151
|
Abstract
Glycans are essential for the maintenance of normal biological function, with alterations in glycan expression being a hallmark of cancer. Cancer stem cells (CSCs) are a subset of cells within a tumour capable of self-renewal, cellular differentiation and resistances to conventional therapies. As is the case with stem cells, marker proteins present on the cell surface are frequently used to identify and enrich CSCs, with the expression of these markers statistical correlating with the likelihood of cancer recurrence and overall patient survival. As such CSC markers are of high clinical relevance. The majority of markers currently used to identify CSC populations are glycoproteins, and although the diverse biological roles for many of these markers are known, the nature and function of the glycan moiety on these glycoproteins remains to be fully elucidated. This mini-review summarises our current knowledge regarding the types and extent of CSC marker glycosylation, and the various roles that these glycans play in CSC biology, including in mediating cell adhesion, metastasis, evading apoptosis, tear shear resistance, tumour growth, maintaining pluripotency, self-renewal, trafficking, maintaining stability, maintaining enzymatic activity and aiding epithelial mesenchymal transitioning. Given that CSCs markers have multiple diverse biological functions, and are potentially of significant diagnostic and therapeutic benefit the search for new markers that are uniquely expressed on CSCs is vital to selectively target/identify this subset of cancer cells. As such we have also outlined how high-throughput lectin microarrays can be used to successfully profile the glycosylation status of CSC and to identify glyco-markers unique to CSCs.
Collapse
|
152
|
Sialic acid linkage differentiation of glycopeptides using capillary electrophoresis - electrospray ionization - mass spectrometry. Sci Rep 2017. [PMID: 28623326 PMCID: PMC5473812 DOI: 10.1038/s41598-017-03838-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Sialylation is a glycosylation feature that occurs in different linkages at the non-reducing end of a glycan moiety, the linkage isomers are often differentially associated with various biological processes. Due to very similar physico-chemical properties, the separation of isomeric sialylated glycopeptides remains challenging but of utmost importance in the biomedicine and biotechnology, including biomarker discovery, glyco-engineering and biopharmaceutical characterization. This study presents the implementation of a high-resolution separation platform based on capillary electrophoresis - mass spectrometry (CE-MS) allowing for the selective analysis of α2,3- and α2,6-sialylated glycopeptides. These differentially linked glycopeptides showed an identical fragmentation pattern (collision induced dissociation) but different electrophoretic mobilities, allowing for baseline separation of the different linkages without the need for an extensive sample preparation. The different migration behavior between the two moieties was found to correlate with differences in pKa values. Using a novel methodology adapted from the so-called internal standard CE approach, a relative difference of 3.4·10-2 in pKa unit was determined. This approach was applied for the analysis of tryptic glycopeptides of prostate specific antigen, which shows highly complex and heterogeneous glycosylation. The developed platform therefore appears attractive for the identification of differentially linked sialic acids that may be related to pathological conditions.
Collapse
|
153
|
Hui J, Bao L, Li S, Zhang Y, Feng Y, Ding L, Ju H. Localized Chemical Remodeling for Live Cell Imaging of Protein-Specific Glycoform. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jingjing Hui
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Lei Bao
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Siqiao Li
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Yi Zhang
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Yimei Feng
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| |
Collapse
|
154
|
Hui J, Bao L, Li S, Zhang Y, Feng Y, Ding L, Ju H. Localized Chemical Remodeling for Live Cell Imaging of Protein-Specific Glycoform. Angew Chem Int Ed Engl 2017; 56:8139-8143. [PMID: 28557363 DOI: 10.1002/anie.201703406] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Indexed: 11/07/2022]
Abstract
Live cell imaging of protein-specific glycoforms is important for the elucidation of glycosylation mechanisms and identification of disease states. The currently used metabolic oligosaccharide engineering (MOE) technology permits routinely global chemical remodeling (GCM) for carbohydrate site of interest, but can exert unnecessary whole-cell scale perturbation and generate unpredictable metabolic efficiency issue. A localized chemical remodeling (LCM) strategy for efficient and reliable access to protein-specific glycoform information is reported. The proof-of-concept protocol developed for MUC1-specific terminal galactose/N-acetylgalactosamine (Gal/GalNAc) combines affinity binding, off-on switchable catalytic activity, and proximity catalysis to create a reactive handle for bioorthogonal labeling and imaging. Noteworthy assay features associated with LCM as compared with MOE include minimum target cell perturbation, short reaction timeframe, effectiveness as a molecular ruler, and quantitative analysis capability.
Collapse
Affiliation(s)
- Jingjing Hui
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Lei Bao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Siqiao Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Yi Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Yimei Feng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| |
Collapse
|
155
|
Understanding Alzheimer's disease by global quantification of protein phosphorylation and sialylated N-linked glycosylation profiles: A chance for new biomarkers in neuroproteomics? J Proteomics 2017; 161:11-25. [DOI: 10.1016/j.jprot.2017.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/24/2017] [Accepted: 04/03/2017] [Indexed: 12/13/2022]
|
156
|
Cai H, Zhou H, Miao Y, Li N, Zhao L, Jia L. MiRNA expression profiles reveal the involvement of miR-26a, miR-548l and miR-34a in hepatocellular carcinoma progression through regulation of ST3GAL5. J Transl Med 2017; 97:530-542. [PMID: 28218742 DOI: 10.1038/labinvest.2017.12] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/24/2016] [Accepted: 01/13/2017] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) have key roles in comprehensive physiological and pathological processes by targeting specific genes through translational repression. Identification of miRNAs related to metastasis enables us to obtain better insight into cancer development. In the current study, we investigated the miRNA expressional profiles in the highly invasive human hepatocellular carcinoma cell line MHCC97-H and MHCC97-L with lower metastatic potential using miRNA microarrays. By quantitative real-time PCR, we confirmed the results of miRNA experiments. Thirteen differentially expressed miRNAs were identified between MHCC97-H and MHCC97-L cells; and the same results were found in clinical samples. Using bioinformatic analysis and luciferase reporter assay, we found that ST3GAL5, a sialyltransferase gene, was the direct target of miR-26a, miR-548l and miR-34a. Engineered expression of miR-26a, miR-548l or miR-34a in MHCC97-H or MHCC97-L cells could significantly change their malignant behaviors and oncogenicity in in vitro and in vivo assays. Manipulated expression of ST3GAL5 also led to the alteration of the metastatic potential of MHCC97-H and MHCC97-L cells, in agreement with the effects of above three miRNAs. Altogether, our data indicate that the levels of these miRNAs may be used as biological markers for evaluating hepatocellular carcinoma progression. miR-26a, miR-548l and miR-34a, acting as tumor suppressors, may exert their effects by regulating ST3GAL5.
Collapse
Affiliation(s)
- Hongjiao Cai
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China.,Department of Central Laboratory, Dalian Municipal Central Hospital, Dalian, Liaoning Province, China
| | - Huimin Zhou
- Department of Microbiology, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yuan Miao
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| | - Nana Li
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| | - Lifen Zhao
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| | - Li Jia
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
157
|
Qing G, Lu Q, Xiong Y, Zhang L, Wang H, Li X, Liang X, Sun T. New Opportunities and Challenges of Smart Polymers in Post-Translational Modification Proteomics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1604670. [PMID: 28112833 DOI: 10.1002/adma.201604670] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/13/2016] [Indexed: 06/06/2023]
Abstract
Protein post-translational modifications (PTMs), which denote covalent additions of various functional groups (e.g., phosphate, glycan, methyl, or ubiquitin) to proteins, significantly increase protein complexity and diversity. PTMs play crucial roles in the regulation of protein functions and numerous cellular processes. However, in a living organism, native PTM proteins are typically present at substoichiometric levels, considerably impeding mass-spectrometry-based analyses and identification. Over the past decade, the demand for in-depth PTM proteomics studies has spawned a variety of selective affinity materials capable of capturing trace amounts of PTM peptides from highly complex biosamples. However, novel design ideas or strategies are urgently required for fulfilling the increasingly complex and accurate requirements of PTM proteomics analysis, which can hardly be met by using conventional enrichment materials. Considering two typical types of protein PTMs, phosphorylation and glycosylation, an overview of polymeric enrichment materials is provided here, with an emphasis on the superiority of smart-polymer-based materials that can function in intelligent modes. Moreover, some smart separation materials are introduced to demonstrate the enticing prospects and the challenges of smart polymers applied in PTM proteomics.
Collapse
Affiliation(s)
- Guangyan Qing
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Qi Lu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Yuting Xiong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Lei Zhang
- Institute of Biomedical and Pharmaceutical Sciences, College of Bioengineering, Hubei University of Technology, 28 Nanli Road, Wuhan, 430068, P. R. China
| | - Hongxi Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Xiuling Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China
- International School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China
| |
Collapse
|
158
|
Qin Y, Zhong Y, Ma T, Zhang J, Yang G, Guan F, Li Z, Li B. A pilot study of salivary N-glycome in HBV-induced chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Glycoconj J 2017; 34:523-535. [PMID: 28389847 DOI: 10.1007/s10719-017-9768-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/16/2017] [Accepted: 03/27/2017] [Indexed: 12/11/2022]
Abstract
Hepatitis B is a potentially life-threatening liver infection caused by the hepatitis B virus (HBV), which can lead to chronic liver disease and put people at high risk of death from cirrhosis of the liver and liver cancer. However, little is known about the correlation of salivary N-linked glycans related to HBV-infected liver diseases. Here we investigated N-linked glycome in saliva from 200 subjects (50 healthy volunteers (HV), 40 HBV-infected patients (HB), 50 cirrhosis patients (HC), and 60 hepatocellular carcinoma patients (HCC) using MALDI-TOF/TOF-MS. Representative MS spectra of N-glycans with signal-to-noise ratios >6 were annotated using the GlycoWorkbench program. A total of 40, 47, 29, and 33 N-glycan peaks were identified and annotated from HV, HB, HC, and HCC groups, respectively. There were 15 N-glycan peaks (e.g., m/z 1647.587, 1688.613 and 2101.755) were present in all groups. Three N-glycan peaks (m/z 2596.925, 2756.962, and 2921.031) were unique in HV group, 2 N-glycan peaks (m/z 1898.676 and 1971.692) were unique in HB group, 5 N-glycan peaks (m/z 1954.677, 2507.914, 2580.930, 2637.952, and 3092.120) were unique in HC group, and 3 N-glycan peaks (m/z 2240.830, 2507.914, and 3931.338) were unique in HCC group. The proportion of fucosylated N-glycans was apparently increased in the HCC group (84.8%) than in any other group (73.1% ± 0.01), however, the proportion of sialylated N-glycans was decreased in HCC group (12.1%) than in any other group (17.23% ± 0.003). Our data provide pivotal information to distinguish between HBV-associated hepatitis, cirrhosis and HCC, and facilitate the discovery of biomarkers for HCC during its early stages based on precise alterations of N-linked glycans in saliva.
