151
|
TOX3 inhibits cancer cell migration and invasion via transcriptional regulation of SNAI1 and SNAI2 in clear cell renal cell carcinoma. Cancer Lett 2019; 449:76-86. [PMID: 30772441 DOI: 10.1016/j.canlet.2019.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/07/2019] [Accepted: 02/10/2019] [Indexed: 12/13/2022]
Abstract
Studies on the mechanism of clear cell renal cell carcinoma (ccRCC) progression are lacking. In this study, TOX3 was identified as a novel cancer suppressor gene in ccRCC. Hypermethylation of CpG probes in the promoter region was associated with the functional loss of TOX3 in ccRCC cancer tissues. Downregulation of TOX3 mRNA was strongly associated with poor clinical outcomes in ccRCC. Immunohistochemistry confirmed TOX3 was downregulated in primary tumors without metastasis (n = 126) and further downregulated in primary metastatic tumors (n = 23) compared with adjacent noncancerous tissues (n = 92). In vitro, overexpression of TOX3 inhibited RCC cell growth, migration and invasion. Mechanistic investigations showed that TOX3 deficiency facilitates the epithelial-mesenchymal transition due to impairment of transcriptional repression of SNAIL members SNAI1 and SNAI2 and promotes cancer cell migration and invasion. In vivo, restoring TOX3 expression reduced lung metastatic lesions and prolonged survival of mice. TOX3 combined with SNAI1 or SNAI2 predicted overall survival in ccRCC patients. Blockage of this pathway could be a promising therapeutic target for advanced ccRCC.
Collapse
|
152
|
Zhong Y, Wang Y, Huang J, Xu X, Pan W, Gao S, Zhang Y, Su M. Association of hCG and LHCGR expression patterns with clinicopathological parameters in ovarian cancer. Pathol Res Pract 2019; 215:748-754. [PMID: 30712886 DOI: 10.1016/j.prp.2019.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/01/2018] [Accepted: 01/05/2019] [Indexed: 01/14/2023]
Abstract
In addition to its critical role during pregnancy, human chorionic gonadotropin (hCG) has been shown to be expressed by various tumor types. Recent studies have similarly documented the presence of the luteinizing hormone (LH)/hCG receptor (LHCGR) in a variety of nongonadal organs; however, its clinicopathological significance in ovarian cancer remains unclear. The present study used a combination of immunohistochemical, real-time PCR, and western blot analyses to examine hCG and LHCGR expression in normal and cancerous tissues collected from patients with epithelial ovarian cancer (EOC). hCG and LHCGR expression levels were resultantly shown to be significantly increased and decreased in cancerous versus normal (or benign) ovarian tissues, respectively (P < 0.05), and both expression pattern changes were associated with more advanced tumor stages and a higher rate of metastasis. Furthermore, patients with tumors with high or low levels of hCG and LHCGR, respectively, experienced a worse overall survival (OS) rate than those with low hCG or high LHCGR expression levels (P < 0.05). In fact, hCG and LHCGR expression levels were independent prognostic factors of patient OS (P < 0.05) for EOC. Collectively, these findings indicate that hCG and LHCGR expression pattern changes are associated with EOC occurrence and progression. Thus, hCG and LHCGR represent promising potential targets to improve the diagnosis, treatment, and prognosis of patients with EOC.
Collapse
Affiliation(s)
- Yuanyuan Zhong
- Department of Obstetrics and Gynecology; Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yingying Wang
- Laboratory of Immunology, Nantong University, China; Nantong University, Nantong, Jiangsu 226001, China
| | - Jianfei Huang
- Department of Pathology; Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Xiangyu Xu
- Department of Obstetrics and Gynecology; Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Weidong Pan
- Department of Obstetrics and Gynecology; Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Sainan Gao
- Department of Obstetrics and Gynecology; Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yuquan Zhang
- Department of Obstetrics and Gynecology; Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China.
| | - Min Su
- Department of Obstetrics and Gynecology; Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
153
|
Osakabe M, Fukagawa D, Sato C, Sugimoto R, Uesugi N, Ishida K, Itamochi H, Sugiyama T, Sugai T. Immunohistochemical analysis of the epithelial to mesenchymal transition in uterine carcinosarcoma. Int J Gynecol Cancer 2019; 29:277-281. [PMID: 30636710 DOI: 10.1136/ijgc-2018-000038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 08/25/2018] [Accepted: 08/31/2018] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Uterine carcinosarcoma (UCS) is a highly aggressive neoplasm that is composed of an intricate admixture of carcinomatous and sarcomatous elements. The relationship between UCS and the epithelial to mesenchymal transition (EMT) has been reported. In this study, we examined how expression of E-cadherin was associated with the expression of EMT-related proteins in UCS. METHODS UCS samples were histologically divided into three components: carcinomatous, transitional, and sarcomatous regions. Next, we examined the expression of E-cadherin and EMT-related proteins, including SNAI2, ZEB1, and TWIST1, in each component of the UCS using immunohistochemistry. The expression score was determined by combining the staining intensity and staining area of the target cells. RESULTS The expression score of E-cadherin was significantly lower in transitional and sarcomatous components than in the carcinomatous component. In addition, a significant difference in the low expression score of E-cadherin between transitional and sarcomatous components (transitional > sarcomatous components) was found. There were significant differences between the expression scores of ZEB1 in the three components (sarcomatous > transitional > carcinomatous components). However, no difference in the expression of TWIST1 between the components was found. Conversely, the expression level of SNAI2 was higher in sarcomatous or transitional components than in the carcinomatous component. However, a significant difference between the transitional and sarcomatous components was not detected. CONCLUSION These results suggest that the EMT plays an essential role in the pathogenesis of UCS.
Collapse
Affiliation(s)
- Mitsumasa Osakabe
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Daisuke Fukagawa
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Chie Sato
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Ryo Sugimoto
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Noriyuki Uesugi
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Kazuyuki Ishida
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Hiroaki Itamochi
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Toru Sugiyama
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| |
Collapse
|
154
|
An T, Dong T, Zhou H, Chen Y, Zhang J, Zhang Y, Li Z, Yang X. The transcription factor Krüppel-like factor 5 promotes cell growth and metastasis via activating PI3K/AKT/Snail signaling in hepatocellular carcinoma. Biochem Biophys Res Commun 2018; 508:159-168. [PMID: 30473218 DOI: 10.1016/j.bbrc.2018.11.084] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/13/2018] [Indexed: 12/29/2022]
Abstract
The transcription factor Krüppel-like factor 5 (KLF5) is highly expressed in many cancers and serves as a prognostic factor. However, the function of KLF5 in hepatocellular carcinoma (HCC) is unclear. In this study, we found that KLF5 was significantly overexpressed in HCC cell lines and specimens, and high KLF5 expression predicted a poor prognosis for HCC patients. Then, we studied the effects of KLF5 on the proliferation, apoptosis, migration and invasion of HCC cells in vitro and vivo. The inhibition of KLF5 markedly inhibited HCC growth and metastasis, while KLF5 overexpression promoted these processes. In addition, we observed that KLF5 could promote the epithelial-mesenchymal transition (EMT) in HCC via the PI3K/AKT/Snail signaling pathway. The silencing of KLF5 in HCC cell lines downregulated the expression of N-cadherin, Vimentin and Snail and increased the expression of the epithelial marker E-cadherin. The expression of MMP2 and MMP9 was also decreased in KLF5-silenced HCC cells. However, opposite results were observed in the KLF5-overexpressing group. These results indicate that KLF5 plays a significant role in HCC progression and metastasis and induces EMT via activating PI3K/AKT/Snail signaling, and the inhibition of KLF5 may be a potential treatment modality for patients with HCC.
Collapse
Affiliation(s)
- Tingting An
- Department of Abdominal Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Tianxiu Dong
- Department of Abdominal Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Haoxin Zhou
- Department of Emergency Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yaodong Chen
- Department of Abdominal Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Jiuwei Zhang
- Department of Abdominal Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yu Zhang
- Department of Abdominal Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Zizhuo Li
- Department of Abdominal Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xiuhua Yang
- Department of Abdominal Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
155
|
Tsubakihara Y, Moustakas A. Epithelial-Mesenchymal Transition and Metastasis under the Control of Transforming Growth Factor β. Int J Mol Sci 2018; 19:ijms19113672. [PMID: 30463358 PMCID: PMC6274739 DOI: 10.3390/ijms19113672] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 02/08/2023] Open
Abstract
Metastasis of tumor cells from primary sites of malignancy to neighboring stromal tissue or distant localities entails in several instances, but not in every case, the epithelial-mesenchymal transition (EMT). EMT weakens the strong adhesion forces between differentiated epithelial cells so that carcinoma cells can achieve solitary or collective motility, which makes the EMT an intuitive mechanism for the initiation of tumor metastasis. EMT initiates after primary oncogenic events lead to secondary secretion of cytokines. The interaction between tumor-secreted cytokines and oncogenic stimuli facilitates EMT progression. A classic case of this mechanism is the cooperation between oncogenic Ras and the transforming growth factor β (TGFβ). The power of TGFβ to mediate EMT during metastasis depends on versatile signaling crosstalk and on the regulation of successive waves of expression of many other cytokines and the progressive remodeling of the extracellular matrix that facilitates motility through basement membranes. Since metastasis involves many organs in the body, whereas EMT affects carcinoma cell differentiation locally, it has frequently been debated whether EMT truly contributes to metastasis. Despite controversies, studies of circulating tumor cells, studies of acquired chemoresistance by metastatic cells, and several (but not all) metastatic animal models, support a link between EMT and metastasis, with TGFβ, often being a common denominator in this link. This article aims at discussing mechanistic cases where TGFβ signaling and EMT facilitate tumor cell dissemination.
Collapse
Affiliation(s)
- Yutaro Tsubakihara
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden.
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala University, Box 595, SE-751 24 Uppsala, Sweden.
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden.
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala University, Box 595, SE-751 24 Uppsala, Sweden.
| |
Collapse
|
156
|
Role of tumor-derived exosomes in cancer metastasis. Biochim Biophys Acta Rev Cancer 2018; 1871:12-19. [PMID: 30419312 DOI: 10.1016/j.bbcan.2018.10.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 12/21/2022]
Abstract
The highlights of cancer research include the discovery of exosomes, which are small (30-100 nm) sized vesicular nanoparticles released virtually by all cells. Tumor-derived exosomes (TDEs) are notoriously known for orchestrating the invasion-metastasis cascade via systemic pathways that we have previously proposed (1), resulting in a paradigm shift of our understanding about the pathobiology of metastases. In principle, exosomes serve as transport medium for proteins, mRNAs and miRNAs to transmit targeted cues from the primary cell to distant sites via horizontal transfer or cell-receptor interaction. In this chapter, we seek to explore in-depth the mechanisms engendering TDE in the metastatic cascade, along with experimental models to augment our understanding. The aforementioned has also paved way for parallel advancements in the therapeutic armamentarium, as evident from pronounced efforts to exploit the metastatic process for therapeutic targeting. In this light, we aim to examine potential anti-metastatic therapeutic opportunities derived from exosomal research. Lastly, exosomes may play a crucial role in the contemporary era of "liquid biopsies", given the array of molecular information with diagnostic and predictive indications. We thus intend to end this chapter off by exploring future applications of exosomes that could illuminate shortcomings and propel advancements in biomarker research.
