151
|
Multiscale reconstruction of a synthetic biomimetic micro-niche for enhancing and monitoring the differentiation of stem cells. Biomaterials 2018; 173:87-99. [DOI: 10.1016/j.biomaterials.2018.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/01/2018] [Indexed: 12/14/2022]
|
152
|
Monocarboxylate transporter-1 promotes osteoblast differentiation via suppression of p53, a negative regulator of osteoblast differentiation. Sci Rep 2018; 8:10579. [PMID: 30002387 PMCID: PMC6043614 DOI: 10.1038/s41598-018-28605-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 06/22/2018] [Indexed: 12/18/2022] Open
Abstract
Monocarboxylate transporter-1 (MCT-1) is a transmembrane transporter for monocarboxylates including lactate and pyruvate. Silencing Mct1 by its small interfering RNA (siRNA) suppressed the expression of marker genes for osteoblast differentiation, namely, Tnap, Runx2, and Sp7, induced by BMP-2 in mouse myoblastic C2C12 cells. Mct1 siRNA also suppressed alkaline phosphatase activity, as well as expressions of Tnap and Bglap mRNAs in mouse primary osteoblasts. On the other hand, Mct1 siRNA did not have effects on the Smad1/5 or ERK/JNK pathways in BMP-2-stimulated C2C12 cells, while it up-regulated the mRNA expression of p53 (Trp53) as well as nuclear accumulation of p53 in C2C12 cells in a BMP-2-independent manner. Suppression of osteoblastic differentiation by Mct1 siRNA in C2C12 cells was abolished by co-transfection of Trp53 siRNA. Together, these results suggest that MCT-1 functions as a positive regulator of osteoblast differentiation via suppression of p53.
Collapse
|
153
|
Kida J, Hata K, Nakamura E, Yagi H, Takahata Y, Murakami T, Maeda Y, Nishimura R. Interaction of LEF1 with TAZ is necessary for the osteoblastogenic activity of Wnt3a. Sci Rep 2018; 8:10375. [PMID: 29991769 PMCID: PMC6039525 DOI: 10.1038/s41598-018-28711-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 06/28/2018] [Indexed: 02/07/2023] Open
Abstract
Canonical Wnt signalling plays an important role in osteoblast differentiation and bone formation. However, the molecular mechanisms by which canonical Wnt signalling exerts its osteoblastogenic effect remain elusive. Here, we investigated the relationship between lymphoid enhancer-binding factor 1 (LEF1) and transcriptional co-activator with PDZ-binding motif (TAZ), both of which are transcriptional regulators that mediate canonical Wnt signalling during osteoblast differentiation. Reporter assay and co-immunoprecipitation experiments revealed functional and physical interaction between LEF1 and TAZ. Overexpression of dominant-negative forms of either LEF1 or TAZ markedly inhibited Wnt3a-dependent osteoblast differentiation. Moreover, we found that LEF1 and TAZ formed a transcriptional complex with runt-related transcription factor 2 (Runx2) and that inhibition of LEF1 or TAZ by their dominant-negative forms dramatically suppressed the osteoblastogenic activity of Ruxn2. Additionally, Wnt3a enhanced osteoblast differentiation induced by bone morphogenetic protein 2 (BMP2), which stimulates osteoblast differentiation by regulating Runx2. Collectively, these findings suggest that interaction between LEF1 and TAZ is crucial for the osteoblastogenic activity of Wnt3a and that LEF1 and TAZ contribute to the cooperative effect of Wnt3a and BMP2 on osteoblast differentiation through association with Runx2.
Collapse
Affiliation(s)
- Jumpei Kida
- Department of Molecular & Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Prosthodontics and Oral Rehabilitation, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kenji Hata
- Department of Molecular & Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eriko Nakamura
- Department of Molecular & Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroko Yagi
- Department of Molecular & Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshifumi Takahata
- Department of Molecular & Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomohiko Murakami
- Department of Molecular & Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshinobu Maeda
- Department of Prosthodontics and Oral Rehabilitation, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Riko Nishimura
- Department of Molecular & Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
154
|
Ebrahim N, Mostafa O, El Dosoky RE, Ahmed IA, Saad AS, Mostafa A, Sabry D, Ibrahim KA, Farid AS. Human mesenchymal stem cell-derived extracellular vesicles/estrogen combined therapy safely ameliorates experimentally induced intrauterine adhesions in a female rat model. Stem Cell Res Ther 2018; 9:175. [PMID: 29954457 PMCID: PMC6027762 DOI: 10.1186/s13287-018-0924-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/07/2018] [Accepted: 06/11/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have diverse functions in regulating injury and inflammation through the secretion of extracellular vesicles (EVs). METHODS In this study, we investigated the systemic administration of extracellular vesicles derived from human umbilical cord mesenchymal stem cells (UCMSCs-EVs) as a therapeutic agent for intrauterine adhesions (IUAs) caused by endometrial injury. Additionally, we investigated the therapeutic impact of both UCMSCs-EVs and estrogen either separately or in combination in a rat model. The inflammation, vascularization, proliferation, and extent of fibrosis were assessed by a histopathological and immunohistochemical assessment using transforming growth factor (TGF)-β as a fibrotic marker and vascular endothelial growth factor (VEGF) as a vascular marker. Additionally, quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze the expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1, IL-6 (inflammatory cytokines), CD140b (a marker of endometrial stem cells), and RUNX2 (an antifibrotic factor). Finally, Western blotting was used to evaluate collagen I and β-actin expression. RESULTS The therapeutic groups treated with either UCMSCs-EVs alone or combined with estrogen exhibited a significant decrease in inflammation and fibrosis (TNF-α, TGF-β, IL-1, IL-6, RUNX2, and collagen-I) as well as a significant decrease in vascularization (VEGF) compared with the untreated rats with IUAs. The most significant results were obtained in animals with IUAs that received a combined therapy of UCMSCs-EVs and estrogen. CONCLUSIONS We conclude that the synergistic action of human UCMSCs-EVs combined with estrogen provides a highly effective alternative regenerative agent in IUA treatment.
Collapse
Affiliation(s)
- Nesrine Ebrahim
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Banha, 13518, Qalyubia, Egypt.,Stem Cell Unit, Faculty of Medicine, Benha University, Banha, 13518, Qalyubia, Egypt
| | - Ola Mostafa
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Banha, 13518, Qalyubia, Egypt
| | - Rania Ebrahim El Dosoky
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Banha, 13518, Qalyubia, Egypt
| | - Inas A Ahmed
- Department of Medical Biochemistry, Faculty of Medicine, Benha University, Banha, 13518, Qalyubia, Egypt.,Molecular Biology and Biotechnology Unit, Faculty of Medicine, Benha University, Banha, 13518, Qalyubia, Egypt
| | - Ahmed S Saad
- Department of Obstetrics and Gynecology, Faculty of Medicine, Benha University, Banha, 13518, Qalyubia, Egypt
| | - Abeer Mostafa
- Department of Medical Biochemistry, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt.,Molecular Biology and Stem Cell Unit, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| | - Dina Sabry
- Department of Medical Biochemistry, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt.,Molecular Biology and Stem Cell Unit, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| | - Khalid Abdelaziz Ibrahim
- Department of Obstetrics and Gynecology, Faculty of Medicine, Benha University, Banha, 13518, Qalyubia, Egypt
| | - Ayman Samir Farid
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Qalyubia, Egypt.
| |
Collapse
|
155
|
Zhang Z, Li K, Yan M, Lin Q, Lv J, Zhu P, Xu Y. Metabolomics profiling of cleidocranial dysplasia. Clin Oral Investig 2018; 23:1031-1040. [PMID: 29943367 DOI: 10.1007/s00784-018-2496-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/24/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Cleidocranial dysplasia (CCD) is a rare autosomal-dominantly inherited skeletal dysplasia that is predominantly associated with heterozygous mutations of RUNX2. However, no information is available regarding metabolic changes associated with CCD at present. MATERIALS AND METHODS We analyzed members of a CCD family and checked for mutations in the RUNX2 coding sequence using the nucleotide BLAST program. The 3D protein structure of mutant RUNX2 was predicted by I-TASSER. Finally, we analyzed metabolites extracted from plasma using LC-MS/MS. RESULTS We identified a novel mutation (c.1061insT) that generates a premature termination in the RUNX2 coding region, which, based on protein structure prediction models, likely alters the protein's function. Interestingly, metabolomics profiling indicated that 30 metabolites belonging to 13 metabolic pathways were significantly changed in the CCD patients compared to normal controls. CONCLUSIONS The results highlight interesting correlations between a RUNX2 mutation, metabolic changes, and the clinical features in a family with CCD. The results also contribute to our understanding of the pathogenetic processes underlying this rare disorder. CLINICAL RELEVANCE This study provides the first metabolomics profiling in CCD patients, expands our insights into the pathogenesis of the disorder, may help in diagnostics and its refinements, and may lead to novel therapeutic approaches to CCD.
Collapse
Affiliation(s)
- Zhaoqiang Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, No. 366, South of Jiangnan Road, Guangzhou, Guangdong, 510280, People's Republic of China
| | - Kefeng Li
- San Diego (UCSD) School of Medicine, University of California, 214 Dickinson St., Bldg CTF, Room C111, San Diego, CA, 92103-8467, USA
| | - Mengdie Yan
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No. 56 Lingyuanxi Road, Yuexiu District, Guangzhou, Guangdong, 510055, People's Republic of China.,Department of Orthodontics, Stomatological Hospital, Southern Medical University, No. 366, South of Jiangnan Road, Guangzhou, Guangdong, 510280, People's Republic of China
| | - Qiuping Lin
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No. 56 Lingyuanxi Road, Yuexiu District, Guangzhou, Guangdong, 510055, People's Republic of China
| | - Jiahong Lv
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No. 56 Lingyuanxi Road, Yuexiu District, Guangzhou, Guangdong, 510055, People's Republic of China
| | - Ping Zhu
- Department of Oral and Maxillafacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No. 56 Lingyuanxi Road, Yuexiu District, Guangzhou, Guangdong, 510055, People's Republic of China
| | - Yue Xu
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No. 56 Lingyuanxi Road, Yuexiu District, Guangzhou, Guangdong, 510055, People's Republic of China.
| |
Collapse
|
156
|
Schneider RA. Neural crest and the origin of species-specific pattern. Genesis 2018; 56:e23219. [PMID: 30134069 PMCID: PMC6108449 DOI: 10.1002/dvg.23219] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/20/2022]
Abstract
For well over half of the 150 years since the discovery of the neural crest, the special ability of these cells to function as a source of species-specific pattern has been clearly recognized. Initially, this observation arose in association with chimeric transplant experiments among differentially pigmented amphibians, where the neural crest origin for melanocytes had been duly noted. Shortly thereafter, the role of cranial neural crest cells in transmitting species-specific information on size and shape to the pharyngeal arch skeleton as well as in regulating the timing of its differentiation became readily apparent. Since then, what has emerged is a deeper understanding of how the neural crest accomplishes such a presumably difficult mission, and this includes a more complete picture of the molecular and cellular programs whereby neural crest shapes the face of each species. This review covers studies on a broad range of vertebrates and describes neural-crest-mediated mechanisms that endow the craniofacial complex with species-specific pattern. A major focus is on experiments in quail and duck embryos that reveal a hierarchy of cell-autonomous and non-autonomous signaling interactions through which neural crest generates species-specific pattern in the craniofacial integument, skeleton, and musculature. By controlling size and shape throughout the development of these systems, the neural crest underlies the structural and functional integration of the craniofacial complex during evolution.