Collapse
Affiliation(s)
- Yannan Qin
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Health Science Center, 277 Yanta Xilu, Xi'an, 710061, China
| | - Yaogang Zhong
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, No. 229 Taibai Beilu, Xi'an, 710069, China
| | - Tianran Ma
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, No. 229 Taibai Beilu, Xi'an, 710069, China
| | - Jiaxu Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, No. 229 Taibai Beilu, Xi'an, 710069, China
| | - Ganglong Yang
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Feng Guan
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, No. 229 Taibai Beilu, Xi'an, 710069, China.
| | - Baozhen Li
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Health Science Center, 277 Yanta Xilu, Xi'an, 710061, China.
| |
Collapse
|
159
|
Shang S, Li W, Qin X, Zhang S, Liu Y. Aided Diagnosis of Hepatocellular Carcinoma Using Serum Fucosylated Haptoglobin Ratios. J Cancer 2017; 8:887-893. [PMID: 28382152 PMCID: PMC5381178 DOI: 10.7150/jca.17747] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/22/2016] [Indexed: 12/17/2022] Open
Abstract
Aberrant fucosylation plays a functional role in regulating ontogeny and celluar differentiation and are differentially regulated in cancerous condition, which could provide hallmarks for cancer diagnostics and surveillance. We previously developed a magnetic beads-based lectin ELISA system to measure fucosylated haptoglobin (Hp), which has been reported to be a cancer biomarker through a series of glycoproteomic analysis. In this study, serum fucosylated Hp ratios were measured using our ELISA kit in a separate cohort of 260 patients independently, including 130 healthy controls and 130 patients with hepatocellular carcinoma (HCC). Fucosylated Hp /Hp ratio (levels of fucosylated Hp /levels of protein Hp) and ELISA Index (OD value of fucosylated Hp /OD value of protein Hp) were calculated respectively to reflect Hp fucosylation level on its protein level. Our data showed that fucosylated Hp /Hp ratio (AUC=0.8449) and ELISA Index (AUC=0.8581) had better performance in distinguishing HCC from controls, which indicated that fucosylated Hp ratios could improve the diagnosis and prediction of HCC even with a low level of alpha-fetoprotein (AFP). Additionally, the combination analysis of AFP and fucosylated Hp ratios increased the AUC value for HCC diagnosis.
Collapse
Affiliation(s)
- Shuxin Shang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China;; Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wei Li
- Cancer Research Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xue Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shu Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Yinkun Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China;; Cancer Research Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
160
|
Munkley J. Glycosylation is a global target for androgen control in prostate cancer cells. Endocr Relat Cancer 2017; 24:R49-R64. [PMID: 28159857 DOI: 10.1530/erc-16-0569] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 02/03/2017] [Indexed: 12/17/2022]
Abstract
Changes in glycan composition are common in cancer and can play important roles in all of the recognised hallmarks of cancer. We recently identified glycosylation as a global target for androgen control in prostate cancer cells and further defined a set of 8 glycosylation enzymes (GALNT7, ST6GalNAc1, GCNT1, UAP1, PGM3, CSGALNACT1, ST6GAL1 and EDEM3), which are also significantly upregulated in prostate cancer tissue. These 8 enzymes are under direct control of the androgen receptor (AR) and are linked to the synthesis of important cancer-associated glycans such as sialyl-Tn (sTn), sialyl LewisX (SLeX), O-GlcNAc and chondroitin sulfate. Glycosylation has a key role in many important biological processes in cancer including cell adhesion, migration, interactions with the cell matrix, immune surveillance, cell signalling and cellular metabolism. Our results suggest that alterations in patterns of glycosylation via androgen control might modify some or all of these processes in prostate cancer. The prostate is an abundant secretor of glycoproteins of all types, and alterations in glycans are, therefore, attractive as potential biomarkers and therapeutic targets. Emerging data on these often overlooked glycan modifications have the potential to improve risk stratification and therapeutic strategies in patients with prostate cancer.
Collapse
Affiliation(s)
- Jennifer Munkley
- Institute of Genetic MedicineNewcastle University, Newcastle-upon-Tyne, UK
| |
Collapse
|
161
|
Sweet Strategies in Prostate Cancer Biomarker Research: Focus on a Prostate Specific Antigen. BIONANOSCIENCE 2017. [DOI: 10.1007/s12668-017-0397-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
162
|
Protein glycosylation in gastric and colorectal cancers: Toward cancer detection and targeted therapeutics. Cancer Lett 2017; 387:32-45. [DOI: 10.1016/j.canlet.2016.01.044] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/20/2016] [Accepted: 01/22/2016] [Indexed: 12/25/2022]
|
163
|
Badr HA, AlSadek DMM, El-Houseini ME, Saeui CT, Mathew MP, Yarema KJ, Ahmed H. Harnessing cancer cell metabolism for theranostic applications using metabolic glycoengineering of sialic acid in breast cancer as a pioneering example. Biomaterials 2017; 116:158-173. [PMID: 27926828 PMCID: PMC5193387 DOI: 10.1016/j.biomaterials.2016.11.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/14/2016] [Accepted: 11/24/2016] [Indexed: 12/18/2022]
Abstract
Abnormal cell surface display of sialic acids - a family of unusual 9-carbon sugars - is widely recognized as distinguishing feature of many types of cancer. Sialoglycans, however, typically cannot be identified with sufficiently high reproducibility and sensitivity to serve as clinically accepted biomarkers and similarly, almost all efforts to exploit cancer-specific differences in sialylation signatures for therapy remain in early stage development. In this report we provide an overview of important facets of glycosylation that contribute to cancer in general with a focus on breast cancer as an example of malignant disease characterized by aberrant sialylation. We then describe how cancer cells experience nutrient deprivation during oncogenesis and discuss how the resulting metabolic reprogramming, which endows breast cancer cells with the ability to obtain nutrients during scarcity, constitutes an "Achilles' heel" that we believe can be exploited by metabolic glycoengineering (MGE) strategies to develop new diagnostic methods and therapeutic approaches. In particular, we hypothesize that adaptations made by breast cancer cells that allow them to efficiently scavenge sialic acid during times of nutrient deprivation renders them vulnerable to MGE, which refers to the use of exogenously-supplied, non-natural monosaccharide analogues to modulate targeted aspects of glycosylation in living cells and animals. In specific, once non-natural sialosides are incorporated into the cancer "sialome" they can be exploited as epitopes for immunotherapy or as chemical tags for targeted delivery of imaging or therapeutic agents selectively to tumors.
Collapse
Affiliation(s)
- Haitham A Badr
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Dina M M AlSadek
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Motawa E El-Houseini
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Christopher T Saeui
- Department of Biomedical Engineering and Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD 21231, USA
| | - Mohit P Mathew
- Department of Biomedical Engineering and Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD 21231, USA
| | - Kevin J Yarema
- Department of Biomedical Engineering and Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD 21231, USA.
| | - Hafiz Ahmed
- GlycoMantra, Inc., Baltimore, MD 21227, USA.
| |
Collapse
|
164
|
Kailemia MJ, Park D, Lebrilla CB. Glycans and glycoproteins as specific biomarkers for cancer. Anal Bioanal Chem 2017; 409:395-410. [PMID: 27590322 PMCID: PMC5203967 DOI: 10.1007/s00216-016-9880-6] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/28/2016] [Accepted: 08/12/2016] [Indexed: 12/12/2022]
Abstract
Protein glycosylation and other post-translational modifications are involved in potentially all aspects of human growth and development. Defective glycosylation has adverse effects on human physiological conditions and accompanies many chronic and infectious diseases. Altered glycosylation can occur at the onset and/or during tumor progression. Identifying these changes at early disease stages may aid in making decisions regarding treatments, as early intervention can greatly enhance survival. This review highlights some of the efforts being made to identify N- and O-glycosylation profile shifts in cancer using mass spectrometry. The analysis of single or panels of potential glycoprotein cancer markers are covered. Other emerging technologies such as global glycan release and site-specific glycosylation analysis and quantitation are also discussed. Graphical Abstract Steps involved in the biomarker discovery.
Collapse
Affiliation(s)
- Muchena J Kailemia
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Dayoung Park
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
165
|
Glycosylation: a hallmark of cancer? Glycoconj J 2016; 34:147-156. [DOI: 10.1007/s10719-016-9755-2] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/11/2016] [Accepted: 11/28/2016] [Indexed: 12/18/2022]
|
166
|
Santos SN, Junqueira MS, Francisco G, Vilanova M, Magalhães A, Baruffi MD, Chammas R, Harris AL, Reis CA, Bernardes ES. O-glycan sialylation alters galectin-3 subcellular localization and decreases chemotherapy sensitivity in gastric cancer. Oncotarget 2016; 7:83570-83587. [PMID: 27835877 PMCID: PMC5347789 DOI: 10.18632/oncotarget.13192] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/21/2016] [Indexed: 12/12/2022] Open
Abstract
ST6GalNAc-I, the sialyltransferase responsible for sialyl-Tn (sTn) synthesis, has been previously reported to be positively associated with cancer aggressiveness. Here we describe a novel sTn-dependent mechanism for chemotherapeutic resistance. We show that sTn protects cancer cells against chemotherapeutic-induced cell death by decreasing the interaction of cell surface glycan receptors with galectin-3 and increasing its intracellular accumulation. Moreover, exogenously added galectin-3 potentiated the chemotherapeutics-induced cytotoxicity in sTn non-expressing cells, while sTn overexpressing cells were protected. We also found that the expression of sTn was associated with a reduction in galectin-3-binding sites in human gastric samples tumors. ST6GalNAc-I knockdown restored galectin-3-binding sites on the cell surface and chemotherapeutics sensibility. Our results clearly demonstrate that an interruption of O-glycans extension caused by ST6GalNAc-I enzymatic activity leads to tumor cells resistance to chemotherapeutic drugs, highlighting the need for the development of novel strategies to target galectin-3 and/or ST6GalNAc-I.