Collapse
|
157
|
Yong L, YuFeng Z, Guang B. Association between PPP2CA expression and colorectal cancer prognosis tumor marker prognostic study. Int J Surg 2018; 59:80-89. [DOI: 10.1016/j.ijsu.2018.09.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/29/2018] [Indexed: 12/13/2022]
|
158
|
Wu DJ, Jiang YS, He RZ, Tao LY, Yang MW, Fu XL, Yang JY, Zhu K. High expression of WNT7A predicts poor prognosis and promote tumor metastasis in pancreatic ductal adenocarcinoma. Sci Rep 2018; 8:15792. [PMID: 30361522 PMCID: PMC6202314 DOI: 10.1038/s41598-018-34094-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 10/11/2018] [Indexed: 01/05/2023] Open
Abstract
Due to the therapy resistance and frequent metastasis, pancreatic ductal adenocarcinoma(PDAC) remains one of the most malignant carcinoma. WNT7A, an important ligand of Wnt/β-catenin signaling pathways, has a controversial role in tumor development. The role of WNT7A in PDAC remains unclear. In this study, we analyzed the expression pattern of WNT7A at mRNA and protein levels. We found pancreatic cancer tissue demonstrated a significant high WNT7A expression compared with the adjacent non-tumor tissue and the expression of WNT7A positively correlates with poor prognosis and lymph node metastasis. Then, we performed transwell assays and wound healing assays in vitro and found that WNT7A promotes the migration capacity of cancer cells. Furthermore, we explored the underlying mechanism of the WNT7A inducing cell migration. Results showed that up-regulated WNT7A expression inducing higher expression of N-cadherin and lower expression of E-cadherin while the contrast result was shown in the WNT7A knock-down group, which suggested that WNT7A might contribute to an epithelial–mesenchymal transition. Finally, we found that the hypoxia culture condition remarkably increased the WNT7A expression. In conclusion, our work demonstrated that hypoxia induced high expression of WNT7A might promote the cell migration via enhancing the epithelial–mesenchymal transition in PDAC.
Collapse
Affiliation(s)
- Dong-Jin Wu
- Department of General Surgery, The people's hospital of Suzhou National New &Hi-Tec Industrial development Zone, Suzhou, 215129, Jiangsu, P. R. China
| | - Yong-Sheng Jiang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, P. R. China
| | - Rui-Zhe He
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, P. R. China
| | - Ling-Ye Tao
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, P. R. China
| | - Min-Wei Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, P. R. China
| | - Xue-Liang Fu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, P. R. China
| | - Jiang-Yu Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, P. R. China
| | - Kun Zhu
- Department of Surgery, Shanghai Jiading Central Hospital, Shanghai, 201800, P. R. China.
| |
Collapse
|
159
|
Harada H, Hosoda K, Moriya H, Mieno H, Ema A, Washio M, Kikuchi M, Kosaka Y, Watanabe M, Yamashita K. Carcinosarcoma of the esophagus: A report of 6 cases associated with zinc finger E-box-binding homeobox 1 expression. Oncol Lett 2018; 17:578-586. [PMID: 30655804 DOI: 10.3892/ol.2018.9585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/06/2018] [Indexed: 12/13/2022] Open
Abstract
Esophageal carcinosarcoma (ECS) has been suggested to result from an epithelial mesenchymal transition (EMT) phenomenon. However, knowledge on its underlying molecular features is limited. The clinical and pathological features, and the prognosis of ECS require further investigation. In the present study, a total of 325 patients with esophageal tumors were observed between January 2004 and December 2014, of which 6 patients were diagnosed pathologically with ECS. The clinicopathological features were compared with those of corresponding cases with the identical pathological T stage (pT) of esophageal squamous cell carcinoma (ESCC). In terms of the clinical T stage (cT), the 6 cases were composed of cT1, cT2, cT3 and cT4 in 1, 1, 3 and 1 case, respectively. Nevertheless, pT was eventually diagnosed as pT1 in all cases. There was a large discrepancy between clinically diagnosed depth of tumor invasion prior to surgery and depth of tumor invasion following surgery. Zinc finger E-box-binding homeobox 1 (ZEB1), an EMT-associated transcription factor, was expressed only in the sarcoma component in all 6 cases of ECS. The ECS cases had a significantly poorer prognosis compared with the 115 pT1 ESCC cases. The present study suggests that the depth of invasion of ECS lesions does not correspond with their respective size, and the EMT of the carcinoma component may affect the prognosis by overexpression of the ZEB1 gene.
Collapse
Affiliation(s)
- Hiroki Harada
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0375, Japan
| | - Kei Hosoda
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0375, Japan
| | - Hiromitsu Moriya
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0375, Japan
| | - Hiroaki Mieno
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0375, Japan
| | - Akira Ema
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0375, Japan
| | - Marie Washio
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0375, Japan
| | - Mariko Kikuchi
- Department of Breast and Endocrine Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0375, Japan
| | - Yoshimasa Kosaka
- Department of Breast and Endocrine Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0375, Japan
| | - Masahiko Watanabe
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0375, Japan
| | - Keishi Yamashita
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0375, Japan.,Division of Advanced Surgical Oncology, Department of Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0375, Japan
| |
Collapse
|
160
|
Jin C, Liu Z, Li Y, Bu H, Wang Y, Xu Y, Qiu C, Yan S, Yuan C, Li R, Diao N, Zhang Z, Wang X, Liu L, Kong B. PCNA-associated factor P15PAF, targeted by FOXM1, predicts poor prognosis in high-grade serous ovarian cancer patients. Int J Cancer 2018; 143:2973-2984. [PMID: 30129654 DOI: 10.1002/ijc.31800] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/24/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Chengjuan Jin
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
- Department of Obstetrics and Gynecology; Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University; 650 XinSongjiang Road, Shanghai People's Republic of China
| | - Zhaojian Liu
- Department of Cell Biology; Shandong University School of Medicine; 44 Wenhua Xi Road, Jinan China
| | - Yingwei Li
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Hualei Bu
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Yu Wang
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Ying Xu
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Chunping Qiu
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Shi Yan
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Cunzhong Yuan
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Rongrong Li
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Nannan Diao
- Institute of Diagnostics, School of Medicine; Shandong University; 44 Wenhua Xi Road, Jinan China
| | - Zhiwei Zhang
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Xiangxiang Wang
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Lidong Liu
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Beihua Kong
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| |
Collapse
|
161
|
Herrera A, Herrera M, Guerra-Perez N, Galindo-Pumariño C, Larriba MJ, García-Barberán V, Gil B, Giménez-Moyano S, Ferreiro-Monteagudo R, Veguillas P, Candia A, Peña R, Pinto J, García-Bermejo ML, Muñoz A, García de Herreros A, Bonilla F, Carrato A, Peña C. Endothelial cell activation on 3D-matrices derived from PDGF-BB-stimulated fibroblasts is mediated by Snail1. Oncogenesis 2018; 7:76. [PMID: 30250018 PMCID: PMC6155204 DOI: 10.1038/s41389-018-0085-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 08/26/2018] [Indexed: 01/26/2023] Open
Abstract
Carcinomas, such as colon cancer, initiate their invasion by rescuing the innate plasticity of both epithelial cells and stromal cells. Although Snail is a transcriptional factor involved in the Epithelial-Mesenchymal Transition, in recent years, many studies have also identified the major role of Snail in the activation of Cancer-Associated Fibroblast (CAF) cells and the remodeling of the extracellular matrix. In CAFs, Platelet-derived growth factor (PDGF) receptor signaling is a major functional determinant. High expression of both SNAI1 and PDGF receptors is associated with poor prognosis in cancer patients, but the mechanism(s) that underlie these connections are not understood. In this study, we demonstrate that PDGF-activated fibroblasts stimulate extracellular matrix (ECM) fiber remodeling and deposition. Furthermore, we describe how SNAI1, through the FAK pathway, is a necessary factor for ECM fiber organization. The parallel-oriented fibers are used by endothelial cells as “tracks”, facilitating their activation and the creation of tubular structures mimicking in vivo capillary formation. Accordingly, Snail1 expression in fibroblasts was required for the co-adjuvant effect of these cells on matrix remodeling and neoangiogenesis when co-xenografted in nude mice. Finally, in tumor samples from colorectal cancer patients a direct association between stromal SNAI1 expression and the endothelial marker CD34 was observed. In summary, our results advance the understanding of PDGF/SNAI1-activated CAFs in matrix remodeling and angiogenesis stimulation.
Collapse
Affiliation(s)
- Alberto Herrera
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro de Majadahonda, Majadahonda, Madrid, Spain
| | - Mercedes Herrera
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro de Majadahonda, Majadahonda, Madrid, Spain.,Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Natalia Guerra-Perez
- Medical Oncology Department, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Cristina Galindo-Pumariño
- Medical Oncology Department, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - María Jesús Larriba
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, CIBERONC, Madrid, Spain
| | - Vanesa García-Barberán
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro de Majadahonda, Majadahonda, Madrid, Spain.,Laboratory of Molecular Oncology, IIS Hospital Clínico San Carlos, CIBERONC, Madrid, Spain
| | - Beatriz Gil
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro de Majadahonda, Majadahonda, Madrid, Spain.,Laboratorio de Oncología Traslacional y Nuevas Terapias. Instituto de Investigación i+12, Madrid, Spain
| | - Sara Giménez-Moyano
- Biomarkers and Therapeutic Targets Lab, Pathology Department, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Reyes Ferreiro-Monteagudo
- Medical Oncology Department, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Pilar Veguillas
- Surgery Department, Hospital Universitario de Guadalajara, Guadalajara, Spain
| | - Antonio Candia
- Pathology Department, Hospital Universitario de Guadalajara, Guadalajara, Spain
| | - Raúl Peña
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Jesús Pinto
- Pathology Department, Virgen de la Concha Hospital, Zamora, Castilla y León, Spain
| | - Mª Laura García-Bermejo
- Laboratorio de Oncología Traslacional y Nuevas Terapias. Instituto de Investigación i+12, Madrid, Spain
| | - Alberto Muñoz
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, CIBERONC, Madrid, Spain
| | | | | | - Alfredo Carrato
- Medical Oncology Department, Ramon y Cajal University Hospital, IRYCIS, CIBERONC, Alcala University, Madrid, Spain
| | - Cristina Peña
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro de Majadahonda, Majadahonda, Madrid, Spain. .,Medical Oncology Department, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), CIBERONC, Madrid, Spain.
| |
Collapse
|
162
|
Shah S, Fourgeaud C, Derieux S, Mirshahi S, Contant G, Pimpie C, Lo Dico R, Soria J, Pocard M, Mirshahi M. The close relationship between heparanase and epithelial mesenchymal transition in gastric signet-ring cell adenocarcinoma. Oncotarget 2018; 9:33778-33787. [PMID: 30333909 PMCID: PMC6173471 DOI: 10.18632/oncotarget.26042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/16/2018] [Indexed: 01/30/2023] Open
Abstract
Heparanase (HPSE), a heparan sulfate-specific endo-β-D-glucuronidase, plays an important role in tumor cell metastasis through the degradation of extracellular matrix heparan sulfate proteoglycans. Suramin, a polysulfonated naphthylurea, is an inhibitor of HPSE with suramin analogues. Our objective was to analyze the HPSE involvement in gastric signet ring cell adenocarcinoma (SRCA) invasion. High expression of HPSE mRNA and protein was found in the tumor and in ascites of SRCA as well as in KATO-III cell line. Beside of collagen-I, growth factors (TGF-β1 and VEGF-A, except FGF-2) and epithelial mesenchymal transition (EMT) markers (Snail, Slug, Vimentin, α-SMA and Fibronectin, except E-cadherin) were found higher in main nodules of SRCA as compared to peritumoral sites. Among MDR proteins, MDR-1 and LRP (lung resistance protein) were highly expressed in tumor cells. The formation of 3D cell spheroids was found to be correlated with their origin (adherent or non-adherent KATO-III). After treatment of KATO-III cells with a HPSE inhibitor (suramin), cell proliferation and EMT-related markers, besides collagen-1 expression, were down regulated. In conclusion, in SRCA, HPSE via an autocrine secretion is involved in acquisition of mesenchymal phenotype and tumor cell malignancy. Therefore, HPSE could be an interesting pharmacological target for the treatment of SRCA.