Collapse
Affiliation(s)
- Richard A. Schneider
- Department of Orthopedic SurgeryUniversity of California at San Francisco, 513 Parnassus AvenueS‐1161San Francisco, California
| |
Collapse
|
157
|
Xiao L, Zhou Y, Zhu L, Yang S, Huang R, Shi W, Peng B, Xiao Y. SPHK1-S1PR1-RANKL Axis Regulates the Interactions Between Macrophages and BMSCs in Inflammatory Bone Loss. J Bone Miner Res 2018; 33:1090-1104. [PMID: 29377379 DOI: 10.1002/jbmr.3396] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 01/04/2018] [Accepted: 01/13/2018] [Indexed: 01/29/2023]
Abstract
Accumulating evidence indicates that the immune and skeletal systems interact with each other through various regulators during the osteoclastogenic process. Among these regulators, the bioactive lipid sphingosine-1-phosphate (S1P), which is synthesized by sphingosine kinase 1/2 (SPHK1/2), has recently been recognized to play a role in immunity and bone remodeling through its receptor sphingosine-1-phosphate receptor 1 (S1PR1). However, little is known regarding the potential role of S1PR1 signaling in inflammatory bone loss. We observed that SPHK1 and S1PR1 were upregulated in human apical periodontitis, accompanied by macrophage infiltration and enhanced expression of receptor activator of NF-κB ligand (RANKL, an indispensable factor in osteoclastogenesis and bone resorption) and increased numbers of S1PR1-RANKL double-positive cells in lesion tissues. Using an in vitro co-culture model of macrophages and bone marrow stromal cells (BMSCs), it was revealed that in the presence of lipopolysaccharide (LPS) stimulation, macrophages could significantly induce SPHK1 activity, which resulted in activated S1PR1 in BMSCs. The activated S1P-S1PR1 signaling was responsible for the increased RANKL production in BMSCs, as S1PR1-blockage abolished this effect. Applying a potent S1P-S1PR1 signaling modulator, Fingolimod (FTY720), in a Wistar rat apical periodontitis model effectively prevented bone lesions in vivo via downregulation of RANKL production, osteoclastogenesis, and bone resorption. Our data unveiled the regulatory role of SPHK1-S1PR1-RANKL axis in inflammatory bone lesions and proposed a potential therapeutic intervention by targeting this cell-signaling pathway to prevent bone loss. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Lan Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove Campus, Brisbane, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Kelvin Grove Campus, Brisbane, Australia.,The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yinghong Zhou
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove Campus, Brisbane, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Kelvin Grove Campus, Brisbane, Australia
| | - Lingxin Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shasha Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Rong Huang
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove Campus, Brisbane, Australia
| | - Wei Shi
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove Campus, Brisbane, Australia
| | - Bin Peng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove Campus, Brisbane, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Kelvin Grove Campus, Brisbane, Australia.,The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
158
|
Abstract
Bone metastasis, or the development of secondary tumors within the bone of cancer patients, is a debilitating and incurable disease. Despite its morbidity, the biology of bone metastasis represents one of the most complex and intriguing of all oncogenic processes. This complexity derives from the intricately organized bone microenvironment in which the various stages of hematopoiesis, osteogenesis, and osteolysis are jointly regulated but spatially restricted. Disseminated tumor cells (DTCs) from various common malignancies such as breast, prostate, lung, and kidney cancers or myeloma are uniquely primed to subvert these endogenous bone stromal elements to grow into pathological osteolytic or osteoblastic lesions. This colonization process can be separated into three key steps: seeding, dormancy, and outgrowth. Targeting the processes of dormancy and initial outgrowth offers the most therapeutic promise. Here, we discuss the concepts of the bone metastasis niche, from controlling tumor-cell survival to growth into clinically detectable disease.
Collapse
Affiliation(s)
- Mark Esposito
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Theresa Guise
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
159
|
Kanwal R, Shukla S, Walker E, Gupta S. Acquisition of tumorigenic potential and therapeutic resistance in CD133+ subpopulation of prostate cancer cells exhibiting stem-cell like characteristics. Cancer Lett 2018; 430:25-33. [PMID: 29775627 DOI: 10.1016/j.canlet.2018.05.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 12/12/2022]
Abstract
The role of CD133 (Prominin-1) as a cancer stem cell marker may be useful for therapeutic approaches and prognostication in prostate cancer patients. We investigated the stem-cell-related function and biological features of a subpopulation of CD133+ cells isolated from established primary human prostate cancer cell lines. The CD133+ cells sorted from human prostate cancer 22Rv1 exhibited high clonogenic and tumorigenic capabilities, sphere forming capacity and serially reinitiated transplantable tumors in NOD-SCID mice. Gene profiling analysis of CD133+ cells showed upregulation of markers of stem cell differentiation (CD44, Oct4, SOX9 and Nanog), epithelial-to-mesenchymal transition (c-myc and BMI1), osteoblastic differentiation (Runx2), and skeletal morphogenesis (BMP2), compared to side population of CD133- cells. These cells are highly malignant and resistant to γ-radiation and chemotherapeutic drug, docetaxel. Importantly, a docetaxel-resistant subclone was more enriched in CD133+ cells with significant increase in Runx2 expression, compared to CD133- cells. Furthermore, knockdown of Runx2 in these cells resulted in differential response to chemotherapy, sensitizing them to increased cell death. These results demonstrate therapy-resistant population with stem-like features are distinct subpopulation of malignant cells that resides within parental cell lines. The molecular signature of CD133+ cells may lead to identification of novel therapeutic targets and prognostic markers in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Rajnee Kanwal
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA; The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA; Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA
| | - Sanjeev Shukla
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA; The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Ethan Walker
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA; The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA; Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA; Department of Nutrition, Case Western Reserve University, Cleveland, OH, 44106, USA; Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
160
|
Yan J, Li J, Hu J, Zhang L, Wei C, Sultana N, Cai X, Zhang W, Cai CL. Smad4 deficiency impairs chondrocyte hypertrophy via the Runx2 transcription factor in mouse skeletal development. J Biol Chem 2018; 293:9162-9175. [PMID: 29735531 DOI: 10.1074/jbc.ra118.001825] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/20/2018] [Indexed: 12/25/2022] Open
Abstract
Chondrocyte hypertrophy is the terminal step in chondrocyte differentiation and is crucial for endochondral bone formation. How signaling pathways regulate chondrocyte hypertrophic differentiation remains incompletely understood. In this study, using a Tbx18:Cre (Tbx18Cre/+) gene-deletion approach, we selectively deleted the gene for the signaling protein SMAD family member 4 (Smad4f/f ) in the limbs of mice. We found that the Smad4-deficient mice develop a prominent shortened limb, with decreased expression of chondrocyte differentiation markers, including Col2a1 and Acan, in the humerus at mid-to-late gestation. The most striking defects in these mice were the absence of stylopod elements and failure of chondrocyte hypertrophy in the humerus. Moreover, expression levels of the chondrocyte hypertrophy-related markers Col10a1 and Panx3 were significantly decreased. Of note, we also observed that the expression of runt-related transcription factor 2 (Runx2), a critical mediator of chondrocyte hypertrophy, was also down-regulated in Smad4-deficient limbs. To determine how the skeletal defects arose in the mouse mutants, we performed RNA-Seq with ChIP-Seq analyses and found that Smad4 directly binds to regulatory elements in the Runx2 promoter. Our results suggest a new mechanism whereby Smad4 controls chondrocyte hypertrophy by up-regulating Runx2 expression during skeletal development. The regulatory mechanism involving Smad4-mediated Runx2 activation uncovered here provides critical insights into bone development and pathogenesis of chondrodysplasia.
Collapse
Affiliation(s)
- Jianyun Yan
- From the Department of Developmental and Regenerative Biology, The Mindich Child Health and Development Institute, and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029.,the Laboratory of Heart Center and Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou 510280, China, and
| | - Jun Li
- From the Department of Developmental and Regenerative Biology, The Mindich Child Health and Development Institute, and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Jun Hu
- From the Department of Developmental and Regenerative Biology, The Mindich Child Health and Development Institute, and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Lu Zhang
- From the Department of Developmental and Regenerative Biology, The Mindich Child Health and Development Institute, and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Chengguo Wei
- the Renal Division of the Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Nishat Sultana
- From the Department of Developmental and Regenerative Biology, The Mindich Child Health and Development Institute, and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Xiaoqiang Cai
- From the Department of Developmental and Regenerative Biology, The Mindich Child Health and Development Institute, and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Weijia Zhang
- the Renal Division of the Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Chen-Leng Cai
- From the Department of Developmental and Regenerative Biology, The Mindich Child Health and Development Institute, and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029,
| |
Collapse
|
161
|
Wei D, Qiao R, Dao J, Su J, Jiang C, Wang X, Gao M, Zhong J. Soybean Lecithin-Mediated Nanoporous PLGA Microspheres with Highly Entrapped and Controlled Released BMP-2 as a Stem Cell Platform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800063. [PMID: 29682876 DOI: 10.1002/smll.201800063] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Injectable polymer microsphere-based stem cell delivery systems have a severe problem that they do not offer a desirable environment for stem cell adhesion, proliferation, and differentiation because it is difficult to entrap a large number of hydrophilic functional protein molecules into the core of hydrophobic polymer microspheres. In this work, soybean lecithin (SL) is applied to entrap hydrophilic bone morphogenic protein-2 (BMP-2) into nanoporous poly(lactide-co-glycolide) (PLGA)-based microspheres by a two-step method: SL/BMP-2 complexes preparation and PLGA/SL/BMP-2 microsphere preparation. The measurements of their physicochemical properties show that PLGA/SL/BMP-2 microspheres had significantly higher BMP-2 entrapment efficiency and controlled triphasic BMP-2 release behavior compared with PLGA/BMP-2 microspheres. Furthermore, the in vitro and in vivo stem cell behaviors on PLGA/SL/BMP-2 microspheres are analyzed. Compared with PLGA/BMP-2 microspheres, PLGA/SL/BMP-2 microspheres have significantly higher in vitro and in vivo stem cell attachment, proliferation, differentiation, and matrix mineralization abilities. Therefore, injectable nanoporous PLGA/SL/BMP-2 microspheres can be potentially used as a stem cell platform for bone tissue regeneration. In addition, SL can be potentially used to prepare hydrophilic protein-loaded hydrophobic polymer microspheres with highly entrapped and controlled release of proteins.
Collapse
Affiliation(s)
- Daixu Wei
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ruirui Qiao
- CAS Key Laboratory of Colloid, and Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jinwei Dao
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200438, China
| | - Chengmin Jiang
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Xichang Wang
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Mingyuan Gao
- CAS Key Laboratory of Colloid, and Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jian Zhong
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China
- CAS Key Laboratory of Colloid, and Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
162
|
Shen J, Zhang N, Lin YN, Xiang P, Liu XB, Shan PF, Hu XY, Zhu W, Tang YL, Webster KA, Cai R, Schally AV, Wang J, Yu H. Regulation of Vascular Calcification by Growth Hormone-Releasing Hormone and Its Agonists. Circ Res 2018; 122:1395-1408. [PMID: 29618597 DOI: 10.1161/circresaha.117.312418] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
RATIONALE Vascular calcification (VC) is a marker of the severity of atherosclerotic disease. Hormones play important roles in regulating calcification; estrogen and parathyroid hormones exert opposing effects, the former alleviating VC and the latter exacerbating it. To date no treatment strategies have been developed to regulate clinical VC. OBJECTIVE The objective of this study was to investigate the effect of growth hormone-releasing hormone (GHRH) and its agonist (GHRH-A) on the blocking of VC in a mouse model. METHODS AND RESULTS Young adult osteoprotegerin-deficient mice were given daily subcutaneous injections of GHRH-A (MR409) for 4 weeks. Significant reductions in calcification of the aortas of MR409-treated mice were paralleled by markedly lower alkaline phosphatase activity and a dramatic reduction in the expression of transcription factors, including the osteogenic marker gene Runx2 and its downstream factors, osteonectin and osteocalcin. The mechanism of action of GHRH-A was dissected in smooth muscle cells isolated from human and mouse aortas. Calcification of smooth muscle cells induced by osteogenic medium was inhibited in the presence of GHRH or MR409, as evidenced by reduced alkaline phosphatase activity and Runx2 expression. Inhibition of calcification by MR409 was partially reversed by MIA602, a GHRH antagonist, or a GHRH receptor-selective small interfering RNA. Treatment with MR409 induced elevated cytosolic cAMP and its target, protein kinase A which in turn blocked nicotinamide adenine dinucleotide phosphate oxidase activity and reduced production of reactive oxygen species, thus blocking the phosphorylation of nuclear factor κB (p65), a key intermediate in the ligand of receptor activator for nuclear factor-κ B-Runx2/alkaline phosphatase osteogenesis program. A protein kinase A-selective small interfering RNA or the chemical inhibitor H89 abolished these beneficial effects of MR409. CONCLUSIONS GHRH-A controls osteogenesis in smooth muscle cells by targeting cross talk between protein kinase A and nuclear factor κB (p65) and through the suppression of reactive oxygen species production that induces the Runx2 gene and alkaline phosphatase. Inflammation-mediated osteogenesis is thereby blocked. GHRH-A may represent a new pharmacological strategy to regulate VC.
Collapse
Affiliation(s)
- Jian Shen
- From the Departments of Cardiology (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
| | - Ning Zhang
- From the Departments of Cardiology (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
| | - Yi-Nuo Lin
- From the Departments of Cardiology (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
| | - PingPing Xiang
- From the Departments of Cardiology (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
| | - Xian-Bao Liu
- From the Departments of Cardiology (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
| | | | - Xin-Yang Hu
- From the Departments of Cardiology (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
| | - Wei Zhu
- From the Departments of Cardiology (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
| | - Yao-Liang Tang
- Vascular Biology Center, Georgia Regents University, Augusta (Y.-l.T.)
| | - Keith A Webster
- Department of Molecular and Cellular Pharmacology and the Vascular Biology Institute (K.A.W., R.C., A.V.S.)
| | - Renzhi Cai
- Department of Molecular and Cellular Pharmacology and the Vascular Biology Institute (K.A.W., R.C., A.V.S.)
- Divisions of Hematology/Oncology, Department of Medicine (R.C., A.V.S.)
- Miller School of Medicine, University of Miami, FL; and Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL (R.C., A.V.S.)
| | - Andrew V Schally
- Department of Molecular and Cellular Pharmacology and the Vascular Biology Institute (K.A.W., R.C., A.V.S.)
- Divisions of Hematology/Oncology, Department of Medicine (R.C., A.V.S.)
