates that the oligosaccharyltransferase has access to this protein in the lumen of the endoplasmic reticulum for at least 1 h after translation is completed. Comparisons with the N-glycosylation of other proteins expressed in B3F7 cells indicate that the posttranslational glycosylation of E1 is likely due to specific folding features of this acceptor protein.
Collapse
Affiliation(s)
- Sandrine Duvet
- CNRS-UMR 8576/USTL, 59655 Villeneuve d'Ascq Cedex, France
| | | | | | | | | | | |
Collapse
|
174
|
Eckels DD, Bian T, Gill JC, Sønderstrup G. Epitopes of the NS3 protein of hepatitis C virus: recognition in HLA-DR4 transgenic mice. Immunol Cell Biol 2002; 80:106-12. [PMID: 11869368 DOI: 10.1046/j.1440-1711.2002.01053.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hepatitis C virus (HCV) infects more than 180 million of the world's population and causes a persistent infection that over decades can result in cirrhosis and hepatocellular carcinoma. Treatment is only partially effective and control is likely only with the development of effective vaccines. Currently, only chimpanzees can be infected with HCV and alternative animal and tissue culture models are badly needed. We have used mice transgenic for HLA-DR and human CD4 to analyse the specificity of murine responses to the HCV NS3 antigen in an effort to determine whether the epitopes recognized correspond to those recognized by human T cells. Indeed, determinants mapped in transgenic mice overlap with those in a patient exposed to HCV through infection. This result provides hope that such an animal model may be a useful tool with which to analyse particular aspects of immune responses to HCV in vivo.
Collapse
Affiliation(s)
- David D Eckels
- Blood Research Institute, The Blood Center, Milwaukee, Wisconsin 53201-2178, USA.
| | | | | | | |
Collapse
|
175
|
Dwek RA, Butters TD, Platt FM, Zitzmann N. Targeting glycosylation as a therapeutic approach. Nat Rev Drug Discov 2002; 1:65-75. [PMID: 12119611 DOI: 10.1038/nrd708] [Citation(s) in RCA: 339] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Increased understanding of the role of protein- and lipid-linked carbohydrates in a wide range of biological processes has led to interest in drugs that target the enzymes involved in glycosylation. But given the importance of carbohydrates in fundamental cellular processes such as protein folding, therapeutic strategies that modulate, rather than ablate, the activity of enzymes involved in glycosylation are likely to be a necessity. Two such approaches that use imino sugars to affect glycosylation enzymes now show considerable promise in the treatment of viral infections, such as hepatitis B, and glucosphingolipid storage disorders, such as Gaucher disease.
Collapse
Affiliation(s)
- Raymond A Dwek
- Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | | | | | | |
Collapse
|
176
|
Quinn ER, Chan CH, Hadlock KG, Foung SK, Flint M, Levy S. The B-cell receptor of a hepatitis C virus (HCV)-associated non-Hodgkin lymphoma binds the viral E2 envelope protein, implicating HCV in lymphomagenesis. Blood 2001; 98:3745-9. [PMID: 11739181 DOI: 10.1182/blood.v98.13.3745] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) infection is associated with extrahepatic B-cell lymphoproliferative disorders. To determine whether a viral antigen drives this B-cell expansion, the B-cell receptors were cloned from HCV-associated lymphomas and were expressed as soluble immunoglobulins. The rescued immunoglobulins were then tested for their ability to bind the HCV-E2 envelope glycoprotein, an antigen that was previously implicated in the pathogenesis of HCV-associated B-cell diseases. One of 2 lymphoma immunoglobulin test cases bound the E2 protein in a manner identical to a bona fide human anti-E2 antibody. Moreover, it bound E2 from multiple viral genotypes, suggesting reactivity with a conserved E2 epitope. These findings support the hypothesis that some HCV-associated lymphomas originate from B cells that were initially activated by the HCV-E2 protein and might explain the association between HCV infection and some B-cell lymphoproliferative disorders.
Collapse
Affiliation(s)
- E R Quinn
- Department of Medicine, Division of Oncology, Stanford University Medical Center, Stanford, CA 94305-5151, USA
| | | | | | | | | | | |
Collapse
|
177
|
Op De Beeck A, Cocquerel L, Dubuisson J. Biogenesis of hepatitis C virus envelope glycoproteins. J Gen Virol 2001; 82:2589-2595. [PMID: 11602769 DOI: 10.1099/0022-1317-82-11-2589] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Anne Op De Beeck
- Equipe Hépatite C, CNRS-FRE2369, IBL/Institut Pasteur de Lille, 1 rue Calmette, BP 447, 59021 Lille cedex, France1
| | - Laurence Cocquerel
- Equipe Hépatite C, CNRS-FRE2369, IBL/Institut Pasteur de Lille, 1 rue Calmette, BP 447, 59021 Lille cedex, France1
| | - Jean Dubuisson
- Equipe Hépatite C, CNRS-FRE2369, IBL/Institut Pasteur de Lille, 1 rue Calmette, BP 447, 59021 Lille cedex, France1
| |
Collapse
|
178
|
Abstract
Since the genomic sequence of HCV was determined, significant progress has been made towards understanding the functions of the HCV-encoded proteins, despite the lack of an efficient in-vitro replication system or convenient small-animal model. The identity of the receptor for HCV remains elusive, however. Low-density lipoprotein receptor, CD81, and GAGs may all act as receptors for HCV, either sequentially or by different viral quasispecies. Recent work using pseudotypic VSV bearing E1 or E2 chimeric molecules showed that entry of the E1 pseudotype can be inhibited by recombinant LDLr, whereas the E2 pseudotype is more sensitive to inhibition by recombinant CD81 or heparin. These results suggest that E1 and E2 may be responsible for interactions with different cellular molecules. It is also conceivable that additional, yet unidentified, cellular proteins are involved in viral binding and entry. Intriguingly, the reports of HCV-RNA associated with PBMC suggest that HCV infection may not be restricted to hepatocytes. Thus, separate reservoirs of virus may exist, and HCV may use different receptors to access these different cell types.
