151
|
Ishibashi K, Kondo S, Hara S, Morishita Y. The evolutionary aspects of aquaporin family. Am J Physiol Regul Integr Comp Physiol 2011; 300:R566-76. [DOI: 10.1152/ajpregu.90464.2008] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aquaporins (AQPs) were originally identified as channels facilitating water transport across the plasma membrane. They have a pair of highly conserved signature sequences, asparagine-proline-alanine (NPA) boxes, to form a pore. However, some have little conserved amino acid sequences around the NPA boxes unclassifiable to two previous AQP subfamilies, classical AQPs and aquaglyceroporins. These will be called unorthodox AQPs in this review. Interestingly, these unorthodox AQPs have a highly conserved cysteine residue downstream of the second NPA box. AQPs also have a diversity of functions: some related to water transport such as fluid secretion, fluid absorption, and cell volume regulation, and the others not directly related to water transport such as cell adhesion, cell migration, cell proliferation, and cell differentiation. Some AQPs even permeate nonionic small molecules, ions, metals, and possibly gasses. AQP gene disruption studies have revealed their physiological roles: water transport in the kidney and exocrine glands, glycerol transport in fat metabolism and in skin moisture, and nutrient uptakes in plants. Furthermore, AQPs are also present at intracellular organelles, including tonoplasts, mitochondria, and the endoplasmic reticulum. This review focuses on the evolutionary aspects of AQPs from bacteria to humans in view of the structural and functional diversities of AQPs.
Collapse
Affiliation(s)
- Kenichi Ishibashi
- Department of Medical Physiology, Meiji Pharmaceutical University, Kiyose, Tokyo; and
| | - Shintaro Kondo
- Department of Medical Physiology, Meiji Pharmaceutical University, Kiyose, Tokyo; and
| | - Shigeki Hara
- Department of Medical Physiology, Meiji Pharmaceutical University, Kiyose, Tokyo; and
| | | |
Collapse
|
152
|
Fluid transport and cystogenesis in autosomal dominant polycystic kidney disease. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1314-21. [PMID: 21255645 DOI: 10.1016/j.bbadis.2011.01.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 01/09/2011] [Accepted: 01/11/2011] [Indexed: 12/18/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most frequent inherited nephropathy. The development and enlargement of cysts in ADPKD requires tubular cell proliferation, abnormalities in the extracellular matrix and transepithelial fluid secretion. Multiple studies have suggested that fluid secretion across ADPKD cyst-lining cells is driven by the transepithelial secretion of chloride, mediated by the apical CFTR channel and specific basolateral transporters. The whole secretory process is stimulated by increased levels of cAMP in the cells, probably reflecting modifications in the intracellular calcium homeostasis and abnormal stimulation of the vasopressin V2 receptor. This review will focus on the pathophysiology of fluid secretion in ADPKD cysts, starting with classic, morphological and physiological studies that were followed by investigations of the molecular mechanisms involved and therapeutic trials targeting these pathways in cellular and animal models and ADPKD patients. This article is part of a Special Issue entitled: Polycystic Kidney Disease.
Collapse
|
153
|
Gena P, Pellegrini-Calace M, Biasco A, Svelto M, Calamita G. Aquaporin Membrane Channels: Biophysics, Classification, Functions, and Possible Biotechnological Applications. FOOD BIOPHYS 2010. [DOI: 10.1007/s11483-010-9193-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
154
|
Ikeda M, Andoo A, Shimono M, Takamatsu N, Taki A, Muta K, Matsushita W, Uechi T, Matsuzaki T, Kenmochi N, Takata K, Sasaki S, Ito K, Ishibashi K. The NPC motif of aquaporin-11, unlike the NPA motif of known aquaporins, is essential for full expression of molecular function. J Biol Chem 2010; 286:3342-50. [PMID: 21118806 DOI: 10.1074/jbc.m110.180968] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The recently identified molecule aquaporin-11 (AQP11) has a unique amino acid sequence pattern that includes an Asn-Pro-Cys (NPC) motif, corresponding to the N-terminal Asn-Pro-Ala (NPA) signature motif of conventional AQPs. In this study, we examined the effect of the mutation of the NPC motif on the subcellular localization, oligomerization, and water permeability of AQP11 in transfected mammalian cells. Furthermore, the effect was also assessed using zebrafish. Site-directed mutation at the NPC motif did not affect the subcellular localization of AQP11 but reduced its oligomerization. A cell swelling assay revealed that cells expressing AQP11 with a mutated NPC motif had significantly lower osmotic water permeability than cells expressing wild-type AQP11. Zebrafish deficient in endogenous AQP11 showed a deformity in the tail region at an early stage of development. This phenotype was dramatically rescued by injection of human wild-type AQP11 mRNA, whereas the effect of mRNA for AQP11 with a mutated NPC motif was less marked. Although the NPA motif is known to be important for formation of water-permeable pores by conventional AQPs, our observations suggest that the corresponding NPC motif of AQP11 is essential for full expression of molecular function.
Collapse
Affiliation(s)
- Masahiro Ikeda
- Department of Veterinary Pharmacology, University of Miyazaki, Miyazaki 889-2192, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Chauvigné F, Cerdà J. Expression of Functional Aquaporins in Oocytes and Embryos and the Impact on Cryopreservation. ACTA ACUST UNITED AC 2010. [DOI: 10.3109/9780203092873.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
156
|
Yeung CH. Aquaporins in spermatozoa and testicular germ cells: identification and potential role. Asian J Androl 2010; 12:490-9. [PMID: 20562895 PMCID: PMC3739372 DOI: 10.1038/aja.2010.40] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 05/05/2010] [Accepted: 05/10/2010] [Indexed: 01/03/2023] Open
Abstract
Mammalian spermatozoa have relatively high water permeability and swell readily, as in the hypo-osmotic swelling test used in the andrology clinic. Physiologically, spermatozoa experience changes in the osmolality of the surrounding fluids in both the male and the female tracts on their journey from the testis to the ovum. Sperm volume regulation in response to such osmotic challenges is important to maintain a stable cell size for the normal shape and function of the sperm tail. Alongside ion channels for the fluxes of osmolytes, water channels would be crucial for sperm volume regulation. In contrast to the deep knowledge and numerous studies on somatic cell aquaporins (AQPs), the understanding of sperm AQPs is limited. Among the 13 AQPs, convincing evidence for their presence in spermatozoa has been confined to AQP7, AQP8 and AQP11. Overall, current findings indicate a major role of AQP8 in water influx and efflux for sperm volume regulation, which is required for natural fertilization. The preliminary data suggestive of a role for AQP7 in sperm glycerol metabolism needs further substantiation. The association of AQP11 with the residual cytoplasm of elongated spermatids and the distal tail of spermatozoa supports the hypothesis of more than just a role in conferring water permeability and also in the turnover and recycling of surplus cellular components made redundant during spermiogenesis and spermiation. This would be crucial for the maintenance of a germinal epithelium functioning efficiently in the production of spermatozoa.
Collapse
Affiliation(s)
- Ching-Hei Yeung
- Centre of Reproductive Medicine and Andrology, University Clinic, Muenster, Germany.
| |
Collapse
|
157
|
Yeung CH, Cooper TG. Aquaporin AQP11 in the testis: molecular identity and association with the processing of residual cytoplasm of elongated spermatids. Reproduction 2010; 139:209-16. [PMID: 19812234 DOI: 10.1530/rep-09-0298] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
AQP11 is one of the latest aquaporin (AQP) family members found, which differs from the other AQPs by its intracellular localisation and unusual water pore nucleotides with unclear function. Despite the highest mRNA expression among organs having been reported in the testis, the testicular molecule has not been studied in detail. Immunohistochemistry of rat adult testis localised AQP11 to the elongated spermatids (ES) and no other cell types except residual bodies inside Sertoli cells. It was absent from early ES at least until stage 13, and after a first diffuse appearance in the caudal cytoplasm became concentrated in intracellular organelles by stage 17, was strongest in vesicles in the anterior cytoplasm at the final ES stages and appeared in residual bodies. Staining was detected on the distal quarter of the sperm tail only immediately before spermiation. A similar localisation was found in the mouse and developmental profiles for both the open reading frame mRNA and protein expression in 8-50 dpp testis pinpointed its first appearance coinciding with late stage ES. Sequencing of PCR products of testicular Aqp11 containing the open reading frames confirmed a full match with GenBank databases for rat, mouse and human. Western blotting revealed two or more molecular forms with the 26/27 kDa species dominating in the rat/mouse testis and the 33/34 kDa form selectively allocated to the spermatozoa. In view of intracellular vacuolation leading to polycystic kidney in Aqp11-null mice, a possible role of testicular AQP11 in the recycling of surplus cytoplasmic components of the ES and sustaining Sertoli cell capacity in the support of spermatogenesis was discussed.