- Miller School of Medicine, University of Miami, FL; and Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL (R.C., A.V.S.)
| | - Jian'an Wang
- From the Departments of Cardiology (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
| | - Hong Yu
- From the Departments of Cardiology (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
| |
Collapse
|
163
|
Han SY, Lee KH, Kim YK. Poligoni Multiflori Radix enhances osteoblast formation and reduces osteoclast differentiation. Int J Mol Med 2018; 42:331-345. [PMID: 29620250 PMCID: PMC5979931 DOI: 10.3892/ijmm.2018.3603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/22/2018] [Indexed: 12/24/2022] Open
Abstract
Poligoni Multiflori Radix (PMR) is a traditional Korean medicinal herb that is known to have various pharmacological effects, including antihyperlipidemic, anticancer, and anti-inflammatory effects. However, the effects of PMR on bone metabolism have not been elucidated to date. The present study aimed to investigate the in vitro and in vivo effect of PMR water extract on the regulation of osteoblast and osteoclast activity. Effects of PMR water extract on receptor activator of nuclear factor-kB ligand (RANKL)-induced osteoclast differentiation and survival of mouse bone marrow macrophages (BMMs) obtained from femurs were investigated by tartrate-acid resistant acid phosphatase (TRAP)-positive cells and XTT assay. Expression of osteoclast-related genes was assayed by western blot analysis and reverse transcription-quantitative polymerase chain reaction. Additionally, the effects of PMR water extract on osteoblastic proliferation and differentiation were investigated by alkaline phosphatase (ALP) activity assay, alizarin red staining, and levels of mRNA encoding known osteoblast markers. Furthermore, the effects of PMR water extract on lipopolysaccharide (LPS)-induced bone loss were examined in a mouse model. PMR inhibited RANKL-induced osteoclast differentiation of BMMs in a dose-dependent manner without significant cytotoxicity, and suppressed expression of the main osteoclast differentiation markers Fos proto-oncogene and nuclear factor of activated T-cell. In addition, PMR decreased the mRNA expression levels of NFATc1 target genes, including TRAP, osteoclast-associated receptor, ATPase H+ transporting, lysosomal 38 kDa V0 subunit d2, and Cathepsin K. These inhibitory effects were mediated by the p38 and extracellular signal-regulated kinase/nuclear factor-κB pathway. Simultaneously, PMR enhanced the differentiation of primary osteoblasts, and increased the mRNA expression of runt-related transcription factor 2, ALP, osterix, and osteocalcin. Notably, PMR improved LPS-induced trabecular bone loss in mice. Collectively, the present findings demonstrated that PMR may regulate bone remodeling by reducing osteoclast differentiation and stimulating osteoblast formation. These results suggest that PMR may be used for the treatment of bone diseases, such as osteoporosis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Sang-Yong Han
- Department of Herbal Medicine, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Kyung-Hee Lee
- Department of Herbal Medicine, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Yun-Kyung Kim
- Department of Herbal Medicine, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| |
Collapse
|
164
|
Saito K, Takahashi K, Huang B, Asahara M, Kiso H, Togo Y, Tsukamoto H, Mishima S, Nagata M, Iida M, Tokita Y, Asai M, Shimizu A, Komori T, Harada H, MacDougall M, Sugai M, Bessho K. Loss of Stemness, EMT, and Supernumerary Tooth Formation in Cebpb -/-Runx2 +/- Murine Incisors. Sci Rep 2018; 8:5169. [PMID: 29581460 PMCID: PMC5980103 DOI: 10.1038/s41598-018-23515-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/14/2018] [Indexed: 01/19/2023] Open
Abstract
Adult Cebpb KO mice incisors present amelogenin-positive epithelium pearls, enamel and dentin allopathic hyperplasia, fewer Sox2-positive cells in labial cervical loop epitheliums, and reduced Sox2 expression in enamel epithelial stem cells. Thus, Cebpb acts upstream of Sox2 to regulate stemness. In this study, Cebpb KO mice demonstrated cementum-like hard tissue in dental pulp, loss of polarity by ameloblasts, enamel matrix in ameloblastic layer, and increased expression of epithelial-mesenchymal transition (EMT) markers in a Cebpb knockdown mouse enamel epithelial stem cell line. Runx2 knockdown in the cell line presented a similar expression pattern. Therefore, the EMT enabled disengaged odontogenic epithelial stem cells to develop supernumerary teeth. Cebpb and Runx2 knockdown in the cell line revealed higher Biglycan and Decorin expression, and Decorin-positive staining in the periapical region, indicating their involvement in supernumerary tooth formation. Cebpb and Runx2 acted synergistically and played an important role in the formation of supernumerary teeth in adult incisors.
Collapse
Affiliation(s)
- Kazuyuki Saito
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, Japan
| | - Katsu Takahashi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Boyen Huang
- School of Dentistry and Health Sciences, Faculty of Science, Charles Sturt University, Leeds Parade Orange, NSW 2800, Australia
| | - Masakazu Asahara
- Division of Liberal Arts and Sciences, Aichi Gakuin University, Aichi, Japan
| | - Honoka Kiso
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yumiko Togo
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroko Tsukamoto
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sayaka Mishima
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaki Nagata
- Department of Oral and Maxillofacial Surgery Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Machiko Iida
- Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, Japan
| | - Yoshihito Tokita
- Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, Japan
| | - Masato Asai
- Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, Japan
| | - Akira Shimizu
- Department of Experimental Therapeutics, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Toshihisa Komori
- Department of Cell Biology, Unit of Basic Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hidemitsu Harada
- The Advanced Oral Health Science Research Center, Iwate Medical University, Iwate, Japan
| | - Mary MacDougall
- Facultyl of Dentistry, University of British Columbia, Vancouver, Canada
| | - Manabu Sugai
- Department of Molecular Genetics, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.
| | - Kazuhisa Bessho
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
165
|
Imamura K, Tachi K, Takayama T, Shohara R, Kasai H, Dai J, Yamano S. Released fibroblast growth factor18 from a collagen membrane induces osteoblastic activity involved with downregulation of miR-133a and miR-135a. J Biomater Appl 2018; 32:1382-1391. [PMID: 29544382 DOI: 10.1177/0885328218763318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have developed a unique delivery system of growth factors using collagen membranes (CMs) to induce bone regeneration. We hypothesized that fibroblast growth factor18 (FGF-18), a pleiotropic protein that stimulates proliferation in several tissues, can be a good candidate to use our delivery system for bone regeneration. Cell viability, cell proliferation, alkaline phosphatase activity, mineralization, and marker gene expression of osteoblastic differentiation were evaluated after mouse preosteoblasts were cultured with a CM containing FGF-18, a CM containing platelet-derived growth factor, or a CM alone. Furthermore, expression of microRNA, especially miR-133a and miR-135a involving inhibition of osteogenic factors, was measured in preosteoblasts with CM/FGF-18 or CM alone. A sustained release of FGF-18 from the CM was observed over 21 days. CM/FGF-18 significantly promoted cell proliferation, alkaline phosphatase activity, and mineralization compared to CM alone. Gene expression of type I collagen, runt-related transcription factor 2, osteocalcin, Smad5, and osteopontin was significantly upregulated in CM/FGF-18 compared to CM alone, and similar to CM/platelet-derived growth factor. Additionally, CM/FGF-18 downregulated expression of miR-133a and miR-135a. These results suggested that released FGF-18 from a CM promotes osteoblastic activity involved with downregulation of miR-133a and miR-135a.
Collapse
Affiliation(s)
- Kentaro Imamura
- 1 Department of Prosthodontics, 70241 New York University College of Dentistry , NY, USA.,2 Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | - Keita Tachi
- 1 Department of Prosthodontics, 70241 New York University College of Dentistry , NY, USA
| | - Tadahiro Takayama
- 3 Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan
| | - Ryutaro Shohara
- 1 Department of Prosthodontics, 70241 New York University College of Dentistry , NY, USA
| | - Hironori Kasai
- 1 Department of Prosthodontics, 70241 New York University College of Dentistry , NY, USA
| | - Jisen Dai
- 4 Mouse Genotyping Core, New York University Langone Medical Center, NY, USA
| | - Seiichi Yamano
- 1 Department of Prosthodontics, 70241 New York University College of Dentistry , NY, USA
| |
Collapse
|
166
|
Zhang C, Li L, Jiang Y, Wang C, Geng B, Wang Y, Chen J, Liu F, Qiu P, Zhai G, Chen P, Quan R, Wang J. Space microgravity drives transdifferentiation of human bone marrow-derived mesenchymal stem cells from osteogenesis to adipogenesis. FASEB J 2018. [PMID: 29533735 DOI: 10.1096/fj.201700208rr] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Bone formation is linked with osteogenic differentiation of mesenchymal stem cells (MSCs) in the bone marrow. Microgravity in spaceflight is known to reduce bone formation. In this study, we used a real microgravity environment of the SJ-10 Recoverable Scientific Satellite to examine the effects of space microgravity on the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs). hMSCs were induced toward osteogenic differentiation for 2 and 7 d in a cell culture device mounted on the SJ-10 satellite. The satellite returned to Earth after going through space experiments in orbit for 12 d, and cell samples were harvested and analyzed for differentiation potentials. The results showed that space microgravity inhibited osteogenic differentiation and resulted in adipogenic differentiation, even under osteogenic induction conditions. Under space microgravity, the expression of 10 genes specific for osteogenesis decreased, including collagen family members, alkaline phosphatase ( ALP), and runt-related transcription factor 2 ( RUNX2), whereas the expression of 4 genes specific for adipogenesis increased, including adipsin ( CFD), leptin ( LEP), CCAAT/enhancer binding protein β ( CEBPB), and peroxisome proliferator-activated receptor-γ ( PPARG). In the analysis of signaling pathways specific for osteogenesis, we found that the expression and activity of RUNX2 was inhibited, expression of bone morphogenetic protein-2 ( BMP2) and activity of SMAD1/5/9 were decreased, and activity of focal adhesion kinase (FAK) and ERK-1/2 declined significantly under space microgravity. These data indicate that space microgravity plays a dual role by decreasing RUNX2 expression and activity through the BMP2/SMAD and integrin/FAK/ERK pathways. In addition, we found that space microgravity increased p38 MAPK and protein kinase B (AKT) activities, which are important for the promotion of adipogenic differentiation of hMSCs. Space microgravity significantly decreased the expression of Tribbles homolog 3 ( TRIB3), a repressor of adipogenic differentiation. Y15, a specific inhibitor of FAK activity, was used to inhibit the activity of FAK under normal gravity; Y15 decreased protein expression of TRIB3. Therefore, it appears that space microgravity decreased FAK activity and thereby reduced TRIB3 expression and derepressed AKT activity. Under space microgravity, the increase in p38 MAPK activity and the derepression of AKT activity seem to synchronously lead to the activation of the signaling pathway specifically promoting adipogenesis.-Zhang, C., Li, L., Jiang, Y., Wang, C., Geng, B., Wang, Y., Chen, J., Liu, F., Qiu, P., Zhai, G., Chen, P., Quan, R., Wang, J. Space microgravity drives transdifferentiation of human bone marrow-derived mesenchymal stem cells from osteogenesis to adipogenesis.
Collapse
Affiliation(s)
- Cui Zhang
- Institute of Cell and Development Biology, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Liang Li
- Institute of Cell and Development Biology, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Yuanda Jiang
- National Center of Space Science, Chinese Academy of Sciences, Beijing, China
| | - Cuicui Wang
- Institute of Cell and Development Biology, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Baoming Geng
- National Center of Space Science, Chinese Academy of Sciences, Beijing, China
| | - Yanqiu Wang
- National Center of Space Science, Chinese Academy of Sciences, Beijing, China
| | - Jianling Chen
- Institute of Cell and Development Biology, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Fei Liu
- Institute of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China
| | - Peng Qiu
- National Center of Space Science, Chinese Academy of Sciences, Beijing, China
| | - Guangjie Zhai
- National Center of Space Science, Chinese Academy of Sciences, Beijing, China
| | - Ping Chen
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Otolaryngology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Renfu Quan
- Institute of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China
| | - Jinfu Wang
- Institute of Cell and Development Biology, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, China
| |
Collapse
|
167
|
Zhao S, Xiao X, Sun S, Li D, Wang W, Fu Y, Fan F. MicroRNA-30d/JAG1 axis modulates pulmonary fibrosis through Notch signaling pathway. Pathol Res Pract 2018; 214:1315-1323. [PMID: 30029934 DOI: 10.1016/j.prp.2018.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/27/2018] [Accepted: 02/14/2018] [Indexed: 12/12/2022]
Abstract
Pulmonary fibrosis (PF) is a fibroproliferative disease which can finally end up fatal lung failure. PF is characterized by abnormal proliferation of fibroblast, dysregulated fibroblast differentiation to myofibroblast and disorganized collagen and extracellular matrix (ECM) production, deposition and degradation. JAG1/Notch signaling has been reported to play a key role in tissue fibrosis including PF. Herein, we confirmed the abnormal upregulation of JAG1 mRNA expression and protein levels in PF tissue specimens; JAG1 knockdown reduced TGF-β1-induced α-SMA and Collagen I protein levels. From the aspect of miRNA regulation, we searched for candidate miRNAs which might target JAG1 to inhibit its expression. Among the selected miRNAs, miR-30d expression was downregulated in PF tissues; miR-30d overexpression attenuated TGF-β1-induced primary normal human lung fibroblast (NHLF) proliferation, as well as α-SMA and Collagen I protein levels. Through directly binding to the 3'-UTR of JAG1, miR-30d significantly inhibited JAG1 mRNA expression and protein level. Furthermore, JAG1 overexpression partially reversed the effect of miR-30d on NHLF proliferation and α-SMA and Collagen I proteins upon TGF-β1 stimulation; miR-30d could suppress TGF-β1 function on NHLFs through blocking JAG1/Notch signaling. Rescuing miR-30d expression to suppress TGF-β1-induced activation of JAG1/Notch signaling may present a promising strategy for PF treatment.