Collapse
Affiliation(s)
- Shahid Shah
- Lariboisière Hospital, INSERM U965, Sorbonne University Paris Cité -Paris 7, 75010 Paris, France.,Present address: Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Caroline Fourgeaud
- Lariboisière Hospital, INSERM U965, Sorbonne University Paris Cité -Paris 7, 75010 Paris, France
| | - Simon Derieux
- Lariboisière Hospital, INSERM U965, Sorbonne University Paris Cité -Paris 7, 75010 Paris, France
| | - Shahsoltan Mirshahi
- Lariboisière Hospital, INSERM U965, Sorbonne University Paris Cité -Paris 7, 75010 Paris, France
| | | | - Cynthia Pimpie
- Lariboisière Hospital, INSERM U965, Sorbonne University Paris Cité -Paris 7, 75010 Paris, France
| | - Rea Lo Dico
- Lariboisière Hospital, INSERM U965, Sorbonne University Paris Cité -Paris 7, 75010 Paris, France
| | - Jeannette Soria
- Lariboisière Hospital, INSERM U965, Sorbonne University Paris Cité -Paris 7, 75010 Paris, France
| | - Marc Pocard
- Lariboisière Hospital, INSERM U965, Sorbonne University Paris Cité -Paris 7, 75010 Paris, France
| | - Massoud Mirshahi
- Lariboisière Hospital, INSERM U965, Sorbonne University Paris Cité -Paris 7, 75010 Paris, France
| |
Collapse
|
163
|
Weidenfeld K, Barkan D. EMT and Stemness in Tumor Dormancy and Outgrowth: Are They Intertwined Processes? Front Oncol 2018; 8:381. [PMID: 30258818 PMCID: PMC6145010 DOI: 10.3389/fonc.2018.00381] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/24/2018] [Indexed: 12/12/2022] Open
Abstract
Metastases are the major cause of cancer patients' mortality and can occur years and even decades following apparently successful treatment of the primary tumor. Early dissemination of cancer cells, followed by a protracted period of dormancy at distant sites, has been recently recognized as the clinical explanation for this very-long latency. The mechanisms that govern tumor dormancy at distant sites and their reactivation to proliferating metastases are just beginning to be unraveled. Tumor cells, that survive the immune surveillance and hemodynamic forces along their journey in the circulation and successfully colonize and adopt to the new and "hostile" microenvironment and survive in a quiescent dormant state for years before emerging to proliferative state, must display high plasticity. Here we will discuss whether the plasticity of dormant tumor cells is required for their long-term survival and outgrowth. Specifically, we will focus on whether epithelial mesenchymal transition and acquisition of stem-like properties can dictate their quiescent and or their proliferative fate. Deeper understanding of these intertwining processes may facilitate in the future the development of novel therapies.
Collapse
Affiliation(s)
- Keren Weidenfeld
- Department of Human Biology and Medical Sciences, University of Haifa, Haifa, Israel
| | - Dalit Barkan
- Department of Human Biology and Medical Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
164
|
LncRNA PROX1-AS1 promotes proliferation, invasion, and migration in papillary thyroid carcinoma. Biosci Rep 2018; 38:BSR20180862. [PMID: 30061172 PMCID: PMC6131342 DOI: 10.1042/bsr20180862] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/17/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022] Open
Abstract
Evidence has been provided that long noncoding RNAs (LncRNAs) play major roles in affecting essential physiological processes, and many of which seem to have functional roles in tumorigenesis and progression. However, the intrinsic molecular mechanism of LncRNAs acting on papillary thyroid carcinoma is not well understood. In the present study, we found that PROX1-AS1 levels were obviously increased in thyroid cancer cells compared with the normal thyroid epithelial cells. Knockdown of PROX1-AS1 gene expression by siRNA could inhibit cell proliferation. Subsequently, we also observed that silencing PROX1-AS1 might inhibit invasion and migration of thyroid cancer cell lines via modulating the expression of epithelial–mesenchymal transition related proteins. In conclusion, our study indicated that LncRNA PROX1-AS1 could promote papillary thyroid carcinoma development and might serve as a potential targeting marker for papillary thyroid carcinoma.
Collapse
|
165
|
Rodgers JJ, McClure R, Epis MR, Cohen RJ, Leedman PJ, Harvey JM, Thomas MA, Bentel JM. ETS1 induces transforming growth factor β signaling and promotes epithelial-to-mesenchymal transition in prostate cancer cells. J Cell Biochem 2018; 120:848-860. [PMID: 30161276 DOI: 10.1002/jcb.27446] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 07/16/2018] [Indexed: 02/01/2023]
Abstract
Expression of the transcriptional regulator, E26 transformation-specific 1 (ETS1), is elevated in human prostate cancers, and this is associated with more aggressive tumor behavior and a rapid progression to castrate-resistant disease. Multiple ETS1 isoforms with distinct biological activities have been characterized and in 44 matched nonmalignant and malignant human prostate specimens, messenger RNAs for two ETS1 isoforms, ETS1p51 and ETS1p42, were detected, with ETS1p51 levels significantly lower in prostate tumor compared to matched nonmalignant prostate tissues. In contrast, ETS1p51 protein, the only ETS1 isoform detected, was expressed at significantly higher levels in malignant prostate. Analysis of epithelial-to-mesenchymal transition (EMT)-associated genes regulated following overexpression of ETS1p51 in the LNCaP prostate cancer cell line predicted promotion of transforming growth factor β (TGFβ) signaling and of EMT. ETS1p51 overexpression upregulated cellular levels of the EMT transcriptional regulators, ZEB1 and SNAIL1, resulted in reduced expression of the mesenchymal marker vimentin with concomitantly elevated levels of claudin 1, an epithelial tight junction protein, and increased prostate cancer cell migration and invasion. ETS1p51-induced activation of the pro-EMT TGFβ signaling pathway that was predicted in polymerase chain reaction arrays was verified by demonstration of elevated SMAD2 phosphorylation following ETS1p51 overexpression. Attenuation of ETS1p51 effects on prostate cancer cell migration and invasion by inhibition of TGFβ pathway signaling indicated that ETS1p51 effects were in part mediated by induction of TGFβ signaling. Thus, overexpression of ETS1p51, the predominant ETS1 isoform expressed in prostate tumors, promotes an EMT program in prostate cancer cells in part via activation of TGFβ signaling, potentially accounting for the poor prognosis of ETS1-overexpressing prostate tumors.
Collapse
Affiliation(s)
- Jamie J Rodgers
- Anatomical Pathology, PathWest Laboratory Medicine, Royal Perth Hospital, Perth, Western Australia, Australia.,School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, Australia
| | - Robert McClure
- Anatomical Pathology, PathWest Laboratory Medicine, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Michael R Epis
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
| | - Ronald J Cohen
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, Australia.,Uropath, West Leederville, Western Australia, Australia
| | - Peter J Leedman
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia.,Centre for Medical Research and Medical School, University of Western Australia, Crawley, Western Australia, Australia
| | - Jennet M Harvey
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, Australia.,Anatomical Pathology, PathWest Laboratory Medicine, QEII Medical Centre, Crawley, Western Australia, Australia
| | -
- Australian Prostate Cancer BioResource (APCB), Brisbane, Queensland, Australia
| | - Marc A Thomas
- Anatomical Pathology, PathWest Laboratory Medicine, Royal Perth Hospital, Perth, Western Australia, Australia.,Anatomical Pathology, PathWest Laboratory Medicine, QEII Medical Centre, Crawley, Western Australia, Australia
| | - Jacqueline M Bentel
- Anatomical Pathology, PathWest Laboratory Medicine, Royal Perth Hospital, Perth, Western Australia, Australia.,Anatomical Pathology, PathWest Laboratory Medicine, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| |
Collapse
|
166
|
Pascual-Reguant L, Blanco E, Galan S, Le Dily F, Cuartero Y, Serra-Bardenys G, Di Carlo V, Iturbide A, Cebrià-Costa JP, Nonell L, de Herreros AG, Di Croce L, Marti-Renom MA, Peiró S. Lamin B1 mapping reveals the existence of dynamic and functional euchromatin lamin B1 domains. Nat Commun 2018; 9:3420. [PMID: 30143639 PMCID: PMC6109041 DOI: 10.1038/s41467-018-05912-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 08/02/2018] [Indexed: 12/13/2022] Open
Abstract
Lamins (A/C and B) are major constituents of the nuclear lamina (NL). Structurally conserved lamina-associated domains (LADs) are formed by genomic regions that contact the NL. Lamins are also found in the nucleoplasm, with a yet unknown function. Here we map the genome-wide localization of lamin B1 in an euchromatin-enriched fraction of the mouse genome and follow its dynamics during the epithelial-to-mesenchymal transition (EMT). Lamin B1 associates with actively expressed and open euchromatin regions, forming dynamic euchromatin lamin B1-associated domains (eLADs) of about 0.3 Mb. Hi-C data link eLADs to the 3D organization of the mouse genome during EMT and correlate lamin B1 enrichment at topologically associating domain (TAD) borders with increased border strength. Having reduced levels of lamin B1 alters the EMT transcriptional signature and compromises the acquisition of mesenchymal traits. Thus, during EMT, the process of genome reorganization in mouse involves dynamic changes in eLADs.
Collapse
Affiliation(s)
| | - Enrique Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
| | - Silvia Galan
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
- Structural Genomic Group, CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona, Spain
| | - François Le Dily
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Yasmina Cuartero
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
- Structural Genomic Group, CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona, Spain
| | - Gemma Serra-Bardenys
- Vall d'Hebron Institute of Oncology, 08035, Barcelona, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Valerio Di Carlo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
| | - Ane Iturbide
- Institute of Epigenetics and Stem Cells, D-81377, München, Germany
| | | | - Lara Nonell
- Servei d'Anàlisi de Microarrays Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Antonio García de Herreros
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
- ICREA, Pg. Lluis Companys 23, Barcelona, Spain
| | - Marc A Marti-Renom
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
- Structural Genomic Group, CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
- ICREA, Pg. Lluis Companys 23, Barcelona, Spain
| | - Sandra Peiró
- Vall d'Hebron Institute of Oncology, 08035, Barcelona, Spain.
| |
Collapse
|
167
|
Li C, Balazsi G. A landscape view on the interplay between EMT and cancer metastasis. NPJ Syst Biol Appl 2018; 4:34. [PMID: 30155271 PMCID: PMC6107626 DOI: 10.1038/s41540-018-0068-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a basic developmental process that converts epithelial cells to mesenchymal cells. Although EMT might promote cancer metastasis, the molecular mechanisms for it remain to be fully clarified. To address this issue, we constructed an EMT-metastasis gene regulatory network model and quantified the potential landscape of cancer metastasis-promoting system computationally. We identified four steady-state attractors on the landscape, which separately characterize anti-metastatic (A), metastatic (M), and two other intermediate (I1 and I2) cell states. The tetrastable landscape and the existence of intermediate states are consistent with recent single-cell measurements. We identified one of the two intermediate states I1 as the EMT state. From a MAP approach, we found that for metastatic progression cells need to first undergo EMT (enter the I1 state), and then become metastatic (switch from the I1 state to the M state). Specifically, for metastatic progression, EMT genes (such as ZEB) should be activated before metastasis genes (such as BACH1). This suggests that temporal order is important for the activation of cellular programs in biological systems, and provides a possible mechanism of EMT-promoting cancer metastasis. To identify possible therapeutic targets from this landscape view, we performed sensitivity analysis for individual molecular factors, and identified optimal interventions for landscape control. We found that minimizing transition actions more effectively identifies optimal combinations of targets that induce transitions between attractors than single-factor sensitivity analysis. Overall, the landscape view not only suggests that intermediate states increase plasticity during cell fate decisions, providing a possible source for tumor heterogeneity that is critically important in metastatic progress, but also provides a way to identify therapeutic targets for preventing cancer progression.
Collapse
Affiliation(s)
- Chunhe Li
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Gabor Balazsi
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
168
|
Chanda A, Sarkar A, Bonni S. The SUMO System and TGFβ Signaling Interplay in Regulation of Epithelial-Mesenchymal Transition: Implications for Cancer Progression. Cancers (Basel) 2018; 10:cancers10080264. [PMID: 30096838 PMCID: PMC6115711 DOI: 10.3390/cancers10080264] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023] Open
Abstract
Protein post-translational modification by the small ubiquitin-like modifier (SUMO), or SUMOylation, can regulate the stability, subcellular localization or interactome of a protein substrate with key consequences for cellular processes including the Epithelial-Mesenchymal Transition (EMT). The secreted protein Transforming Growth Factor beta (TGFβ) is a potent inducer of EMT in development and homeostasis. Importantly, the ability of TGFβ to induce EMT has been implicated in promoting cancer invasion and metastasis, resistance to chemo/radio therapy, and maintenance of cancer stem cells. Interestingly, TGFβ-induced EMT and the SUMO system intersect with important implications for cancer formation and progression, and novel therapeutics identification.