Collapse
Affiliation(s)
- C H Yeung
- Centre of Reproductive Medicine and Andrology, University of Münster, Domagkstrasse 11, D48149 Münster, Germany.
| | | |
Collapse
|
158
|
Nagahara M, Waguri-Nagaya Y, Yamagami T, Aoyama M, Tada T, Inoue K, Asai K, Otsuka T. TNF-alpha-induced aquaporin 9 in synoviocytes from patients with OA and RA. Rheumatology (Oxford) 2010; 49:898-906. [PMID: 20181673 DOI: 10.1093/rheumatology/keq028] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To determine whether aquaporins (AQPs) are expressed in the synovial tissues of patients with OA and RA, and to examine the patterns of expression in patients with and without hydrarthrosis. METHODS AQPs were detected in synovial tissue samples from patients with OA and RA using RT-PCR and immunohistochemistry. Fibroblast-like synoviocytes (FLSs) from patients with OA and RA were cultured and stimulated with TNF-alpha. The expression of AQPs in FLSs was examined using RT-PCR and western blot analyses and the function of aquaglyceroporins was examined by a glycerol uptake assay. RESULTS AQP1, -3 and -9 mRNAs were expressed in synovial tissues from patients with OA and RA. AQP1, -3 and -9 proteins were also detected by immunohistochemistry. AQP9 mRNA was expressed more strongly in the synovial tissues of OA patients with hydrarthrosis than those without. AQP9 mRNA and protein expression were strongly induced with TNF-alpha treatment in FLSs, whereas the expression of AQP1 and -3 mRNAs was not induced with TNF-alpha treatment. AQP9 as an aquaglyceroporin was induced by TNF-alpha. CONCLUSIONS AQP9 mRNA was detected in synovial tissues from OA and RA patients with hydrarthrosis. AQP9 expression was strongly induced in FLSs with TNF-alpha. Although the functions of AQP1, -3 and -9 in synovial tissues remain to be elucidated, it suggested that AQP9 might be related to the pathogenesis of hydrarthrosis and inflammatory synovitis.
Collapse
Affiliation(s)
- Masashizu Nagahara
- Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Guan XG, Su WH, Yi F, Zhang D, Hao F, Zhang HG, Liu YJ, Feng XC, Ma TH. NPA motifs play a key role in plasma membrane targeting of aquaporin-4. IUBMB Life 2010; 62:222-6. [DOI: 10.1002/iub.311] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
160
|
Tingaud-Sequeira A, Calusinska M, Finn RN, Chauvigné F, Lozano J, Cerdà J. The zebrafish genome encodes the largest vertebrate repertoire of functional aquaporins with dual paralogy and substrate specificities similar to mammals. BMC Evol Biol 2010; 10:38. [PMID: 20149227 PMCID: PMC2829555 DOI: 10.1186/1471-2148-10-38] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 02/11/2010] [Indexed: 01/15/2023] Open
Abstract
Background Aquaporins are integral membrane proteins that facilitate the transport of water and small solutes across cell membranes. These proteins are vital for maintaining water homeostasis in living organisms. In mammals, thirteen aquaporins (AQP0-12) have been characterized, but in lower vertebrates, such as fish, the diversity, structure and substrate specificity of these membrane channel proteins are largely unknown. Results The screening and isolation of transcripts from the zebrafish (Danio rerio) genome revealed eighteen sequences structurally related to the four subfamilies of tetrapod aquaporins, i.e., aquaporins (AQP0, -1 and -4), water and glycerol transporters or aquaglyceroporins (Glps; AQP3 and AQP7-10), a water and urea transporter (AQP8), and two unorthodox aquaporins (AQP11 and -12). Phylogenetic analyses of nucleotide and deduced amino acid sequences demonstrated dual paralogy between teleost and human aquaporins. Three of the duplicated zebrafish isoforms have unlinked loci, two have linked loci, while DrAqp8 was found in triplicate across two chromosomes. Genomic sequencing, structural analysis, and maximum likelihood reconstruction, further revealed the presence of a putative pseudogene that displays hybrid exons similar to tetrapod AQP5 and -1. Ectopic expression of the cloned transcripts in Xenopus laevis oocytes demonstrated that zebrafish aquaporins and Glps transport water or water, glycerol and urea, respectively, whereas DrAqp11b and -12 were not functional in oocytes. Contrary to humans and some rodents, intrachromosomal duplicates of zebrafish AQP8 were water and urea permeable, while the genomic duplicate only transported water. All aquaporin transcripts were expressed in adult tissues and found to have divergent expression patterns. In some tissues, however, redundant expression of transcripts encoding two duplicated paralogs seems to occur. Conclusion The zebrafish genome encodes the largest repertoire of functional vertebrate aquaporins with dual paralogy to human isoforms. Our data reveal an early and specific diversification of these integral membrane proteins at the root of the crown-clade of Teleostei. Despite the increase in gene copy number, zebrafish aquaporins mostly retain the substrate specificity characteristic of the tetrapod counterparts. Based upon the integration of phylogenetic, genomic and functional data we propose a new classification for the piscine aquaporin superfamily.
Collapse
Affiliation(s)
- Angèle Tingaud-Sequeira
- Laboratory of Institut de Recerca i Tecnologia Agroalimentàries-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, 08003 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
161
|
Abstract
Water is the most abundant molecule in any cell. Specialized membrane channel, proteins called aquaporins, facilitate water transport across cell membranes. At least seven aquaporins (AQP): 1, 2, 3, 4, 6, 7, and 11 are expressed in the kidneys. Aquaporins play a role in both the short-term and long-term regulation of water balance as well as in the pathophysiology of water balance disorders. Aquaporin is composed of a single peptide chain consisting of approximately 270 amino acids. Inherited central and nephrogenic diabetes insipidus are primarily due to the decreased expression of AQP2 while mutation in the AQP2 molecule is responsible for inherited central diabetes insipidus. In acquired causes of nephrogenic diabetes insipidus, there is a downregulation of AQP2 expression in the inner medulla of the kidney. Nephrotic syndrome is characterized by excessive sodium and water reabsorption, although in spite of this, patients do not develop hyponatremia. There is a marked downregulation of both AQP2 and AQP3 expression, which could be a physiologic response to extracellular water reabsorption in patients with nephrotic syndrome. There are some conditions in which aquaporin expression has been found to increase such as experimentally induced heart failure, cirrhosis, and pregnancy. Some drugs such as cisplatin and cyclosporine, also alter the expression of aquaporins. The three-pore model of peritoneal transport depicts the importance of aquaporins. Thus, the understanding of renal water channels has solved the mystery behind many water balance disorders. Further insights into the molecular structure and biology of aquaporins will help to lay a foundation for the development of future drugs.
Collapse
Affiliation(s)
- S K Agarwal
- Department of Nephrology, All India Institute of Medical Sciences, New Delhi - 110 029, India
| | | |
Collapse
|
162
|
Larsen HS, Ruus AK, Schreurs O, Galtung HK. Aquaporin 11 in the developing mouse submandibular gland. Eur J Oral Sci 2010; 118:9-13. [DOI: 10.1111/j.1600-0722.2009.00708.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
163
|
|
164
|
Matsuzaki T, Hata H, Ozawa H, Takata K. Immunohistochemical localization of the aquaporins AQP1, AQP3, AQP4, and AQP5 in the mouse respiratory system. Acta Histochem Cytochem 2009; 42:159-69. [PMID: 20126569 PMCID: PMC2808499 DOI: 10.1267/ahc.09023] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 08/31/2009] [Indexed: 01/27/2023] Open
Abstract
Aquaporins are membrane water channel proteins that function mainly in water transfer across cellular membranes. In our present study, we investigated the immunohistochemical distribution of aquaporin 1 (AQP1), AQP3, AQP4, and AQP5 in the mouse respiratory system by immunofluorescence, immunoperoxidase, and immunoelectron microscopy. AQP3, AQP4, and AQP5 are expressed in epithelial cells, whereas AQP1 is expressed in subepithelial connective tissues and capillaries. In the airway surface epithelia from the nasal cavity to the intrapulmonary bronchioles, AQP5 was found to be mainly localized to the luminal side and both AQP3 and AQP4 to the abluminal side. In the alveolar epithelium, AQP5 is localized to the apical membranes of both type I and type II alveolar cells. Compared with the previous studies on the rat respiratory system, in which AQP5 is restricted to the alveolar type I cells and absent from the airway surface epithelia, we found that AQP5 in the mouse is much more widely distributed throughout the surface epithelia. These results suggest that AQP5 has a critical role in water-handling, such as the maintenance of airway surface liquid and clearance of alveolar fluid in the mouse respiratory system.