Collapse
Affiliation(s)
- M Flint
- Division of Oncology, Department of Medicine, Stanford University Medical Center, Stanford, California, USA
| | | | | |
Collapse
|
179
|
Abstract
Hepatitis C virus (HCV) binds to platelets in chronically infected patients where free HCV constitutes only about 5% of total circulating virus. Free HCV preferentially binds to human mononuclear cell lines but free and complexed virus binds equally to platelets. The extent of free HCV binding to human Molt-4 T cells (which express CD81) and to human promonocytic U937 cells or to platelets (which do not express CD81) was similar. The binding of free HCV to the cell lines was saturated at a virus dose of 1 IU HCV RNA per cell but binding to platelets was not saturable. Human anti-HCV IgG, but not anti-CD81, markedly inhibited HCV binding to target cells in a dose-dependent manner. Human antibodies to HCV hypervariable region 1 of E2 glycoprotein partially inhibited viral binding to target cells. Recombinant E2 also inhibited viral binding to target cells in a dose-dependent manner, with the efficacy of this decreasing in the rank order of Molt-4 cells more than U937 cells more than platelets. In contrast to HCV, recombinant E2 bound to Molt-4 cells to an extent markedly greater than that apparent with U937 cells or platelets. These results suggest that the binding of HCV to blood cells is mediated by multiple cell surface receptors and that recombinant E2 binding may not be representative of the interaction of the intact virus with target cells.
Collapse
|
180
|
Hamaia S, Li C, Allain JP. The dynamics of hepatitis C virus binding to platelets and 2 mononuclear cell lines. Blood 2001; 98:2293-300. [PMID: 11588022 DOI: 10.1182/blood.v98.8.2293] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Hepatitis C virus (HCV) binds to platelets in chronically infected patients where free HCV constitutes only about 5% of total circulating virus. Free HCV preferentially binds to human mononuclear cell lines but free and complexed virus binds equally to platelets. The extent of free HCV binding to human Molt-4 T cells (which express CD81) and to human promonocytic U937 cells or to platelets (which do not express CD81) was similar. The binding of free HCV to the cell lines was saturated at a virus dose of 1 IU HCV RNA per cell but binding to platelets was not saturable. Human anti-HCV IgG, but not anti-CD81, markedly inhibited HCV binding to target cells in a dose-dependent manner. Human antibodies to HCV hypervariable region 1 of E2 glycoprotein partially inhibited viral binding to target cells. Recombinant E2 also inhibited viral binding to target cells in a dose-dependent manner, with the efficacy of this decreasing in the rank order of Molt-4 cells more than U937 cells more than platelets. In contrast to HCV, recombinant E2 bound to Molt-4 cells to an extent markedly greater than that apparent with U937 cells or platelets. These results suggest that the binding of HCV to blood cells is mediated by multiple cell surface receptors and that recombinant E2 binding may not be representative of the interaction of the intact virus with target cells.
Collapse
Affiliation(s)
- S Hamaia
- Division of Transfusion Medicine, Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
181
|
Cerino A, Meola A, Segagni L, Furione M, Marciano S, Triyatni M, Liang TJ, Nicosia A, Mondelli MU. Monoclonal antibodies with broad specificity for hepatitis C virus hypervariable region 1 variants can recognize viral particles. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:3878-86. [PMID: 11564805 DOI: 10.4049/jimmunol.167.7.3878] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The hypervariable region 1 (HVR1) of the E2 protein of hepatitis C virus (HCV) is a highly heterogeneous sequence that is promiscuously recognized by human sera via binding to amino acid residues with conserved physicochemical properties. We generated a panel of mAbs from mice immunized with HVR1 surrogate peptides (mimotopes) affinity-selected with sera from HCV-infected patients from a phage display library. A high number of specific clones was obtained after immunization with a pool of nine mimotopes, and the resulting mAbs were shown to recognize several 16- and 27-mer peptides derived from natural HVR1 sequences isolated from patients with acute and chronic HCV infection, suggesting that HVR1 mimotopes were efficient antigenic and immunogenic mimics of naturally occurring HCV variants. Moreover, most mAbs were shown to bind HVR1 in the context of a complete soluble form of the E2 glycoprotein, indicating recognition of correctly folded HVR1. In addition, a highly promiscuous mAb was able to specifically capture bona fide viral particles (circulating HCV RNA) as well as rHCV-like particles assembled in insect cells expressing structural viral polypeptides derived from an HCV 1a isolate. These findings demonstrate that it is possible to induce a broadly cross-reactive clonal Ab response to multiple HCV variants. In consideration of the potentially important role of HVR1 in virus binding to cellular receptor(s), such a mechanism could be exploited for induction of neutralizing Abs specific for a large repertoire of viral variants.
Collapse
Affiliation(s)
- A Cerino
- Laboratori di Ricerca-Area Infettivologica, IRCCS Policlinico San Matteo, University of Pavia, Via Taramelli 5, 27100 Pavia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Ciccaglione AR, Costantino A, Marcantonio C, Equestre M, Geraci A, Rapicetta M. Mutagenesis of hepatitis C virus E1 protein affects its membrane-permeabilizing activity. J Gen Virol 2001; 82:2243-2250. [PMID: 11514735 DOI: 10.1099/0022-1317-82-9-2243] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The E1 glycoprotein of hepatitis C virus is a transmembrane glycoprotein with a C-terminal anchor domain. When expressed in Escherichia coli, E1 induces a change in membrane permeability that is toxic to the bacterial cell. The C-terminal hydrophobic region (aa 331-383) of E1 is mainly responsible for membrane association and for inducing changes in membrane permeability. These observed changes are similar to those produced in E. coli by influenza virus M2, human immunodeficiency virus gp41 and poliovirus 3AB proteins, whose hydrophobic domains are thought to cause pore formation in biological membranes. To further characterize the activity of E1 at a molecular level, the membrane-permeabilizing ability of a second internal hydrophobic region (aa 262-291) was examined by expressing different deletion mutants of E1 in an E. coli system that is widely used for analysing membrane-active proteins from other animal viruses. Moreover, highly conserved amino acids in the C-terminal hydrophobic region were mutated to identify residues that are critical for inducing changes in membrane permeability. Analysis of cell growth curves of recombinant cultures and membrane-permeability assays revealed that synthesis of this fragment increased the flux of small compounds through the membrane and caused progressive cell lysis, suggesting that this domain has membrane-active properties. Furthermore, analysis of C-terminal mutants indicated that the conserved amino acids Arg(339), Trp(368) and Lys(370) play a critical role in protein function, as both cell lysis and changes in membrane permeability induced by the wild-type clone could be blocked by substitutions in these positions.