Collapse
Affiliation(s)
- Silin Zhao
- Department of Respiratory Medicine, the First Affiliated Hospital of Hunan Hospital of Hunan University of Chinese Medicine, China
| | - Xuefei Xiao
- Department of Respiratory Medicine, the First Affiliated Hospital of Hunan Hospital of Hunan University of Chinese Medicine, China
| | - Shuang Sun
- Department of Respiratory Medicine, the First Affiliated Hospital of Hunan Hospital of Hunan University of Chinese Medicine, China
| | - Da Li
- Department of Respiratory Medicine, the First Affiliated Hospital of Hunan Hospital of Hunan University of Chinese Medicine, China
| | - Wei Wang
- Department of Respiratory Medicine, the First Affiliated Hospital of Hunan Hospital of Hunan University of Chinese Medicine, China
| | - Yan Fu
- Department of Respiratory Medicine, the First Affiliated Hospital of Hunan Hospital of Hunan University of Chinese Medicine, China
| | - Fuyuan Fan
- Department of Respiratory Medicine, the First Affiliated Hospital of Hunan Hospital of Hunan University of Chinese Medicine, China.
| |
Collapse
|
168
|
Wilson KM, Jagger AM, Walker M, Seinkmane E, Fox JM, Kröger R, Genever P, Ungar D. Glycans modify mesenchymal stem cell differentiation to impact on the function of resulting osteoblasts. J Cell Sci 2018; 131:jcs.209452. [PMID: 29361539 PMCID: PMC5868951 DOI: 10.1242/jcs.209452] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/02/2018] [Indexed: 12/13/2022] Open
Abstract
Glycans are inherently heterogeneous, yet glycosylation is essential in eukaryotes, and glycans show characteristic cell type-dependent distributions. By using an immortalized human mesenchymal stromal cell (MSC) line model, we show that both N- and O-glycan processing in the Golgi functionally modulates early steps of osteogenic differentiation. We found that inhibiting O-glycan processing in the Golgi prior to the start of osteogenesis inhibited the mineralization capacity of the formed osteoblasts 3 weeks later. In contrast, inhibition of N-glycan processing in MSCs altered differentiation to enhance the mineralization capacity of the osteoblasts. The effect of N-glycans on MSC differentiation was mediated by the phosphoinositide-3-kinase (PI3K)/Akt pathway owing to reduced Akt phosphorylation. Interestingly, by inhibiting PI3K during the first 2 days of osteogenesis, we were able to phenocopy the effect of inhibiting N-glycan processing. Thus, glycan processing provides another layer of regulation that can modulate the functional outcome of differentiation. Glycan processing can thereby offer a novel set of targets for many therapeutically attractive processes. Summary: Both N- and O-glycan processing modulate MSC differentiation early during osteogenesis to influence mineral formation. Inhibition of N-glycan processing increases mineralization.
Collapse
Affiliation(s)
| | | | - Matthew Walker
- Department of Biology, University of York, York YO10 5DD, UK
| | | | - James M Fox
- Department of Biology, University of York, York YO10 5DD, UK
| | - Roland Kröger
- Department of Physics, University of York, York YO10 5DD, UK
| | - Paul Genever
- Department of Biology, University of York, York YO10 5DD, UK
| | - Daniel Ungar
- Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
169
|
Abstract
Achieving satisfactory reconstruction of bone remains an important goal in orthopedic and dental conditions such as bone trauma, osteoporosis, arthritis, osteonecrosis, and periodontitis. Appropriate temporal and spatial differentiation of mesenchymal stem cells (MSCs) is essential for postnatal bone regeneration. Additionally, an acute inflammatory response is crucial at the onset of bone repair, while an adaptive immune response has important implications during late bone remodeling. Various reports have indicated bidirectional interactions between MSCs and inflammatory cells or molecules. For example, inflammatory cells can recruit MSCs, direct their migration and differentiation, so as to exert anabolic effects on bone repair. Furthermore, both pro-inflammatory and anti-inflammatory cytokines can regulate MSCs properties and subsequent bone regeneration. MSCs have demonstrated highly immunosuppressive functions, such as inhibiting the differentiation of monocytes/hematopoietic precursors and suppressing the secretion of pro-inflammatory cytokines. This review emphasizes the important interactions between inflammatory stimuli, MSCs, and bone regeneration as well as the underlying regulatory mechanisms. Better understanding of these principles will provide new opportunities for promoting bone regeneration and the treatment of bone loss associated with immunological diseases.
Collapse
|
170
|
Involvement of bone morphogenetic protein-related pathways in the effect of aucubin on the promotion of osteoblast differentiation in MG63 cells. Chem Biol Interact 2018; 283:51-58. [PMID: 29408431 DOI: 10.1016/j.cbi.2018.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/20/2018] [Accepted: 02/02/2018] [Indexed: 12/20/2022]
Abstract
Aucubin, an iridoid glycoside found in several plants, such as Eucommia ulmoide and Rehmannia, has various pharmacological effects. Bone formation is a complex process in which osteoblast differentiation plays an important role. This study aimed to investigate the promotion effects of aucubin on osteoblast differentiation in MG63 cells, a human osteoblast-like cell line. Aucubin not only improved osteoblast differentiation, as shown by enhanced ALP (alkaline phosphatase) concentration and mineralization in cells, but increased the expression of various cytokines, including collagen I, osteocalcin, osteopontin, integrin β1, and Osterix. Aucubin strongly enhanced the levels of BMP2 (bone morphogenetic proteins-2) in MG63 cells, which play a central role during osteoblast differentiation. Further data show that aucubin exposure after 1 day, 7 days, and 14 days enhanced the expression of Smad1, 5, and 8, and the phosphoresced levels of MAPKs (mitogen-activated protein kinases) family Erk (extracellular signal-regulated kinases), JNK (c-Jun-NH2-terminal kinases), P38, and Akt (serine/threonine protein kinase)/mTOR (mammalian target of rapamycin)/p70s6k in MG63 cells. This study shows the improved effects of aucubin on osteoblast differentiation in MG63 cells, related to the signaling of BMP2-mediated Smads (drosophila mothers against decapentaplegic proteins), MAPKs, and Akt/mTOR/p70S6K. This study indicates the potential of aucubin for osteoporosis treatment.
Collapse
|
171
|
Zhang W, Wu Y, Shiozaki Y, Sugimoto Y, Takigawa T, Tanaka M, Matsukawa A, Ozaki T. miRNA-133a-5p Inhibits the Expression of Osteoblast Differentiation-Associated Markers by Targeting the 3' UTR of RUNX2. DNA Cell Biol 2018; 37:199-209. [PMID: 29359964 DOI: 10.1089/dna.2017.3936] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent studies have recognized the involvement of microRNAs (miRNAs) in the development of osteoporosis, which regulate the balance between osteogenesis and osteoclasis. In this study, we investigated the regulation by miRNA-133a-5p on the osteoblast differentiation-associated markers in the mouse osteoblast-like MC3T3-E1 cells by RUNX2. First, we manipulated the miRNA-133a level in the MC3T3-E1 cells with 20 or 40 nM miR-133a-5p mimics, miR-133a-5p inhibitor, or scramble miRNA. Then, we quantified with real-time polymerase chain reaction (qRT-PCR) the expression of Collagen I, osteocalcin (OCN), and osteopontin (OPN) in the miR-133a-5p-manipulated MC3T3-E1 cells. And the confocal microscopy was also utilized to confirm the regulation by miR-133a-5p on the expression of the three molecules. We also investigated the extracellular matrix (ECM) mineralization and the alkaline phosphatase (ALP) activity in the miR-133a-5p-manipulated MC3T3-E1 cells. In addition, we explored the possible targeting by miR-133a-5p on RUNX2, which was a well-recognized promoter to osteoblast differentiation, with luciferase reporter, qRT-PCR, and Western blotting assay. Results demonstrated that the miRNA-133a-5p mimics markedly reduced, whereas the miRNA-133a-5p inhibitor significantly promoted the expression of Collagen I, OCN, and OPN, the ECM mineralization, and the ALP activity in MC3T3-E1 cells. The alignment analysis demonstrated a high homology between miRNA-133a-5p and the 3' UTR of RUNX2. Moreover, the luciferase reporter assay demonstrated that miRNA-133a-5p targeted the 3' UTR of RUNX2, and inhibited the expression of RUNX2 in both mRNA and protein levels. In conclusion, we identified the inhibition by miRNA-133a-5p to the expression of osteoblast differentiation markers, to the ECM mineralization, and to the ALP activity in MC3T3-E1 cells, by targeting the 3' UTR of RUNX2. Our study suggests that miRNA-133a-5p might be an important target to inhibit osteoblast differentiation in osteoporosis.
Collapse
Affiliation(s)
- Wei Zhang
- 1 Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine , Dentistry and Pharmaceutical Sciences, Okayama, Japan .,2 Department of Orthopaedic Surgery, Bayannaoer City Hospital , Inner Mongolia, China
| | - Yonggang Wu
- 2 Department of Orthopaedic Surgery, Bayannaoer City Hospital , Inner Mongolia, China
| | - Yasuyuki Shiozaki
- 1 Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine , Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshihisa Sugimoto
- 1 Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine , Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tomoyuki Takigawa
- 1 Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine , Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masato Tanaka
- 1 Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine , Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akihiro Matsukawa
- 3 Department of Pathology & Experimental Medicine, Okayama University Graduate School of Medicine , Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshifumi Ozaki
- 1 Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine , Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
172
|
Impact of a Porous Si-Ca-P Monophasic Ceramic on Variation of Osteogenesis-Related Gene Expression of Adult Human Mesenchymal Stem Cells. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8010046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
173
|
Choi YH, Han Y, Jin SW, Lee GH, Kim GS, Lee DY, Chung YC, Lee KY, Jeong HG. Pseudoshikonin I enhances osteoblast differentiation by stimulating Runx2 and Osterix. J Cell Biochem 2018; 119:748-757. [PMID: 28657691 DOI: 10.1002/jcb.26238] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 06/26/2017] [Indexed: 12/24/2022]
Abstract
Pseudoshikonin I (PSI), a novel biomaterial isolated from Lithospermi radix, has been recognized as an herbal medicine for the treatment of infectious and inflammatory diseases. Bone remodeling maintains a balance through bone resorption (osteoclastogenesis) and bone formation (osteoblastogenesis). Bone formation is generally attributed to osteoblasts. However, the effects of PSI on the bone are not well known. In this study, we found that the ethanol extracts of PSI induced osteoblast differentiation by increasing the expression of bone morphogenic protein 4 (BMP 4). PSI positively regulates the transcriptional expression and osteogenic activity of osteoblast-specific transcription factors such as Runx2 and Osterix. To identify the signaling pathways that mediate PSI-induced osteoblastogenesis, we examined the effects of serine-threonine kinase inhibitors that are known regulators of Osterix and Runx2. PSI-induced upregulation of Osterix and Runx2 was suppressed by treatment with AKT and PKA inhibitors. These results suggest that PSI enhances osteoblast differentiation by stimulating Osterix and Runx2 via the AKT and PKA signaling pathways. Thus, the activation of Runx2 and Osterix is modulated by PSI, thereby demonstrating its potential as a treatment target for bone disease.