Collapse
Affiliation(s)
- Toshiyuki Matsuzaki
- Institute of Experimental Animal Research, Gunma University Graduate School of Medicine
- Department of Anatomy and Neurobiology, Nippon Medical School Graduate School of Medicine
| | - Hidekazu Hata
- Institute of Experimental Animal Research, Gunma University Graduate School of Medicine
| | - Hitoshi Ozawa
- Department of Anatomy and Neurobiology, Nippon Medical School Graduate School of Medicine
| | - Kuniaki Takata
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine
| |
Collapse
|
165
|
Ohta E, Itoh T, Nemoto T, Kumagai J, Ko SBH, Ishibashi K, Ohno M, Uchida K, Ohta A, Sohara E, Uchida S, Sasaki S, Rai T. Pancreas-specific aquaporin 12 null mice showed increased susceptibility to caerulein-induced acute pancreatitis. Am J Physiol Cell Physiol 2009; 297:C1368-78. [DOI: 10.1152/ajpcell.00117.2009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Aquaporin 12 (AQP12) is the most recently identified member of the mammalian AQP family and is specifically expressed in pancreatic acinar cells. In vitro expression studies have revealed that AQP12 is localized at intracellular sites. To determine the physiological roles of AQP12 in the pancreas, we generated knockout mice for this gene (AQP12-KO). No obvious differences were observed under normal conditions between wild-type (WT) and AQP12-KO mice in terms of growth, blood chemistry, pancreatic fluid content, or histology. However, when we induced pancreatitis through the administration of a cholecystokinin-8 (CCK-8) analog, the AQP12-KO mice showed more severe pathological damage to this organ than WT mice. Furthermore, when we analyzed exocytosis in the pancreatic acini using a two-photon excitation imaging method, the results revealed larger exocytotic vesicles (vacuoles) in the acini of AQP12-KO mice at a high CCK-8 dose (100 nM). From these results, we conclude that AQP12 may function in the mechanisms that control the proper secretion of pancreatic fluid following rapid and intense stimulation.
Collapse
Affiliation(s)
| | | | - Tomomi Nemoto
- Supportive Center for Brain Research, National Institute for Physiological Sciences and
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Okazaki
| | - Jiro Kumagai
- Department of Pathology, Tokyo Medical and Dental University, Tokyo
| | - Shigeru B. H. Ko
- Division of Gastroenterology, Department of Medicine, Nagoya University Graduate School of Medicine, Nagoya
| | - Kenichi Ishibashi
- Department of Medical Physiology, Meiji Pharmaceutical University, Tokyo
| | - Mayuko Ohno
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Keiko Uchida
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
166
|
Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1213-28. [DOI: 10.1016/j.bbamem.2009.03.009] [Citation(s) in RCA: 310] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 03/09/2009] [Accepted: 03/11/2009] [Indexed: 01/09/2023]
|
167
|
Wei P, Rong Y, Li L, Bao D, Morgan JI. Characterization of trans-neuronal trafficking of Cbln1. Mol Cell Neurosci 2009; 41:258-73. [PMID: 19344768 PMCID: PMC2758316 DOI: 10.1016/j.mcn.2009.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 02/20/2009] [Accepted: 03/23/2009] [Indexed: 01/08/2023] Open
Abstract
Cbln1, a glycoprotein secreted from granule cells and GluRdelta2 in the postsynaptic densities of Purkinje cells are components of an incompletely understood pathway essential for integrity and plasticity of parallel fiber-Purkinje cell synapses. We show that Cbln1 undergoes anterograde transport from granule cells to Purkinje cells and Bergmann glia, and enters the endolysosomal trafficking system, raising the possibility that Cbln1 exerts its activity on or within Purkinje cells and Bergmann glia. Cbln1 is absent in Purkinje cells and Bergmann glia of GluRdelta2-null mice, suggesting a mechanistic convergence on Cbln1 trafficking. Ectopic expression of Cbln1 in Purkinje cells of L7-cbln1 transgenic mice reveals Cbln1 undergoes anterograde and retrograde trans-neuronal trafficking even across synapses that lack GluRDelta2, indicating that it is not universally essential for Cbln1 transport. The L7-cbln1 transgene also ameliorates the locomotor deficits of cbln1-null mice, indicating that the presence and/or release of Cbln1 from the postsynaptic neuron has functional consequences.
Collapse
Affiliation(s)
- Peng Wei
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 323, Memphis, Tennessee 38105-3678, USA
| | - Yongqi Rong
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 323, Memphis, Tennessee 38105-3678, USA
| | - Leyi Li
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 323, Memphis, Tennessee 38105-3678, USA
| | | | - James I Morgan
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 323, Memphis, Tennessee 38105-3678, USA
| |
Collapse
|
168
|
Expression patterns of the aquaporin gene family during renal development: influence of genetic variability. Pflugers Arch 2009; 458:745-59. [PMID: 19367412 PMCID: PMC2756349 DOI: 10.1007/s00424-009-0667-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Accepted: 03/23/2009] [Indexed: 12/25/2022]
Abstract
High-throughput analyses have shown that aquaporins (AQPs) belong to a cluster of genes that are differentially expressed during kidney organogenesis. However, the spatiotemporal expression patterns of the AQP gene family during tubular maturation and the potential influence of genetic variation on these patterns and on water handling remain unknown. We investigated the expression patterns of all AQP isoforms in fetal (E13.5 to E18.5), postnatal (P1 to P28), and adult (9 weeks) kidneys of inbred (C57BL/6J) and outbred (CD-1) mice. Using quantitative polymerase chain reaction (PCR), we evidenced two mRNA patterns during tubular maturation in C57 mice. The AQPs 1-7-11 showed an early (from E14.5) and progressive increase to adult levels, similar to the mRNA pattern observed for proximal tubule markers (Megalin, NaPi-IIa, OAT1) and reflecting the continuous increase in renal cortical structures during development. By contrast, AQPs 2-3-4 showed a later (E15.5) and more abrupt increase, with transient postnatal overexpression. Most AQP genes were expressed earlier and/or stronger in maturing CD-1 kidneys. Furthermore, adult CD-1 kidneys expressed more AQP2 in the collecting ducts, which was reflected by a significant delay in excreting a water load. The expression patterns of proximal vs. distal AQPs and the earlier expression in the CD-1 strain were confirmed by immunoblotting and immunostaining. These data (1) substantiate the clustering of important genes during tubular maturation and (2) demonstrate that genetic variability influences the regulation of the AQP gene family during tubular maturation and water handling by the mature kidney.
Collapse
|
169
|
Benga G. Water channel proteins (later called aquaporins) and relatives: past, present, and future. IUBMB Life 2009; 61:112-33. [PMID: 19165894 DOI: 10.1002/iub.156] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Water channels or water channel proteins (WCPs) are transmembrane proteins that have a specific three-dimensional structure with a pore that can be permeated by water molecules. WCPs are large families (over 450 members) that are present in all kingdoms of life. The first WCP was discovered in the human red blood cell (RBC) membrane in 1980s. In 1990s other WCPs were discovered in plants, microorganisms, various animals, and humans; and it became obvious that the WCPs belong to the superfamily of major intrinsic proteins (MIPs, over 800 members). WCPs include three subfamilies: (a) aquaporins (AQPs), which are water specific (or selective water channels); (b) aquaglyceroporins (and glycerol facilitators), which are permeable to water and/or other small molecules; and (c) "superaquaporins" or subcellular AQPs. WCPs (and MIPs) have several structural characteristics which were better understood after the atomic structure of some MIPs was deciphered. The structure-function relationships of MIPs expressed in microorganisms (bacteria, archaea, yeast, and protozoa), plants, and some multicellular animal species [nematodes, insects, fishes, amphibians, mammals (and humans)] are described. A synthetic overview on the WCPs from RBCs from various species is provided. The physiological roles of WCPs in kidney, gastrointestinal system, respiratory apparatus, central nervous system, eye, adipose tissue, skin are described, and some implications of WCPs in various diseases are briefly presented. References of detailed reviews on each topic are given. This is the first review providing in a condensed form an overview of the whole WCP field that became in the last 20 years a very hot area of research in biochemistry and molecular cell biology, with wide and increasing implications.