Collapse
Affiliation(s)
- A R Ciccaglione
- Laboratory of Virology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy1
| | - A Costantino
- Laboratory of Virology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy1
| | - C Marcantonio
- Laboratory of Virology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy1
| | - M Equestre
- Laboratory of Virology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy1
| | - A Geraci
- Laboratory of Virology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy1
| | - M Rapicetta
- Laboratory of Virology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy1
| |
Collapse
|
183
|
Nam JH, Bukh J, Purcell RH, Emerson SU. High-level expression of hepatitis C virus (HCV) structural proteins by a chimeric HCV/BVDV genome propagated as a BVDV pseudotype. J Virol Methods 2001; 97:113-23. [PMID: 11483222 DOI: 10.1016/s0166-0934(01)00339-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A chimeric cDNA genome was constructed in which the core, E1 and E2 genes of hepatitis C virus (HCV) replaced the core, E(rns), E1 and E2 genes of bovine viral diarrhea virus (BVDV). High levels of HCV structural proteins were expressed in a small number of human or bovine cells following transfection with chimeric RNA. However, in one cell line, bovine embryonic trachea cells [EBTr(A)], the number of cells expressing HCV proteins increased to greater than 70% following serial passage of culture medium. These cells were persistently infected with a non-cytopathogenic BVDV helper virus. In these cells, the chimeric genome was packaged into infectious particles that accumulated in the culture medium at a titer as high as 10(7)-10(9) genome equivalents per ml. The virus particles were pseudotypes, because they were neutralized by anti-BVDV but not by anti-HCV.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Blotting, Western
- Cattle
- DNA, Recombinant/genetics
- Diarrhea Viruses, Bovine Viral/genetics
- Diarrhea Viruses, Bovine Viral/immunology
- Diarrhea Viruses, Bovine Viral/physiology
- Gene Expression Regulation, Viral
- Genetic Engineering
- Genome, Viral
- Helper Viruses/genetics
- Helper Viruses/physiology
- Hepacivirus/genetics
- Hepacivirus/physiology
- Humans
- Immune Sera/immunology
- Microscopy, Fluorescence
- Radioimmunoprecipitation Assay
- Transfection
- Tumor Cells, Cultured
- Viral Structural Proteins/biosynthesis
- Viral Structural Proteins/genetics
- Virus Replication
Collapse
Affiliation(s)
- J H Nam
- Hepatitis Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0740, USA
| | | | | | | |
Collapse
|
184
|
Maillard P, Krawczynski K, Nitkiewicz J, Bronnert C, Sidorkiewicz M, Gounon P, Dubuisson J, Faure G, Crainic R, Budkowska A. Nonenveloped nucleocapsids of hepatitis C virus in the serum of infected patients. J Virol 2001; 75:8240-50. [PMID: 11483769 PMCID: PMC115068 DOI: 10.1128/jvi.75.17.8240-8250.2001] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
One of the characteristics of hepatitis C virus (HCV) is the high incidence of persistent infection. HCV core protein, in addition to forming the viral nucleocapsid, has multiple regulatory functions in host-cell transcription, apoptosis, cell transformation, and lipid metabolism and may play a role in suppressing host immune response. This protein is thought to be present in the bloodstream of the infected host as the nucleocapsid of infectious, enveloped virions. This study provides evidence that viral particles with the physicochemical, morphological, and antigenic properties of nonenveloped HCV nucleocapsids are present in the plasma of HCV-infected individuals. These particles have a buoyant density of 1.32 to 1.34 g/ml in CsCl, are heterogeneous in size (with predominance of particles 38 to 43 or 54 to 62 nm in diameter on electron microscopy), and express on their surface epitopes located in amino acids 24 to 68 of the core protein. Similar nucleocapsid-like particles are also produced in insect cells infected with recombinant baculovirus bearing cDNA for structural HCV proteins. HCV core particles isolated from plasma were used to generate anti-core monoclonal antibodies (MAbs). These MAbs stained HCV core in the cytoplasm of hepatocytes from experimentally infected chimpanzees in the acute phase of the infection. These chimpanzees had concomitantly HCV core antigen in serum. These findings suggest that overproduction of nonenveloped nucleocapsids and their release into the bloodstream are properties of HCV morphogenesis. The presence of circulating cores in serum and accumulation of the core protein in liver cells during the early phase of infection may contribute to the persistence of HCV and its many immunopathological effects in the infected host.