Collapse
Affiliation(s)
- Ayan Chanda
- Department of Biochemistry and Molecular Biology, The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Anusi Sarkar
- Department of Biochemistry and Molecular Biology, The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Shirin Bonni
- Department of Biochemistry and Molecular Biology, The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
169
|
Mitra P, Kalailingam P, Tan HB, Thanabalu T. Overexpression of GRB2 Enhances Epithelial to Mesenchymal Transition of A549 Cells by Upregulating SNAIL Expression. Cells 2018; 7:cells7080097. [PMID: 30087284 PMCID: PMC6116178 DOI: 10.3390/cells7080097] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/28/2018] [Accepted: 08/01/2018] [Indexed: 01/05/2023] Open
Abstract
GRB2 is an adaptor protein which interacts with phosphorylated TGF-β receptor and is critical for mammary tumour growth. We found that TGF-β1-induced EMT increased GRB2 expression in A549 cells (non-small cell lung cancer). Overexpression of GRB2 (A549GRB2) enhanced cell invasion while knocking down GRB2 (A549GRB2KD) reduced cell migration and invasion, probably due to increased vinculin and reduced Paxillin patches in A549GRB2KD cell. TGF-β1-induced EMT was more pronounced in A549GRB2 cells and attenuated in A549GRB2KD cells. This could be due to the reduced expression of E-cadherin in A549GRB2 and increased expression of E-cadherin in A549GRB2KD cells, even before TGF-β1 stimulation. Expression of SNAIL was elevated in A549GRB2 cells and was further enhanced by TGF-β1 stimulation, suggesting that GRB2 down-regulates E-cadherin by enhancing the expression of SNAIL. The N-SH3 domain of GRB2 was critical for suppressing E-cadherin expression, while the C-SH3 domain of GRB2 mediating interaction with proteins such as N-WASP was critical for promoting invasion, and the SH2 domain was critical for suppressing E-cadherin expression and invasion. Thus, our data suggests that GRB2 enhances EMT by suppressing E-cadherin expression and promoting invasion probably through N-WASP to promote metastasis.
Collapse
Affiliation(s)
- Payal Mitra
- Department of Molecular Medicine, STRF, University of Texas Health San Antonio, 8403 Floyd Curl Dr, San Antonio, TX 78229, USA.
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | | | - Hui Bing Tan
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
- National University Health System (NUHS), 119228 Singapore, Singapore.
| | - Thirumaran Thanabalu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| |
Collapse
|
170
|
Huang Y, Li G, Wang K, Mu Z, Xie Q, Qu H, Lv H, Hu B. Collagen Type VI Alpha 3 Chain Promotes Epithelial-Mesenchymal Transition in Bladder Cancer Cells via Transforming Growth Factor β (TGF-β)/Smad Pathway. Med Sci Monit 2018; 24:5346-5354. [PMID: 30066698 PMCID: PMC6085978 DOI: 10.12659/msm.909811] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Collagen type VI alpha 3 chain (COL6A3) has been proven to be a biomarker in the occurrence and development of bladder cancer, which is the most common malignant tumor in the urinary system. This study aimed to explore the effect and molecular mechanism of COL6A3 on EMT in vitro induced by TGF-β/Smad in bladder carcinoma. Material/Methods There were 42 patients included in the Kaplan-Meier survival analysis. A cell counting kit-8 (CCK-8) assay and an angiogenesis assay were used to measure cell proliferation and tube formation, respectively. Western blot analysis and quantitative reverse transcription-polymerase chain reaction (qPCR) were conducted for the proteins and mRNAs expression. Results COL6A3 was highly expressed in tissues and cells of bladder cancer. COL6A3 silencing could inhibit the cell proliferation and angiopoiesis. In addition, COL6A3 silencing obviously suppressed the levels of matrix metalloproteinase-2 (MMP2), Matrix metalloproteinase-9 (MMP9), and vimentin. On the contrary, the levels of epithelium-specific cell-cell adhesion molecule (E-cadherin) and tumor inhibitor of metalloproteinase-1 (TIMP-1) were significantly increased. Furthermore, we found that COL6A3 silencing reduced the activity of p-Smad2, p-Smad3, and transforming growth factor β (TGF-β). Conclusions COL6A3 could influence the viability and angiogenesis of bladder cancer cells. COL6A3 may have a certain relationship with the TGF-β/Smad-induced EMT process.
Collapse
Affiliation(s)
- Yan Huang
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China (mainland)
| | - Gang Li
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China (mainland)
| | - Kai Wang
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China (mainland)
| | - Zhongyi Mu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China (mainland)
| | - Qingpeng Xie
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China (mainland)
| | - Hongchen Qu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China (mainland)
| | - Hang Lv
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China (mainland)
| | - Bin Hu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
171
|
Malgulwar PB, Nambirajan A, Pathak P, Rajeshwari M, Suri V, Sarkar C, Singh M, Sharma MC. Epithelial-to-mesenchymal transition-related transcription factors are up-regulated in ependymomas and correlate with a poor prognosis. Hum Pathol 2018; 82:149-157. [PMID: 30067950 DOI: 10.1016/j.humpath.2018.07.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/01/2018] [Accepted: 07/21/2018] [Indexed: 12/13/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) plays an important role in invasion and metastasis of various cancers including gliomas. EMT has also been linked to cancer stem cells and resistance to chemotherapy. An initial in-silico data mining in a published ependymoma (EPN) patient series (GSE21687) revealed up-regulation of EMT transcription factors in tumor samples. Furthermore, quantitative real-time polymerase chain reaction-based gene expression analysis of EMT transcription factors in 96 EPNs showed significant up-regulation of SNAI1, SNAI2, ZEB1, and TWIST1 as compared with normal brain, associated with up-regulation of CDH2/N-cadherin and down-regulation of CDH1/E-cadherin. Although this was observed in varying degrees in all clinicopathological-molecular subgroups of EPNs, it was most evident in supratentorial EPNs harboring fusions of RELA (v-rel avian reticuloendotheliosis viral oncogene homolog A) gene and in posterior fossa EPNs. Immunohistochemistry performed in 60 of the above cases corroborated with gene expression patterns, and immunopositivity for Snail, Slug, Zeb1, and Twist1 was observed in 80%, 80%, 81%, and 63% of all EPNs. Immunopositivity for N-cadherin and E-cadherin was observed in 76.6% and 2% of the cases, respectively. Univariate Cox regression analysis showed that low expression of CDH1/E-cadherin (P = .002) and high expression levels of CDH2/N-cadherin (P < .001), SNAI1/Snail (P = .023), SNAI2/Slug (P < .001), and ZEB1 (P < .001) were associated with shorter progression-free survival. Here, we report for the first time the existence of EMT-like phenotype in EPNs. These factors could represent new prognostic and therapeutic targets in EPN.
Collapse
Affiliation(s)
- Prit Benny Malgulwar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Aruna Nambirajan
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Pankaj Pathak
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Madhu Rajeshwari
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vaishali Suri
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Manmohan Singh
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Mehar Chand Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
172
|
Zhu YF, Dong M. Expression of TUSC3 and its prognostic significance in colorectal cancer. Pathol Res Pract 2018; 214:1497-1503. [PMID: 30115537 DOI: 10.1016/j.prp.2018.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/14/2018] [Accepted: 07/05/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common cancers worldwide. Tumor suppressor candidate 3 (TUSC3) has been reported be associated with embryogenesis and metabolism. The aim of this study is to investigate the expression of TUSC3 in CRC tissues, and to evaluate the clinical pathological characters and prognostic significance. METHOD First, we performed a bioinformatics analysis by using Oncomine and COEXPEDIA databases. Gene Set Enrichment Analysis (GSEA) was performed using TCGA data set. Then, the protein expression level of TUSC3 was detected by immunohistochemistry in 230 pairs of primary colorectal cancer and corresponding non-tumor tissues. RESULT We investigated Oncomine databases and found that TUSC3 mRNA expression was significantly higher in CRC tissues compared with normal tissues. The immunohistochemistry results demonstrated that TUSC3 was overexpressed in the CRC tissues. Furthermore, TUSC3 overexpression was associated with T stage, lymph node metastasis, and distant metastasis. TUSC3 overexpression was associated with worse overall survival for CRC, and retained significance as an independent prognostic factor for CRC. Bioinformatics analysis indicated that TUSC3 expression was associated with epithelial-mesenchymal transition signaling pathway and TUSC3 co-expression genes were obtained from COEXPEDIA. CONCLUSION TUSC3 may act as an oncogene in the progression of colorectal cancer. Moreover, TUSC3 has potential to be used as prognostic markers or therapeutic targets in CRC.
Collapse
Affiliation(s)
- Yu Feng Zhu
- China Medical University, Shenyang, Liaoning Province, People's Republic of China.
| | - Ming Dong
- Department of Gastrointestinal Surgery, The First Affiliate Hospital of China Medical University, No.92 of Beima Road, Postal Code:110001, Heping District, Shenyang, Liaoning Province, People's Republic of China.
| |
Collapse
|
173
|
Campbell K. Contribution of epithelial-mesenchymal transitions to organogenesis and cancer metastasis. Curr Opin Cell Biol 2018; 55:30-35. [PMID: 30006053 PMCID: PMC6284102 DOI: 10.1016/j.ceb.2018.06.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/10/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023]
Abstract
The epithelial-to-mesenchymal transition (EMT) plays crucial roles during development, and inappropriate activation of EMTs are associated with tumor progression and promoting metastasis. In recent years, increasing studies have identified developmental contexts where cells undergo an EMT and transition to a partial-state, downregulating just a subset of epithelial characteristics and increasing only some mesenchymal traits, such as invasive motility. In parallel, recent studies have shown that EMTs are rarely fully activated in tumor cells, generating a diverse array of transition states. As our appreciation of the full spectrum of intermediate phenotypes and the huge diversity in underlying mechanisms grows, cross-disciplinary collaborations investigating developmental-EMTs and cancer-EMTs will be fundamental in order to achieve a full mechanistic understanding of this complex cell process.
Collapse
Affiliation(s)
- Kyra Campbell
- Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, UK; Department of Biomedical Science, Firth Court, University of Sheffield, Western Bank, Sheffield, UK.