Collapse
Affiliation(s)
- Gheorghe Benga
- Department of Cell and Molecular Biology, Iuliu HaTieganu University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania.
| |
Collapse
|
170
|
Abstract
Thirteen members of mammalian aquaporins have been identified. Initial ten members (AQP-AQP9) are relatively well detailed and their roles are clarified. However, the last three members, AQP10-AQP12, are poorly characterized and little is known about their roles though they were cloned 6 years ago. In this review, we focus on these three AQPs. AQP10 is an aquaglyceroporin while AQP11 and AQP12 belong to a new subfamily, superaquaporins. Knockout mice for these aquaporins are now available. The AQP11 null mouse has a remarkable phenotype, polycystic kidneys, which is neonatally fatal. On the other hand, the absence of the other two affected little. In some animals, AQP10 is even a pseudogene. This review summarizes the current knowledge on these AQPs and will hopefully stimulate future research on the subject.
Collapse
Affiliation(s)
- Kenichi Ishibashi
- Department of Medical Physiology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan.
| |
Collapse
|
171
|
Padma S, Smeltz AM, Banks PM, Iannitti DA, McKillop IH. Altered aquaporin 9 expression and localization in human hepatocellular carcinoma. HPB (Oxford) 2009; 11:66-74. [PMID: 19590626 PMCID: PMC2697857 DOI: 10.1111/j.1477-2574.2008.00014.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 08/06/2008] [Indexed: 12/12/2022]
Abstract
BACKGROUND In addition to the biochemical components secreted in bile, aquaporin (AQP) water channels exist in hepatocyte membranes to form conduits for water movement between the sinusoid and the bile canaliculus. The aim of the current study was to analyse AQP 9 expression and localization in human hepatocellular carcinoma (HCC) and non-tumourigenic liver (NTL) tissue from patients undergoing hepatic resection. METHODS Archived tissue from 17 patients was sectioned and analysis performed using an antibody raised against AQP 9. Slides were blind-scored to determine AQP 9 distribution within HCC and NTL tissue. RESULTS Aquaporin 9 was predominantly expressed in the membranes of hepatocytes and demonstrated zonal distribution relative to hepatic sinusoid structure in normal liver. In HCC arising in the absence of cirrhosis AQP 9 remained membrane-localized with zonal distribution in the majority of NTL. By contrast, AQP 9 expression was significantly decreased in the HCC mass vs. pair-matched NTL. In HCC in the presence of cirrhosis, NTL was characterized by extensive AQP 9 staining in the membrane in the absence of zonal distribution and AQP 9 staining in NTL was significantly greater than that observed in the tumour mass. CONCLUSIONS These data demonstrate that human HCC is characterized by altered AQP 9 expression and AQP 9 localization in the NTL mass is dependent on underlying liver pathology. Given the central role of AQPs in normal liver function and the potential role of AQPs during transformation and progression, these data may prove valuable in future diagnostic and/or therapeutic strategies.
Collapse
Affiliation(s)
- Srikanth Padma
- Departments of General Surgery Carolinas Medical CenterCharlotte, NC, USA
| | - Alan M Smeltz
- Department of Biology, University of North Carolina at CharlotteCharlotte, NC, USA
| | - Peter M Banks
- Pathology, Carolinas Medical CenterCharlotte, NC, USA
| | - David A Iannitti
- Departments of General Surgery Carolinas Medical CenterCharlotte, NC, USA
| | - Iain H McKillop
- Departments of General Surgery Carolinas Medical CenterCharlotte, NC, USA
| |
Collapse
|
172
|
Affiliation(s)
- Tae-Hwan Kwon
- Water and Salt Research Center, Institute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
173
|
Ishibashi K, Koike S, Kondo S, Hara S, Tanaka Y. The role of a group III AQP, AQP11 in intracellular organelle homeostasis. THE JOURNAL OF MEDICAL INVESTIGATION 2009; 56 Suppl:312-7. [DOI: 10.2152/jmi.56.312] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
| | - Shin Koike
- Department of Medical Physiology, Meiji Pharmaceutical University
| | - Shintaro Kondo
- Department of Medical Physiology, Meiji Pharmaceutical University
| | - Shigeki Hara
- Department of Medical Physiology, Meiji Pharmaceutical University
| | - Yasuko Tanaka
- Department of Medical Physiology, Meiji Pharmaceutical University
| |
Collapse
|
174
|
Abstract
Progress in the structure determination of AQPs has led to a deep understanding of water and solute permeation by these small integral membrane proteins. The atomic structures now available have allowed the water permeation and exclusion of protons to be monitored by molecular dynamics simulations, and have provided a framework for assessing the water and solute permeation in great detail by site-directed mutations. In spite of this, further structural and molecular dynamics analyses are required to elucidate the basis for regulation as well as for gas permeation, processes that are still to be deciphered.
Collapse
Affiliation(s)
- Thomas Walz
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
175
|
Aquaporin water channels in mammals. Clin Exp Nephrol 2008; 13:107-117. [PMID: 19085041 DOI: 10.1007/s10157-008-0118-6] [Citation(s) in RCA: 259] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 11/04/2008] [Indexed: 12/16/2022]
Abstract
Water channels, aquaporins (AQPs), are a family of small integral plasma membrane proteins that primarily transport water across the plasma membrane. There are 13 members (AQP0-12) in humans. This number is final as the human genome project has been completed. They are divided into three subgroups based on the primary sequences: water selective AQPs (AQP0, 1, 2, 4, 5, 6, 8), aquaglyceroporins (AQP3, 7, 9, 10), and superaquaporins (AQP11, 12). Since no specific inhibitors are yet available, functional roles of AQPs are suggested by AQP null mice and humans. Abnormal water metabolism was shown with AQP1, 2, 3, 4, 5 null mice, especially with AQP2 null mice: fatal at neonate due to diabetes insipidus. Abnormal glycerol transport was shown with AQP3, 7, 9 null mice, although they appeared normal. AQP0 null mice suffer from cataracts, although the pathogenesis is not clear. Unexpectedly, AQP11 null mice die from uremia as a result of polycystic kidneys. Interestingly, AQP6, 8, 10, 12 null mice are almost normal. AQP null humans have been reported with AQP0, 1, 2, 3, 7: only AQP2 null humans show an outstanding phenotype, diabetes insipidus. This review summarizes the current knowledge on all mammalian AQPs and hopefully will stimulate future research in both clinical and basic fields.