Collapse
Affiliation(s)
- P Maillard
- Epidémiolgie Moléculaire des Entérovirus, Institut Pasteur, 75724 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Owsianka A, Clayton RF, Loomis-Price LD, McKeating JA, Patel AH. Functional analysis of hepatitis C virus E2 glycoproteins and virus-like particles reveals structural dissimilarities between different forms of E2. J Gen Virol 2001; 82:1877-1883. [PMID: 11457993 DOI: 10.1099/0022-1317-82-8-1877] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Structure-function analysis of the hepatitis C virus (HCV) envelope glycoproteins, E1 and E2, has been difficult due to the unavailability of HCV virions. Truncated soluble forms of E2 have been used as models to study virus interaction with the putative HCV receptor CD81, but they may not fully mimic E2 structures on the virion. Here, we compared the CD81-binding characteristics of truncated E2 (E2(660)) and full-length (FL) E1E2 complex expressed in mammalian cells, and of HCV virus-like particles (VLPs) generated in insect cells. All three glycoprotein forms interacted with human CD81 in an in vitro binding assay, allowing us to test a panel of well-characterized anti-E2 monoclonal antibodies (MAbs) for their ability to inhibit the glycoprotein-CD81 interaction. MAbs specific for E2 amino acid (aa) regions 396-407, 412-423 and 528-535 blocked binding to CD81 of all antigens tested. However, MAbs specific for regions 432-443, 436-443 and 436-447 inhibited the interaction of VLPs, but not of E2(660) or the FL E1E2 complex with CD81, indicating the existence of structural differences amongst the E2 forms. These findings underscore the need to carefully select an appropriate ligand for structure-function analysis.
Collapse
Affiliation(s)
- Ania Owsianka
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK1
| | - Reginald F Clayton
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK1
| | | | - Jane A McKeating
- University of Reading, School of Animal & Microbial Sciences, PO Box 228, Reading, UK3
| | - Arvind H Patel
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK1
| |
Collapse
|
186
|
Matsuura Y, Tani H, Suzuki K, Kimura-Someya T, Suzuki R, Aizaki H, Ishii K, Moriishi K, Robison CS, Whitt MA, Miyamura T. Characterization of pseudotype VSV possessing HCV envelope proteins. Virology 2001; 286:263-75. [PMID: 11485395 DOI: 10.1006/viro.2001.0971] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The genome of hepatitis C virus (HCV) encodes two envelope glycoproteins (E1 and E2), which are thought to be responsible for receptor binding and membrane fusion resulting in virus penetration. To investigate cell surface determinants important for HCV infection, we used a recombinant vesicular stomatitis virus (VSV) in which the glycoprotein gene was replaced with a reporter gene encoding green fluorescent protein (GFP) and produced HCV-VSV pseudotypes possessing chimeric HCV E1 or E2 glycoproteins, either individually or together. The infectivity of the pseudotypes was determined by quantifying the number of cells expressing the GFP reporter gene. Pseudotypes that contained both of the chimeric E1 and E2 proteins exhibited 10--20 times higher infectivity on HepG2 cells than the viruses possessing either of the glycoproteins individually. These results indicated that both E1 and E2 envelope proteins are required for maximal infection by HCV. The infectivity of the pseudotype virus was not neutralized by anti-VSV polyclonal antibodies. Bovine lactoferrin specifically inhibited the infection of the pseudotype virus. Treatment of HepG2 cells with Pronase, heparinase, and heparitinase but not with phospholipase C and sodium periodate reduced the infectivity. Therefore, cell surface proteins and some glycosaminoglycans play an important role in binding or entry of HCV into susceptible cells. The pseudotype VSV possessing the chimeric HCV glycoproteins might offer an efficient tool for future research on cellular receptors for HCV and for the development of prophylactics and therapeutics for hepatitis C.
Collapse
Affiliation(s)
- Y Matsuura
- Research Center for Emerging Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Cocquerel L, Meunier JC, Op de Beeck A, Bonte D, Wychowski C, Dubuisson J. Coexpression of hepatitis C virus envelope proteins E1 and E2 in cis improves the stability of membrane insertion of E2. J Gen Virol 2001; 82:1629-1635. [PMID: 11413374 DOI: 10.1099/0022-1317-82-7-1629] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hepatitis C virus (HCV) genome encodes two envelope glycoproteins, E1 and E2. These proteins contain a large N-terminal ectodomain, and are anchored into membranes by their C-terminal transmembrane domain (TMD). The TMDs of HCV envelope proteins are multifunctional. In addition to their role as membrane anchors, they possess a signal sequence function in their C-terminal half, and play a major role in subcellular localization and assembly of these envelope proteins. In this work, the expression of full-length E2 led to secretion of a proportion of this protein, which is likely to be due to inefficient membrane insertion of a fraction of E2 expressed alone. However, when E1 and E2 were coexpressed from the same polyprotein, E2 was not secreted and remained tightly associated with membranes, suggesting that an early interaction between the TMDs of HCV envelope proteins improves the stability of membrane insertion of E2. These results reinforce the hypothesis that the TMDs of E1 and E2 are major factors in the assembly of the HCV envelope glycoprotein complex.