Collapse
Affiliation(s)
- You Hee Choi
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Younho Han
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
- Department of Oral Pharmacology, College of Dentistry, Wonkwang University, Iksan, Republic of Korea
| | - Sun Woo Jin
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Gi Ho Lee
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Geum Soog Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, Republic of Korea
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, Republic of Korea
| | - Young Chul Chung
- Department of Food Science, International University of Korea, Jinju, Republic of Korea
| | - Kwang Youl Lee
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
174
|
Artigas N, Gámez B, Cubillos-Rojas M, Sánchez-de Diego C, Valer JA, Pons G, Rosa JL, Ventura F. p53 inhibits SP7/Osterix activity in the transcriptional program of osteoblast differentiation. Cell Death Differ 2017; 24:2022-2031. [PMID: 28777372 PMCID: PMC5686339 DOI: 10.1038/cdd.2017.113] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 04/21/2017] [Accepted: 06/12/2017] [Indexed: 12/22/2022] Open
Abstract
Osteoblast differentiation is achieved by activating a transcriptional network in which Dlx5, Runx2 and Osx/SP7 have fundamental roles. The tumour suppressor p53 exerts a repressive effect on bone development and remodelling through an unknown mechanism that inhibits the osteoblast differentiation programme. Here we report a physical and functional interaction between Osx and p53 gene products. Physical interaction was found between overexpressed proteins and involved a region adjacent to the OSX zinc fingers and the DNA-binding domain of p53. This interaction results in a p53-mediated repression of OSX transcriptional activity leading to a downregulation of the osteogenic programme. Moreover, we show that p53 is also able to repress key osteoblastic genes in Runx2-deficient osteoblasts. The ability of p53 to suppress osteogenesis is independent of its DNA recognition ability but requires a native conformation of p53, as a conformational missense mutant failed to inhibit OSX. Our data further demonstrates that p53 inhibits OSX binding to their responsive Sp1/GC-rich sites in the promoters of their osteogenic target genes, such as IBSP or COL1A1. Moreover, p53 interaction to OSX sequesters OSX from binding to DLX5. This competition blocks the ability of OSX to act as a cofactor of DLX5 to activate homeodomain-containing promoters. Altogether, our data support a model wherein p53 represses OSX-DNA binding and DLX5-OSX interaction, and thereby deregulates the osteogenic transcriptional network. This mechanism might have relevant roles in bone pathologies associated to osteosarcomas and ageing.
Collapse
Affiliation(s)
- Natalia Artigas
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Beatriz Gámez
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Mónica Cubillos-Rojas
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Cristina Sánchez-de Diego
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - José Antonio Valer
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Gabriel Pons
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - José Luis Rosa
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, Spain
| |
Collapse
|
175
|
Wang Y, Luo S, Zhang D, Qu X, Tan Y. Sika pilose antler type I collagen promotes BMSC differentiation via the ERK1/2 and p38-MAPK signal pathways. PHARMACEUTICAL BIOLOGY 2017; 55:2196-2204. [PMID: 29115171 PMCID: PMC6130603 DOI: 10.1080/13880209.2017.1397177] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 09/12/2017] [Accepted: 10/11/2017] [Indexed: 06/06/2023]
Abstract
CONTEXT Sika pilose antler type I collagen (SPC-I) have been reported to promote bone marrow mesenchymal stem cell (BMSC) proliferation and differentiation. However, the underlying mechanism is still unclear. OBJECTIVE This study investigates the molecular mechanisms of SPC-I on the BMSC proliferation and differentiation of osteoblast (OB) in vitro. MATERIAL AND METHODS The primary rat BMSC was cultured and exposed to SPC-I at different concentrations (2.5, 5.0 and 10.0 mg/mL) for 20 days. The effect of SPC-I on the differentiation of BMSCs was evaluated through detecting the activity of alkaline phosphatase (ALP), ALP staining, collagen I (Col-I) content, and calcified nodules. The markers of osteoblastic differentiation were evaluated using RT-PCR and Western-blot analysis. RESULTS SPC-I treatment (2.5 mg/mL) significantly increased the proliferation of BMSCs (p < 0.01), whereas, SPC-I (5.0 and 10.0 mg/mL) significantly inhibited the proliferation of BMSCs (p < 0.01). SPC-I (2.5 mg/mL) significantly increased ALP activity and Col-I content (p < 0.01), and increased positive cells in ALP staining and the formation of calcified nodules. Additionally, the gene expression of ALP, Col-I, Osteocalcin (OC), Runx2, Osterix (Osx), ERK1/2, BMP2 and p38-MAPK, along with the protein expression of ERK1/2, p-ERK1/2, p-p38 MAPK were markedly increased in the SPC-I (5.0 mg/mL) treatment group (p < 0.01) compared to the control group. DISCUSSION AND CONCLUSIONS SPC-I can induce BMSC differentiation into OBs and enhance the function of osteogenesis through ERK1/2 and p38-MAPK signal transduction pathways and regulating the gene expression of osteogenesis-specific transcription factors.
Collapse
Affiliation(s)
- Yanshuang Wang
- Center for New Medicine Research, Changchun University of Traditional Chinese Medicine, Changchun, China
- School of Basic Medicine, Beihua University, Jilin, China
| | - Su Luo
- School of Basic Medicine, Beihua University, Jilin, China
| | - Dafang Zhang
- Center for New Medicine Research, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Xiaobo Qu
- Center for New Medicine Research, Changchun University of Traditional Chinese Medicine, Changchun, China
| | | |
Collapse
|
176
|
MicroRNA-21 regulates Osteogenic Differentiation of Periodontal Ligament Stem Cells by targeting Smad5. Sci Rep 2017; 7:16608. [PMID: 29192241 PMCID: PMC5709498 DOI: 10.1038/s41598-017-16720-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/04/2017] [Indexed: 12/25/2022] Open
Abstract
Human periodontal ligament stem cells (hPDLSCs) are mesenchymal stem cells (MSCs) derived from dental and craniofacial tissues that exhibit high potential for differentiation into osteoblasts. Recently, microRNAs (miRNAs) have been established to play important roles in MSC osteogenesis. In the current study, we report that miR-21 was down-regulated in osteogenically differentiated PDLSCs. Overexpression of miR-21 significantly inhibited osteogenesis of hPDLSC, whereas its inhibition demonstrated the opposite effects. Furthermore, SMAD family member 5 (Smad5) was predicted to be a downstream target of miR-21 and was shown to undergo up-regulation in PDLSCs induced toward osteogenesis. Moreover, Smad5 and Runx2, which are the critical transcription factors in osteogenic differentiation, were predicted to be targets of miR-21. Suppression of miR-21 expression increased the level of Smad5 in vitro and during in vivo transplantation experiments. Furthermore, suppression of Smad5 inhibited osteogenic differentiation and decreased the protein level of Runx2. Taken together, these results suggested that miR-21 be mechanistically implicated in the regulation of osteogenic differentiation of hPDLSCs by targeting Smad5.
Collapse
|
177
|
Marcucio RS, Qin L, Alsberg E, Boerckel JD. Reverse engineering development: Crosstalk opportunities between developmental biology and tissue engineering. J Orthop Res 2017; 35:2356-2368. [PMID: 28660712 DOI: 10.1002/jor.23636] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/12/2017] [Indexed: 02/04/2023]
Abstract
The fields of developmental biology and tissue engineering have been revolutionized in recent years by technological advancements, expanded understanding, and biomaterials design, leading to the emerging paradigm of "developmental" or "biomimetic" tissue engineering. While developmental biology and tissue engineering have long overlapping histories, the fields have largely diverged in recent years at the same time that crosstalk opportunities for mutual benefit are more salient than ever. In this perspective article, we will use musculoskeletal development and tissue engineering as a platform on which to discuss these emerging crosstalk opportunities and will present our opinions on the bright future of these overlapping spheres of influence. The multicellular programs that control musculoskeletal development are rapidly becoming clarified, represented by shifting paradigms in our understanding of cellular function, identity, and lineage specification during development. Simultaneously, advancements in bioartificial matrices that replicate the biochemical, microstructural, and mechanical properties of developing tissues present new tools and approaches for recapitulating development in tissue engineering. Here, we introduce concepts and experimental approaches in musculoskeletal developmental biology and biomaterials design and discuss applications in tissue engineering as well as opportunities for tissue engineering approaches to inform our understanding of fundamental biology. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2356-2368, 2017.
Collapse
Affiliation(s)
- Ralph S Marcucio
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, California
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 36th Street and Hamilton Walk, Philadelphia 19104-6081, Pennsylvania
| | - Eben Alsberg
- Departments of Biomedical Engineering and Orthopaedic Surgery, Case Western Reserve University, Cleveland, Ohio
| | - Joel D Boerckel
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 36th Street and Hamilton Walk, Philadelphia 19104-6081, Pennsylvania.,Department of Bioengineering, University of Pennslyvania, Philadelphia, Pennsylvania.,Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana
| |
Collapse
|
178
|
Shi M, Xia L, Chen Z, Lv F, Zhu H, Wei F, Han S, Chang J, Xiao Y, Wu C. Europium-doped mesoporous silica nanosphere as an immune-modulating osteogenesis/angiogenesis agent. Biomaterials 2017; 144:176-187. [DOI: 10.1016/j.biomaterials.2017.08.027] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/04/2017] [Accepted: 08/14/2017] [Indexed: 12/21/2022]
|
179
|
Neupogen and mesenchymal stem cells are the novel therapeutic agents in regeneration of induced endometrial fibrosis in experimental rats. Biosci Rep 2017; 37:BSR20170794. [PMID: 28883083 PMCID: PMC5635209 DOI: 10.1042/bsr20170794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/04/2017] [Accepted: 08/24/2017] [Indexed: 12/23/2022] Open
Abstract
Endometrial fibrosis is the presence of intrauterine adhesions (IUAs) after any uterine surgery or curettage and it results in infertility and recurrent pregnancy loss. We evaluated the role of human mesenchymal stem cells (hMSCs) as a therapeutic agent of endometrial fibrosis. We also compared the effect of MSCs with the effect of estrogen and neupogen either each alone or as a combined therapy with MSCs. This experimental study was performed on 84 albino rats which were divided into seven groups (n=12 rats/group) as follows, group1: normal control rats, group 2: induced fibrosis, group 3: induced fibrosis that received oral estrogen, group 4: induced fibrosis that received hMSCs, group 5: induced fibrosis that received hMSCs and estrogen, group 6: induced fibrosis that received neupogen, and group 7: induced fibrosis that received hMSCs and neupogen. The extent of fibrosis, vascularization, and inflammation were evaluated by; qRT-PCR for interleukin 1 (IL-1), interleukin 6 (IL-6), TNF, vascular endothelial growth factor (VEGF), transforming growth factor-β (TGF-β), and RUNX; ELISA for connective tissue growth factor (CTGF); Western blotting for collagen-I; immunohistochemistry examination for VEGF and RUNX-2; and histopathological assessment. In therapeutic groups either by hMSCs alone or combined with estrogen or neupogen; fibrosis and inflammation (IL-1, IL-6, TNF, TGF-β, RUNX, CTGF, and collagen-I) were significantly decreased but vascularization (VEGF) was significantly increased (P<0.05) compared with induced fibrosis group. The most significant result was obtained in fibrosis that received combined therapy of hMSCs and neupogen (P=0.000). Stem cells and neupogen are a highly effective alternative regenerative agents in endometrial fibrosis.
Collapse
|
180
|
Zheng Y, Liao F, Lin X, Zheng F, Fan J, Cui Q, Yang J, Geng B, Cai J. Cystathionine γ-Lyase-Hydrogen Sulfide Induces Runt-Related Transcription Factor 2 Sulfhydration, Thereby Increasing Osteoblast Activity to Promote Bone Fracture Healing. Antioxid Redox Signal 2017; 27:742-753. [PMID: 28158956 PMCID: PMC5586164 DOI: 10.1089/ars.2016.6826] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AIMS Hydrogen sulfide (H2S) plays an essential role in bone formation, in part, by inhibiting osteoclast differentiation, maintaining mesenchymal stem cell osteogenesis ability, or reducing osteoblast injury. We aimed to investigate the role of H2S in osteoblast function and its possible molecular target. RESULTS In this study, we found that cystathionine γ-lyase (CSE) majorly contributed to endogenous H2S production in the primary osteoblast. Overexpressed CSE increased osteoblast differentiation and maturation with higher bone morphogenetic protein 2 and osteopontin expression, alkaline phosphatase activity, and calcium nodule formation; in contrast, knockdown of CSE had opposite effects. Runt-related transcript factor 2 (RUNX2) is required for osteoblast biologic function. CSE-H2S increased nuclear RUNX2 accumulation, DNA binding activity, and target gene transcription. Protein sulfhydration is a common signal by H2S. We confirmed that RUNX2 was also sulfhydrated by H2S. This chemical modification enhanced RUNX2 transactivation, which was blocked by dithiothreitol (DTT, sulfhydration remover). Mutation of two cysteine sites in the runt domain of RUNX2 abolished H2S-induced RUNX2 sulfhydration and transactivation. In a bone -fracture rat model, overexpressed CSE promoted bone healing, which confirmed the effect of CSE-H2S on osteoblasts. INNOVATION CSE-H2S is a dominant H2S generation system in osteoblasts and promotes osteoblast activity by the RUNX2 pathway, with RUNX2 sulfhydration as a novel transactivation regulation. CONCLUSION CSE-H2S sulfhydrated RUNX2 enhanced its transactivation and increased osteoblast differentiation and maturation, thereby promoting bone healing. Antioxid. Redox Signal. 27, 742-753.