Collapse
|
176
|
Les aquaporines présentes dans le rein. Nephrol Ther 2008; 4:562-7. [DOI: 10.1016/j.nephro.2008.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2007] [Revised: 03/28/2008] [Accepted: 03/29/2008] [Indexed: 11/15/2022]
|
177
|
Calamita G, Ferri D, Gena P, Carreras FI, Liquori GE, Portincasa P, Marinelli RA, Svelto M. Altered expression and distribution of aquaporin-9 in the liver of rat with obstructive extrahepatic cholestasis. Am J Physiol Gastrointest Liver Physiol 2008; 295:G682-G690. [PMID: 18669624 DOI: 10.1152/ajpgi.90226.2008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rat hepatocytes express aquaporin-9 (AQP9), a basolateral channel permeable to water, glycerol, and other small neutral solutes. Although liver AQP9 is known for mediating the uptake of sinusoidal blood glycerol, its relevance in bile secretion physiology and pathophysiology remains elusive. Here, we evaluated whether defective expression of AQP9 is associated to secretory dysfunction of rat hepatocytes following bile duct ligation (BDL). By immunoblotting, 1-day BDL resulted in a slight decrease of AQP9 protein in basolateral membranes and a simultaneous increase of AQP9 in intracellular membranes. This pattern was steadily accentuated in the subsequent days of BDL since at 7 days BDL basolateral membrane AQP9 decreased by 85% whereas intracellular AQP9 increased by 115%. However, the AQP9 immunoreactivity of the total liver membranes from day 7 of BDL rats was reduced by 49% compared with the sham counterpart. Results were confirmed by immunofluorescence and immunogold electron microscopy and consistent with biophysical studies showing considerable decrease of the basolateral membrane water and glycerol permeabilities of cholestatic hepatocytes. The AQP9 mRNA was slightly reduced only at day 7 of BDL, indicating that the dysregulation was mainly occurring at a posttranslational level. The altered expression of liver AQP9 during BDL was not dependent on insulin, a hormone known to negatively regulate AQP9 at a transcriptional level, since insulinemia was unchanged in 7-day BDL rats. Overall, these results suggest that extrahepatic cholestasis leads to downregulation of AQP9 in the hepatocyte basolateral plasma membrane and dysregulated aquaporin channels contribute to bile flow dysfunction of cholestatic hepatocyte.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Dipartimento di Fisiologia Generale ed Ambientale, Università degli Studi di Bari, Via Amendola, 165/A, 70126 Bari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
178
|
Hermo L, Schellenberg M, Liu LY, Dayanandan B, Zhang T, Mandato CA, Smith CE. Membrane domain specificity in the spatial distribution of aquaporins 5, 7, 9, and 11 in efferent ducts and epididymis of rats. J Histochem Cytochem 2008; 56:1121-35. [PMID: 18796408 DOI: 10.1369/jhc.2008.951947] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Water content within the epididymis of the male reproductive system is stringently regulated to promote sperm maturation. Several members of the aquaporin (AQP) family of water channel-forming integral membrane proteins have been identified in epididymal cells, but expression profiling for this epithelium is presently incomplete, and no AQP isoform has yet been identified on basolateral plasma membranes of these cells. In this study, we explored AQP expression by RT-PCR and light microscopy immunolocalizations using peroxidase and wide-field fluorescence techniques. The results indicate that several AQPs are coexpressed in the epididymis including AQP 5, 7, 9, and 11. Immunolocalizations suggested complex patterns in the spatial distribution of these AQPs. In principal cells, AQP 9 and 11 were present mainly on microvilli, whereas AQP 7 was localized primarily to lateral and then to basal plasma membranes in a region-specific manner. AQP 5 was also expressed regionally but was associated with membranes of endosomes. Additionally, AQPs were expressed by some but not all basal (AQP 7 and 11), clear (AQP 7 and 9), and halo (AQP 7 and 11) cells. These findings indicate unique associations of AQPs with specific membrane domains in a cell type- and region-specific manner within the epididymis of adult animals.
Collapse
Affiliation(s)
- Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, Canada H3A 2B2.
| | | | | | | | | | | | | |
Collapse
|
179
|
Sorani MD, Manley GT, Giacomini KM. Genetic variation in human aquaporins and effects on phenotypes of water homeostasis. Hum Mutat 2008; 29:1108-17. [DOI: 10.1002/humu.20762] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
180
|
Tchekneva EE, Khuchua Z, Davis LS, Kadkina V, Dunn SR, Bachman S, Ishibashi K, Rinchik EM, Harris RC, Dikov MM, Breyer MD. Single amino acid substitution in aquaporin 11 causes renal failure. J Am Soc Nephrol 2008; 19:1955-64. [PMID: 18701606 DOI: 10.1681/asn.2008030296] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A screen of recessive mutations generated by the chemical mutagen n-ethyl-n-nitrosourea (ENU) mapped a new mutant locus (5772SB) termed sudden juvenile death syndrome (sjds) to chromosome 7 in mice. These mutant mice, which exhibit severe proximal tubule injury and formation of giant vacuoles in the renal cortex, die from renal failure, a phenotype that resembles aquaporin 11 (Aqp11) knockout mice. In this report, the ENU-induced single-nucleotide variant (sjds mutation) is identified. To determine whether this variant, which causes an amino acid substitution (Cys227Ser) in the predicted E-loop region of aquaporin 11, is responsible for the sjds lethal renal phenotype, Aqp11-/sjds compound heterozygous mice were generated from Aqp11 +/sjds and Aqp11 +/- intercrosses. The compound heterozygous Aqp11 -/sjds offspring exhibited a lethal renal phenotype (renal failure by 2 wk), similar to the Aqp11 sjds/sjds and Aqp11-/- phenotypes. These results demonstrate that the identified mutation causes renal failure in Aqp11 sjds/sjds mutant mice, providing a model for better understanding of the structure and function of aquaporin 11 in renal physiology.
Collapse
Affiliation(s)
- Elena E Tchekneva
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Okada S, Misaka T, Tanaka Y, Matsumoto I, Ishibashi K, Sasaki S, Abe K. Aquaporin‐11 knockout mice and polycystic kidney disease animals share a common mechanism of cyst formation. FASEB J 2008; 22:3672-84. [DOI: 10.1096/fj.08-111872] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Shinji Okada
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Takumi Misaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Yasuko Tanaka
- Department of Medical PhysiologyMeiji Pharmaceutical UniversityTokyoJapan
| | - Ichiro Matsumoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Kenichi Ishibashi
- Department of Medical PhysiologyMeiji Pharmaceutical UniversityTokyoJapan
| | - Sei Sasaki
- Department of NephrologyTokyo Medical and Dental UniversityTokyoJapan
| | - Keiko Abe
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
182
|
Abstract
Aquaporins (AQPs) are membrane proteins serving in the transfer of water and small solutes across cellular membranes. AQPs play a variety of roles in the body such as urine formation, prevention from dehydration in covering epithelia, water handling in the blood–brain barrier, secretion, conditioning of the sensory system, cell motility and metastasis, formation of cell junctions, and fat metabolism. The kidney plays a central role in water homeostasis in the body. At least seven isoforms, namely AQP1, AQP2, AQP3, AQP4, AQP6, AQP7, and AQP11, are expressed. Among them, AQP2, the anti-diuretic hormone (ADH)-regulated water channel, plays a critical role in water reabsorption. AQP2 is expressed in principal cells of connecting tubules and collecting ducts, where it is stored in Rab11-positive storage vesicles in the basal state. Upon ADH stimulation, AQP2 is translocated to the apical plasma membrane, where it serves in the influx of water. The translocation process is regulated through the phosphorylation of AQP2 by protein kinase A. As soon as the stimulation is terminated, AQP2 is retrieved to early endosomes, and then transferred back to the Rab 11-positive storage compartment. Some AQP2 is secreted via multivesicular bodies into the urine as exosomes. Actin plays an important role in the intracellular trafficking of AQP2. Recent findings have shed light on the molecular basis that controls the trafficking of AQP2.
Collapse
|
183
|
Jessica Chen M, Sepramaniam S, Armugam A, Shyan Choy M, Manikandan J, Melendez AJ, Jeyaseelan K, Sang Cheung N. Water and ion channels: crucial in the initiation and progression of apoptosis in central nervous system? Curr Neuropharmacol 2008; 6:102-16. [PMID: 19305791 PMCID: PMC2647147 DOI: 10.2174/157015908784533879] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 09/09/2007] [Accepted: 10/01/2007] [Indexed: 12/14/2022] Open
Abstract
Programmed cell death (PCD), is a highly regulated and sophisticated cellular mechanism that commits cell to isolated death fate. PCD has been implicated in the pathogenesis of numerous neurodegenerative disorders. Countless molecular events underlie this phenomenon, with each playing a crucial role in death commitment. A precedent event, apoptotic volume decrease (AVD), is ubiquitously observed in various forms of PCD induced by different cellular insults. Under physiological conditions, cells when subjected to osmotic fluctuations will undergo regulatory volume increase/decrease (RVI/RVD) to achieve homeostatic balance with neurons in the brain being additionally protected by the blood-brain-barrier. However, during AVD following apoptotic trigger, cell undergoes anistonic shrinkage that involves the loss of water and ions, particularly monovalent ions e.g. K(+), Na(+) and Cl(-). It is worthwhile to concentrate on the molecular implications underlying the loss of these cellular components which posed to be significant and crucial in the successful propagation of the apoptotic signals. Microarray and real-time PCR analyses demonstrated several ion and water channel genes are regulated upon the onset of lactacystin (a proteosomal inhibitor)-mediated apoptosis. A time course study revealed that gene expressions of water and ion channels are being modulated just prior to apoptosis, some of which are aquaporin 4 and 9, potassium channels and chloride channels. In this review, we shall looked into the molecular protein machineries involved in the execution of AVD in the central nervous system (CNS), and focus on the significance of movements of each cellular component in affecting PCD commitment, thus provide some pharmacological advantages in the global apoptotic cell death.