Collapse
Affiliation(s)
- Laurence Cocquerel
- CNRS-FRE2369, Equipe Hépatite C, IBL/Institut Pasteur de Lille, 1 rue du Professeur Calmette, BP447, 59021 Lille Cedex, France1
| | - Jean-Christophe Meunier
- CNRS-FRE2369, Equipe Hépatite C, IBL/Institut Pasteur de Lille, 1 rue du Professeur Calmette, BP447, 59021 Lille Cedex, France1
| | - Anne Op de Beeck
- CNRS-FRE2369, Equipe Hépatite C, IBL/Institut Pasteur de Lille, 1 rue du Professeur Calmette, BP447, 59021 Lille Cedex, France1
| | - Dorine Bonte
- CNRS-FRE2369, Equipe Hépatite C, IBL/Institut Pasteur de Lille, 1 rue du Professeur Calmette, BP447, 59021 Lille Cedex, France1
| | - Czeslaw Wychowski
- CNRS-FRE2369, Equipe Hépatite C, IBL/Institut Pasteur de Lille, 1 rue du Professeur Calmette, BP447, 59021 Lille Cedex, France1
| | - Jean Dubuisson
- CNRS-FRE2369, Equipe Hépatite C, IBL/Institut Pasteur de Lille, 1 rue du Professeur Calmette, BP447, 59021 Lille Cedex, France1
| |
Collapse
|
188
|
Kato N. Genome of human hepatitis C virus (HCV): gene organization, sequence diversity, and variation. MICROBIAL & COMPARATIVE GENOMICS 2001; 5:129-51. [PMID: 11252351 DOI: 10.1089/omi.1.2000.5.129] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hepatitis C virus (HCV) is the major etiologic agent of non-A, non-B hepatitis. HCV infection frequently causes chronic hepatitis, which progresses to liver cirrhosis and hepatocellular carcinoma. Since the discovery of HCV in 1989, a large number of genetic analyses of HCV have been reported, and the viral genome structure has been elucidated. An enveloped virus, HCV belongs to the family Flaviviridae, whose genome consists of a positive-stranded RNA molecule of about 9.6 kilobases and encodes a large polyprotein precursor (about 3000 amino acids). This precursor protein is cleaved by the host and viral proteinase to generate at least 10 proteins: the core, envelope 1 (E1), E2, p7, nonstructural (NS) 2, NS3, NS4A, NS4B, NS5A, and NS5B. These HCV proteins not only function in viral replication but also affect a variety of cellular functions. HCV has been found to have remarkable genetic heterogeneity. To date, more than 30 HCV genotypes have been identified worldwide. Furthermore, HCV may show quasispecies distribution in an infected individual. These findings may have important implications in diagnosis, pathogenesis, treatment, and vaccine development. The hypervariable region 1 found within the envelope E2 protein was shown to be a major site for the genetic evolution of HCV after the onset of hepatitis, and might be involved in escape from the host immunesurveillance system.
Collapse
Affiliation(s)
- N Kato
- Department of Molecular Biology, Institute of Cellular and Molecular Biology, Okayama University Medical School, Japan.
| |
Collapse
|
189
|
Seong YR, Choi S, Lim JS, Lee CH, Lee CK, Im DS. Immunogenicity of the E1E2 proteins of hepatitis C virus expressed by recombinant adenoviruses. Vaccine 2001; 19:2955-64. [PMID: 11282207 DOI: 10.1016/s0264-410x(00)00534-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The E1 and E2 proteins of hepatitis C virus (HCV) are believed to be the viral envelope glycoproteins that are major candidate antigens for HCV vaccine development. We reported previously that the replication-competent recombinant adenovirus encoding core-E1-E2 genes of HCV (Ad/HCV) produces serologically reactive E1 and E2 proteins forming a heterodimer in substantial amounts. Here, we examined immunogenicity of the E1E2 proteins copurified from HeLa cells infected with Ad/HCV virus in mice. Furthermore, we constructed a replication-defective recombinant adenovirus encoding the core-E1-E2 genes of HCV (Ad.CMV.HCV) and examined immunogenicity of the virus in mice. The mice immunized intraperitoneally with the copurified E1E2 proteins induced mainly antibodies to E2, but not to E1 by Western blot analysis. The sera of mice immunized with the E1E2 inhibited the binding of E2 protein to the major extracellular loop of human CD81. E2-specific cytotoxic T cells (CTLs), but not antibodies to the E1E2 antigens were induced in the mice intramuscularly immunized with Ad.CMV.HCV virus. When immunized with both Ad.CMV.HCV virus and the E1E2, mice elicited E2-specific CTLs and antibodies to the E1E2 antigens. The results suggest that immunization of Ad.CMV.HCV virus combined with E2 protein is an effective modality to induce humoral as well as cellular immune response to E2 antigen.
Collapse
Affiliation(s)
- Y R Seong
- Cell Biology Laboratory, Korea Research Institute of Bioscience and Biotechnology, Yusong PO Box 115, Taejon 305-600, South Korea
| | | | | | | | | | | |
Collapse
|
190
|
Branza-Nichita N, Durantel D, Carrouée-Durantel S, Dwek RA, Zitzmann N. Antiviral effect of N-butyldeoxynojirimycin against bovine viral diarrhea virus correlates with misfolding of E2 envelope proteins and impairment of their association into E1-E2 heterodimers. J Virol 2001; 75:3527-36. [PMID: 11264342 PMCID: PMC114844 DOI: 10.1128/jvi.75.8.3527-3536.2001] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The iminosugar N-butyldeoxynojirimycin (NB-DNJ), an endoplasmic reticulum alpha-glucosidase inhibitor, has an antiviral effect against bovine viral diarrhea virus (BVDV). In this report, we investigate the molecular mechanism of this inhibition by studying the folding pathway of BVDV envelope glycoproteins in the presence and absence of NB-DNJ. Our results show that, while the disulfide-dependent folding of E2 glycoprotein occurs rapidly (2.5 min), the folding of E1 occurs slowly (30 min). Both BVDV envelope glycoproteins associate rapidly with calnexin and dissociate with different kinetics. The release of E1 from the interaction with calnexin coincides with the beginning of E1 and E2 association into disulfide-linked heterodimers. In the presence of NB-DNJ, the interaction of E1 and E2 with calnexin is prevented, leading to misfolding of the envelope glycoproteins and inefficient formation of E1-E2 heterodimers. The degree of misfolding and the lack of association of E1 and E2 into disulfide-linked complexes in the presence of NB-DNJ correlate with the dose-dependent antiviral effect observed for this iminosugar.
Collapse
Affiliation(s)
- N Branza-Nichita
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | | | |
Collapse
|
191
|
Martire G, Viola A, Iodice L, Lotti LV, Gradini R, Bonatti S. Hepatitis C virus structural proteins reside in the endoplasmic reticulum as well as in the intermediate compartment/cis-Golgi complex region of stably transfected cells. Virology 2001; 280:176-82. [PMID: 11162832 DOI: 10.1006/viro.2000.0733] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The intracellular localization of hepatitis C virus structural proteins was analyzed by confocal immunofluorescence microscopy, cell fractionation, and immunoelectron microscopy in stably transfected cells that do not overexpress the viral proteins. The results strongly suggest that at steady state the structural proteins reside not only in the endoplasmic reticulum but also in the intermediate compartment and cis-Golgi complex region. By analogy with other viral systems, this finding raises the possibility that the intermediate compartment and cis-Golgi complex play a role in the assembly and budding of hepatitis C virus.