Collapse
MESH Headings
- Animals
- Antigens, Tumor-Associated, Carbohydrate/genetics
- Antigens, Tumor-Associated, Carbohydrate/metabolism
- Antineoplastic Agents/pharmacology
- Blood Proteins
- Cell Line, Tumor
- Cell Proliferation
- Cisplatin/pharmacology
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm
- Galectin 3/metabolism
- Galectins
- Glycosylation
- Humans
- Mice, Inbred BALB C
- Mice, Nude
- Protein Processing, Post-Translational
- Protein Transport
- RNA Interference
- Sialyltransferases/genetics
- Sialyltransferases/metabolism
- Stomach Neoplasms/drug therapy
- Stomach Neoplasms/genetics
- Stomach Neoplasms/metabolism
- Stomach Neoplasms/pathology
- Time Factors
- Transfection
- Tumor Burden
Collapse
Affiliation(s)
- Sofia N. Santos
- Department of Radiopharmacy, Nuclear Energy Research Institute, Radiopharmacy Center, São Paulo, Brazil
| | - Mara S. Junqueira
- Department of Center for Translational Oncology Cellular, Biology Group, Center for Translational Oncology, Cancer Institute of the State of Sao Paulo-ICESP, Brazil
| | - Guilherme Francisco
- Department of Center for Translational Oncology Cellular, Biology Group, Center for Translational Oncology, Cancer Institute of the State of Sao Paulo-ICESP, Brazil
| | - Manuel Vilanova
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- IBMC Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
- ICBAS-UP – Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Ana Magalhães
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- Department of Glycobiology in Cancer, IPATIMUP - Institute of Molecular Pathology and Immunology from the University of Porto, Porto, Portugal
| | - Marcelo Dias Baruffi
- Department of Clinical, Toxicological and Bromatological Analysis, Faculdade de Ciências Farmaceuticas de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - Roger Chammas
- Department of Center for Translational Oncology Cellular, Biology Group, Center for Translational Oncology, Cancer Institute of the State of Sao Paulo-ICESP, Brazil
| | - Adrian L. Harris
- Department of Medical Oncology, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Celso A. Reis
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS-UP – Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
- Department of Glycobiology in Cancer, IPATIMUP - Institute of Molecular Pathology and Immunology from the University of Porto, Porto, Portugal
- Department of Pathology and Oncology, Medical Faculty, University of Porto, Portugal
| | - Emerson S. Bernardes
- Department of Radiopharmacy, Nuclear Energy Research Institute, Radiopharmacy Center, São Paulo, Brazil
| |
Collapse
|
167
|
Ma XT, He XW, Li WY, Zhang YK. Determination of Glycoproteins by a Self-Assembled 4-Mercaptophenylboronic Acid Film on a Quartz Crystal Microbalance. ANAL SCI 2016; 32:1277-1282. [PMID: 27941255 DOI: 10.2116/analsci.32.1277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Glycosylation plays an important part in many biological processes. However, many glycoproteins are either of low abundance or covered by other components in biological samples. Hence, developing new methods to measure the glycoproteins with both high efficiency and low detection limit is important. In this work, a self-assembled 4-mercaptophenylboronic acid film was coated on a quartz crystal microbalance chip. By optimizing the reaction time and the concentration of 4-mercaptophenylboronic acid, a sensor that specifically responded to glycoproteins was created. Then, several parameters for the prepared sensor were investigated and the working curve for representative glycoprotein-transferrin was established. The linearity range was from 50 to 400 ng/mL and the detection limit was 21.0 ng/mL. The sensor was used to detect transferrin in artificial urine samples. This sensor has a low detection limit of glycoproteins requiring only a small amount of samples, and thus has potential applications in both pharmaceutical and medical areas.
Collapse
Affiliation(s)
- Xiao-Tong Ma
- Research Center for Analytical Sciences, College of Chemistry, Nankai University
| | | | | | | |
Collapse
|
168
|
N-linked glycosylation at Asn152 on CD147 affects protein folding and stability: promoting tumour metastasis in hepatocellular carcinoma. Sci Rep 2016; 6:35210. [PMID: 27869218 PMCID: PMC5116672 DOI: 10.1038/srep35210] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 09/19/2016] [Indexed: 12/20/2022] Open
Abstract
Cluster of differentiation 147 (CD147), also known as extracellular matrix metalloproteinase inducer, is a transmembrane glycoprotein that mediates oncogenic processes partly through N-glycosylation modifications. N-glycosylation has been demonstrated to be instrumental for the regulation of CD147 function during malignant transformation. However, the role that site-specific glycosylation of CD147 plays in its defective function in hepatocellular carcinomacells needs to be determined. Here, we demonstrate that the modification of N-glycosylation at Asn152 on CD147 strongly promotes hepatocellular carcinoma (HCC) invasion and migration. After the removal of N-glycans at Asn152, CD147 was more susceptible to degradation by ER-localized ubiquitin ligase-mediated endoplasmic reticulum-associated degradation (ERAD). Furthermore, N-linked glycans at Asn152 were required for CD147 to acquire and maintain proper folding in the ER. Moreover, N-linked glycans at Asn152 functioned as a recognition motif that was directly mediated by the CNX quality control system. Two phases in the retention-based ER chaperones system drove ER-localized CD147 trafficking to degradation. Deletion of N-linked glycosylation at Asn152 on CD147 significantly suppressed in situ tumour metastasis. These data could potentially shed light on the molecular regulation of CD147 through glycosylation and provide a valuable means of developing drugs that target N-glycans at Asn152 on CD147.
Collapse
|
169
|
Fucosyltransferase-4 and Oligosaccharide Lewis Y Antigen as potentially Correlative Biomarkers of Helicobacter pylori CagA Associated Gastric Cancer. Pathol Oncol Res 2016; 23:173-179. [PMID: 27757838 DOI: 10.1007/s12253-016-0122-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 10/04/2016] [Indexed: 12/20/2022]
Abstract
H. pylori cytotoxin associated antigen A (CagA) plays a significant role in the progression of gastric cancer but their effect on fucosylation to develop gastric cancer is unknown. Fucosyltransferase IV (FUT4) is the key enzyme for synthesis of LewisY (LeY) carried by glycoproteins and glycolipids on the cell membrane. Herein, we compare the expression of CagA, p-EGFR, FUT4 and LeY in gastritis (n = 128, 176), gastric ulcer (n = 174, 213), and gastric cancer (n = 323, 261) tissue and serum samples, respectively by IHC and ELISA. Moreover, we investigated the potential correlation of CagA with FUT4 and LeY overexpression through EGFR activation. IHC and ELISA results showed higher positive cases of H. pylori CagA (83, 86 %), p-EGFR (81, 72 %), FUT4 (91, 97 %) and LeY (93, 92 %) in gastric cancer, compared to gastritis and gastric ulcer, H. pylori CagA (58, 67 & 59, 73 %), p-EGFR (52, 63 & 35, 47 %), FUT4 (68, 78 & 67, 82 %) and LeY (62,76 & 65, 85 %), respectively. We found a significant high expression (H-Value) of CagA (1.79, 1.66), p-EGFR (1.53, 1.58), FUT4 (2.14, 1.66) and LeY (1.69, 1.61) in gastric cancer tissues and serum, respectively as compared to chronic gastritis and gastric ulcers, CagA (0.64,1.14), p-EGFR (0.856, 0.678), FUT4 (0.949,1.197) and LeY (0.68,1.008) (P < 0.0001), respectively. Furthermore, H. pylori CagA showed significant correlation with p-EGFR (R-0.62, -0.74), FUT4 (R-0.81, -0.76) and LeY (R-0.82, -0.70) in gastric tissues and serum (P < 0.0001). H. pylori CagA plays key role in the development of gastric cancer with overexpression of FUT4/LeY, serve as potentially correlative biomarkers of H. pylori CagA associated gastric cancer.
Collapse
|
170
|
Yu AL, Hung JT, Ho MY, Yu J. Alterations of Glycosphingolipids in Embryonic Stem Cell Differentiation and Development of Glycan-Targeting Cancer Immunotherapy. Stem Cells Dev 2016; 25:1532-1548. [DOI: 10.1089/scd.2016.0138] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alice L. Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jung-Tung Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Yi Ho
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
171
|
Mancera-Arteu M, Giménez E, Barbosa J, Sanz-Nebot V. Identification and characterization of isomeric N-glycans of human alfa-acid-glycoprotein by stable isotope labelling and ZIC-HILIC-MS in combination with exoglycosidase digestion. Anal Chim Acta 2016; 940:92-103. [DOI: 10.1016/j.aca.2016.07.043] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/27/2016] [Accepted: 07/29/2016] [Indexed: 12/25/2022]
|
172
|
Ho WL, Hsu WM, Huang MC, Kadomatsu K, Nakagawara A. Protein glycosylation in cancers and its potential therapeutic applications in neuroblastoma. J Hematol Oncol 2016; 9:100. [PMID: 27686492 PMCID: PMC5041531 DOI: 10.1186/s13045-016-0334-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/23/2016] [Indexed: 02/07/2023] Open
Abstract
Glycosylation is the most complex post-translational modification of proteins. Altered glycans on the tumor- and host-cell surface and in the tumor microenvironment have been identified to mediate critical events in cancer pathogenesis and progression. Tumor-associated glycan changes comprise increased branching of N-glycans, higher density of O-glycans, generation of truncated versions of normal counterparts, and generation of unusual forms of terminal structures arising from sialylation and fucosylation. The functional role of tumor-associated glycans (Tn, sTn, T, and sLea/x) is dependent on the interaction with lectins. Lectins are expressed on the surface of immune cells and endothelial cells or exist as extracellular matrix proteins and soluble adhesion molecules. Expression of tumor-associated glycans is involved in the dysregulation of glycogenes, which mainly comprise glycosyltransferases and glycosidases. Furthermore, genetic and epigenetic mechanisms on many glycogenes are associated with malignant transformation. With better understanding of all aspects of cancer-cell glycomics, many tumor-associated glycans have been utilized for diagnostic, prognostic, and therapeutic purposes. Glycan-based therapeutics has been applied to cancers from breast, lung, gastrointestinal system, melanomas, and lymphomas but rarely to neuroblastomas (NBs). The success of anti-disialoganglioside (GD2, a glycolipid antigen) antibodies sheds light on glycan-based therapies for NB and also suggests the possibility of protein glycosylation-based therapies for NB. This review summarizes our understanding of cancer glycobiology with a focus of how protein glycosylation and associated glycosyltransferases affect cellular behaviors and treatment outcome of various cancers, especially NB. Finally, we highlight potential applications of glycosylation in drug and cancer vaccine development for NB.