| |
Collapse
|
174
|
Li C, Wang Z, Feng N, Dong J, Deng X, Yue Y, Guo Y, Hou J. Human HLA‑F adjacent transcript 10 promotes the formation of cancer initiating cells and cisplatin resistance in bladder cancer. Mol Med Rep 2018; 18:308-314. [PMID: 29749526 PMCID: PMC6059684 DOI: 10.3892/mmr.2018.9005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 04/16/2018] [Indexed: 01/01/2023] Open
Abstract
Epithelial to mesenchymal transition (EMT) serves important roles in tumor invasion, metastasis, formation of cancer initiating cells (CICs) and drug resistance. HLA‑F adjacent transcript 10 (FAT10) has been proposed as an oncogene in bladder cancer. However, the functional contribution of FAT10 to EMT and the formation of CICs remains unclear in bladder cancer. The present study reports that FAT10 protein expression is upregulated in bladder cancer cell lines, and the overexpression of FAT10 promotes EMT and the formation of CICs in bladder cancer UMUC‑3 cells. In addition, increased expression of FAT10 in tumor tissue was associated with shorter overall survival and progression free survival in Chinese patients with bladder cancer. Overexpression of FAT10 promotes cisplatin‑resistant bladder cancer formation. These results indicated FAT10 may be a novel target for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Chen Li
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Department of Urology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Zhenfan Wang
- Department of Urology, The First Hospital of Wujiang, Suzhou, Jiangsu 215200, P.R. China
| | - Ninghan Feng
- Department of Urology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Jian Dong
- Department of Urology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Xiaoyan Deng
- Department of Urology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Yin Yue
- Department of Urology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Yuehong Guo
- Department of Urology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
175
|
Liu W, Zhang J, Gan X, Shen F, Yang X, Du N, Xia D, Liu L, Qiao L, Pan J, Sun Y, Xi X. LGR5 promotes epithelial ovarian cancer proliferation, metastasis, and epithelial-mesenchymal transition through the Notch1 signaling pathway. Cancer Med 2018; 7:3132-3142. [PMID: 29777575 PMCID: PMC6051213 DOI: 10.1002/cam4.1485] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 02/24/2018] [Accepted: 03/16/2018] [Indexed: 12/15/2022] Open
Abstract
Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) plays a vital role in the development of malignant tumors; however, its biological role and underlying mechanism in epithelial ovarian cancer (EOC) remain unclear. In this study, we aimed to investigate the biological function and clinical significance of LGR5 in human EOC. We evaluated LGR5 expression in EOC cell lines and tissues from ovarian cancer patients by qPCR, Western blotting, and immunohistochemical analysis. Cell proliferation, colony formation, transwell invasion assay, and scratch-wound assays were conducted to evaluate the expansion and invasion abilities of EOC cells. Tumor xenograft experiments were performed in female BALB/c athymic nude mice to test cell proliferation in vivo. Western blot analysis was performed to confirm the expression of epithelial-to-mesenchymal transition (EMT) signature proteins and their association with Notch1 signaling. The results demonstrated that LGR5 was overexpressed in EOC tissues and cell lines. Aberrant expression of LGR5 was significantly associated with patient age (P = 0.006), tumor histologic type (P < 0.001), and distant metastasis (P = 0.025). Consistent with these findings, suppression of LGR5 expression led to decreased proliferation and metastasis of EOC cell lines. Furthermore, LGR5 could induce EMT and regulate the Notch1 signaling pathway. Taken together,LGR5 may have an important role in the promotion of tumorigenesis and metastasis of EOC and is a potential therapeutic target for EOC management.
Collapse
Affiliation(s)
- Wenxue Liu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Jing Zhang
- Department of Obstetrics and Gynecology, The International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Xupei Gan
- Department of Obstetrics and Gynecology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Fangqian Shen
- Department of Obstetrics and Gynecology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Xiaoming Yang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Na Du
- Department of Obstetrics and Gynecology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Dandan Xia
- Department of Obstetrics and Gynecology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Lei Liu
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lianqiao Qiao
- Department of Obstetrics and Gynecology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Jufang Pan
- Department of Obstetrics and Gynecology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Yunyan Sun
- Department of Obstetrics and Gynecology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Xiaowei Xi
- Department of Obstetrics and Gynecology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| |
Collapse
|
176
|
Henriet E, Sala M, Abou Hammoud A, Tuariihionoa A, Di Martino J, Ros M, Saltel F. Multitasking discoidin domain receptors are involved in several and specific hallmarks of cancer. Cell Adh Migr 2018; 12:363-377. [PMID: 29701112 PMCID: PMC6411096 DOI: 10.1080/19336918.2018.1465156] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/11/2022] Open
Abstract
Discoidin domain receptors, DDR1 and DDR2, are two members of collagen receptor family that belong to tyrosine kinase receptor subgroup. Unlike other matrix receptor-like integrins, these collagen receptors have not been extensively studied. However, more and more studies are focusing on their involvement in cancer. These two receptors are present in several subcellular localizations such as intercellular junction or along type I collagen fibers. Consequently, they are involved in multiple cellular functions, for instance, cell cohesion, proliferation, adhesion, migration and invasion. Furthermore, various signaling pathways are associated with these multiple functions. In this review, we highlight and characterize hallmarks of cancer in which DDRs play crucial roles. We discuss recent data from studies that demonstrate the involvement of DDRs in tumor proliferation, cancer mutations, drug resistance, inflammation, neo-angiogenesis and metastasis. DDRs could be potential targets in cancer and we conclude this review by discussing the different ways to inhibits them.
Collapse
Affiliation(s)
- Elodie Henriet
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology,Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Margaux Sala
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology,Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Aya Abou Hammoud
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology,Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Adjanie Tuariihionoa
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology,Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Julie Di Martino
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology,Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Manon Ros
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology,Bordeaux, France
- Université de Bordeaux, Bordeaux, France
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore
| | - Frédéric Saltel
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology,Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| |
Collapse
|
177
|
MacLean AL, Hong T, Nie Q. Exploring intermediate cell states through the lens of single cells. CURRENT OPINION IN SYSTEMS BIOLOGY 2018; 9:32-41. [PMID: 30450444 PMCID: PMC6238957 DOI: 10.1016/j.coisb.2018.02.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
As our catalog of cell states expands, appropriate characterization of these states and the transitions between them is crucial. Here we discuss the roles of intermediate cell states (ICSs) in this growing collection. We begin with definitions and discuss evidence for the existence of ICSs and their relevance in various tissues. We then provide a list of possible functions for ICSs with examples. Finally, we describe means by which ICSs and their functional roles can be identified from single-cell data or predicted from models.
Collapse
Affiliation(s)
- Adam L. MacLean
- Department of Mathematics and Center for Complex Biological Systems, University of California, Irvine, CA 92697, United States
| | - Tian Hong
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37966, United States
| | - Qing Nie
- Department of Mathematics and Center for Complex Biological Systems, University of California, Irvine, CA 92697, United States,Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, United States
| |
Collapse
|
178
|
Gao X, Cai Y, An R. miR‑215 promotes epithelial to mesenchymal transition and proliferation by regulating LEFTY2 in endometrial cancer. Int J Mol Med 2018; 42:1229-1236. [PMID: 29845221 PMCID: PMC6089757 DOI: 10.3892/ijmm.2018.3703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 05/09/2018] [Indexed: 01/01/2023] Open
Abstract
Endometrial cancer (EC) is the most common gynecological tumor in developed countries with an increasing incidence. Left-right determination factor 2 (LEFTY2), a suppressor of cell proliferation and tumor growth, is a negative regulator of EC progression. The roles of LEFTY2 are emerging; however, the regulatory mechanisms of its expression have not been well understood. MicroRNA (miR)-215 as an oncogene serves an important role in tumorigenesis by regulating target genes. In the present study, it was demonstrated that overexpression of miR-215 promoted epithelial to mesenchymal transition (EMT), colony formation and DNA synthesis in EC HEC-1A cells and its expression was upregulated in EC tissues. Using online miR target prediction software, it was revealed that LEFTY2 is predicted as a target of miR-215. Using western blot analysis and immunofluorescence assays, it was demonstrated that overexpression of miR-215 markedly downregulated LEFTY2 protein expression levels in HEC-1A cells and LEFTY2 protein expression was downregulated in EC tissues, which was inversely correlated with miR-215 expression. Furthermore, the present study indicated that overexpression of LEFTY2 protein promoted mesenchymal to epithelial transition and sensitized HEC-1A cells to cisplatin treatment. In addition, it was revealed that the overexpression of LEFTY2 inhibited colony formation and DNA synthesis in HEC-1A cells. Thus, miR-215 may promote EMT and proliferation by regulating LEFTY2 in EC.
Collapse
Affiliation(s)
- Xiaoxu Gao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yan Cai
- Department of Gynecology and Obstetrics, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ruifang An
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
179
|
CD146 mediates an E-cadherin-to-N-cadherin switch during TGF-β signaling-induced epithelial-mesenchymal transition. Cancer Lett 2018; 430:201-214. [PMID: 29777784 DOI: 10.1016/j.canlet.2018.05.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 01/05/2023]
Abstract
Cadherin switch is an initiating factor of epithelial-mesenchymal transition (EMT) and is intimately correlated with cancer metastatic potential; however, its underlying mechanisms remain unclear. Here, using a transforming growth factor-β (TGF-β)-induced EMT model, we provide explicit evidence that CD146, with elevated expression and activity in a variety of cancers, is a key factor involved in the cadherin switch. We show that CD146 can be induced by TGF-β signaling. Moreover, CD146 expression is positively correlated with the activation levels of STAT3/Twist and ERK pathways. Transcriptional response of the CD146/STAT3/Twist cascade inhibits E-cadherin expression, whereas the CD146/ERK cascade enhances N-cadherin expression. CD146 overexpression also significantly promotes EMT in both mouse embryonic fibroblasts (MEFs) and ovarian cancer cells. Clinically, ovarian cancer patients with detectable CD146 expression had a significantly lower survival rate than that of patients without CD146 expression. Furthermore, CD146-deficient MEFs exhibited decreased motility as a result of reversion in this cadherin switch, strongly suggesting that targeting CD146 is a potential strategy for cancer treatment. Therefore, CD146-mediated regulation of the E-cadherin-to-N-cadherin switch provides an insight into the general mechanisms of EMT as well as cancer metastasis.
Collapse
|
180
|
Monraz Gomez LC, Kondratova M, Ravel JM, Barillot E, Zinovyev A, Kuperstein I. Application of Atlas of Cancer Signalling Network in preclinical studies. Brief Bioinform 2018; 20:701-716. [DOI: 10.1093/bib/bby031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/28/2018] [Indexed: 12/27/2022] Open
Affiliation(s)
- L Cristobal Monraz Gomez
- Institut Curie, PSL Research University, F-75005 Paris, France, INSERM, U900, F-75005 Paris, France and MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
| | - Maria Kondratova
- Institut Curie, PSL Research University, F-75005 Paris, France, INSERM, U900, F-75005 Paris, France and MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
| | - Jean-Marie Ravel
- Genetic Laboratory, Nancy's Regional University Hospital, Vandœuvre-lès-Nancy and INSERM UMR 954, Lorraine University, Vandœuvre-lès-Nancy
| | - Emmanuel Barillot
- Institut Curie, PSL Research University, F-75005 Paris, France, INSERM, U900, F-75005 Paris, France and MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
| | - Andrei Zinovyev
- Institut Curie, PSL Research University, F-75005 Paris, France, INSERM, U900, F-75005 Paris, France and MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
| | - Inna Kuperstein
- Institut Curie, PSL Research University, F-75005 Paris, France, INSERM, U900, F-75005 Paris, France and MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
| |
Collapse
|
181
|
Pu Y, Liu Y, Liao S, Miao S, Zhou L, Wan L. Azithromycin ameliorates OVA-induced airway remodeling in Balb/c mice via suppression of epithelial-to-mesenchymal transition. Int Immunopharmacol 2018; 58:87-93. [DOI: 10.1016/j.intimp.2018.03.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/12/2022]
|
182
|
Cai Z, Cao Y, Luo Y, Hu H, Ling H. Signalling mechanism(s) of epithelial-mesenchymal transition and cancer stem cells in tumour therapeutic resistance. Clin Chim Acta 2018; 483:156-163. [PMID: 29709449 DOI: 10.1016/j.cca.2018.04.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 02/06/2023]
Abstract
Epithelial-mesenchymal transition (EMT) leads to tumour progression, including tumour metastasis, disease recurrence and therapy resistance. Cancer stem cells (CSCs) are a small group of cells that have the ability to undergo self-renewal and heterogeneous differentiation, which play a key role in the occurrence and development of cancer. EMT can promote tumour cells to develop stem cell characteristics, which makes tumours more difficult to treat. Therefore, exploring the role of EMT and CSCs in the metastasis of cancer is of great significance to guide tumour treatment and prognosis. In this review, we discuss EMT and CSCs in cancer progression and therapeutic resistance, with a special focus on the common characteristics and relationships between these processes, to explore the crucial relationships in the development of improved anti-tumour therapies. AREAS COVERED In this brief review article, the author has searched PubMed and Wikipedia for original research and reviewed articles to gather current information on the association of CSCs and EMT with therapeutic resistance characteristics, cancer growth and metastasis, which are believed to be regulated by the TGF-β, Wnt, Hedgehog (Hh), β-catenin, STAT3, Notch, and Nanog signalling pathways and other factors (miRNAs, microenvironment and additional cytokines).