Collapse
Affiliation(s)
- G Martire
- Facoltà di Scienze M.F.N., Università del Molise, Isernia, Italy
| | | | | | | | | | | |
Collapse
|
192
|
Patel J, Patel AH, McLauchlan J. The transmembrane domain of the hepatitis C virus E2 glycoprotein is required for correct folding of the E1 glycoprotein and native complex formation. Virology 2001; 279:58-68. [PMID: 11145889 DOI: 10.1006/viro.2000.0693] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hepatitis C virus (HCV) encodes two glycoproteins, E1 and E2, that interact to form both native and aggregated complexes in tissue culture cells. In native complexes, E1 and E2 are associated by noncovalent interactions and such complexes are considered to constitute the authentic interactions between the proteins. By contrast, the proteins are linked by covalent, disulfide bonds in aggregated complexes. From studies with a mutant in which cysteine residues in E1 have been substituted with other amino acids, we show that E1 continues to associate with E2, although the migratory patterns of the proteins on gels are consistent with the formation of aggregated complexes. Therefore, such complexes can be stabilized by noncovalent as well as covalent interactions. To further examine the requirements for native complex formation, segments of foreign glycoproteins were linked to regions of E2. Our data provide direct evidence for the requirement of C-terminal sequences in E2 that contain the transmembrane domain to permit oxidation of E1 and assembly of a native complex. By contrast, native complexes and oxidized E1 are not found in the presence of chimeric proteins containing the E2 ectodomain. These data suggest that interaction of E1 with the E2 transmembrane domain is critical for native complex formation.
Collapse
Affiliation(s)
- J Patel
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow, G11 5JR, United Kingdom
| | | | | |
Collapse
|
193
|
Patel AH, Wood J, Penin F, Dubuisson J, McKeating JA. Construction and characterization of chimeric hepatitis C virus E2 glycoproteins: analysis of regions critical for glycoprotein aggregation and CD81 binding. J Gen Virol 2000; 81:2873-2883. [PMID: 11086118 DOI: 10.1099/0022-1317-81-12-2873] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We compared the ability of two closely related truncated E2 glycoproteins (E2(660)) derived from hepatitis C virus (HCV) genotype 1a strains Glasgow (Gla) and H77c to bind a panel of conformation-dependent monoclonal antibodies (MAbs) and CD81. In contrast to H77c, Gla E2(660) formed disulfide-linked high molecular mass aggregates and failed to react with conformation-dependent MAbs and CD81. To delineate amino acid (aa) regions associated with protein aggregation and CD81 binding, several Gla-H77c E2(660) chimeric glycoproteins were constructed. Chimeras C1, C2 and C6, carrying aa 525-660 of Gla E2(660), produced disulfide-linked aggregates and failed to bind CD81 and conformation-dependent MAbs, suggesting that amino acids within this region are responsible for protein misfolding. The presence of Gla hypervariable region 1 (aa 384-406) on H77 E2(660), chimera C4, had no effect on protein folding or CD81 binding. Chimeras C3 and C5, carrying aa 384-524 or 407-524 of Gla E2(660), respectively, were recognized by conformation-dependent MAbs and yet failed to bind CD81, suggesting that amino acids in region 407-524 are important in modulating CD81 interaction without affecting antigen folding. Comparison of Gla and H77c E2(660) aa sequences with those of genotype 1a and divergent genotypes identified a number of variant amino acids, including two putative N-linked glycosylation sites at positions 476 and 532. However, introduction of G476N-G478S and/or D532N in Gla E2(660) had no effect on antigenicity or aggregation.
Collapse
Affiliation(s)
- Arvind H Patel
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK1
| | - Jonny Wood
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK1
| | - Francois Penin
- Institut de Biologie et Chimie des Protéines, UPR 412 CNRS, 7 Passage du Vercors, F-69367 Lyon Cedex 07, France2
| | - Jean Dubuisson
- CNRS-UMR8526, IBL/Institut Pasteur de Lille, 59021 Lille Cedex, France3
| | - J A McKeating
- University of Reading, School of Animal & Microbial Sciences, PO Box 228, Reading, UK4
| |
Collapse
|
194
|
Meyer K, Basu A, Ray R. Functional features of hepatitis C virus glycoproteins for pseudotype virus entry into mammalian cells. Virology 2000; 276:214-26. [PMID: 11022009 DOI: 10.1006/viro.2000.0547] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have previously reported the generation of pseudotype virus from chimeric gene constructs encoding the ectodomain of the E1 or E2 glycoprotein of hepatitis C virus (HCV) genotype 1a appended to the trans membrane domain and cytoplasmic tail of the vesicular stomatitis virus (VSV) G protein. Sera derived from chimpanzees immunized with homologous HCV glycoproteins neutralized pseudotype virus infectivity (L. M. Lagging et al., J. Virol. 72, 3539-3546, 1998). We have now extended this study to further understand the role of HCV glycoproteins in pseudotype virus entry. Although a number of mammalian epithelial cells were susceptible to VSV/HCV pseudotype virus infection, plaquing efficiency was different among host cell lines. Pseudotype virus adsorption at low temperature decreased plaque numbers. Treatment of E1 or E2 pseudotype virus in media between pH 5 and 8 before adsorption on cells did not significantly reduce plaque numbers. On the other hand, treatment of cells with lysosomotropic agents or inhibitors of vacuolar H(+) ATPases had an inhibitory role on virus entry. Concanavalin A, a plant lectin, exhibited neutralization of both HCV E1 and E2 pseudotype virus infectivity. However, mannose binding protein, a C-type mammalian lectin, did not neutralize virus in the absence or presence of serum complement. Pseudotype virus infectivity was only partially inhibited by heparin, a highly sulfated glycosaminoglycan, in a saturable manner. Additional studies suggested that low-density lipoprotein receptor related molecules partially inhibit E1 pseudotype virus infectivity, while CD81 related molecules interfere with E2 pseudotype virus infectivity. A further understanding of HCV entry and strategies appropriate for mimicking cell surface molecules may help in the development of new therapeutic modalities against HCV infection.