Collapse
Affiliation(s)
- Wan-Ling Ho
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan.,Department of Pediatrics, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Ming Hsu
- Department of Surgery, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, 100, Taiwan. .,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| | - Min-Chuan Huang
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan. .,Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei, 10051, Taiwan.
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | |
Collapse
|
173
|
Carvalho S, Reis CA, Pinho SS. Cadherins Glycans in Cancer: Sweet Players in a Bitter Process. Trends Cancer 2016; 2:519-531. [PMID: 28741480 DOI: 10.1016/j.trecan.2016.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/01/2016] [Accepted: 08/13/2016] [Indexed: 01/23/2023]
Abstract
Cadherins are key components in tissue morphogenesis and architecture, contributing to the establishment of cohesive cell adhesion. Reduced cellular adhesiveness as a result of cadherin dysfunction is a defining feature of cancer. During tumor development and progression, major changes in the glycan repertoire of cancer cells take place, affecting the stability, trafficking, and cell-adhesion properties of cadherins. Importantly, the different glycoforms of cadherins are promising biomarkers, with potential clinical application to improve the management of patients, and constitute targets for the development of new therapies. This review discusses the most recent insights on the impact of glycan structure on the regulation of cadherin function in cancer, and provides a perspective on how cadherin glycans constitute tumor biomarkers and potential therapeutic targets.
Collapse
Affiliation(s)
- Sandra Carvalho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-465 Porto, Portugal
| | - Celso A Reis
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-465 Porto, Portugal; Institute of Biomedical Sciences of Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; Medical Faculty, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Salomé S Pinho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-465 Porto, Portugal; Medical Faculty, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal.
| |
Collapse
|
174
|
Santos A, Bueno PR. Glycoprotein assay based on the optimized immittance signal of a redox tagged and lectin-based receptive interface. Biosens Bioelectron 2016; 83:368-78. [DOI: 10.1016/j.bios.2016.04.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/08/2016] [Accepted: 04/14/2016] [Indexed: 12/29/2022]
|
175
|
Qing G, Li X, Xiong P, Chen C, Zhan M, Liang X, Sun T. Dipeptide-Based Carbohydrate Receptors and Polymers for Glycopeptide Enrichment and Glycan Discrimination. ACS APPLIED MATERIALS & INTERFACES 2016; 8:22084-92. [PMID: 27500750 DOI: 10.1021/acsami.6b07863] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Glycoproteomics identifies and catalogs protein glycosylation and explores its impact on protein conformations and biofunctions. However, these studies are restricted by the bottleneck to enrich low-abundance glycopeptides from complex biosamples and the difficulties in analyzing glycan structures by mass spectrometry. Here, we report dipeptide as a simple but promising carbohydrate binding platform to tackle these problems. We build a hydropathy-index-based strategy for sequence optimization and screen out three optimal dipeptide sequences from 54 types of dipeptides. The optimized dipeptide-based homopolymers display excellent performance (e.g., selectivity up to ∼70% for real biosamples and strong anti-interference capacity capable of resisting 1000-fold bovine serum albumin interference) in glycopeptide enrichment. Meanwhile, our polymers exhibit high-efficiency chromatographic separation toward oligosaccharides with different compositions, polymerization degrees and even their linkage isomers. This brings another attractive feature that our materials can discriminate subtly variable glycan structures of glycopeptides, especially, isomeric glycosidic linkages. These features provide a solid foundation to analyze the complex glycan structures and glycosites simultaneously, which will benefit future development of glycoproteomics and glycobiology.
Collapse
Affiliation(s)
- Guangyan Qing
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology , 122 Luoshi Road, Wuhan 430070, People's Republic of China
| | - Xiuling Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Peng Xiong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology , 122 Luoshi Road, Wuhan 430070, People's Republic of China
| | - Cheng Chen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Mimi Zhan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology , 122 Luoshi Road, Wuhan 430070, People's Republic of China
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology , 122 Luoshi Road, Wuhan 430070, People's Republic of China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology , 122 Luoshi Road, Wuhan 430070, People's Republic of China
| |
Collapse
|
176
|
Hoja-Łukowicz D, Przybyło M, Duda M, Pocheć E, Bubka M. On the trail of the glycan codes stored in cancer-related cell adhesion proteins. Biochim Biophys Acta Gen Subj 2016; 1861:3237-3257. [PMID: 27565356 DOI: 10.1016/j.bbagen.2016.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/22/2016] [Accepted: 08/14/2016] [Indexed: 12/14/2022]
Abstract
Changes in the profile of protein glycosylation are a hallmark of ongoing neoplastic transformation. A unique set of tumor-associated carbohydrate antigens expressed on the surface of malignant cells may serve as powerful diagnostic and therapeutic targets. Cell-surface proteins with altered glycosylation affect the growth, proliferation and survival of those cells, and contribute to their acquisition of the ability to migrate and invade. They may also facilitate tumor-induced immunosuppression and the formation of distant metastases. Deciphering the information encoded in these particular glycan portions of glycoconjugates may shed light on the mechanisms of cancer progression and metastasis. A majority of the related review papers have focused on overall changes in the patterns of cell-surface glycans in various cancers, without pinpointing the molecular carriers of these glycan structures. The present review highlights the ways in which particular tumor-associated glycan(s) coupled with a given membrane-bound protein influence neoplastic cell behavior during the development and progression of cancer. We focus on altered glycosylated cell-adhesion molecules belonging to the cadherin, integrin and immunoglobulin-like superfamilies, examined in the context of molecular interactions.
Collapse
Affiliation(s)
- Dorota Hoja-Łukowicz
- Department of Glycoconjugate Biochemistry, Institute of Zoology, Jagiellonian University, 9 Gronostajowa Street, 30-387 Krakow, Poland.
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Institute of Zoology, Jagiellonian University, 9 Gronostajowa Street, 30-387 Krakow, Poland.
| | - Małgorzata Duda
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, 9 Gronostajowa Street, 30-387 Krakow, Poland.
| | - Ewa Pocheć
- Department of Glycoconjugate Biochemistry, Institute of Zoology, Jagiellonian University, 9 Gronostajowa Street, 30-387 Krakow, Poland.
| | - Monika Bubka
- Department of Glycoconjugate Biochemistry, Institute of Zoology, Jagiellonian University, 9 Gronostajowa Street, 30-387 Krakow, Poland.
| |
Collapse
|
177
|
Gudelj I, Baciarello M, Ugrina I, De Gregori M, Napolioni V, Ingelmo PM, Bugada D, De Gregori S, Đerek L, Pučić-Baković M, Novokmet M, Gornik O, Saccani Jotti G, Meschi T, Lauc G, Allegri M. Changes in total plasma and serum N-glycome composition and patient-controlled analgesia after major abdominal surgery. Sci Rep 2016; 6:31234. [PMID: 27501865 PMCID: PMC4977520 DOI: 10.1038/srep31234] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/15/2016] [Indexed: 12/21/2022] Open
Abstract
Systemic inflammation participates to the complex healing process occurring after major surgery, thus directly affecting the surgical outcome and patient recovery. Total plasma N-glycome might be an indicator of inflammation after major surgery, as well as an anti-inflammatory therapy response marker, since protein glycosylation plays an essential role in the inflammatory cascade. Therefore, we assessed the effects of surgery on the total plasma N-glycome and the association with self-administration of postoperative morphine in two cohorts of patients that underwent major abdominal surgery. We found that plasma N-glycome undergoes significant changes one day after surgery and intensifies one day later, thus indicating a systemic physiological response. In particular, we observed the increase of bisialylated biantennary glycan, A2G2S[3,6]2, 12 hours after surgery, which progressively increased until 48 postoperative hours. Most changes occurred 24 hours after surgery with the decrease of most core-fucosylated biantennary structures, as well as the increase in sialylated tetraantennary and FA3G3S[3,3,3]3 structures. Moreover, we observed a progressive increase of sialylated triantennary and tetraantennary structures two days after surgery, with a concomitant decrease of the structures containing bisecting N-acetylglucosamine along with bi- and trisialylated triantennary glycans. We did not find any statistically significant association between morphine consumption and plasma N-glycome.