Collapse
Affiliation(s)
- Minghui Jessica Chen
- Departments of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Sugunavathi Sepramaniam
- Departments of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Arunmozhiarasi Armugam
- Departments of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Meng Shyan Choy
- Departments of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jayapal Manikandan
- Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Alirio J Melendez
- Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Kandiah Jeyaseelan
- Departments of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Nam Sang Cheung
- Departments of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
184
|
Abstract
Transgenic mice lacking renal aquaporins (AQPs), or containing mutated AQPs, have been useful in confirming anticipated AQP functions in renal physiology and in discovering new functions. Mice lacking AQPs 1-4 manifest defects in urinary concentrating ability to different extents. Mechanistic studies have confirmed the involvement of AQP1 in near-isosmolar fluid absorption in the proximal tubule, and in countercurrent multiplication and exchange mechanisms that produce medullary hypertonicity in the antidiuretic kidney. Deletion of AQPs 2-4 impairs urinary concentrating ability by reduction of transcellular water permeability in the collecting duct. Recently created transgenic mouse models of nephrogenic diabetes insipidus produced by AQP2 gene mutation offer exciting possibilities to test new drug therapies. Several unanticipated AQP functions in kidney have been discovered recently that are unrelated to their role in transcellular water transport. There is evidence for involvement of AQP1 in kidney cell migration after renal injury, of AQP7 in renal glycerol clearance, of AQP11 in prevention of renal cystic disease, and possibly of AQP3 in regulation of collecting duct cell proliferation. Future work in renal AQPs will focus on mechanisms responsible for these non-fluid-transporting functions, and on the development of small-molecule AQP inhibitors for use as aquaretic-type diuretics.
Collapse
Affiliation(s)
- A S Verkman
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, CA 94143-0521, USA. <>
| |
Collapse
|
185
|
Weber KH, Lee EK, Basavanna U, Lindley S, Ziegelstein RC, Germino GG, Sutters M. Heterologous expression of polycystin-1 inhibits endoplasmic reticulum calcium leak in stably transfected MDCK cells. Am J Physiol Renal Physiol 2008; 294:F1279-86. [PMID: 18417541 DOI: 10.1152/ajprenal.00348.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We previously found that polycystin-1 accelerated the decay of ligand-activated cytoplasmic calcium transients through enhanced reuptake of calcium into the endoplasmic reticulum (ER; Hooper KM, Boletta A, Germino GG, Hu Q, Ziegelstein RC, Sutters M. Am J Physiol Renal Physiol 289: F521-F530, 2005). Calcium flux across the ER membrane is determined by the balance of active uptake and passive leak. In the present study, we show that polycystin-1 inhibited calcium leak across the ER membrane, an effect that would explain the capacity of this protein to accelerate clearance of calcium from the cytoplasm following a calcium release response. Calcium leak was detected by measurement of the accumulation of calcium in the cytoplasm following treatment with thapsigargin. Heterologous polycystin-1, stably expressed in Madin-Darby canine kidney cells, attenuated the thapsigargin-induced calcium peak with no effect on basal calcium stores, mitochondrial calcium uptake, or extrusion of calcium across the plasma membrane. The capacity of polycystin-1 to limit the rate of decay of ER luminal calcium following inhibition of the pump was shown indirectly using the calcium ionophore ionomycin, and directly by loading the ER with a low-affinity calcium indicator. We conclude that disruption of ER luminal calcium homeostasis may contribute to the cyst phenotype in autosomal dominant polycystic kidney disease.
Collapse
Affiliation(s)
- Kimberly H Weber
- Department of Nephrology, John Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
186
|
Rojek A, Praetorius J, Frøkiaer J, Nielsen S, Fenton RA. A Current View of the Mammalian Aquaglyceroporins. Annu Rev Physiol 2008; 70:301-27. [DOI: 10.1146/annurev.physiol.70.113006.100452] [Citation(s) in RCA: 246] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Aleksandra Rojek
- The Water and Salt Research Center, Institute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark;
| | - Jeppe Praetorius
- The Water and Salt Research Center, Institute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark;
| | - Jørgen Frøkiaer
- The Water and Salt Research Center, Institute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark;
| | - Søren Nielsen
- The Water and Salt Research Center, Institute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark;
| | - Robert A. Fenton
- The Water and Salt Research Center, Institute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark;
| |
Collapse
|
187
|
Wei P, Smeyne RJ, Bao D, Parris J, Morgan JI. Mapping of Cbln1-like immunoreactivity in adult and developing mouse brain and its localization to the endolysosomal compartment of neurons. Eur J Neurosci 2008; 26:2962-78. [PMID: 18001291 DOI: 10.1111/j.1460-9568.2007.05913.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cbln1 is a secreted glycoprotein essential for synapse structure and function in cerebellum that is also expressed in extracerebellar structures where its function is unknown. Furthermore, Cbln1 assembles into homomeric complexes and heteromeric complexes with three family members (Cbln2-Cbln4), thereby influencing each other's degradation and secretion. Therefore, to understand its function, it is essential to establish the location of Cbln1 relative to other family members. The localization of Cbln1 in brain was determined using immunohistochemistry and cbln1-lacZ transgenic mice. Cbln1-like immunoreactivity (CLI) was always punctate and localized to the cytoplasm of neurons. The punctate CLI colocalized with cathepsin D, a lysosomal marker, but not with markers of endoplasmic reticulum or Golgi, indicating that Cbln1 is present in neuronal endosomes/lysosomes. This may represent the cellular mechanism underlying the regulated degradation of Cbln1 observed in vivo. Outside the cerebellum, CLI mapped to multiple brain regions that were frequently synaptically interconnected, warranting their analysis in cbln1-null mice. Furthermore, whereas CLI increased dramatically in the cerebellum of cbln3-null mice it was unchanged in extracerebellar neurons. This opens the possibility that other family members that are coexpressed in these areas control Cbln1 levels, potentially by modulating processing in the endolysosomal pathway. During development of cbln1-lacZ mice, beta-galactosidase staining was first observed in proliferating granule cell precursors prior to synaptogenesis and thereafter in maturing and adult granule cells. As cbln3 is only expressed in post-mitotic, post-migratory granule cells, Cbln1 homomeric complexes in precursors and Cbln1-Cbln3 heteromeric complexes in mature granule cells may have distinct functions and turnover.
Collapse
Affiliation(s)
- Peng Wei
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 332 North Lauderdale Street, MS 323, Memphis, TN 38105-2794, USA
| | | | | | | | | |
Collapse
|
188
|
Katsuhara M, Hanba YT, Shiratake K, Maeshima M. Expanding roles of plant aquaporins in plasma membranes and cell organelles. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 35:1-14. [PMID: 32688752 DOI: 10.1071/fp07130] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 12/04/2007] [Indexed: 06/11/2023]
Abstract
Aquaporins facilitate water transport across biomembranes in a manner dependent on osmotic pressure and water-potential gradient. The discovery of aquaporins has facilitated research on intracellular and whole-plant water transport at the molecular level. Aquaporins belong to a ubiquitous family of membrane intrinsic proteins (MIP). Plants have four subfamilies: plasma-membrane intrinsic protein (PIP), tonoplast intrinsic protein (TIP), nodulin 26-like intrinsic protein (NIP), and small basic intrinsic protein (SIP). Recent research has revealed a diversity of plant aquaporins, especially their physiological functions and intracellular localisation. A few PIP members have been reported to be involved in carbon dioxide permeability of cells. Newly identified transport substrates for NIP members of rice and Arabidopsis thaliana have been demonstrated to transport silicon and boron, respectively. Ammonia, glycerol, and hydrogen peroxide have been identified as substrates for plant aquaporins. The intracellular localisation of plant aquaporins is diverse; for example, SIP members are localised on the ER membrane. There has been much progress in the research on the functional regulation of water channel activity of PIP members including phosphorylation, formation of hetero-oligomer, and protonation of histidine residues under acidic condition. This review provides a broad overview of the range of potential aquaporins, which are now believed to participate in the transport of several small molecules in various membrane systems in model plants, crops, flowers and fruits.