Collapse
Affiliation(s)
- Yang Zheng
- 1 Hypertension Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases , Beijing, China .,2 Department of Physiology and Pathophysiology, Department of Osteology-Peking University Third Hospital, Center for Noncoding RNA Medicine, Peking University Health Science Center , Beijing, China
| | - Feng Liao
- 2 Department of Physiology and Pathophysiology, Department of Osteology-Peking University Third Hospital, Center for Noncoding RNA Medicine, Peking University Health Science Center , Beijing, China .,3 Department of Orthopedics, Sichuan Provincial People's Hospital, Chengdu , China
| | - Xianjuan Lin
- 2 Department of Physiology and Pathophysiology, Department of Osteology-Peking University Third Hospital, Center for Noncoding RNA Medicine, Peking University Health Science Center , Beijing, China
| | - Fengjiao Zheng
- 2 Department of Physiology and Pathophysiology, Department of Osteology-Peking University Third Hospital, Center for Noncoding RNA Medicine, Peking University Health Science Center , Beijing, China
| | - Jinghui Fan
- 2 Department of Physiology and Pathophysiology, Department of Osteology-Peking University Third Hospital, Center for Noncoding RNA Medicine, Peking University Health Science Center , Beijing, China
| | - Qinghua Cui
- 2 Department of Physiology and Pathophysiology, Department of Osteology-Peking University Third Hospital, Center for Noncoding RNA Medicine, Peking University Health Science Center , Beijing, China
| | - Jichun Yang
- 2 Department of Physiology and Pathophysiology, Department of Osteology-Peking University Third Hospital, Center for Noncoding RNA Medicine, Peking University Health Science Center , Beijing, China
| | - Bin Geng
- 1 Hypertension Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases , Beijing, China .,2 Department of Physiology and Pathophysiology, Department of Osteology-Peking University Third Hospital, Center for Noncoding RNA Medicine, Peking University Health Science Center , Beijing, China
| | - Jun Cai
- 1 Hypertension Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases , Beijing, China
| |
Collapse
|
181
|
Panh L, Lairez O, Ruidavets JB, Galinier M, Carrié D, Ferrières J. Coronary artery calcification: From crystal to plaque rupture. Arch Cardiovasc Dis 2017; 110:550-561. [DOI: 10.1016/j.acvd.2017.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 12/31/2022]
|
182
|
Ampuja M, Kallioniemi A. Transcription factors-Intricate players of the bone morphogenetic protein signaling pathway. Genes Chromosomes Cancer 2017; 57:3-11. [DOI: 10.1002/gcc.22502] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/28/2017] [Accepted: 08/28/2017] [Indexed: 12/14/2022] Open
Affiliation(s)
- M. Ampuja
- BioMediTech Institute and Faculty of Medicine and Life Sciences; University of Tampere; Tampere Finland
| | - Anne Kallioniemi
- BioMediTech Institute and Faculty of Medicine and Life Sciences; University of Tampere; Tampere Finland
- Fimlab Laboratories; Tampere Finland
| |
Collapse
|
183
|
Identification of lineage-specifying cytokines that signal all CD8 +-cytotoxic-lineage-fate 'decisions' in the thymus. Nat Immunol 2017; 18:1218-1227. [PMID: 28945245 PMCID: PMC5659273 DOI: 10.1038/ni.3847] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/29/2017] [Indexed: 12/11/2022]
Abstract
T cell antigen receptor (TCR) signaling in the thymus initiates positive selection but CD8 lineage fate is thought to be induced by cytokines after TCR signaling has ceased, although this remains controversial and unproven. We now identify four non-common gamma chain (γc) receptor-signaling cytokines (IL-6, IFN-γ, TSLP, TGF-β) that, like IL-7 and IL-15, induce expression of the lineage-specifying transcription factor Runx3d and signal the generation of CD8 T cells. Remarkably, elimination of in vivo signaling by all ‘lineage-specifying cytokines’ during positive selection eliminated Runx3d expression and completely abrogated CD8 single-positive thymocyte generation. Thus, this study proves that signaling during positive selection by lineage-specifying cytokines is responsible for all CD8 lineage fate decisions in the thymus.
Collapse
|
184
|
Deshayes E, Roumiguie M, Thibault C, Beuzeboc P, Cachin F, Hennequin C, Huglo D, Rozet F, Kassab-Chahmi D, Rebillard X, Houédé N. Radium 223 dichloride for prostate cancer treatment. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:2643-2651. [PMID: 28919714 PMCID: PMC5593411 DOI: 10.2147/dddt.s122417] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Prostate cancer is the most common malignant disease in men. Several therapeutic agents have been approved during the last 10 years. Among them, radium-223 dichloride (Xofigo®) is a radioactive isotope that induces irreversible DNA double-strand breaks and consequently tumor cell death. Radium-223 dichloride is a calcium-mimetic agent that specifically targets bone lesions. Radium-223 dichloride has been approved for the treatment of metastatic castration-resistant prostate cancer with symptomatic bone metastases, without known visceral metastases. In this review, first we summarize the interplay between prostate tumor cells and bone microenvironment; then, we discuss radium-223 dichloride mechanism of action and present the results of the available clinical trials and future developments for this new drug.
Collapse
Affiliation(s)
- Emmanuel Deshayes
- Radiobiology Unit, INSERM U1194, Institut du Cancer de Montpellier (ICM).,Department of Nuclear Medicine, Institut du Cancer de Montpellier (ICM), Montpellier
| | - Mathieu Roumiguie
- Urology Department, Andrology and Renal Transplantation, CHU Rangueil, Toulouse
| | | | | | | | | | | | | | | | | | - Nadine Houédé
- Radiobiology Unit, INSERM U1194, Institut du Cancer de Montpellier (ICM).,Medical Oncology Department, Institut de Cancérologie du Gard - CHU Caremeau, Nîmes, France
| |
Collapse
|
185
|
Small molecule T63 suppresses osteoporosis by modulating osteoblast differentiation via BMP and WNT signaling pathways. Sci Rep 2017; 7:10397. [PMID: 28871136 PMCID: PMC5583318 DOI: 10.1038/s41598-017-10929-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/17/2017] [Indexed: 12/30/2022] Open
Abstract
Osteoporosis results from the imbalance between bone resorption and bone formation, and restoring the normal balance of bone remodeling is highly desirable for identification of better treatment. In this study, using a cell-based high-throughput screening model representing Runt-related transcription factor 2 (RUNX2) transcriptional activity, we identified a novel small-molecular-weight compound, T63, as an efficient up-regulator of osteogenesis. T63 increased the alkaline phosphatase (ALPL) activity and mineralization as well as gene expression of Alpl and other osteogenic marker genes in mouse osteoblasts and mesenchymal stem cell-like cells. Upon induction of osteoblast differentiation, T63 inhibited adipogenic differentiation in the pluripotent mesenchymal cells. Consistently, T63 up-regulated RUNX2 mRNA and protein levels, and knockdown of RUNX2 reduced the osteogenic role of T63. Mechanistically, T63 activated both BMPs and WNT/β-catenin signaling pathways. Inhibition of either signaling pathway with specific inhibitor suppressed T63-induced RUNX2 expression and the osteogenic phenotypes. Moreover, T63 markedly protected against bone mass loss in the ovariectomized and dexamethasone treated rat osteoporosis model. Collectively, our data demonstrate that T63 could be a promising drug candidate and deserves further development for potential therapeutics in osteoporosis.
Collapse
|
186
|
Pakvasa M, Alverdy A, Mostafa S, Wang E, Fu L, Li A, Oliveira L, Athiviraham A, Lee MJ, Wolf JM, He TC, Ameer GA, Reid RR. Neural EGF-like protein 1 (NELL-1): Signaling crosstalk in mesenchymal stem cells and applications in regenerative medicine. Genes Dis 2017; 4:127-137. [PMID: 29276737 PMCID: PMC5737940 DOI: 10.1016/j.gendis.2017.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 07/27/2017] [Indexed: 12/15/2022] Open
Abstract
Bone tissue regeneration holds the potential to solve both osteoporosis and large skeletal defects, two problems associated with significant morbidity. The differentiation of mesenchymal stem cells into the osteogenic lineage requires a specific microenvironment and certain osteogenic growth factors. Neural EGF Like-Like molecule 1 (NELL-1) is a secreted glycoprotein that has proven, both in vitro and in vivo, to be a potent osteo-inductive factor. Furthermore, it has been shown to repress adipogenic differentiation and inflammation. NELL-1 can work synergistically with other osteogenic factors such as Bone Morphogenic Protein (BMP) -2 and -9, and has shown promise for use in tissue engineering and as a systemically administered drug for the treatment of osteoporosis. Here we provide a comprehensive up-to-date review on the molecular signaling cascade of NELL-1 in mesenchymal stem cells and potential applications in bone regenerative engineering.
Collapse
Affiliation(s)
- Mikhail Pakvasa
- The University of Chicago, Pritzker School of Medicine, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Alex Alverdy
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA
| | - Sami Mostafa
- The University of Chicago, Pritzker School of Medicine, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Eric Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lucy Fu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Alexander Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Leonardo Oliveira
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Aravind Athiviraham
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Guillermo A. Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Russell R. Reid
- The University of Chicago, Pritzker School of Medicine, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
187
|
Jo K, Kim Y, Lee SH, Yoon YS, Kim WH, Kweon OK. Effect of canine cortical bone demineralization on osteogenic differentiation of adipose-derived mesenchymal stromal cells. Heliyon 2017; 3:e00383. [PMID: 28856336 PMCID: PMC5561973 DOI: 10.1016/j.heliyon.2017.e00383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/21/2017] [Accepted: 08/07/2017] [Indexed: 01/16/2023] Open
Abstract
Demineralized bone allografts and mesenchymal stromal cells have been used to promote bone regeneration. However, the degree to which cortical bone should be demineralized for use in combination with adipose-derived mesenchymal stromal cells (Ad-MSCs) remains to be clarified. In this study, the in vitro osteogenic ability of Ad-MSCs on allografts was investigated in relation to the extent of demineralization. Three treatment groups were established by varying exposure time to 0.6 N HCL: partially demineralized (PDB; 12 h), fully demineralized (FDB; 48 h), and non-demineralized bone (NDB; 0 h, as a control). Allografts were prepared as discs 6 mm in diameter for in vitro evaluation, and their demineralization and structure were evaluated by micro-computed tomography and scanning electron microscopy. Ad-MSC adhesion and proliferation were measured by MTS assay, and osteogenesis-related gene expression was assessed by quantitative reverse transcription polymerase chain reaction. PDB and FDB demineralization rates were 57.13 and 92.30%, respectively. Moreover, Ad-MSC adhesion rates on NDB, PDB, and FDB were 53.41, 60.65, and 61.32%, respectively. Proliferation of these cells on FDB increased significantly after 2 days of culture compared to the other groups (P < 0.05). Furthermore, expression of the osteogenic genes ALP, BMP-7, and TGF-β in the FDB group on culture day 3 was significantly elevated in comparison to the other treatments. Given its biocompatibility and promotion of the osteogenic differentiation of Ad-MSCs, our results suggest that FDB may be a suitable scaffold for use in the repair of bone defects.
Collapse
|
188
|
Zhang P, Ha N, Dai Q, Zhou S, Yu C, Jiang L. Hypoxia suppresses osteogenesis of bone mesenchymal stem cells via the extracellular signal‑regulated 1/2 and p38‑mitogen activated protein kinase signaling pathways. Mol Med Rep 2017; 16:5515-5522. [PMID: 28849067 DOI: 10.3892/mmr.2017.7276] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 05/25/2017] [Indexed: 11/05/2022] Open
Abstract
There is a growing body of evidence indicating an association between osteoporosis and vascular diseases, which are associated with reduced blood supply. Decreased vascular flow results in a hypoxic gradient in the local microenvironment, affecting local bone remodeling. Bone mesenchymal stem cells (BMSCs) have been demonstrated to be the key to bone remodeling. To elucidate the molecular mechanisms involved in vascular supply and osteoporosis, the present study investigated the effect of hypoxia on BMSCs in vitro during osteogenesis. The BMSC osteogenesis process was evaluated by alkaline phosphatase (ALP) activity assay and the mRNA expression of the osteogenic markers runt‑related transcription factor 2 (Runx2), ALP and osteocalcin. The function of extracellular signal‑regulated kinase (ERK)1/2 and p38 kinase were studied under hypoxia using specific inhibitors. The results demonstrated that hypoxia reduces the osteogenic differentiation of BMSCs by inactivating Runx2, followed by decreased ALP activity and mRNA expression levels of ALP, collagen type I and osteocalcin. Furthermore, these data suggested that the ERK1/2 and p38‑mitogen activated protein kinase signaling pathways might participate in hypoxia‑induced differentiation of BMSCs toward the osteogenic phenotype. Compared with ERK1/2, the p38‑Runx2 signaling pathway might exert a relatively more prominent effect in the above process. These findings may help to elucidate the pathophysiology of osteoporosis caused by decreased vascular supply.
Collapse
Affiliation(s)
- Peng Zhang
- Second Dental Center, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Nayoung Ha
- Center of Craniofacial Orthodontics, Department of Oral and Cranio‑Maxillofacial Science, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Qinggang Dai
- Center of Craniofacial Orthodontics, Department of Oral and Cranio‑Maxillofacial Science, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Siru Zhou
- Center of Craniofacial Orthodontics, Department of Oral and Cranio‑Maxillofacial Science, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Chuangqi Yu
- Department of Oral Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Lingyong Jiang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio‑Maxillofacial Science, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| |
Collapse
|
189
|
Lin DPL, Carnagarin R, Dharmarajan A, Dass CR. Transdifferentiation of myoblasts into osteoblasts – possible use for bone therapy. J Pharm Pharmacol 2017; 69:1661-1671. [DOI: 10.1111/jphp.12790] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/18/2017] [Indexed: 02/06/2023]
Abstract
Abstract
Objectives
Transdifferentiation is defined as the conversion of one cell type to another and is an ever-expanding field with a growing number of cells found to be capable of such a process. To date, the fact remains that there are limited treatment options for fracture healing, osteoporosis and bone repair post-destruction by bone tumours. Hence, this review focuses on the transdifferentiation of myoblast to osteoblast as a means to further understand the transdifferentiation process and to investigate a potential therapeutic option if successful.