Collapse
Affiliation(s)
- Ivan Gudelj
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Marco Baciarello
- Department of Anesthesia, ICU and Pain Therapy, University Hospital of Parma, Parma, Italy.,SIMPAR Group (Study in Multidisciplinary Pain Research), Parma, Italy.,Department of Surgical Sciences, University of Parma, Parma, Italy
| | - Ivo Ugrina
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.,University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Manuela De Gregori
- SIMPAR Group (Study in Multidisciplinary Pain Research), Parma, Italy.,Pain Therapy Service, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy.,YAP (Young Against Pain) group, Parma, Italy
| | - Valerio Napolioni
- SIMPAR Group (Study in Multidisciplinary Pain Research), Parma, Italy.,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Pablo M Ingelmo
- SIMPAR Group (Study in Multidisciplinary Pain Research), Parma, Italy.,Department of Anesthesia, Montreal Children's Hospital, Canada
| | - Dario Bugada
- Department of Anesthesia, ICU and Pain Therapy, University Hospital of Parma, Parma, Italy.,SIMPAR Group (Study in Multidisciplinary Pain Research), Parma, Italy.,Department of Surgical Sciences, University of Parma, Parma, Italy
| | - Simona De Gregori
- Clinical and Experimental Pharmacokinetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Lovorka Đerek
- Department of Medical Biochemistry and Laboratory Medicine, Clinical Hospital Merkur, Zagreb, Croatia
| | | | | | - Olga Gornik
- University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Gloria Saccani Jotti
- Department of Biomedical, Biotechnological and Translational Science (S.Bi.Bi.T.), University of Parma, Parma, Italy
| | - Tiziana Meschi
- Department of Clinical and Experimental Medicine, University of Parma, Italy
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.,University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Massimo Allegri
- Department of Anesthesia, ICU and Pain Therapy, University Hospital of Parma, Parma, Italy.,SIMPAR Group (Study in Multidisciplinary Pain Research), Parma, Italy.,Department of Surgical Sciences, University of Parma, Parma, Italy
| |
Collapse
|
178
|
Wang J, Wang Y, Gao M, Zhang X, Yang P. Versatile metal–organic framework-functionalized magnetic graphene nanoporous composites: As deft matrix for high-effective extraction and purification of the N-linked glycans. Anal Chim Acta 2016; 932:41-8. [DOI: 10.1016/j.aca.2016.05.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 01/07/2023]
|
179
|
Everest-Dass AV, Briggs MT, Kaur G, Oehler MK, Hoffmann P, Packer NH. N-glycan MALDI Imaging Mass Spectrometry on Formalin-Fixed Paraffin-Embedded Tissue Enables the Delineation of Ovarian Cancer Tissues. Mol Cell Proteomics 2016; 15:3003-16. [PMID: 27412689 DOI: 10.1074/mcp.m116.059816] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer is a fatal gynaecological malignancy in adult women with a five-year overall survival rate of only 30%. Glycomic and glycoproteomic profiling studies have reported extensive protein glycosylation pattern alterations in ovarian cancer. Therefore, spatio-temporal investigation of these glycosylation changes may unearth tissue-specific changes that occur in the development and progression of ovarian cancer. A novel method for investigating tissue-specific N-linked glycans is using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) on formalin-fixed paraffin-embedded (FFPE) tissue sections that can spatially profile N-glycan compositions released from proteins in tissue-specific regions. In this study, tissue regions of interest (e.g. tumor, stroma, adipose tissue and necrotic areas) were isolated from FFPE tissue sections of advanced serous ovarian cancers (n = 3). PGC-LC-ESI-MS/MS and MALDI-MSI were used as complementary techniques to firstly generate structural information on the tissue-specific glycans in order to then obtain high resolution images of the glycan structure distribution in ovarian cancer tissue. The N-linked glycan repertoires carried by the proteins in these tissue regions were structurally characterized for the first time in FFPE ovarian cancer tissue regions, using enzymatic peptide-N-glycosidase F (PNGase F) release of N-glycans. The released glycans were analyzed by porous graphitized carbon liquid chromatography (PGC-LC) and collision induced electrospray negative mode MS fragmentation analysis. The N-glycan profiles identified by this analysis were then used to determine the location and distribution of each N-glycan on FFPE ovarian cancer sections that were treated with PNGase F using high resolution MALDI-MSI. A tissue-specific distribution of N-glycan structures identified particular regions of the ovarian cancer sections. For example, high mannose glycans were predominantly expressed in the tumor tissue region whereas complex/hybrid N-glycans were significantly abundant in the intervening stroma. Therefore, tumor and non-tumor tissue regions were clearly demarcated solely on their N-glycan structure distributions.
Collapse
Affiliation(s)
- Arun V Everest-Dass
- ‡‡Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, South Australia, 5005, Australia
| | - Matthew T Briggs
- From the ‡Faculty of Science, Biomolecular Frontiers Research Centre, Macquarie University, Sydney, NSW, 2109, Australia; ¶Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia; ‖Institute for Photonics & Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Gurjeet Kaur
- **Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Martin K Oehler
- ‡‡Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, South Australia, 5005, Australia; §§Discipline of Obstetrics and Gynaecology, Robinson Institute, University of Adelaide, Adelaide, South Australia
| | - Peter Hoffmann
- ¶Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia; ‖Institute for Photonics & Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, 5005, Australia; ¶¶Centre for Molecular Pathology, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Nicolle H Packer
- From the ‡Faculty of Science, Biomolecular Frontiers Research Centre, Macquarie University, Sydney, NSW, 2109, Australia; §ARC Centre for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW, 2109, Australia;
| |
Collapse
|
180
|
Duarte HO, Freitas D, Gomes C, Gomes J, Magalhães A, Reis CA. Mucin-Type O-Glycosylation in Gastric Carcinogenesis. Biomolecules 2016; 6:E33. [PMID: 27409642 PMCID: PMC5039419 DOI: 10.3390/biom6030033] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 12/15/2022] Open
Abstract
Mucin-type O-glycosylation plays a crucial role in several physiological and pathological processes of the gastric tissue. Modifications in enzymes responsible for key glycosylation steps and the consequent abnormal biosynthesis and expression of their glycan products constitute well-established molecular hallmarks of disease state. This review addresses the major role played by mucins and associated O-glycan structures in Helicobacter pylori adhesion to the gastric mucosa and the subsequent establishment of a chronic infection, with concomitant drastic alterations of the gastric epithelium glycophenotype. Furthermore, alterations of mucin expression pattern and glycan signatures occurring in preneoplastic lesions and in gastric carcinoma are also described, as well as their impact throughout the gastric carcinogenesis cascade and in cancer progression. Altogether, mucin-type O-glycosylation alterations may represent promising biomarkers with potential screening and prognostic applications, as well as predictors of cancer patients' response to therapy.
Collapse
Affiliation(s)
- Henrique O Duarte
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira no. 228, Porto 4050-313, Portugal.
| | - Daniela Freitas
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira no. 228, Porto 4050-313, Portugal.
| | - Catarina Gomes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
| | - Joana Gomes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
| | - Ana Magalhães
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
| | - Celso A Reis
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira no. 228, Porto 4050-313, Portugal.
- Medical Faculty, University of Porto, Alameda Prof Hernâni Monteiro, Porto 4200-319, Portugal.
| |
Collapse
|
181
|
Theodoratou E, Thaçi K, Agakov F, Timofeeva MN, Štambuk J, Pučić-Baković M, Vučković F, Orchard P, Agakova A, Din FVN, Brown E, Rudd PM, Farrington SM, Dunlop MG, Campbell H, Lauc G. Glycosylation of plasma IgG in colorectal cancer prognosis. Sci Rep 2016; 6:28098. [PMID: 27302279 PMCID: PMC4908421 DOI: 10.1038/srep28098] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/27/2016] [Indexed: 01/17/2023] Open
Abstract
In this study we demonstrate the potential value of Immunoglobulin G (IgG) glycosylation as a novel prognostic biomarker of colorectal cancer (CRC). We analysed plasma IgG glycans in 1229 CRC patients and correlated with survival outcomes. We assessed the predictive value of clinical algorithms and compared this to algorithms that also included glycan predictors. Decreased galactosylation, decreased sialylation (of fucosylated IgG glycan structures) and increased bisecting GlcNAc in IgG glycan structures were strongly associated with all-cause (q < 0.01) and CRC mortality (q = 0.04 for galactosylation and sialylation). Clinical algorithms showed good prediction of all-cause and CRC mortality (Harrell's C: 0.73, 0.77; AUC: 0.75, 0.79, IDI: 0.02, 0.04 respectively). The inclusion of IgG glycan data did not lead to any statistically significant improvements overall, but it improved the prediction over clinical models for stage 4 patients with the shortest follow-up time until death, with the median gain in the test AUC of 0.08. These glycan differences are consistent with significantly increased IgG pro-inflammatory activity being associated with poorer CRC prognosis, especially in late stage CRC. In the absence of validated biomarkers to improve upon prognostic information from existing clinicopathological factors, the potential of these novel IgG glycan biomarkers merits further investigation.
Collapse
Affiliation(s)
- Evropi Theodoratou
- The Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, UK
- Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh and Medical Research Council Human Genetics Unit, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Kujtim Thaçi
- Genos Glycoscience Research Laboratory, Zagreb, Croatia, HR-10000
| | - Felix Agakov
- Pharmatics Limited, Edinburgh Bioquarter, 9 Little France Road, Edinburgh, EH16 4UX, UK
| | - Maria N. Timofeeva
- Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh and Medical Research Council Human Genetics Unit, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Jerko Štambuk
- Genos Glycoscience Research Laboratory, Zagreb, Croatia, HR-10000
| | | | - Frano Vučković
- Genos Glycoscience Research Laboratory, Zagreb, Croatia, HR-10000
| | - Peter Orchard
- Pharmatics Limited, Edinburgh Bioquarter, 9 Little France Road, Edinburgh, EH16 4UX, UK
| | - Anna Agakova
- Pharmatics Limited, Edinburgh Bioquarter, 9 Little France Road, Edinburgh, EH16 4UX, UK
| | - Farhat V. N. Din
- Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh and Medical Research Council Human Genetics Unit, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Ewan Brown
- The Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research Centre, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Pauline M. Rudd
- National Institute for Bioprocessing Research & Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland
| | - Susan M. Farrington
- Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh and Medical Research Council Human Genetics Unit, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Malcolm G. Dunlop
- Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh and Medical Research Council Human Genetics Unit, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Harry Campbell
- The Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, UK
- Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh and Medical Research Council Human Genetics Unit, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia, HR-10000
- University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia, HR-10000
| |
Collapse
|
182
|
Qamsari ES, Nourazarian A, Bagheri S, Motallebnezhad M. Ganglioside as a Therapy Target in Various Types of Cancer. Asian Pac J Cancer Prev 2016; 17:1643-7. [DOI: 10.7314/apjcp.2016.17.4.1643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
183
|
Munkley J, Vodak D, Livermore KE, James K, Wilson BT, Knight B, Mccullagh P, Mcgrath J, Crundwell M, Harries LW, Leung HY, Robson CN, Mills IG, Rajan P, Elliott DJ. Glycosylation is an Androgen-Regulated Process Essential for Prostate Cancer Cell Viability. EBioMedicine 2016; 8:103-116. [PMID: 27428423 PMCID: PMC4919605 DOI: 10.1016/j.ebiom.2016.04.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/04/2016] [Accepted: 04/15/2016] [Indexed: 12/20/2022] Open
Abstract
Steroid androgen hormones play a key role in the progression and treatment of prostate cancer, with androgen deprivation therapy being the first-line treatment used to control cancer growth. Here we apply a novel search strategy to identify androgen-regulated cellular pathways that may be clinically important in prostate cancer. Using RNASeq data, we searched for genes that showed reciprocal changes in expression in response to acute androgen stimulation in culture, and androgen deprivation in patients with prostate cancer. Amongst 700 genes displaying reciprocal expression patterns we observed a significant enrichment in the cellular process glycosylation. Of 31 reciprocally-regulated glycosylation enzymes, a set of 8 (GALNT7, ST6GalNAc1, GCNT1, UAP1, PGM3, CSGALNACT1, ST6GAL1 and EDEM3) were significantly up-regulated in clinical prostate carcinoma. Androgen exposure stimulated synthesis of glycan structures downstream of this core set of regulated enzymes including sialyl-Tn (sTn), sialyl Lewis(X) (SLe(X)), O-GlcNAc and chondroitin sulphate, suggesting androgen regulation of the core set of enzymes controls key steps in glycan synthesis. Expression of each of these enzymes also contributed to prostate cancer cell viability. This study identifies glycosylation as a global target for androgen control, and suggests loss of specific glycosylation enzymes might contribute to tumour regression following androgen depletion therapy.