Collapse
Affiliation(s)
- K Meyer
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
195
|
Op De Beeck A, Montserret R, Duvet S, Cocquerel L, Cacan R, Barberot B, Le Maire M, Penin F, Dubuisson J. The transmembrane domains of hepatitis C virus envelope glycoproteins E1 and E2 play a major role in heterodimerization. J Biol Chem 2000; 275:31428-37. [PMID: 10807921 DOI: 10.1074/jbc.m003003200] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oligomerization of viral envelope proteins is essential to control virus assembly and fusion. The transmembrane domains (TMDs) of hepatitis C virus envelope glycoproteins E1 and E2 have been shown to play multiple functions during the biogenesis of E1E2 heterodimer. This makes them very unique among known transmembrane sequences. In this report, we used alanine scanning insertion mutagenesis in the TMDs of E1 and E2 to examine their role in the assembly of E1E2 heterodimer. Alanine insertion within the center of the TMDs of E1 or E2 or in the N-terminal part of the TMD of E1 dramatically reduced heterodimerization, demonstrating the essential role played by these domains in the assembly of hepatitis C virus envelope glycoproteins. To better understand the alanine scanning data obtained for the TMD of E1 which contains GXXXG motifs, we analyzed by circular dichroism and nuclear magnetic resonance the three-dimensional structure of the E1-(350-370) peptide encompassing the N-terminal sequence of the TMD of E1 involved in heterodimerization. Alanine scanning results and the three-dimensional molecular model we obtained provide the first framework for a molecular level understanding of the mechanism of hepatitis C virus envelope glycoprotein heterodimerization.
Collapse
Affiliation(s)
- A Op De Beeck
- CNRS-UMR8526, IBL/Institut Pasteur de Lille, 59021 Lille Cedex, France, the CNRS-UMR 5086, IBCP, 69367 Lyon Cedex 07, France
| | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Ciccaglione AR, Marcantonio C, Costantino A, Equestre M, Geraci A, Rapicetta M. Expression and membrane association of hepatitis C virus envelope 1 protein. Virus Genes 2000; 21:223-6. [PMID: 11129639 DOI: 10.1023/a:1008147715941] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The expression of hepatitis C virus (HCV) E1 protein is toxic for Escherichia coli cells. For this reason, we have cloned the E1 gene in the pET3a vector and analyzed the inducible expression of the protein in two strains of E. coli characterised by a different level of reduction of basal synthesis. The results indicated that synthesis of E1 was supported only by the BL21(DE3)pLysS strain which provides a tightest control of protein expression before the induction. The BL21(DE3)pLysS cells were then used for the expression of E1 gene, varying at its carboxy terminus in order to retain (E1, aa 192-383) or delete (Elt, aa 192-340) a C-terminal hydrophobic region that may be involved in membrane association. Following cell fractionation, E1 protein was found associated with the membrane fraction. By contrast, the truncated mutant E1t, was identified in the soluble phase suggesting a direct role for the C-terminal domain in E1 membrane association.
Collapse
Affiliation(s)
- A R Ciccaglione
- Laboratory of Virology, Istituto Superiore di Sanitá, Rome, Italy
| | | | | | | | | | | |
Collapse
|
197
|
Allander T, Drakenberg K, Beyene A, Rosa D, Abrignani S, Houghton M, Widell A, Grillner L, Persson MAA. Recombinant human monoclonal antibodies against different conformational epitopes of the E2 envelope glycoprotein of hepatitis C virus that inhibit its interaction with CD81. J Gen Virol 2000; 81:2451-2459. [PMID: 10993933 DOI: 10.1099/0022-1317-81-10-2451] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The antibody response to the envelope proteins of hepatitis C virus (HCV) may play an important role in controlling the infection. To allow molecular analyses of protective antibodies, we isolated human monoclonal antibodies to the E2 envelope glycoprotein of HCV from a combinatorial Fab library established from bone marrow of a chronically HCV-infected patient. Anti-E2 reactive clones were selected using recombinant E2 protein. The bone marrow donor carried HCV genotype 2b, and E2 used for selection was of genotype 1a. The antibody clones were expressed as Fab fragments in E. coli, and as Fab fragments and IgG1 in CHO cells. Seven different antibody clones were characterized, and shown to have high affinity for E2, genotype 1a. Three clones also had high affinity for E2 of genotype 1b. They all bind to conformation-dependent epitopes. Five clones compete for the same or overlapping binding sites, while two bind to one or two other epitopes of E2. Four clones corresponding to the different epitopes were tested as purified IgG1 for blocking the CD81-E2 interaction in vitro; all four were positive at 0.3-0.5 microg/ml. Thus, the present results suggest the existence of at least two conserved epitopes in E2 that mediate inhibition of the E2-CD81 interaction, of which one appeared immunodominant in this donor.