Key findings
The potent osteoinductive effects of the bone morphogenetic protein-2 are largely implicated in the transdifferentiation of myoblast to osteoblast. Bone morphogenetic protein-2-induced activation of the Smad1 protein ultimately results in JunB synthesis, the first transcriptional step in myoblast dedifferentiation. The upregulation of the activating protein-1 binding activity triggers the transcription of the runt-related transcription factor 2 gene, a transcription factor that plays a major role in osteoblast differentiation.
Summary
This potential transdifferentiation treatment may be utilised for dental implants, fracture healing, osteoporosis and bone repair post-destruction by bone tumours.
Collapse
Affiliation(s)
- Daphne P L Lin
- School of Pharmacy, Curtin University, Bentley, Perth, WA, Australia
- Curtin Health Innovation Research Institute, Bentley, Perth, WA, Australia
| | - Revathy Carnagarin
- School of Pharmacy, Curtin University, Bentley, Perth, WA, Australia
- Curtin Health Innovation Research Institute, Bentley, Perth, WA, Australia
| | - Arun Dharmarajan
- School of Pharmacy, Curtin University, Bentley, Perth, WA, Australia
- School of Biomedical Science, Curtin University, Bentley, Perth, WA, Australia
| | - Crispin R Dass
- School of Pharmacy, Curtin University, Bentley, Perth, WA, Australia
- Curtin Health Innovation Research Institute, Bentley, Perth, WA, Australia
| |
Collapse
|
190
|
Mullen AC, Wrana JL. TGF-β Family Signaling in Embryonic and Somatic Stem-Cell Renewal and Differentiation. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022186. [PMID: 28108485 DOI: 10.1101/cshperspect.a022186] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Soon after the discovery of transforming growth factor-β (TGF-β), seminal work in vertebrate and invertebrate models revealed the TGF-β family to be central regulators of tissue morphogenesis. Members of the TGF-β family direct some of the earliest cell-fate decisions in animal development, coordinate complex organogenesis, and contribute to tissue homeostasis in the adult. Here, we focus on the role of the TGF-β family in mammalian stem-cell biology and discuss its wide and varied activities both in the regulation of pluripotency and in cell-fate commitment.
Collapse
Affiliation(s)
- Alan C Mullen
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138
| | - Jeffrey L Wrana
- Lunenfeld-Tanenbam Research Institute, Mount Sinai Hospital and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1X5, Canada
| |
Collapse
|
191
|
Li Z, Dong M, Fan D, Hou P, Li H, Liu L, Lin C, Liu J, Su L, Wu L, Li X, Huang B, Lu J, Zhang Y. LncRNA ANCR down-regulation promotes TGF-β-induced EMT and metastasis in breast cancer. Oncotarget 2017; 8:67329-67343. [PMID: 28978036 PMCID: PMC5620176 DOI: 10.18632/oncotarget.18622] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/29/2017] [Indexed: 01/12/2023] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a progression of cellular plasticity critical for development, differentiation, cancer cells migration and tumor metastasis. As a well-studied factor, TGF-β participates in EMT and involves in physiological and pathological functions of tumor progression. Accumulating evidence indicates that long noncoding RNAs(lncRNAs) play crucial roles in EMT and tumor metastasis. Here, we find that lncRNA ANCR participates in TGF-β1-induced EMT. By our ChIP and Real-time PCR assays, we reveal that TGF-β1 down-regulates ANCR expression by increasing HDAC3 enrichment at ANCR promoter region, which decreases both H3 and H4 acetylation of ANCR promoter. In addition, by western blot and transwell assays, we indicate that ectopic expression of ANCR partly attenuates the TGF-β1-induced EMT. Downstream, ANCR inhibits breast cancer cell migration and breast cancer metastasis by decreasing RUNX2 expression in vitro and in vivo. Thus, our study identifies ANCR, as a new TGF-β downstream molecular, is essential for TGF-β1-induced EMT by decreasing RUNX2 expression. These results implicate that ANCR might become a prognostic biomarker and an anti-metastasis therapy target for breast cancer.
Collapse
Affiliation(s)
- Zhongwei Li
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Meichen Dong
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Dongmei Fan
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Pingfu Hou
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Hongyuan Li
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Lingxia Liu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Cong Lin
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Jiwei Liu
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Liangping Su
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Lan Wu
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xiaoxue Li
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Baiqu Huang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Jun Lu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Yu Zhang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| |
Collapse
|
192
|
Davies OG, Liu Y, Player DJ, Martin NRW, Grover LM, Lewis MP. Defining the Balance between Regeneration and Pathological Ossification in Skeletal Muscle Following Traumatic Injury. Front Physiol 2017; 8:194. [PMID: 28421001 PMCID: PMC5376571 DOI: 10.3389/fphys.2017.00194] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/15/2017] [Indexed: 12/15/2022] Open
Abstract
Heterotopic ossification (HO) is characterized by the formation of bone at atypical sites. This type of ectopic bone formation is most prominent in skeletal muscle, most frequently resulting as a consequence of physical trauma and associated with aberrant tissue regeneration. The condition is debilitating, reducing a patient's range of motion and potentially causing severe pathologies resulting from nerve and vascular compression. Despite efforts to understand the pathological processes governing HO, there remains a lack of consensus regarding the micro-environmental conditions conducive to its formation, and attempting to define the balance between muscle regeneration and pathological ossification remains complex. The development of HO is thought to be related to a complex interplay between factors released both locally and systemically in response to trauma. It develops as skeletal muscle undergoes significant repair and regeneration, and is likely to result from the misdirected differentiation of endogenous or systemically derived progenitors in response to biochemical and/or environmental cues. The process can be sequentially delineated by the presence of inflammation, tissue breakdown, adipogenesis, hypoxia, neo-vasculogenesis, chondrogenesis and ossification. However, exactly how each of these stages contributes to the formation of HO is at present not well understood. Our previous review examined the cellular contribution to HO. Therefore, the principal aim of this review will be to comprehensively outline changes in the local tissue micro-environment following trauma, and identify how these changes can alter the balance between skeletal muscle regeneration and ectopic ossification. An understanding of the mechanisms governing this condition is required for the development and advancement of HO prophylaxis and treatment, and may even hold the key to unlocking novel methods for engineering hard tissues.
Collapse
Affiliation(s)
- Owen G Davies
- School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, UK.,School of Chemical Engineering, University of BirminghamBirmingham, UK
| | - Yang Liu
- Wolfson School of Mechanical and Manufacturing Engineering, Loughborough UniversityLoughborough, UK
| | - Darren J Player
- School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, UK
| | - Neil R W Martin
- School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, UK
| | - Liam M Grover
- School of Chemical Engineering, University of BirminghamBirmingham, UK
| | - Mark P Lewis
- National Centre for Sport and Exercise Medicine, Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, UK
| |
Collapse
|
193
|
Elli FM, Boldrin V, Pirelli A, Spada A, Mantovani G. The Complex GNAS Imprinted Locus and Mesenchymal Stem Cells Differentiation. Horm Metab Res 2017; 49:250-258. [PMID: 27756094 DOI: 10.1055/s-0042-115305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
All tissues and organs derive from stem cells, which are undifferentiated cells able to differentiate into specialized cells and self-renewal. In mammals, there are embryonic stem cells that generate germ layers, and adult stem cells, which act as a repair system for the body and maintain the normal turnover of regenerative organs. Mesenchymal stem cells (MSCs) are nonhematopoietic adult multipotent cells, which reside in virtually all postnatal organs and tissues, and, under appropriate in vitro conditions, are capable to differentiate into osteogenic, adipogenic, chondrogenic, myogenic, and neurogenic lineages. Their commitment and differentiation depend on several interacting signaling pathways and transcription factors. Most GNAS-based disorders have the common feature of episodic de novo formation of islands of extraskeletal, qualitatively normal, bone in skin and subcutaneous fat. The tissue distribution of these lesions suggests that pathogenesis involves abnormal differentiation of MSCs and/or more committed precursor cells that are present in subcutaneous tissues. Data coming from transgenic mice support the concept that GNAS is a key factor in the regulation of lineage switching between osteoblast and adipocyte fates, and that its role may be to prevent bone formation in tissues where bone should not form. Despite the growing knowledge about the process of heterotopic ossification in rare genetic disorders, the pathophysiological mechanisms by which alterations of cAMP signaling lead to ectopic bone formation in the context of mesenchymal tissues is not fully understood.
Collapse
Affiliation(s)
- F M Elli
- Department of Clinical Sciences and Community Health, Endocrinology and Diabetology Unit, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - V Boldrin
- Department of Clinical Sciences and Community Health, Endocrinology and Diabetology Unit, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - A Pirelli
- Department of Clinical Sciences and Community Health, Endocrinology and Diabetology Unit, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - A Spada
- Department of Clinical Sciences and Community Health, Endocrinology and Diabetology Unit, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - G Mantovani
- Department of Clinical Sciences and Community Health, Endocrinology and Diabetology Unit, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
194
|
Ma XN, Ma CX, Shi WG, Zhou J, Ma HP, Gao YH, Xian CJ, Chen KM. Primary cilium is required for the stimulating effect of icaritin on osteogenic differentiation and mineralization of osteoblasts in vitro. J Endocrinol Invest 2017; 40:357-366. [PMID: 27770387 DOI: 10.1007/s40618-016-0568-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/13/2016] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Icaritin, one effective metabolite of Herba Epimedii-derived flavonoid icariin, has a strong osteogenic activity. However, its action mechanism remains unclear. Since primary cilia have been shown to play a pivotal role in regulating the osteogenesis, we hypothesized primary cilia are indispensable in mediating icaritin osteogenic effect. MATERIALS AND METHODS Primary rat calvarial osteoblasts were transfected with siRNA1 targeting intraflagellar transport protein 88 (IFT88), a protein required for ciliogenesis, to prevent formation of primary cilium and were treated with 10-6 M icaritin. RESULTS Alkaline phosphatase (ALP) activity was significantly increased after 3 days in cells transfected with scrambled siRNA control and treated by icaritin (SC+I group) compared to cells transfected with scrambled siRNA control only (SC group). ALP activity after IFT88 siRNA1 transfection and icaritin treatment (siRNA1+I group) was significantly lower than that of SC+I group. Formation of ALP positively stained colonies after 6 days, osteocalcin secretion after 9 days and formation of calcified nodules after 12 days displayed a similar tendency among the three groups. mRNA expression of osteogenesis-related genes ALP, BMP-2, COL1α, RUNX-2 and OSX after 24 h was significantly increased in SC+I group, but was not different with SC group in siRNA1+I group. Protein levels of BMP-2, COL1α, RUNX-2 and OSX after 48 h showed the similar tendency with gene expression. CONCLUSION Primary cilia are important in mediating icaritin-stimulated osteogenic differentiation and may be a novel target for pharmacological therapies for bone loss.
Collapse
Affiliation(s)
- X-N Ma
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou, 730050, People's Republic of China
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - C-X Ma
- Department of Laboratory, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China
| | - W-G Shi
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou, 730050, People's Republic of China
| | - J Zhou
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou, 730050, People's Republic of China
| | - H-P Ma
- Department of Pharmacy, Lanzhou General Hospital of CPLA, Lanzhou, 730050, People's Republic of China
| | - Y-H Gao
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou, 730050, People's Republic of China
| | - C J Xian
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - K-M Chen
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou, 730050, People's Republic of China.
| |
Collapse
|
195
|
Peters SB, Wang Y, Serra R. Tgfbr2 is required in osterix expressing cells for postnatal skeletal development. Bone 2017; 97:54-64. [PMID: 28043895 PMCID: PMC5368008 DOI: 10.1016/j.bone.2016.12.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 11/02/2016] [Accepted: 12/29/2016] [Indexed: 10/20/2022]
Abstract
Transforming growth factor β (TGFβ) is known to play an important role in early skeletal development. We previously demonstrated that loss of TGFβ receptor II (Tgfbr2) in Prx1-Cre-expressing mesenchyme results in defects in long bones, joints, and the skull vault in mice resulting from reduced naïve mesenchymal proliferation and condensation that interrupted osteoblast differentiation. In contrast, others have shown that the loss of Tgfbr2 in fully differentiated mature osteoblasts results in increased bone volume. To study the role of Tgfbr2 in immature osteoblasts, we generated Osx-Cre;Tgfbr2fl/fl mice and found defects in the postnatal development of the skull vault and long bones as compared to controls. No discernible skeletal defects were observed in newborn mice; however, at postnatal day 24 (P24), Tgfbr2-deleted mice demonstrated short stature that correlated with reduced proliferation in the growth plate. X-ray and microCT analysis of long bone and skull from P24 mice showed reduced bone volume. Histomorphometry indicated reductions in osteoblast number but not osteoclast number. Quantitative real-time PCR demonstrated mRNA levels for the osteoblast marker, Runx2, were not altered but mRNA levels of a marker for mature osteoblasts, Bglap, were down in mutant calvaria relative to controls. The mRNA of a proliferation marker, proliferative nuclear cell antigen (PCNA), was also reduced whereas the ratio of Bax2:Bcl2 was unaltered to demonstrate no change in apoptosis. These results suggest proliferation and maturation of immature osteoblasts requires Tgfbr2 signaling and that decreased bone volume in Osx-Cre;Tgfbr2fl/fl mice is likely due to fewer mature osteoblasts.