Collapse
Affiliation(s)
- Jennifer Munkley
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK.
| | - Daniel Vodak
- Bioinformatics Core Facility, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Karen E Livermore
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Katherine James
- Interdisciplinary Computing and Complex BioSystems Research Group, Newcastle University, Newcastle upon Tyne, UK
| | - Brian T Wilson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK; Northern Genetics Service, Newcastle Upon Tyne NHS Foundation Trust, International Centre for Life, Newcastle upon Tyne, UK
| | - Bridget Knight
- NIHR Exeter Clinical Research Facility, RD&E NHS Foundation Trust, UK
| | | | - John Mcgrath
- Exeter Surgical Health Services Research Unit, RD&E NHS Foundation Trust, UK
| | - Malcolm Crundwell
- Department of Urology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Lorna W Harries
- Institute of Biomedical and Clinical Sciences, University of Exeter, Devon EX1 2LU, UK
| | - Hing Y Leung
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Craig N Robson
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Ian G Mills
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway (NCMM), University of Oslo and Oslo University Hospitals, Oslo, Norway; Departments of Molecular Oncology, Institute of Cancer Research and Radium Hospital, Oslo, Norway; PCUK/Movember Centre of Excellence for Prostate Cancer Research, Centre for Cancer Research and Cell Biology (CCRCB), Queen's University, Belfast, UK
| | - Prabhakar Rajan
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - David J Elliott
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|
184
|
Cagnoni AJ, Pérez Sáez JM, Rabinovich GA, Mariño KV. Turning-Off Signaling by Siglecs, Selectins, and Galectins: Chemical Inhibition of Glycan-Dependent Interactions in Cancer. Front Oncol 2016; 6:109. [PMID: 27242953 PMCID: PMC4865499 DOI: 10.3389/fonc.2016.00109] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/18/2016] [Indexed: 12/25/2022] Open
Abstract
Aberrant glycosylation, a common feature associated with malignancy, has been implicated in important events during cancer progression. Our understanding of the role of glycans in cancer has grown exponentially in the last few years, concurrent with important advances in glycomics and glycoproteomic technologies, paving the way for the validation of a number of glycan structures as potential glycobiomarkers. However, the molecular bases underlying cancer-associated glycan modifications are still far from understood. Glycans exhibit a natural heterogeneity, crucial for their diverse functional roles as specific carriers of biologically relevant information. This information is decoded by families of proteins named lectins, including sialic acid-binding immunoglobulin (Ig)-like lectins (siglecs), C-type lectin receptors (CLRs), and galectins. Siglecs are primarily expressed on the surface of immune cells and differentially control innate and adaptive immune responses. Among CLRs, selectins are a family of cell adhesion molecules that mediate interactions between cancer cells and platelets, leukocytes, and endothelial cells, thus facilitating tumor cell invasion and metastasis. Galectins, a family of soluble proteins that bind β-galactoside-containing glycans, have been implicated in diverse events associated with cancer biology such as apoptosis, homotypic cell aggregation, angiogenesis, cell migration, and tumor-immune escape. Consequently, individual members of these lectin families have become promising targets for the design of novel anticancer therapies. During the past decade, a number of inhibitors of lectin–glycan interactions have been developed including small-molecule inhibitors, multivalent saccharide ligands, and more recently peptides and peptidomimetics have offered alternatives for tackling tumor progression. In this article, we review the current status of the discovery and development of chemical lectin inhibitors and discuss novel strategies to limit cancer progression by targeting lectin–glycan interactions.
Collapse
Affiliation(s)
- Alejandro J Cagnoni
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juan M Pérez Sáez
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires , Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires , Argentina
| |
Collapse
|
185
|
Wi GR, Moon BI, Kim HJ, Lim W, Lee A, Lee JW, Kim HJ. A lectin-based approach to detecting carcinogenesis in breast tissue. Oncol Lett 2016; 11:3889-3895. [PMID: 27313712 DOI: 10.3892/ol.2016.4456] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 03/15/2016] [Indexed: 11/06/2022] Open
Abstract
It has been suggested that the diversity of glycosylation structures that form during cancer progression and the sensitivity with which they are able to be detected have great potential for cancer screening. However, the large majority of breast cancer research has instead focused on the development of protein or nucleic acid markers. In the present study, alterations in glycosylation in breast cancer tissue were analyzed using enzyme-linked lectin assays (ELLAs), which have potential for high-throughput screening. Cancer tissues (CCs) and normal tissues (CNs) were collected from women with breast cancer ranging from stage 0 to IIIA. The specimens were divided into two groups, stage 0-I and stage II-III, and the levels of four types of lectin in stage 0-I and stage II-III CCs and CNs were compared by ELLA. The results demonstrated that, relative to CNs, the CCs contained significantly enhanced levels of mannosylation (stage 0-I, P<0.001; stage II-III, P<0.001), galactosylation (stage 0-I, P<0.05; stage II-III, P<0.001), sialylation (stage 0-I, P<0.001; stage II-III, P<0.01) and fucosylation (stage 0-I, P<0.01; stage II-III, P<0.01). Furthermore, stage II-III CCs had higher levels of mannosylation (P<0.05) and galactosylation (P<0.01) than stage 0-I CCs. The sensitivity of the ELLA system ranged from 71-100% when specificity was set at 100%. These results demonstrate that enhanced glycosylation levels identified by ELLA are associated with the development of breast tumors, and provide evidence of the exceptional sensitivity and specificity of the ELLA system in the detection of breast cancer. This approach is anticipated to contribute highly to the development of reliable diagnostic procedures for breast cancer.
Collapse
Affiliation(s)
- Ga Ram Wi
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, Dongjak-Gu, Seoul 156-756, Republic of Korea
| | - Byung-In Moon
- Breast and Thyroid Cancer Center, Ewha Womans University College of Medicine, Yangcheon-Gu, Seoul 06974, Republic of Korea
| | - Hyoung Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, Dongjak-Gu, Seoul 156-756, Republic of Korea
| | - Woosung Lim
- Breast and Thyroid Cancer Center, Ewha Womans University College of Medicine, Yangcheon-Gu, Seoul 06974, Republic of Korea
| | - Anbok Lee
- Breast and Thyroid Cancer Center, Ewha Womans University College of Medicine, Yangcheon-Gu, Seoul 06974, Republic of Korea
| | - Jun Woo Lee
- Breast and Thyroid Cancer Center, Ewha Womans University College of Medicine, Yangcheon-Gu, Seoul 06974, Republic of Korea
| | - Hong-Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, Dongjak-Gu, Seoul 156-756, Republic of Korea
| |
Collapse
|
186
|
Wu H, Shi XL, Zhang HJ, Song QJ, Yang XB, Hu WD, Mei GL, Chen X, Mao QS, Chen Z. Overexpression of ST3Gal-I promotes migration and invasion of HCCLM3 in vitro and poor prognosis in human hepatocellular carcinoma. Onco Targets Ther 2016; 9:2227-36. [PMID: 27143918 PMCID: PMC4844442 DOI: 10.2147/ott.s96510] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Excessive ST3Gal-I levels predict a poor outcome for patients with several types of tumors. This study aims to investigate the role of ST3Gal-I in determining the invasive and metastatic potential of human hepatocellular carcinoma (HCC) and clinical prognosis for patients with HCC. METHODS We compared the expression of ST3Gal-I in various HCC cell lines and in 20 pairs of tumor and peritumor tissue samples using Western blot analysis. Changes in the degree of invasiveness and migration were determined before and after small interfering RNA-induced knockdown of ST3Gal-I using a Transwell matrigel invasion assay and scratch wound assay. The correlation between ST3Gal-I expression and prognosis was determined in a large HCC patient cohort (n=273). RESULTS ST3Gal-I expression was higher in metastatic HCCLM3 cells and tumor tissue compared with normal adjacent tissue. Following the ST3Gal-I knockdown, the invasiveness and migration of HCCLM3 cells were markedly reduced. ST3Gal-I expression in HCC correlated closely with tumor thrombus (P<0.001), tumor size (>5.0 cm, P=0.032), tumor node metastasis stages II-III (P=0.002), and Barcelona Clinic Liver Cancer stages B-C (P<0.001). Cox regression analysis demonstrated that ST3Gal-I is an independent predictor of prognosis in patients with HCC, and related to disease-free survival (hazard ratio =1.464, P=0.037) and overall survival (hazard ratio =1.662, P=0.012). CONCLUSION ST3Gal-I might contribute to the invasiveness and metastatic nature of HCC and, thus, could be an independent predictor of recurrence and a suitable pharmaceutical target in patients with HCC.