Collapse
Affiliation(s)
- Tobias Allander
- Karolinska Institute, Department of Medicine1 and Department of Laboratory Medicine2, Center for Molecular Medicine (L8:01), Karolinska Hospital, S-171 76 Stockholm, Sweden
| | - Katarina Drakenberg
- Karolinska Institute, Department of Medicine1 and Department of Laboratory Medicine2, Center for Molecular Medicine (L8:01), Karolinska Hospital, S-171 76 Stockholm, Sweden
| | - Aster Beyene
- Karolinska Institute, Department of Medicine1 and Department of Laboratory Medicine2, Center for Molecular Medicine (L8:01), Karolinska Hospital, S-171 76 Stockholm, Sweden
| | | | | | - Michael Houghton
- Chiron Corporation, Department of Virology, Emeryville, CA, USA4
| | - Anders Widell
- Lund University, Department of Clinical Microbiology, Malmö University Hospital, Malmö, Sweden5
| | - Lena Grillner
- Karolinska Institute, Department of Medicine1 and Department of Laboratory Medicine2, Center for Molecular Medicine (L8:01), Karolinska Hospital, S-171 76 Stockholm, Sweden
| | - Mats A A Persson
- Karolinska Institute, Department of Medicine1 and Department of Laboratory Medicine2, Center for Molecular Medicine (L8:01), Karolinska Hospital, S-171 76 Stockholm, Sweden
| |
Collapse
|
198
|
Forns X, Payette PJ, Ma X, Satterfield W, Eder G, Mushahwar IK, Govindarajan S, Davis HL, Emerson SU, Purcell RH, Bukh J. Vaccination of chimpanzees with plasmid DNA encoding the hepatitis C virus (HCV) envelope E2 protein modified the infection after challenge with homologous monoclonal HCV. Hepatology 2000; 32:618-25. [PMID: 10960458 DOI: 10.1053/jhep.2000.9877] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hepatitis C virus (HCV) is an important cause of chronic liver disease worldwide. Development of vaccines to prevent HCV infection, or at least prevent progression to chronicity, is a major goal. In mice and rhesus macaques, a DNA vaccine encoding cell-surface HCV-envelope 2 (E2) glycoprotein stimulated stronger immune responses than a vaccine encoding intracellular E2. Therefore, we used DNA encoding surface-expressed E2 to immunize chimpanzees 2768 and 3001. Chimpanzee 3001 developed anti-E2 after the second immunization and antibodies to hypervariable region 1 (HVR1) after the third immunization. Although chimpanzee 2768 had only low levels of anti-E2 after the third immunization, an anamnestic response occurred after HCV challenge. CTL responses to E2 were not detected before challenge, but a strong response was detected after HCV challenge in chimpanzee 2768. An E2-specific CD4+ response was detected in chimpanzee 2768 before challenge and in both chimpanzees postchallenge. Three weeks after the last immunization, animals were challenged with 100 50% chimpanzee-infectious doses (CID(50)) of homologous monoclonal HCV. As a control, a naive chimpanzee was inoculated with 3 CID(50) of the challenge virus. The vaccine did not generate sterilizing immunity because both vaccinated chimpanzees were infected. However, both vaccinated chimpanzees resolved the infection early whereas the control animal became chronically infected. Compared with the control animal, hepatitis appeared earlier in the course of the infection in both vaccinated chimpanzees. Therefore, DNA vaccine encoding cell surface-expressed E2 did not elicit sterilizing immunity in chimpanzees against challenge with a monoclonal homologous virus, but did appear to modify the infection and might have prevented progression to chronicity.
Collapse
Affiliation(s)
- X Forns
- Hepatitis Viruses, Laboratory of Infectious Diseases, NIAID, National Institutes of Health, Bethesda, MD
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Sobolev BN, Poroikov VV, Olenina LV, Kolesanova EF, Archakov AI. Comparative analysis of amino acid sequences from envelope proteins isolated from different hepatitis C virus variants: possible role of conservative and variable regions. J Viral Hepat 2000; 7:368-74. [PMID: 10971825 DOI: 10.1046/j.1365-2893.2000.00242.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Sequences of the E1 and E2 envelope proteins of hepatitis C virus (HCV) (827 non-identical items) were collected from available sources and aligned. Analysis of the alignment identified regions with different sequence variability. It was found that 33% and 50% of positions within E1 and E2, respectively, were highly conservative. Such conservation can be considered as the minimum for maintaining stability of the three-dimensional structure and function of these proteins. Conserved cysteines in E1 and E2 (eight and 18 residues, respectively) were presumed to form intramolecular disulphide bonds. Both envelope proteins were predicted to contain 14 conservative glycosylation sites. Two additional glycosylation sites were predicted in 58% of E1 and 30% of E2 sequences within the corresponding regions. We describe the positions of six conservative regions in E1 and E2, which have several charged and aromatic residues known to participate frequently in protein-protein recognition. Peculiarities in the amino acid content of conservative fragments and putative differences in glycosylation were considered with regard to antigenic specificity and possible binding to surface structures of target cells. We also analysed the hypervariable region 1 (HVR1), located in the E2 protein. Aligned positions of HVR1 were described in relation to the maintenance of conformational stability and recognition of cell receptors.
Collapse
Affiliation(s)
- B N Sobolev
- Institute of Biomedical Chemistry, Russian Academy of Medical Science, Moscow, Russia
| | | | | | | | | |
Collapse
|
200
|
Forns X, Allander T, Rohwer-Nutter P, Bukh J. Characterization of modified hepatitis C virus E2 proteins expressed on the cell surface. Virology 2000; 274:75-85. [PMID: 10936090 DOI: 10.1006/viro.2000.0419] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The envelope proteins of hepatitis C virus (HCV) are the likely targets of neutralizing antibodies and their molecular and functional characterization is relevant for vaccine development. We previously showed that surface-expressed E2 is a better immunogen than intracellular E2 and, therefore, we were interested in exploring more efficient ways to present E2 protein on the cell surface. We found that E2 targeted to the cell surface by replacement of its transmembrane domain did not bring E1 to the surface although E1 could be expressed independently on the cell surface if its transmembrane domain was similarly replaced. FACS analysis suggested that E2 expressed on the cell surface acquired its native conformation more efficiently when truncated at aa 661 than when truncated at aa 715. The shorter form of truncated E2 better retained the ability to bind the second extracellular loop (EC2) of CD81, the putative HCV receptor. Interestingly, deletion of the hypervariable region 1 (HVR1) did not perceptibly alter E2 structure; cell-surface forms of E2 lacking the HVR1 remained reactive with conformation-sensitive MAbs and were able to bind recombinant EC2 of CD81.
Collapse
Affiliation(s)
- X Forns
- Hepatitis Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|