Collapse
Affiliation(s)
- Zhihong Cai
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, PR China
| | - Yijing Cao
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, PR China
| | - Yichen Luo
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, PR China
| | - Haobin Hu
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, PR China
| | - Hui Ling
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, PR China.
| |
Collapse
|
183
|
Bronte G, Bravaccini S, Bronte E, Burgio MA, Rolfo C, Delmonte A, Crinò L. Epithelial-to-mesenchymal transition in the context of epidermal growth factor receptor inhibition in non-small-cell lung cancer. Biol Rev Camb Philos Soc 2018; 93:1735-1746. [PMID: 29671943 DOI: 10.1111/brv.12416] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 12/12/2022]
Abstract
The identification of oncogenic driver mutations in non-small-cell lung cancer (NSCLC) has led to the development of targeted drugs. Tyrosine kinase inhibitors (TKIs) directed against the epidermal growth factor receptor (EGFR) target lung tumours bearing EGFR-activating mutations. This new therapeutic strategy has greatly improved tumour response rates. However, drug resistance invariably occurs during TKI-based treatment. Epithelial-to-mesenchymal transition (EMT) is one of the resistance mechanisms identified in EGFR-mutated NSCLC treated with TKIs. In this review we gather together the most important findings on this phenomenon in relation to cancer stem cells and cancer epigenetics. We also outline the correlation between the effects of stromal factors from the microenvironment, the transcription factors activated, the epigenetic changes in chromatin, and the evolution of cellular behaviour. Notably, EMT has already been shown to be the link between benign lung diseases such as chronic obstructive pulmonary disease and lung carcinogenesis. The various mechanisms of acquired resistance to EGFR-TKIs are also briefly described to provide background information on EMT. Our extensive review of the scientific literature serves to highlight the cellular and molecular events that lead to the onset of EMT in NSCLC cells treated with EGFR-TKIs. Finally, we put forward a hypothesis to explain why, in some cases, EMT rather than other known mechanisms is involved in resistance to TKIs.
Collapse
Affiliation(s)
- Giuseppe Bronte
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Sara Bravaccini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Enrico Bronte
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Marco Angelo Burgio
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Christian Rolfo
- Phase I Early Clinical Trials Unit, Department of Oncology, Universitair Ziekenhuis Antwerpen, Edegem, Belgium
| | - Angelo Delmonte
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Lucio Crinò
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| |
Collapse
|
184
|
Abstract
Activation of TGF-β1 initiates a program of temporary collagen accumulation important to wound repair in many organs. However, the outcome of temporary extracellular matrix strengthening all too frequently morphs into progressive fibrosis, contributing to morbidity and mortality worldwide. To avoid this maladaptive outcome, TGF-β1 signaling is regulated at numerous levels and intimately connected to feedback signals that limit accumulation. Here, we examine the current understanding of the core functions of TGF-β1 in promoting collagen accumulation, parallel pathways that promote physiological repair, and pathological triggers that tip the balance toward progressive fibrosis. Implicit in better understanding of these processes is the identification of therapeutic opportunities that will need to be further advanced to limit or reverse organ fibrosis.
Collapse
Affiliation(s)
- Kevin K Kim
- Department of Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan 48109
| | - Dean Sheppard
- Department of Medicine, Cardiovascular Research Institute, and Lung Biology Center, University of California, San Francisco, San Francisco, California 94143
| | - Harold A Chapman
- Department of Medicine, Cardiovascular Research Institute, and Lung Biology Center, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|
185
|
Zoppi N, Chiarelli N, Binetti S, Ritelli M, Colombi M. Dermal fibroblast-to-myofibroblast transition sustained by αvß3 integrin-ILK-Snail1/Slug signaling is a common feature for hypermobile Ehlers-Danlos syndrome and hypermobility spectrum disorders. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1010-1023. [DOI: 10.1016/j.bbadis.2018.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/05/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023]
|
186
|
Yeh YH, Hsiao HF, Yeh YC, Chen TW, Li TK. Inflammatory interferon activates HIF-1α-mediated epithelial-to-mesenchymal transition via PI3K/AKT/mTOR pathway. J Exp Clin Cancer Res 2018; 37:70. [PMID: 29587825 PMCID: PMC5870508 DOI: 10.1186/s13046-018-0730-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/09/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Tumor microenvironments (TMEs) activate various axes/pathways, predominantly inflammatory and hypoxic responses, impact tumorigenesis, metastasis and therapeutic resistance significantly. Although molecular pathways of individual TME are extensively studied, evidence showing interaction and crosstalk between hypoxia and inflammation remain unclear. Thus, we examined whether interferon (IFN) could modulate both inflammatory and hypoxic responses under normoxia and its relation with cancer development. METHODS IFN was used to induce inflammation response and HIF-1α expression in various cancer cell lines. Corresponding signaling pathways were then analyzed by a combination of pharmacological inhibitors, immunoblotting, GST-Raf pull-down assays, dominant-negative and short-hairpin RNA-mediated knockdown approaches. Specifically, roles of functional HIF-1α in the IFN-induced epithelial-mesenchymal transition (EMT) and other tumorigenic propensities were examined by knockdown, pharmacological inhibition, luciferase reporter, clonogenic, anchorage-independent growth, wound-healing, vasculogenic mimicry, invasion and sphere-formation assays as well as cellular morphology observation. RESULTS We showed for the first time that IFN induced functional HIF-1α expression in a time- and dose- dependent manner in various cancer cell lines under both hypoxic and normoxic conditions, and then leading to an activated HIF-1α pathway in an IFN-mediated pro-inflammatory TME. IFN regulates anti-apoptosis activity, cellular metastasis, EMT and vasculogenic mimicry by a novel mechanism through mainly the activation of PI3K/AKT/mTOR axis. Subsequently, pharmacological and genetic modulations of HIF-1α, JAK, PI3K/AKT/mTOR or p38 pathways efficiently abrogate above IFN-induced tumorigenic propensities. Moreover, HIF-1α is required for the IFN-induced invasiveness, tumorigenesis and vasculogenic mimicry. Further supports for the HIF-1α-dependent tumorigenesis were obtained from results of xenograft mouse model and sphere-formation assay. CONCLUSIONS Our mechanistic study showed an induction of HIF-1α and EMT ability in an IFN-mediated inflammatory TME and thus demonstrating a novel interaction between inflammatory and hypoxic TMEs. Moreover, targeting HIF-1α may be a potential target for inhibiting tumor tumorigenesis and EMT by decreasing cancer cells wound healing and anchorage-independent colony growth. Our results also lead to rationale guidance for developing new therapeutic strategies to prevent relapse via targeting TME-providing IFN signaling and HIF-1α programming.
Collapse
Affiliation(s)
- Yen-Hsiu Yeh
- Department and Graduate Institute of Microbiology, College of Medicine, Taipei, Taiwan, Republic of China
| | - Ho-Fu Hsiao
- Department of Emergency Medicine, Sijhih Cathay General Hospital, New Taipei City, Taiwan, Republic of China
| | - Yen-Cheng Yeh
- Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan, Republic of China
| | - Tien-Wen Chen
- Department and Graduate Institute of Microbiology, College of Medicine, Taipei, Taiwan, Republic of China
| | - Tsai-Kun Li
- Department and Graduate Institute of Microbiology, College of Medicine, Taipei, Taiwan, Republic of China.
- Center for Biotechnology, National Taiwan University, Taipei, Taiwan, Republic of China.
- Center for Genomic Medicine, National Taiwan University, Taipei, Taiwan, Republic of China.
| |
Collapse
|
187
|
Wu RS, Hong JJ, Wu JF, Yan S, Wu D, Liu N, Liu QF, Wu QW, Xie YY, Liu YJ, Zheng ZZ, Chan EC, Zhang ZM, Li BA. OVOL2 antagonizes TGF-β signaling to regulate epithelial to mesenchymal transition during mammary tumor metastasis. Oncotarget 2018; 8:39401-39416. [PMID: 28455959 PMCID: PMC5503621 DOI: 10.18632/oncotarget.17031] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/09/2017] [Indexed: 12/12/2022] Open
Abstract
Great progress has been achieved in the study of the role of TGF-β signaling in triggering epithelial-mesenchymal transition (EMT) in a variety of cancers; however, the regulation of TGF-β signaling during EMT in mammary tumor metastasis has not been completely defined. In the present study, we demonstrated that OVOL2, a zinc finger transcription factor, inhibits TGF-β signaling-induced EMT in mouse and human mammary tumor cells, as well as in mouse tumor models. Data from the Oncomine databases indicated a strong negative relationship between OVOL2 expression and breast cancer progression. Moreover, our experiments revealed that OVOL2 inhibits TGF-β signaling at multiple levels, including inhibiting Smad4 mRNA expression and inducing Smad7 mRNA expression, blocking the binding between Smad4 and target DNA, and interfering with complex formation between Smad4 and Smad2/3. These findings reveal a novel mechanism that controls the TGF-β signaling output level in vitro and in vivo. The modulation of these molecular processes may represent a strategy for inhibiting breast cancer invasion by restoring OVOL2 expression.
Collapse
Affiliation(s)
- Rong-Si Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.,Engineering Research Center of Molecular Diagnostics, Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jing-Jing Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.,Engineering Research Center of Molecular Diagnostics, Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jia-Fa Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.,College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Shen Yan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.,Engineering Research Center of Molecular Diagnostics, Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Di Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.,Engineering Research Center of Molecular Diagnostics, Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Na Liu
- The First Affiliated Hospital, Xiamen University, Xiamen, Fujian, China
| | - Qing-Feng Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.,Engineering Research Center of Molecular Diagnostics, Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Qiu-Wan Wu
- The First Affiliated Hospital, Xiamen University, Xiamen, Fujian, China
| | - Yuan-Yuan Xie
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.,Engineering Research Center of Molecular Diagnostics, Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yun-Jia Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.,Engineering Research Center of Molecular Diagnostics, Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zhong-Zheng Zheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.,Engineering Research Center of Molecular Diagnostics, Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Err-Cheng Chan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
| | - Zhi-Ming Zhang
- The First Affiliated Hospital, Xiamen University, Xiamen, Fujian, China
| | - Bo-An Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.,Engineering Research Center of Molecular Diagnostics, Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
188
|
Zhang X, Wang X, Xu R, Ji J, Xu Y, Han M, Wei Y, Huang B, Chen A, Zhang Q, Li W, Wang J, Li X, Qiu C. YM155 decreases radiation-induced invasion and reverses epithelial-mesenchymal transition by targeting STAT3 in glioblastoma. J Transl Med 2018; 16:79. [PMID: 29571296 PMCID: PMC5865331 DOI: 10.1186/s12967-018-1451-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/15/2018] [Indexed: 01/09/2023] Open
Abstract
Background Radiotherapy constitutes a standard arm of therapy in the multimodal treatment of patients with glioblastoma (GBM). Ironically, studies have recently revealed that radiation can augment malignant progression, by promoting migration and invasion, which make the disease especially difficult to cure. Here, we investigated the anticancer effects of YM155, a purported radiosensitizer, in GBM cell lines. Methods GBM cell lines U251 and U87 were treated with YM155 to assess cytotoxicity and activity of the molecule in vitro. Nude mice were implanted with cells to generate orthotopic xenografts for in vivo studies. Response of cells to treatment was examined using cell viability, immunofluorescence, wound healing, and the Transwell invasion assay. Molecules potentially mediating response were examined through western blot analysis, phospho-kinase arrays, and qPCR. Cells were transfected with siRNA knockdown and gene expression constructs to identify molecular mediators of response. Results YM155 reduced viability of U251 and U87 cells and enhanced radiosensitivity through inhibition of homologous recombination. Besides, YM155 decreased invasion caused by radiation and led to expression changes in molecular markers associated with EMT. STAT3 was one of 10 molecules identified on a phosphokinase array exhibiting significant change in phosphorylation under YM155 treatment. Transfection with STAT3 siRNAs or expression constructs demonstrated that EMT changes were achieved by inhibiting the phosphorylation of STAT3 and were survivin-independent. Finally, combining YM155 and radiation in orthotopic xenografts reduced growth and prolonged overall survival of animals. Conclusions YM155 decreased radiation-induced invasion in GBM cell lines in vitro and in vivo through inhibition of STAT3. Electronic supplementary material The online version of this article (10.1186/s12967-018-1451-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Xuehai Wang
- Department of Otolaryngology, Weihai Municipal Hospital, Weihai, 264200, Shandong, People's Republic of China
| | - Ran Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Jianxiong Ji
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Yangyang Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Mingzhi Han
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Yuzhen Wei
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China.,Department of Neurosurgery, Jining No. 1, People's Hospital, Jining, 272011, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Qing Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Wenjie Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China.,Department of Biomedicine, University of Bergen, 5009, Bergen, Norway
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Chen Qiu
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China.