Collapse
Affiliation(s)
- Han Wu
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Xue-Liang Shi
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Hai-Jian Zhang
- Research Center of Clinical Medicine, The Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Qing-Jie Song
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Xiao-Bing Yang
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Wei-Dong Hu
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Guang-Lin Mei
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Xi Chen
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Qin-Sheng Mao
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Zhong Chen
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| |
Collapse
|
187
|
Ricardo S, Marcos-Silva L, Valente C, Coelho R, Gomes R, David L. Mucins MUC16 and MUC1 are major carriers of SLe(a) and SLe(x) in borderline and malignant serous ovarian tumors. Virchows Arch 2016; 468:715-22. [PMID: 27003157 DOI: 10.1007/s00428-016-1929-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 02/22/2016] [Accepted: 03/09/2016] [Indexed: 10/22/2022]
Abstract
Mucins are heavily glycosylated proteins overexpressed and associated with truncated or sialylated glycans upon malignant transformation. We previously identified a panel of four glyco-mucin profiles (MUC16/Tn, MUC16/STn, MUC1/Tn, and MUC1/STn) with 100 % specificity and 100 % positive predictive value for detection of borderline/malignant serous tumors of the ovary, using proximity ligation assay (PLA). In the present work, using the same method, we studied other mucin glycosylation profiles that might add relevant information for diagnostic purposes. We used PLA probes to MUC16, MUC1, sialyl Lewis(a) (SLe(a)), and sialyl Lewis(x) (SLe(x)) to study a series of 39 ovarian serous tumors (14 adenocarcinomas, 10 borderline ovarian tumors (BOTs), and 15 cystadenomas). Our results demonstrated that, in adenocarcinomas and BOTs, the major carriers of SLe(a) and SLe(x) are MUC16 and/or MUC1 (100 and 92 % for SLe(a) and 64 and 70 % for SLe(x), respectively). In cystadenomas, SLe(a) and SLe(x) are mainly carried by unidentified proteins (85 and 78 %, respectively). Our study identified, for the first time, the major protein carriers of SLe(a) and SLe(x) in ovarian adenocarcinomas and BOTs, MUC1 and MUC16, and also that distinct unidentified carriers are involved in cystadenomas. These results emphasize the relevance of multiple biomarker recognition provided by multiplex assays, such as PLA, to enhance sensitivity and specificity of serum and tissue assays.
Collapse
Affiliation(s)
- Sara Ricardo
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal. .,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, 4200-135, Porto, Portugal. .,Faculty of Medicine of the University of Porto, Porto, Portugal.
| | - Lara Marcos-Silva
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, 4200-135, Porto, Portugal
| | | | - Ricardo Coelho
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, 4200-135, Porto, Portugal.,Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Rosa Gomes
- Oncology Department of Centro Hospitalar S. João, Porto, Portugal
| | - Leonor David
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, 4200-135, Porto, Portugal.,Faculty of Medicine of the University of Porto, Porto, Portugal
| |
Collapse
|
188
|
Mereiter S, Balmaña M, Gomes J, Magalhães A, Reis CA. Glycomic Approaches for the Discovery of Targets in Gastrointestinal Cancer. Front Oncol 2016; 6:55. [PMID: 27014630 PMCID: PMC4783390 DOI: 10.3389/fonc.2016.00055] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/24/2016] [Indexed: 12/22/2022] Open
Abstract
Gastrointestinal (GI) cancer is the most common group of malignancies and many of its types are among the most deadly. Various glycoconjugates have been used in clinical practice as serum biomarker for several GI tumors, however, with limited diagnose application. Despite the good accessibility by endoscopy of many GI organs, the lack of reliable serum biomarkers often leads to late diagnosis of malignancy and consequently low 5-year survival rates. Recent advances in analytical techniques have provided novel glycoproteomic and glycomic data and generated functional information and putative biomarker targets in oncology. Glycosylation alterations have been demonstrated in a series of glycoconjugates (glycoproteins, proteoglycans, and glycosphingolipids) that are involved in cancer cell adhesion, signaling, invasion, and metastasis formation. In this review, we present an overview on the major glycosylation alterations in GI cancer and the current serological biomarkers used in the clinical oncology setting. We further describe recent glycomic studies in GI cancer, namely gastric, colorectal, and pancreatic cancer. Moreover, we discuss the role of glycosylation as a modulator of the function of several key players in cancer cell biology. Finally, we address several state-of-the-art techniques currently applied in this field, such as glycomic and glycoproteomic analyses, the application of glycoengineered cell line models, microarray and proximity ligation assay, and imaging mass spectrometry, and provide an outlook to future perspectives and clinical applications.
Collapse
Affiliation(s)
- Stefan Mereiter
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Institute of Biomedical Sciences of Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Meritxell Balmaña
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona , Girona , Spain
| | - Joana Gomes
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Institute of Biomedical Sciences of Abel Salazar (ICBAS), University of Porto, Porto, Portugal; Medical Faculty, University of Porto, Porto, Portugal
| |
Collapse
|
189
|
Chia J, Goh G, Bard F. Short O-GalNAc glycans: regulation and role in tumor development and clinical perspectives. Biochim Biophys Acta Gen Subj 2016; 1860:1623-39. [PMID: 26968459 DOI: 10.1016/j.bbagen.2016.03.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/03/2016] [Accepted: 03/03/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND While the underlying causes of cancer are genetic modifications, changes in cellular states mediate cancer development. Tumor cells display markedly changed glycosylation states, of which the O-GalNAc glycans called the Tn and TF antigens are particularly common. How these antigens get over-expressed is not clear. The expression levels of glycosylation enzymes fail to explain it. SCOPE OF REVIEW We describe the regulation of O-GalNAc glycosylation initiation and extension with emphasis on the initiating enzymes ppGalNAcTs (GALNTs), and introduce the GALA pathway--a change in GALNTs compartmentation within the secretory pathway that regulates Tn levels. We discuss the roles of O-GalNAc glycans and GALNTs in tumorigenic processes and finally consider diagnostic and therapeutic perspectives. MAJOR CONCLUSIONS Contrary to a common hypothesis, short O-glycans in tumors are not the result of an incomplete glycosylation process but rather reveal the activation of regulatory pathways. Surprisingly, high Tn levels reveal a major shift in the O-glycoproteome rather than a shortening of O-glycans. These changes are driven by membrane trafficking events. GENERAL SIGNIFICANCE Many attempts to use O-glycans for biomarker, antibody and therapeutic vaccine development have been made, but suffer limitations including poor sensitivity and/or specificity that may in part derive from lack of a mechanistic understanding. Deciphering how short O-GalNAc glycans are regulated would open new perspectives to exploit this biology for therapeutic usage. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Joanne Chia
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Germaine Goh
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Frederic Bard
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore; Department of Biochemistry, National University of Singapore, 21 Lower Kent Ridge, Road, 119077, Singapore.
| |
Collapse
|
190
|
Etxebarria J, Reichardt NC. Methods for the absolute quantification of N-glycan biomarkers. Biochim Biophys Acta Gen Subj 2016; 1860:1676-87. [PMID: 26953846 DOI: 10.1016/j.bbagen.2016.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Many treatment options especially for cancer show a low efficacy for the majority of patients demanding improved biomarker panels for patient stratification. Changes in glycosylation are a hallmark of many cancers and inflammatory diseases and show great potential as clinical disease markers. The large inter-subject variability in glycosylation due to hereditary and environmental factors can complicate rapid transfer of glycan markers into the clinical practice but also presents an opportunity for personalized medicine. SCOPE OF REVIEW This review discusses opportunities of glycan biomarkers in personalized medicine and reviews the methodology for N-glycan analysis with a specific focus on methods for absolute quantification. MAJOR CONCLUSIONS The entry into the clinical practice of glycan markers is delayed in large part due to a lack of adequate methodology for the precise and robust quantification of protein glycosylation. Only absolute glycan quantification can provide a complete picture of the disease related changes and will provide the method robustness required by clinical applications. GENERAL SIGNIFICANCE Glycan biomarkers have a huge potential as disease markers for personalized medicine. The use of stable isotope labeled glycans as internal standards and heavy-isotope labeling methods will provide the necessary method precision and robustness acceptable for clinical use. This article is part of a Special Issue entitled "Glycans in personalized medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Juan Etxebarria
- CIC biomaGUNE, Paseo Miramon 182, 20009 San Sebastian, Spain
| | - Niels-Christian Reichardt
- CIC biomaGUNE, Paseo Miramon 182, 20009 San Sebastian, Spain; CIBER-BBN, Paseo Miramon 182, 20009 San Sebastian, Spain.
| |
Collapse
|
191
|
Aziz F, Wang X, Liu J, Yan Q. Ginsenoside Rg3 induces FUT4-mediated apoptosis in H. pylori CagA-treated gastric cancer cells by regulating SP1 and HSF1 expressions. Toxicol In Vitro 2016; 31:158-66. [PMID: 26427350 DOI: 10.1016/j.tiv.2015.09.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 08/17/2015] [Accepted: 09/25/2015] [Indexed: 01/10/2023]
Abstract
Helicobacter pylori (H. pylori) cytotoxin associated antigen A (CagA) plays a significant role in the development of gastric cancer. Ginsenoside Rg3 is a herbal medicine which inhibits cell proliferation and induces apoptosis in various cancer cells. Fucosylation plays important roles in cancer biology as increased fucosylation levels of glycoproteins and glycolipids have been reported in many cancers. Fucosyltransferase IV (FUT4) is an essential enzyme, catalyzes the synthesis of LewisY oligosaccharides and is regulated by specificity protein 1 (SP1) and heat shock factor protein 1 (HSF1) transcription factors. Herein, we studied the mechanism action of Rg3 apoptosis induction in gastric cancer cells. We treated the gastric cancer cells with CagA followed by Rg3, and analyzed their ability to induce apoptosis by evaluating the role of FUT4 as well as SP1 and HSF1 expressions by Western blot, flow cytometry and ELISA. We found that Rg3 significantly induced apoptosis in CagA treated gastric cancer cells, as evidenced by nuclear staining of 4-6-diamidino-2-phenylindole (DAPI) and Annexin-V/PI double-labeling. In addition, Rg3 significantly increased the expression of pro-apoptotic proteins and triggered the activation of caspase-3, -8, and -9 and PARP. Moreover, Rg3-induced apoptotic mechanisms indicated that Rg3 inhibited FUT4 expression through SP1 upregulation and HSF1 downregulation. Hence, Rg3 therapy is an effective strategy for gastric cancer treatment. Furthermore SP1 and HSF1 may serve as potential diagnostic and therapeutic targets for gastric cancer.