Collapse
Affiliation(s)
- Maki Katsuhara
- Research Institute for Bioresources, Okayama University, Kurashiki 710-0046, Japan
| | - Yuko T Hanba
- Centre for Bioresource Field Science, Kyoto Institute of Technology, Kyoto 616-8354, Japan
| | - Katsuhiro Shiratake
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Masayoshi Maeshima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
189
|
Portincasa P, Palasciano G, Svelto M, Calamita G. Aquaporins in the hepatobiliary tract. Which, where and what they do in health and disease. Eur J Clin Invest 2008; 38:1-10. [PMID: 18173545 DOI: 10.1111/j.1365-2362.2007.01897.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The biological importance of the aquaporin family of water channels was recently acknowledged by the 2003 Nobel Prize for Chemistry awarded to the discovering scientist Peter Agre. Among the pleiotropic roles exerted by aquaporins in nature in both health and disease, the review addresses the latest acquisitions about the expression and regulation, as well as physiology and pathophysiology of aquaporins in the hepatobiliary tract. Of note, at least seven out of the thirteen mammalian aquaporins are expressed in the liver, bile ducts and gallbladder. Aquaporins are essential for bile water secretion and reabsorption, as well as for plasma glycerol uptake by the hepatocyte and its conversion to glucose during starvation. Novel data are emerging regarding the physio-pathological involvement of aquaporins in multiple diseases such as cholestases, liver cirrhosis, obesity and insulin resistance, fatty liver, gallstone formation and even microparasite invasion of intrahepatic bile ducts. This body of knowledge represents the mainstay of present and future research in a rapidly expanding field.
Collapse
Affiliation(s)
- P Portincasa
- Department of Internal Medicine & Public Medicine, University of Bari, Italy
| | | | | | | |
Collapse
|
190
|
Burtey S, Riera M, Ribe E, Pennekamp P, Passage E, Rance R, Dworniczak B, Fontés M. Overexpression of PKD2 in the mouse is associated with renal tubulopathy. Nephrol Dial Transplant 2007; 23:1157-65. [PMID: 18048422 DOI: 10.1093/ndt/gfm763] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Polycystin-2 (PC-2), a cation channel of the Trp family, is involved in autosomal dominant polycystic kidney disease (ADPKD) type 2 (ADPKD2). This protein has recently been localized to the primary cilium where its channel function seems to be involved in a mechanosensory phenomenon. However, its biological function is not totally understood, especially in tubule formation. In the present paper, we describe a mouse model for human PC-2 overexpression, obtained by inserting a human bacterial artificial chromosome (BAC) containing the PKD2 gene. Three lines were generated, expressing different levels of PKD2. One line, PKD2-Y, has been explored in more detail and we will present physiological and molecular exploration of these transgenic animals. Our data demonstrate that transgenic animals older than 12 months present tubulopathy with proteinuria and failure to concentrate urine. Moreover, the kidney cortex has been found disorganized. Finally, we observe that extracellular matrix protein expression is downregulated in these animals. In conclusion, overexpression of human PKD2 leads to anomalies in tubular function, probably due to abnormalities in tubule morphogenesis.
Collapse
Affiliation(s)
- Stéphane Burtey
- Génétique Médicale et Développement, INSERM UMR 491 Faculté de Médecine de la Timone, 27 Bd. J. Moulin 13385 Marseille cedex 5, France
| | | | | | | | | | | | | | | |
Collapse
|
191
|
Nozaki K, Ishii D, Ishibashi K. Intracellular aquaporins: clues for intracellular water transport? Pflugers Arch 2007; 456:701-7. [DOI: 10.1007/s00424-007-0373-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2007] [Accepted: 10/12/2007] [Indexed: 10/22/2022]
|
192
|
Hara-Chikuma M, Verkman AS. Aquaporin-3 facilitates epidermal cell migration and proliferation during wound healing. J Mol Med (Berl) 2007; 86:221-31. [PMID: 17968524 DOI: 10.1007/s00109-007-0272-4] [Citation(s) in RCA: 224] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 09/17/2007] [Accepted: 09/21/2007] [Indexed: 12/18/2022]
Abstract
Healing of skin wounds is a multi-step process involving the migration and proliferation of basal keratinocytes in epidermis, which strongly express the water/glycerol-transporting protein aquaporin-3 (AQP3). In this study, we show impaired skin wound healing in AQP3-deficient mice, which results from distinct defects in epidermal cell migration and proliferation. In vivo wound healing was approximately 80% complete in wild-type mice at 5 days vs approximately 50% complete in AQP3 null mice, with remarkably fewer proliferating, BrdU-positive keratinocytes. After AQP3 knock-down in keratinocyte cell cultures, which reduced cell membrane water and glycerol permeabilities, cell migration was slowed by more than twofold, with reduced lamellipodia formation at the leading edge of migrating cells. Proliferation of AQP3 knock-down keratinocytes was significantly impaired during wound repair. Mitogen-induced cell proliferation was also impaired in AQP3 deficient keratinocytes, with greatly reduced p38 MAPK activity. In mice, oral glycerol supplementation largely corrected defective wound healing and epidermal cell proliferation. Our results provide evidence for involvement of AQP3-facilitated water transport in epidermal cell migration and for AQP3-facilitated glycerol transport in epidermal cell proliferation.
Collapse
Affiliation(s)
- Mariko Hara-Chikuma
- Department of Medicine, Cardiovascular Research Institute, University of California, 1246 Health Sciences East Tower, San Francisco, CA 94143-0521, USA
| | | |
Collapse
|
193
|
Maeshima M, Ishikawa F. ER membrane aquaporins in plants. Pflugers Arch 2007; 456:709-16. [DOI: 10.1007/s00424-007-0363-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 09/26/2007] [Indexed: 11/29/2022]
|
194
|
Suzuki M, Hasegawa T, Ogushi Y, Tanaka S. Amphibian aquaporins and adaptation to terrestrial environments: A review. Comp Biochem Physiol A Mol Integr Physiol 2007; 148:72-81. [PMID: 17270476 DOI: 10.1016/j.cbpa.2006.12.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 12/03/2006] [Accepted: 12/05/2006] [Indexed: 11/23/2022]
Abstract
In many anurans, the pelvic patch of the ventral skin and the urinary bladder are important osmoregulatory organs. Since the discovery of water channel protein, aquaporin (AQP), in mammalian erythrocytes, 17 distinct full sequences of AQP mRNAs have been identified in anurans. Phylogenetic tree of AQP proteins from amphibians and mammals suggested that anuran AQPs can be divided into six types: i.e. types 1, 2, 3, and 5, and anuran-specific types a1 and a2. Among them, two types of anuran AQPs (types 1 and a2) are localized in the skin and urinary bladder by immunohistochemistry. Tree frog type-a2 AQPs, AQP-h2 and AQP-h3, are vasotocin-regulated water channels predominant in the osmoregulatory organs. Both the AQP-h2 and AQP-h3 are expressed at the granular cells underneath the keratinized layer in the pelvic patch, whereas only AQP-h2 is detected at the granular cells in the urinary bladder. In response to vasotocin, both the molecules seem to be translocated from the cytoplasmic pool to the apical plasma membrane of the granular cells. On the other hand, type-1 AQPs, Rana FA-CHIP and Hyla AQP-h1, are detected at the endothelial cells of blood capillaries in frog osmoregulatory organs. These findings suggest that AQP-h2 and AQP-h3 are key players for transepithelial water movement, and that FA-CHIP and AQP-h1 might be important for the transport of absorbed water into the blood flow. Comparative investigation of type-a2 AQPs in anurans further revealed that AQP-h2 and -h3-like molecules might exist at the urinary bladder and the pelvic skin, respectively, in various anurans from aquatic species to arboreal dwellers. AQP-h2-like protein is also detected in the pelvic skin of terrestrial and arboreal species. It is possible that this molecule might have occurred in the pelvic skin as anurans penetrated into drier environments.