| |
Collapse
|
189
|
Jiang Y, Jiao Y, Liu Y, Zhang M, Wang Z, Li Y, Li T, Zhao X, Wang D. Sinomenine Hydrochloride Inhibits the Metastasis of Human Glioblastoma Cells by Suppressing the Expression of Matrix Metalloproteinase-2/-9 and Reversing the Endogenous and Exogenous Epithelial-Mesenchymal Transition. Int J Mol Sci 2018. [PMID: 29538296 PMCID: PMC5877705 DOI: 10.3390/ijms19030844] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
As shown in our previous study, sinomenine hydrochloride (SH), the major bioactive alkaloid isolated from Sinomenium acutum Rehd. et Wils. (Fam. Menispermaceae), initiates the autophagy-mediated death of human glioblastoma cells by generating reactive oxygen species and activating the autophagy-lysosome pathway. However, its effects on the migration and invasion of human glioblastoma cells have not yet been elucidated. Therefore, human glioblastoma U87 and SF767 cells were treated with SH (0.125 and 0.25 mM) for 24 h, and cell migration and invasion were assessed using scratch wound healing, migration and invasion assays. SH promoted G0/G1 phase arrest, inhibited the migration and invasion of the two cell lines, suppressed the activation of nuclear factor kappa B (NFκB) and the expression of matrix metalloproteinase (MMP)-2/-9, triggered endoplasmic reticulum (ER) stress, reversed the exogenous epithelial-mesenchymal transition (EMT) induced by the inflammatory microenvironment and the endogenous EMT. Additionally, NFκB p65 overexpression blocked the SH-mediated inhibitory effects on MMP-2/-9 expression and cell invasion. SH-induced autophagy was reduced in CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP) or autophagy-related 5 (ATG5)-silenced human glioblastoma cells and cells treated with 4-phenylbutyric acid (4-PBA) or 3-methyladenine (3-MA), as shown by the decreased levels of the microtubule-associated protein light chain 3B (LC3B)-II and autophagic vacuoles (AVs) stained with monodansylcadaverine (MDC), respectively. Moreover, knockdown of CHOP or ATG5 and treatment with 4-PBA or 3-MA abolished the SH-mediated inhibition of mesenchymal markers (vimentin, Snail and Slug) expression and cell invasion, respectively. Importantly, SH also regulated the above related pathways in nude mice. Based on these findings, SH inhibited cell proliferation by inducing cell cycle arrest, and attenuated the metastasis of U87 and SF767 cells by suppressing MMP-2/-9 expression and reversing the endogenous and exogenous EMT in vitro and/or in vivo. Thus, SH might be a new potential anti-metastasis agent for the treatment of human glioblastoma.
Collapse
Affiliation(s)
- Yumao Jiang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100000, China.
| | - Yue Jiao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100000, China.
| | - Yang Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100000, China.
| | - Meiyu Zhang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100000, China.
| | - Zhiguo Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100000, China.
| | - Yujuan Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100000, China.
| | - Tao Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100000, China.
| | - Xiaoliang Zhao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100000, China.
| | - Danqiao Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100000, China.
| |
Collapse
|
190
|
ELF3 promotes epithelial-mesenchymal transition by protecting ZEB1 from miR-141-3p-mediated silencing in hepatocellular carcinoma. Cell Death Dis 2018. [PMID: 29523781 PMCID: PMC5845010 DOI: 10.1038/s41419-018-0399-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant cancers and currently the third leading cause of cancer-related deaths, worldwide. Epithelial-mesenchymal transition (EMT) plays a major role in HCC progression. In this study, we first found that the expression of E74-like ETS transcription factor 3 (ELF3), a member of the E-twenty-six family of transcription factors, was increased in HCC tissues, and that ELF3 overexpression was associated with poor prognoses for HCC patients. Gain-of-function and loss-of-function studies revealed that increased ELF3 expression promoted HCC cell proliferation, migration, and invasion, while these processes were inhibited when ELF3 was silenced. Additionally, ELF3 was found to promote EMT, which we demonstrated through decreased E-cadherin expression and increased N-cadherin and fibronectin expression. ELF3 knockdown reversed EMT via repressing ZEB1 expression through miR-141-3p upregulation. Chromatin immunoprecipitation assays revealed that ELF3 bound to the miR-141-3p promoter, suppressing miR-141-3p expression. Taken together, our data show that ELF3 repressed E-cadherin and promoted EMT in HCC cells by suppressing miR-141-3p, thereby activating ZEB1. Thus, ELF3 may be a potential prognostic biomarker and/or therapeutic target for HCC.
Collapse
|
191
|
Epithelial-mesenchymal transition in prostate cancer: an overview. Oncotarget 2018; 8:35376-35389. [PMID: 28430640 PMCID: PMC5471062 DOI: 10.18632/oncotarget.15686] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/15/2017] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer is a main urological disease associated with significant morbidity and mortality. Radical prostatectomy and radiotherapy are potentially curative for localized prostate cancer, while androgen deprivation therapy is the initial systemic therapy for metastatic prostate disease. However, despite temporary response, most patients relapse and evolve into castration resistant cancer. Epithelial-mesenchymal transition (EMT) is a complex gradual process that occurs during embryonic development and/or tumor progression. During this process, cells lose their epithelial characteristics and acquire mesenchymal features. Increasing evidences indicate that EMT promotes prostate cancer metastatic progression and it is closely correlated with increased stemness and drug resistance. In this review, we discuss the main molecular events that directly or indirectly govern the EMT program in prostate cancer, in order to better define the role and the mechanisms underlying this process in prostate cancer progression and therapeutic resistance.
Collapse
|
192
|
Tarbet HJ, Dolat L, Smith TJ, Condon BM, O'Brien ET, Valdivia RH, Boyce M. Site-specific glycosylation regulates the form and function of the intermediate filament cytoskeleton. eLife 2018. [PMID: 29513221 PMCID: PMC5841932 DOI: 10.7554/elife.31807] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intermediate filaments (IF) are a major component of the metazoan cytoskeleton and are essential for normal cell morphology, motility, and signal transduction. Dysregulation of IFs causes a wide range of human diseases, including skin disorders, cardiomyopathies, lipodystrophy, and neuropathy. Despite this pathophysiological significance, how cells regulate IF structure, dynamics, and function remains poorly understood. Here, we show that site-specific modification of the prototypical IF protein vimentin with O-linked β-N-acetylglucosamine (O-GlcNAc) mediates its homotypic protein-protein interactions and is required in human cells for IF morphology and cell migration. In addition, we show that the intracellular pathogen Chlamydia trachomatis, which remodels the host IF cytoskeleton during infection, requires specific vimentin glycosylation sites and O-GlcNAc transferase activity to maintain its replicative niche. Our results provide new insight into the biochemical and cell biological functions of vimentin O-GlcNAcylation, and may have broad implications for our understanding of the regulation of IF proteins in general. Like the body's skeleton, the cytoskeleton gives shape and structure to the inside of a cell. Yet, unlike a skeleton, the cytoskeleton is ever changing. The cytoskeleton consists of many fibers each made from chains of protein molecules. One of these proteins is called vimentin and it forms intermediate filaments in the cytoskeleton. Many different types of cells contain vimentin and a lot of it is found in cancer cells that have spread beyond their original location to other sites in the body. Cells use chemical modifications to regulate cytoskeleton proteins. For example, through a process called glycosylation, cells can reversibly attach a sugar modification called O-GlcNAc to vimentin. O-GlcNAc can be attached to several different parts of vimentin and each location may have a different effect. It is not currently clear how cells control their vimentin filaments or what role O-GlcNAc plays in this process. Using genetic engineering, Tarbet et al. produced human cells in the laboratory with modified vimentin proteins. These altered proteins lacked some of the sites for O-GlcNAc attachment. The goal was to see whether the loss of O-GlcNAc at a specific location would affect fiber formation and cell behavior. The results showed one site where vimentin needs O-GlcNAc to form fibers. Without O-GlcNAc at this site, cells could not migrate towards chemical signals. In addition, in normal human cells, Chlamydia bacteria hijack vimentin and rearrange the filaments to form a cage around themselves for protection. However, the cells lacking O-GlcNAc on vimentin were resistant to infection by Chlamydia bacteria. These findings highlight the importance of O-GlcNAc on vimentin in healthy cells and during infection. Vimentin’s contribution to cell migration may also help to explain its role in the spread of cancer. The importance of O-GlcNAc suggests it could be a new target for therapies. Yet, it also highlights the need for caution due to the delicate balance between the activity of vimentin in healthy and diseased cells. In addition, human cells produce about 70 other vimentin-like proteins and further work will examine if they are also affected by O-GlcNAc.
Collapse
Affiliation(s)
- Heather J Tarbet
- Department of Biochemistry, Duke University School of Medicine, Durham, United States
| | - Lee Dolat
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States.,Center for Host-Microbial Interactions, Duke University School of Medicine, Durham, United States
| | - Timothy J Smith
- Department of Biochemistry, Duke University School of Medicine, Durham, United States
| | - Brett M Condon
- Department of Biochemistry, Duke University School of Medicine, Durham, United States
| | - E Timothy O'Brien
- Department of Biochemistry, Duke University School of Medicine, Durham, United States.,Department of Physics and Astronomy, University of North Carolina, Chapel Hill, United States
| | - Raphael H Valdivia
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States.,Center for Host-Microbial Interactions, Duke University School of Medicine, Durham, United States
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, United States.,Center for Host-Microbial Interactions, Duke University School of Medicine, Durham, United States
| |
Collapse
|
193
|
Losa M, Risolino M, Li B, Hart J, Quintana L, Grishina I, Yang H, Choi IF, Lewicki P, Khan S, Aho R, Feenstra J, Vincent CT, Brown AMC, Ferretti E, Williams T, Selleri L. Face morphogenesis is promoted by Pbx-dependent EMT via regulation of Snail1 during frontonasal prominence fusion. Development 2018; 145:dev157628. [PMID: 29437830 PMCID: PMC5868993 DOI: 10.1242/dev.157628] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 01/24/2018] [Indexed: 12/17/2022]
Abstract
Human cleft lip with or without cleft palate (CL/P) is a common craniofacial abnormality caused by impaired fusion of the facial prominences. We have previously reported that, in the mouse embryo, epithelial apoptosis mediates fusion at the seam where the prominences coalesce. Here, we show that apoptosis alone is not sufficient to remove the epithelial layers. We observed morphological changes in the seam epithelia, intermingling of cells of epithelial descent into the mesenchyme and molecular signatures of epithelial-mesenchymal transition (EMT). Utilizing mouse lines with cephalic epithelium-specific Pbx loss exhibiting CL/P, we demonstrate that these cellular behaviors are Pbx dependent, as is the transcriptional regulation of the EMT driver Snail1. Furthermore, in the embryo, the majority of epithelial cells expressing high levels of Snail1 do not undergo apoptosis. Pbx1 loss- and gain-of-function in a tractable epithelial culture system revealed that Pbx1 is both necessary and sufficient for EMT induction. This study establishes that Pbx-dependent EMT programs mediate murine upper lip/primary palate morphogenesis and fusion via regulation of Snail1. Of note, the EMT signatures observed in the embryo are mirrored in the epithelial culture system.