Collapse
Affiliation(s)
- Faisal Aziz
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Xiaoqi Wang
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jiwei Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China.
| |
Collapse
|
192
|
Lee CS, Taib NAM, Ashrafzadeh A, Fadzli F, Harun F, Rahmat K, Hoong SM, Abdul-Rahman PS, Hashim OH. Unmasking Heavily O-Glycosylated Serum Proteins Using Perchloric Acid: Identification of Serum Proteoglycan 4 and Protease C1 Inhibitor as Molecular Indicators for Screening of Breast Cancer. PLoS One 2016; 11:e0149551. [PMID: 26890881 PMCID: PMC4758733 DOI: 10.1371/journal.pone.0149551] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/02/2016] [Indexed: 12/29/2022] Open
Abstract
Heavily glycosylated mucin glycopeptides such as CA 27.29 and CA 15-3 are currently being used as biomarkers for detection and monitoring of breast cancer. However, they are not well detected at the early stages of the cancer. In the present study, perchloric acid (PCA) was used to enhance detection of mucin-type O-glycosylated proteins in the serum in an attempt to identify new biomarkers for early stage breast cancer. Sensitivity and specificity of an earlier developed sandwich enzyme-linked lectin assay were significantly improved with the use of serum PCA isolates. When a pilot case-control study was performed using the serum PCA isolates of normal participants (n = 105) and patients with stage 0 (n = 31) and stage I (n = 48) breast cancer, higher levels of total O-glycosylated proteins in sera of both groups of early stage breast cancer patients compared to the normal control women were demonstrated. Further analysis by gel-based proteomics detected significant inverse altered abundance of proteoglycan 4 and plasma protease C1 inhibitor in both the early stages of breast cancer patients compared to the controls. Our data suggests that the ratio of serum proteoglycan 4 to protease C1 inhibitor may be used for screening of early breast cancer although this requires further validation in clinically representative populations.
Collapse
Affiliation(s)
- Cheng-Siang Lee
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nur Aishah Mohd Taib
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ali Ashrafzadeh
- Medical Biotechnology Laboratory, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Farhana Fadzli
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Faizah Harun
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kartini Rahmat
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - See Mee Hoong
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Puteri Shafinaz Abdul-Rahman
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre for Proteomics Research, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Onn Haji Hashim
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre for Proteomics Research, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
193
|
Zhang S, Shang S, Li W, Qin X, Liu Y. Insights on N-glycosylation of human haptoglobin and its association with cancers. Glycobiology 2016; 26:684-692. [PMID: 26873173 DOI: 10.1093/glycob/cww016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 02/08/2016] [Indexed: 12/11/2022] Open
Abstract
Protein glycosylation is one of the most significant post-translation modifications and plays a critical role in various biological functions. Haptoglobin (Hp) is one of the acute-phase response proteins secreted by liver. Its glycosylation could be analyzed by many analytical techniques qualitatively and quantitatively. The glycosylation alterations of Hp are reported to be associated with different kinds of diseases. The main glycosylation alterations of Hp in cancer appear to be the presence of aberrantly fucosylated and sialylated structures as well as increased branching. In this mini review, we provided a brief overview of Hp structure and biological function, discussed its glycosylation alterations in different cancers, and described the existing technologies for analyzing glycosylation site and glycan of Hp. Given the importance of Hp glycosylation, its unknown and unclear biological complexity and significances, Hp glycosylation has become a major target in cancer research. Development of sensitive and specific detection of Hp glycosylation including large-scale validation may be significant steps forward to its clinical application.
Collapse
Affiliation(s)
- Shu Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Shuxin Shang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Wei Li
- Cancer Research Center, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xue Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Yinkun Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China.,Cancer Research Center, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
194
|
Baradaran A, Yusoff K, Shafee N, Rahim RA. Newcastle Disease Virus Hemagglutinin Neuraminidase as a Potential Cancer Targeting Agent. J Cancer 2016; 7:462-6. [PMID: 26918060 PMCID: PMC4749367 DOI: 10.7150/jca.13566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 12/03/2015] [Indexed: 12/18/2022] Open
Abstract
The hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) with its immunotherapeutic activities and sialic acid binding abilities is a promising cancer adjuvant. The HN was surfaced displayed on Lactococcus lactis and its cancer targeting ability was investigated via attachment to the MDA-MB231 breast cancers. To surface display the HN protein on the bacterial cell wall, HN was fused to N-acetylmuraminidase (AcmA) anchoring motif of L. lactis and expressed in Chinese hamster ovary cells. The expressed recombinant fusion proteins were purified and mixed with a culture of L. lactis and Lactobacillus plantarum. Immunofluorescence assay showed the binding of the recombinant HN-AcmA protein on the surface of the bacterial cells. The bacterial cells carrying the HN-AcmA protein interacted with the MDA-MB231 breast cancer cells. Direct and fluorescent microscopy confirmed that L. lactis and Lb. plantarum surface displaying the recombinant HN were attached to the breast cancer MDA-MB231 cells, providing evidence for the potential ability of HN in targeting to cancer cells.
Collapse
Affiliation(s)
- Ali Baradaran
- 1. Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - Khatijah Yusoff
- 2. Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia;; 3. Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - Norazizah Shafee
- 2. Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia;; 3. Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - Raha Abdul Rahim
- 1. Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia;; 3. Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
195
|
E. Livermore K, Munkley J, J. Elliott D. Androgen receptor and prostate cancer. AIMS MOLECULAR SCIENCE 2016. [DOI: 10.3934/molsci.2016.2.280] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
196
|
Reiding KR, Lonardi E, Hipgrave Ederveen AL, Wuhrer M. Ethyl Esterification for MALDI-MS Analysis of Protein Glycosylation. Methods Mol Biol 2016; 1394:151-162. [PMID: 26700047 DOI: 10.1007/978-1-4939-3341-9_11] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ethyl esterification is a technique for the chemical modification of sialylated glycans, leading to enhanced stability when performing matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry (MS), as well as allowing the efficient detection of both sialylated and non-sialylated glycans in positive ion mode. In addition, the method shows specific reaction products for α2,3- and α2,6-linked sialic acids, leading to an MS distinguishable mass difference. Here, we describe the ethyl esterification protocol for 96 glycan samples, including enzymatic N-glycan release, the aforementioned ethyl esterification, glycan enrichment, MALDI target preparation, and the MS(/MS) measurement.
Collapse
Affiliation(s)
- Karli R Reiding
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Emanuela Lonardi
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
- Division of BioAnalytical Chemistry, VU University Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
197
|
Ferreira JA, Peixoto A, Neves M, Gaiteiro C, Reis CA, Assaraf YG, Santos LL. Mechanisms of cisplatin resistance and targeting of cancer stem cells: Adding glycosylation to the equation. Drug Resist Updat 2016; 24:34-54. [DOI: 10.1016/j.drup.2015.11.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/09/2015] [Accepted: 11/18/2015] [Indexed: 02/06/2023]
|
198
|
Clark DJ, Mei Y, Sun S, Zhang H, Yang AJ, Mao L. Glycoproteomic Approach Identifies KRAS as a Positive Regulator of CREG1 in Non-small Cell Lung Cancer Cells. Am J Cancer Res 2016; 6:65-77. [PMID: 26722374 PMCID: PMC4679355 DOI: 10.7150/thno.12350] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/09/2015] [Indexed: 01/05/2023] Open
Abstract
Protein glycosylation plays a fundamental role in a multitude of biological processes, and the associated aberrant expression of glycoproteins in cancer has made them attractive biomarkers and therapeutic targets. In this study, we examined differentially expressed glycoproteins in cell lines derived from three different states of lung tumorigenesis: an immortalized bronchial epithelial cell (HBE) line, a non-small cell lung cancer (NSCLC) cell line harboring a Kirsten rat sarcoma viral oncogene homolog (KRAS) activation mutation and a NSCLC cell line harboring an epidermal growth factor receptor (EGFR) activation deletion. Using a Triple SILAC proteomic quantification strategy paired with hydrazide chemistry N-linked glycopeptide enrichment, we quantified 118 glycopeptides in the three cell lines derived from 82 glycoproteins. Proteomic profiling revealed 27 glycopeptides overexpressed in both NSCLC cell lines, 6 glycopeptides overexpressed only in the EGFR mutant cells and 19 glycopeptides overexpressed only in the KRAS mutant cells. Further investigation of a panel of NSCLC cell lines found that Cellular repressor of E1A-stimulated genes (CREG1) overexpression was closely correlated with KRAS mutation status in NSCLC cells and could be down-regulated by inhibition of KRAS expression. Our results indicate that CREG1 is a down-stream effector of KRAS in a sub-type of NSCLC cells and a novel candidate biomarker or therapeutic target for KRAS mutant NSCLC.
Collapse
|
199
|
Sun X, Dong J, Li J, Ye M, Ou J, Zhang L, Zhang W. Au–cysteine modified macroporous adsorption resin: preparation and highly selective enrichment and identification of N-linked glycopeptides from the complex biological sample. RSC Adv 2016. [DOI: 10.1039/c6ra24236g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cysteine functionalized macroporous adsorption resin/gold nanoparticle was synthesized and applied to the highly selective enrichment and identification of N-linked glycopeptides.
Collapse
Affiliation(s)
- Xudong Sun
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Jing Dong
- CAS Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Dalian 116023
- P. R. China
| | - Jinan Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Dalian 116023
- P. R. China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Dalian 116023
- P. R. China
| | - Junjie Ou
- CAS Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Dalian 116023
- P. R. China
| | - Lingyi Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|
200
|
Wang J, He X, Chen L, Zhang Y. Boronic acid functionalized magnetic nanoparticles synthesized by atom transfer radical polymerization and their application for selective enrichment of glycoproteins. RSC Adv 2016. [DOI: 10.1039/c6ra05848e] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A facile and efficient approach to synthesize boronate affinity ligand-functionalized magnetic nanoparticles for specific enrichment of glycoproteins via surface-initiated atom transfer radical polymerization (SI-ATRP) has been developed.
Collapse
Affiliation(s)
- Jiewen Wang
- Research Center for Analytical Sciences
- College of Chemistry
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
| | - Xiwen He
- Research Center for Analytical Sciences
- College of Chemistry
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
| | - Langxing Chen
- Research Center for Analytical Sciences
- College of Chemistry
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
| | - Yukui Zhang
- Research Center for Analytical Sciences
- College of Chemistry
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
| |
Collapse
|