Collapse
Affiliation(s)
- Masakazu Suzuki
- Department of Biology, Faculty of Science, Shizuoka University, Ohya 836, Suruga ward, Shizuoka city, Shizuoka 422-8529, Japan.
| | | | | | | |
Collapse
|
195
|
Krane CM, Goldstein DL. Comparative functional analysis of aquaporins/glyceroporins in mammals and anurans. Mamm Genome 2007; 18:452-62. [PMID: 17653793 PMCID: PMC1998877 DOI: 10.1007/s00335-007-9041-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 05/28/2007] [Indexed: 01/08/2023]
Abstract
Maintenance of fluid homeostasis is critical to establishing and maintaining normal physiology. The landmark discovery of membrane water channels (aquaporins; AQPs) ushered in a new area in osmoregulatory biology that has drawn from and contributed to diverse branches of biology, from molecular biology and genomics to systems biology and evolution, and from microbial and plant biology to animal and translational physiology. As a result, the study of AQPs provides a unique and integrated backdrop for exploring the relationships between genes and genome systems, the regulation of gene expression, and the physiologic consequences of genetic variation. The wide species distribution of AQP family members and the evolutionary conservation of the family indicate that the control of membrane water flux is a critical biological process. AQP function and regulation is proving to be central to many of the pathways involved in individual physiologic systems in both mammals and anurans. In mammals, AQPs are essential to normal secretory and absorptive functions of the eye, lung, salivary gland, sweat glands, gastrointestinal tract, and kidney. In urinary, respiratory, and gastrointestinal systems, AQPs are required for proper urine concentration, fluid reabsorption, and glandular secretions. In anurans, AQPs are important in mediating physiologic responses to changes in the external environment, including those that occur during metamorphosis and adaptation from an aquatic to terrestrial environment and thermal acclimation in anticipation of freezing. Therefore, an understanding of AQP function and regulation is an important aspect of an integrated approach to basic biological research.
Collapse
Affiliation(s)
- Carissa M Krane
- Department of Biology, University of Dayton, 300 College Park, Dayton, Ohio, 45469, USA.
| | | |
Collapse
|
196
|
Yamamoto T, Kuramoto H, Kadowaki M. Downregulation in aquaporin 4 and aquaporin 8 expression of the colon associated with the induction of allergic diarrhea in a mouse model of food allergy. Life Sci 2007; 81:115-20. [PMID: 17574630 DOI: 10.1016/j.lfs.2007.04.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 03/12/2007] [Accepted: 04/26/2007] [Indexed: 01/21/2023]
Abstract
Food allergies have become increasingly prevalent during the past few decades. Diarrhea is one of the most frequent intestinal symptoms caused by food allergens and is characterized by imbalanced ion exchange and water transfer; however, the underlying mechanism of allergic diarrhea remains unclear. Water transfer across the intestinal epithelial membrane seems to occur via aquaporins (AQPs). However, the molecular mechanism of water transfer and the pathophysiological roles of aquaporins in the intestine have not been fully established. The present studies have focused on the alterations of AQPs in a mouse model of allergic diarrhea in which BALB/c mice developed diarrhea following repeated challenges of orally administered ovalbumin. Quantitative real-time PCR analysis and immunohistochemical technique were used for expression of mRNA and protein of AQPs, respectively. AQP4 and AQP8 mRNA levels were significantly decreased in the proximal colon of allergic mice compared to controls; likewise, expression of AQP4 and AQP8 proteins was reduced in the proximal colon of the allergic mice. These results suggest that allergic diarrhea is associated with a downregulation in AQP4 and AQP8 expression.
Collapse
Affiliation(s)
- Takeshi Yamamoto
- Division of Gastroinstestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan.
| | | | | |
Collapse
|
197
|
Jeyaseelan K, Sepramaniam S, Armugam A, Wintour EM. Aquaporins: a promising target for drug development. Expert Opin Ther Targets 2007; 10:889-909. [PMID: 17105375 DOI: 10.1517/14728222.10.6.889] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Aquaporins (AQPs) are a family of small hydrophobic, integral membrane proteins that are expressed in all living organisms and play critical roles in controlling the water flow into and out of cells. So far, 13 different AQPs have been identified in mammals (AQP 0-12). AQPs have recently been implicated in various diseases such as cancer, cataract, brain oedema, gallstone disease and nephrogenic diabetes insipidus, as well as in the development of obesity and polycystic kidney disease. Interfering with the expression of AQPs will undoubtedly have therapeutic applications. Hence, in this review, the authors look at each AQP and its association with various pathological conditions in humans and demonstrate that they form potential targets for the treatment of such diseases.
Collapse
Affiliation(s)
- Kandiah Jeyaseelan
- Yong Loo Lin School of Medicine, National University of Singapore, Department of Biochemistry, 8 Medical Drive, 117597, Singapore.
| | | | | | | |
Collapse
|
198
|
Yakata K, Hiroaki Y, Ishibashi K, Sohara E, Sasaki S, Mitsuoka K, Fujiyoshi Y. Aquaporin-11 containing a divergent NPA motif has normal water channel activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:688-93. [PMID: 17178102 DOI: 10.1016/j.bbamem.2006.11.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 10/31/2006] [Accepted: 11/08/2006] [Indexed: 10/23/2022]
Abstract
Recently, two novel mammalian aquaporins (AQPs), AQPs 11 and 12, have been identified and classified as members of a new AQP subfamily, the "subcellular AQPs". In members of this subfamily one of the two asparagine-proline-alanine (NPA) motifs, which play a crucial role in selective water conduction, are not completely conserved. Mouse AQP11 (mAQP11) was expressed in Sf9 cells and purified using the detergent Fos-choline 10. The protein was reconstituted into liposomes, which were used for water conduction studies with a stopped-flow device. Single water permeability (pf) of AQP11 was measured to be 1.72+/-0.03x10(-13) cm(3)/s, suggesting that other members of the subfamily with incompletely conserved NPA motifs may also function as water channels.
Collapse
Affiliation(s)
- Kaya Yakata
- Department of Biophysics, Faculty of Science, Kyoto University, Oiwake, Kitashirakawa, Sakyo-ku Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
199
|
Magni F, Sarto C, Ticozzi D, Soldi M, Bosso N, Mocarelli P, Kienle MG. Proteomic knowledge of human aquaporins. Proteomics 2007; 6:5637-49. [PMID: 17044001 DOI: 10.1002/pmic.200600212] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Aquaporins (AQPs) are an ubiquitous family of proteins characterized by sequence similarity and the presence of two NPA (Asp-Pro-Ala) motifs. At present, 13 human AQPs are known and they are divided into two subgroups according to their ability to transport only water molecules (AQP0, AQP1, AQP2, AQP4, AQP5, AQP6, and AQP8), or also glycerol and other small solutes (AQP3, AQP7, AQP9, AQP10, AQP12). The genomic, structural, and functional aspects of this family are briefly described. In particular, proteomic approaches to identify and characterize the most studied AQPs, mainly through SDS-PAGE followed by MS analysis, are discussed. Moreover, the clinical importance of the best studied aquaporin (AQP1) in human diseases is also provided.
Collapse
Affiliation(s)
- Fulvio Magni
- Department of Experimental, Environmental Medicine and Medical Biotechnologies, University of Milano-Bicocca, Monza, Italy
| | | | | | | | | | | | | |
Collapse
|
200
|
Hasegawa T, Matsuzaki T, Tajika Y, Ablimit A, Suzuki T, Aoki T, Hagiwara H, Takata K. Differential localization of aquaporin-2 and glucose transporter 4 in polarized MDCK cells. Histochem Cell Biol 2007; 127:233-41. [PMID: 17206499 DOI: 10.1007/s00418-006-0264-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2006] [Indexed: 11/28/2022]
Abstract
Membrane water channel aquaporin-2 (AQP2) and glucose transporter 4 (GLUT4) exhibit a common feature in that they are stored in intracellular storage compartments and undergo translocation to the plasma membrane upon hormonal stimulation. We compared the intracellular localization and trafficking of AQP2 and GLUT4 in polarized Madin-Darby canine kidney cells stably transfected with human AQP2 (MDCK-hAQP2) by immunofluorescence microscopy. When expressed in MDCK-hAQP2 cells, GLUT4 and GLUT4-EGFP were predominantly localized in the perinuclear region close to and within the Golgi apparatus, similar to endogenous GLUT4 in adipocytes and myocytes. In addition, GLUT4 was occasionally seen in EEA1-positive early endosomes. AQP2, on the other hand, was sequestered in subapical Rab11-positive vesicles. In the basal state, the intracellular storage site of GLUT4 was distinct from that of AQP2. Forskolin induced translocation of AQP2 from the subapical storage vesicles to the apical plasma membrane, which did not affect GLUT4 localization. When forskolin was washed out, AQP2 was first retrieved to early endosomes from the apical plasma membrane, where it was partly colocalized with GLUT4. AQP2 was then transferred to Rab11-positive storage vesicles. These results show that AQP2 and GLUT4 share a common compartment after retrieval from the plasma membrane, but their storage compartments are distinct from each other in polarized MDCK-hAQP2 cells.
Collapse
Affiliation(s)
- Takahiro Hasegawa
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | | | | | | | | | | | | | | |
Collapse
|