Collapse
Affiliation(s)
- Sarah B Peters
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, Birmingham AL 35294, USA
| | - Ying Wang
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, Birmingham AL 35294, USA
| | - Rosa Serra
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, Birmingham AL 35294, USA.
| |
Collapse
|
196
|
Ma C, Wei Q, Cao B, Cheng X, Tian J, Pu H, Yusufu A, Cao L. A multifunctional bioactive material that stimulates osteogenesis and promotes the vascularization bone marrow stem cells and their resistance to bacterial infection. PLoS One 2017; 12:e0172499. [PMID: 28358890 PMCID: PMC5373515 DOI: 10.1371/journal.pone.0172499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/06/2017] [Indexed: 12/28/2022] Open
Abstract
The main limitation of tissue engineering lies in the inability to stimulate osteogenesis, angiogenesis of stem cells and broad-spectrum antimicrobial activity. However, the development of multifunctional bioactive materials with these capabilities remains a great challenge. In this study, we prepared mesoporous silica nanoparticles encapsulated with silver nanocrystals (AG-MSN) with uniform sphere size and mesopores. Platelet-derived growth factor BB (PDGF-BB) was effectively loaded in the AG-MSN mesopores (P-AG-MSN). The silicon ions (Si) released by P-AG-MSN stimulate osteogenic differentiation of bone marrow stromal cells (BMSC) by activating the alkaline phosphatase (ALP) activity of bone-related genes and increasing protein (OCN, RUNX2 and OPN) expression. Ag+ ions could be slowly released from the interior of the shell, highlighting their durable antibacterial activity. The sustained release of PDGF-BB from P-AG-MSN stimulated the angiogenic differentiation of BMSC, as indicated by the enhanced secretion of vascular endothelial growth factor (VEGF), HIF-1α, HGF and ANG-1 and protein expression. Our results show that P-AG-MSN can clearly promote BMSC osteostimulation and vascularization. This research serves as a preliminary study of the utilization of this multifunctional mixture to fabricate a new active biological scaffold that integrates BMSC osteostimulation, vascularization and bactericidal effects by 3D printing technology.
Collapse
Affiliation(s)
- Chuang Ma
- Department of Orthopedics Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Department of Orthopedics Center, First Affiliated Hospital of Xinjiang Medical University Chang Ji Branch, Chang Ji, China
| | - Qin Wei
- Xinjiang Key Laboratory of Medical Animal Model Research, Clinical Medical Research Institute of the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Bo Cao
- Department of Orthopedics Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xinchun Cheng
- Carders Health Care No. 4 Department of Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, China
| | - Juling Tian
- Department of Clinical Laboratory, The first people's Hospital of Urumqi, Urumqi, China
| | - Hongwei Pu
- Department of Science and Research Education Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Aihemaitijiang Yusufu
- Department of Orthopedics Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- * E-mail: (AY); (LC)
| | - Li Cao
- Department of Orthopedics Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- * E-mail: (AY); (LC)
| |
Collapse
|
197
|
Nassari S, Duprez D, Fournier-Thibault C. Non-myogenic Contribution to Muscle Development and Homeostasis: The Role of Connective Tissues. Front Cell Dev Biol 2017; 5:22. [PMID: 28386539 PMCID: PMC5362625 DOI: 10.3389/fcell.2017.00022] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/07/2017] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscles belong to the musculoskeletal system, which is composed of bone, tendon, ligament and irregular connective tissue, and closely associated with motor nerves and blood vessels. The intrinsic molecular signals regulating myogenesis have been extensively investigated. However, muscle development, homeostasis and regeneration require interactions with surrounding tissues and the cellular and molecular aspects of this dialogue have not been completely elucidated. During development and adult life, myogenic cells are closely associated with the different types of connective tissue. Connective tissues are defined as specialized (bone and cartilage), dense regular (tendon and ligament) and dense irregular connective tissue. The role of connective tissue in muscle morphogenesis has been investigated, thanks to the identification of transcription factors that characterize the different types of connective tissues. Here, we review the development of the various connective tissues in the context of the musculoskeletal system and highlight their important role in delivering information necessary for correct muscle morphogenesis, from the early step of myoblast differentiation to the late stage of muscle maturation. Interactions between muscle and connective tissue are also critical in the adult during muscle regeneration, as impairment of the regenerative potential after injury or in neuromuscular diseases results in the progressive replacement of the muscle mass by fibrotic tissue. We conclude that bi-directional communication between muscle and connective tissue is critical for a correct assembly of the musculoskeletal system during development as well as to maintain its homeostasis in the adult.
Collapse
Affiliation(s)
- Sonya Nassari
- Developmental Biology Laboratory, IBPS, Centre National de la Recherche Scientifique UMR7622, Institut National de la Santé Et de la Recherche Médicale U1156, Université Pierre et Marie Curie, Sorbonne Universités Paris, France
| | - Delphine Duprez
- Developmental Biology Laboratory, IBPS, Centre National de la Recherche Scientifique UMR7622, Institut National de la Santé Et de la Recherche Médicale U1156, Université Pierre et Marie Curie, Sorbonne Universités Paris, France
| | - Claire Fournier-Thibault
- Developmental Biology Laboratory, IBPS, Centre National de la Recherche Scientifique UMR7622, Institut National de la Santé Et de la Recherche Médicale U1156, Université Pierre et Marie Curie, Sorbonne Universités Paris, France
| |
Collapse
|
198
|
mTORC1 Plays an Important Role in Skeletal Development by Controlling Preosteoblast Differentiation. Mol Cell Biol 2017; 37:MCB.00668-16. [PMID: 28069737 DOI: 10.1128/mcb.00668-16] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/03/2017] [Indexed: 01/15/2023] Open
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) is activated by extracellular factors that control bone accrual. However, the direct role of this complex in osteoblast biology remains to be determined. To investigate this question, we disrupted mTORC1 function in preosteoblasts by targeted deletion of Raptor (Rptor) in Osterix-expressing cells. Deletion of Rptor resulted in reduced limb length that was associated with smaller epiphyseal growth plates in the postnatal skeleton. Rptor deletion caused a marked reduction in pre- and postnatal bone accrual, which was evident in skeletal elements derived from both intramembranous and endochondrial ossification. The decrease in bone accrual, as well as the associated increase in skeletal fragility, was due to a reduction in osteoblast function. In vitro, osteoblasts derived from knockout mice display a reduced osteogenic potential, and an assessment of bone-developmental markers in Rptor knockout osteoblasts revealed a transcriptional profile consistent with an immature osteoblast phenotype suggesting that osteoblast differentiation was stalled early in osteogenesis. Metabolic labeling and an assessment of cell size of Rptor knockout osteoblasts revealed a significant decrease in protein synthesis, a major driver of cell growth. These findings demonstrate that mTORC1 plays an important role in skeletal development by regulating mRNA translation during preosteoblast differentiation.
Collapse
|
199
|
Yoo HS, Chung KH, Lee KJ, Kim DH, An JH. Melanin extract from Gallus gallus domesticus promotes proliferation and differentiation of osteoblastic MG-63 cells via bone morphogenetic protein-2 signaling. Nutr Res Pract 2017; 11:190-197. [PMID: 28584575 PMCID: PMC5449375 DOI: 10.4162/nrp.2017.11.3.190] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/29/2016] [Accepted: 01/20/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/OBJECTIVES Gallus gallus domesticus (GD) is a natural mutant breed of chicken in Korea with an atypical characterization of melanin in its tissue. This study investigated the effects of melanin extracts of GD on osteoblast differentiation and inhibition of osteoclast formation. MATERIALS/METHODS The effects of the melanin extract of GD on human osteoblast MG-63 cell differentiation were examined by evaluating cell viability, osteoblast differentiation, and expression of osteoblast-specific transcription factors such as bone morphogenetic protein 2 (BMP-2), small mothers against decapentaplegic homologs 5 (SMAD5), runt-related transcription factor 2 (RUNX2), osteocalcin and type 1 collagen (COL-1) by reverse transcription-polymerase chain reaction and western blotting analysis. We investigated the inhibitory effect of melanin on the osteoclasts formation through tartrate-resistant acid phosphatase (TRAP) activity and TRAP stains in Raw 264.7 cell. RESULTS The melanin extract of GD was not cytotoxic to MG-63 cells at concentrations of 50-250 µg/mL. Alkaline phosphatase (ALP) activity and bone mineralization of melanin extract-treated cells increased in a dose-dependent manner from 50 to 250 µg/mL and were 149% and 129% at 250 µg/mL concentration, respectively (P < 0.05). The levels of BMP-2, osteocalcin, and COL-1 gene expression were significantly upregulated by 1.72-, 4.44-, and 2.12-fold in melanin-treated cells than in the control cells (P < 0.05). The levels of RUNX2 and SMAD5 proteins were higher in melanin-treated cells than in control vehicle-treated cells. The melanin extract attenuated the formation of receptor activator of nuclear factor kappa-B ligand-induced TRAP-positive multinucleated RAW 264.7 cells by 22%, and was 77% cytotoxic to RAW 264.7 macrophages at a concentration of 500 µg/mL. CONCLUSIONS This study provides evidence that the melanin extract promoted osteoblast differentiation by activating BMP/SMADs/RUNX2 signaling and regulating transcription of osteogenic genes such as ALP, type I collagen, and osteocalcin. These results suggest that the effective osteoblastic differentiation induced by melanin extract from GD makes it potentially useful in maintaining bone health.
Collapse
Affiliation(s)
- Han-Seok Yoo
- Department of Food Science and Technology, Seoul National University of Science & Technology, Seoul 01811, Korea
| | - Kang-Hyun Chung
- Department of Food Science and Technology, Seoul National University of Science & Technology, Seoul 01811, Korea
| | - Kwon-Jai Lee
- Department of Advanced Materials Engineering, Daejeon University, Daejeon 34520, Korea
| | - Dong-Hee Kim
- Department of Oriental Medicine, Daejeon University, Daejeon 34520, Korea
| | - Jeung Hee An
- Division of Food Bioscience, Konkuk University, 268, Chungwon-daero, Chunju, Chungbuk 27478, Korea
| |
Collapse
|
200
|
Park HJ, Baek K, Baek JH, Kim HR. TNFα Increases RANKL Expression via PGE₂-Induced Activation of NFATc1. Int J Mol Sci 2017; 18:ijms18030495. [PMID: 28245593 PMCID: PMC5372511 DOI: 10.3390/ijms18030495] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/12/2017] [Accepted: 02/20/2017] [Indexed: 01/07/2023] Open
Abstract
Tumor necrosis factor α (TNFα) is known to upregulate the expression of receptor activator of NF-κB ligand (RANKL). We investigated the role of the calcineurin/nuclear factor of activated T-cells (NFAT) signaling pathway in TNFα-induced RANKL expression in C2C12 and primary cultured mouse calvarial cells. TNFα-induced RANKL expression was blocked by the calcineurin/NFAT pathway inhibitors. TNFα increased NFAT transcriptional activity and subsequent RANKL promoter binding. Mutations in the NFAT-binding element (MT(N)) suppressed TNFα-induced RANKL promoter activity. TNFα increased prostaglandin E2 (PGE2) production, which in turn enhanced NFAT transcriptional activity and binding to the RANKL promoter. MT(N) suppressed PGE2-induced RANKL promoter activity. TNFα and PGE2 increased the expression of RANKL, NFAT cytoplasmic-1 (NFATc1), cAMP response element-binding protein (CREB), and cyclooxygenase 2 (COX2); which increment was suppressed by indomethacin, a COX inhibitor. Mutations in the CRE-like element blocked PGE2-induced RANKL promoter activity. PGE2 induced the binding of CREB to the RANKL promoter, whereas TNFα increased the binding of both CREB and NFATc1 to this promoter through a process blocked by indomethacin. The PGE2 receptor antagonists AH6809 and AH23848 blocked TNFα-induced expression of RANKL, NFATc1, and CREB; transcriptional activity of NFAT; and binding of NFATc1 or CREB to the RANKL promoter. These results suggest that TNFα-induced RANKL expression depends on PGE2 production and subsequent transcriptional activation/enhanced binding of NFATc1 and CREB to the RANKL promoter.
Collapse
Affiliation(s)
- Hyun-Jung Park
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Korea.
| | - Kyunghwa Baek
- Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangwon-do 25457, Korea.
| | - Jeong-Hwa Baek
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Korea.
| | | |
Collapse
|