Collapse
Affiliation(s)
- Marta Losa
- Program in Craniofacial Biology, Institute of Human Genetics, Eli and Edyth Broad Center of Regeneration Medicine & Stem Cell Research, Departments of Orofacial Sciences and Anatomy, University of California, San Francisco, 513 Parnassus Avenue, HSW 710, San Francisco, CA 94143, USA
| | - Maurizio Risolino
- Program in Craniofacial Biology, Institute of Human Genetics, Eli and Edyth Broad Center of Regeneration Medicine & Stem Cell Research, Departments of Orofacial Sciences and Anatomy, University of California, San Francisco, 513 Parnassus Avenue, HSW 710, San Francisco, CA 94143, USA
| | - Bingsi Li
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - James Hart
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - Laura Quintana
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - Irina Grishina
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - Hui Yang
- Departments of Craniofacial Biology and Cell and Developmental Biology, University of Colorado at Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Irene F Choi
- Departments of Craniofacial Biology and Cell and Developmental Biology, University of Colorado at Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Patrick Lewicki
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - Sameer Khan
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - Robert Aho
- Program in Craniofacial Biology, Institute of Human Genetics, Eli and Edyth Broad Center of Regeneration Medicine & Stem Cell Research, Departments of Orofacial Sciences and Anatomy, University of California, San Francisco, 513 Parnassus Avenue, HSW 710, San Francisco, CA 94143, USA
| | - Jennifer Feenstra
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
- Karolinska Institute, Department of Physiology and Pharmacology, Nanna svartz väg 2, 17177 Stockholm, Sweden
| | - C Theresa Vincent
- Karolinska Institute, Department of Physiology and Pharmacology, Nanna svartz väg 2, 17177 Stockholm, Sweden
- Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Anthony M C Brown
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - Elisabetta Ferretti
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - Trevor Williams
- Departments of Craniofacial Biology and Cell and Developmental Biology, University of Colorado at Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Licia Selleri
- Program in Craniofacial Biology, Institute of Human Genetics, Eli and Edyth Broad Center of Regeneration Medicine & Stem Cell Research, Departments of Orofacial Sciences and Anatomy, University of California, San Francisco, 513 Parnassus Avenue, HSW 710, San Francisco, CA 94143, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| |
Collapse
|
194
|
HAND2 Target Gene Regulatory Networks Control Atrioventricular Canal and Cardiac Valve Development. Cell Rep 2018; 19:1602-1613. [PMID: 28538179 DOI: 10.1016/j.celrep.2017.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 03/20/2017] [Accepted: 04/28/2017] [Indexed: 02/08/2023] Open
Abstract
The HAND2 transcriptional regulator controls cardiac development, and we uncover additional essential functions in the endothelial to mesenchymal transition (EMT) underlying cardiac cushion development in the atrioventricular canal (AVC). In Hand2-deficient mouse embryos, the EMT underlying AVC cardiac cushion formation is disrupted, and we combined ChIP-seq of embryonic hearts with transcriptome analysis of wild-type and mutants AVCs to identify the functionally relevant HAND2 target genes. The HAND2 target gene regulatory network (GRN) includes most genes with known functions in EMT processes and AVC cardiac cushion formation. One of these is Snai1, an EMT master regulator whose expression is lost from Hand2-deficient AVCs. Re-expression of Snai1 in mutant AVC explants partially restores this EMT and mesenchymal cell migration. Furthermore, the HAND2-interacting enhancers in the Snai1 genomic landscape are active in embryonic hearts and other Snai1-expressing tissues. These results show that HAND2 directly regulates the molecular cascades initiating AVC cardiac valve development.
Collapse
|
195
|
Zhu J, Wen K. Astragaloside IV inhibits TGF-β1-induced epithelial-mesenchymal transition through inhibition of the PI3K/Akt/NF-κB pathway in gastric cancer cells. Phytother Res 2018; 32:1289-1296. [PMID: 29480652 DOI: 10.1002/ptr.6057] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/21/2018] [Accepted: 01/22/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Jihong Zhu
- Department of Ultrasound; Huaihe Hospital of Henan University; Kaifeng 475000 Henan China
| | - Ke Wen
- Department of Ultrasound; Huaihe Hospital of Henan University; Kaifeng 475000 Henan China
| |
Collapse
|
196
|
Long noncoding RNA BX357664 regulates cell proliferation and epithelial-to-mesenchymal transition via inhibition of TGF-β1/p38/HSP27 signaling in renal cell carcinoma. Oncotarget 2018; 7:81410-81422. [PMID: 27806310 PMCID: PMC5348402 DOI: 10.18632/oncotarget.12937] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 09/12/2016] [Indexed: 02/06/2023] Open
Abstract
Antisense long noncoding RNAs (lncRNAs) are reported to play a regulating role in carcinogenesis of various human malignancies. However, the function of lncRNAs and their underlying mechanism in renal cell carcinoma (RCC) is still unknown. The aims of this study are to investigate the expression of lncRNA BX357664 in RCC and to explore its function in RCC cell lines. As a result, BX357664 was downregulated in RCC according to previous microarray analysis and qualitative real-time polymerase chain reaction. After the upregulation of BX357664, reduced migration, invasion, and proliferation capabilities in RCC cells were detected. Furthermore, Western blot analysis was conducted to identify the influence of BX357664 on epithelial-to-mesenchymal transition, matrix metalloproteinase 2, matrix metalloproteinase 9, and transforming growth factor-beta 1 (TGF-β1)/p38/HSP27 signaling pathway in RCC. Subsequently, upregulating the protein level of TGF-β1 in the presence of BX357664 could rescue the suppression of the malignant behavior mediated by BX357664, indicating that BX357664 attributed its inhibitory role to the suppression of TGF-β1. Therefore, we investigated a novel lncRNA BX357664, which might exhibit its inhibitory role in RCC metastasis and progression by blocking the TGF-β1/p38/HSP27 pathway.
Collapse
|
197
|
Davies AH, Beltran H, Zoubeidi A. Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nat Rev Urol 2018; 15:271-286. [PMID: 29460922 DOI: 10.1038/nrurol.2018.22] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The success of next-generation androgen receptor (AR) pathway inhibitors, such as abiraterone acetate and enzalutamide, in treating prostate cancer has been hampered by the emergence of drug resistance. This acquired drug resistance is driven, in part, by the ability of prostate cancer cells to change their phenotype to adopt AR-independent pathways for growth and survival. Around one-quarter of resistant prostate tumours comprise cells that have undergone cellular reprogramming to become AR-independent and to acquire a continuum of neuroendocrine characteristics. These highly aggressive and lethal tumours, termed neuroendocrine prostate cancer (NEPC), exhibit reactivation of developmental programmes that are associated with epithelial-mesenchymal plasticity and acquisition of stem-like cell properties. In the past few years, our understanding of the link between lineage plasticity and an emergent NEPC phenotype has considerably increased. This new knowledge can contribute to novel therapeutic modalities that are likely to improve the treatment and clinical management of aggressive prostate cancer.
Collapse
Affiliation(s)
- Alastair H Davies
- Vancouver Prostate Centre, 2660 Oak Street, Vancouver, BC, Canada.,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, Vancouver, BC, Canada
| | - Himisha Beltran
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, 413 East 69th Street, New York, NY, USA
| | - Amina Zoubeidi
- Vancouver Prostate Centre, 2660 Oak Street, Vancouver, BC, Canada.,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, Vancouver, BC, Canada
| |
Collapse
|
198
|
Knirsh R, Ben-Dror I, Modai S, Shomron N, Vardimon L. MicroRNA 10b promotes abnormal expression of the proto-oncogene c-Jun in metastatic breast cancer cells. Oncotarget 2018; 7:59932-59944. [PMID: 27494896 PMCID: PMC5312359 DOI: 10.18632/oncotarget.11000] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/30/2016] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs have been shown to act as oncogenes or tumor suppressers via various cellular pathways. Specifically, in breast cancer, upregulation of miR-10b is positively associated with aggressiveness of tumors. However, the mechanism by which miR-10b contributes to cell malignancy is largely unknown. Here we show that at the receiving end of the miR-10b pathway is the proto-oncogene c-Jun, a transcription factor that plays a critical role in stimulation of cell proliferation and tumor progression. c-Jun is known to be translationally activated by loss of cell contacts or restructuring of the cytoskeleton. A comprehensive analysis of miRNA expression exhibited a significant increase in miR-10b expression. This was supported by analysis of breast cancer cells, which showed that loss of E-cadherin in metastatic cells is accompanied by elevation of miR-10b and interestingly, by a marked increase in accumulation of c-Jun. Silencing miR-10b in metastatic breast cancer cells leads to a decline in c-Jun expression, whereas overexpression of miR-10b in HaCaT cells is sufficient to elevate the accumulation of c-Jun. The increase in c-Jun protein accumulation in metastatic cells is not accompanied by an increase in c-Jun mRNA and is not dependent on MAPK activity. Knockdown and overexpression experiments revealed that the increase is mediated by NF1 and RhoC, downstream targets of miR-10b that affect cytoskeletal dynamics through the ROCK pathway. Overall, we show the ability of miR-10b to activate the expression of c-Jun through RhoC and NF1, which represents a novel pathway for promoting migration and invasion of human cancer cells.
Collapse
Affiliation(s)
- Revital Knirsh
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Iris Ben-Dror
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shira Modai
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lily Vardimon
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
199
|
Toret CP, Shivakumar PC, Lenne PF, Le Bivic A. The elmo-mbc complex and rhogap19d couple Rho family GTPases during mesenchymal-to-epithelial-like transitions. Development 2018:dev.157495. [PMID: 29437779 DOI: 10.1242/dev.157495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/22/2018] [Indexed: 12/25/2022]
Abstract
Many metazoan developmental processes require cells to transition between migratory mesenchymal- and adherent epithelial-like states. These transitions require Rho GTPase-mediated actin rearrangements downstream of integrin and cadherin pathways. A regulatory toolbox of GEF and GAP proteins precisely coordinates Rho protein activities, yet defining the involvement of specific regulators within a cellular context remains a challenge due to overlapping and coupled activities. Here we demonstrate that Drosophila dorsal closure is a powerful model for Rho GTPase regulation during transitions from leading edges to cadherin contacts. During these transitions a Rac GEF elmo-mbc complex regulates both lamellipodia and Rho1-dependent, actomyosin-mediated tension at initial cadherin contacts. Moreover, the Rho GAP Rhogap19d controls Rac and Rho GTPases during the same processes and genetically regulates the elmo-mbc complex. This study presents a fresh framework to understand the inter-relationship between GEF and GAP proteins that tether Rac and Rho cycles during developmental processes.
Collapse
Affiliation(s)
| | | | | | - Andre Le Bivic
- Aix-Marseille Univ, CNRS, IBDM, Case 907, 13288 Marseille, Cedex 09, France
| |
Collapse
|
200
|
Ju RJ, Cheng L, Peng XM, Wang T, Li CQ, Song XL, Liu S, Chao JP, Li XT. Octreotide-modified liposomes containing daunorubicin and dihydroartemisinin for treatment of invasive breast cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:616-628. [PMID: 29381101 DOI: 10.1080/21691401.2018.1433187] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tumor invasion is considered a major promoter in the initiation of tumor metastasis, which is supposed to cause most cancer-related deaths. In the present study, octreotide (OCT)-modified daunorubicin plus dihydroartemisinin liposomes were developed and characterized. Evaluations were undertaken on breast cancer MDA-MB-435S cells and MDA-MB-435S xenografts nude mice. The liposomes were ∼100 nm in size with a narrow polydispersity index. In vitro results showed that the OCT-modified daunorubicin plus dihydroartemisinin liposomes could enhance cytotoxicity and cellular uptake by OCT-SSTRs (somatostatin receptors)-mediated active targeting, block on tumor cell wound healing and migration by incorporating dihydroartemisinin. The action mechanism might be related to regulations on E-cadherin, α5β1-integrin, TGF-β1, VEGF and MMP2/9 in breast cancer cells. In vivo, the liposomes displayed a prolonged circulating time, more accumulation in tumor location, and a robust overall antitumor efficacy with no obvious toxicity at the test dose in MDA-MB-435S xenograft mice. In conclusion, the OCT-modified daunorubicin plus dihydroartemisinin liposomes could prevent breast cancer invasion, hence providing a possible strategy for treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Rui-Jun Ju
- a Department of Pharmaceutical Engineering , Beijing Institute of Petrochemical Technology , Beijing , China
| | - Lan Cheng
- b School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Xiao-Ming Peng
- a Department of Pharmaceutical Engineering , Beijing Institute of Petrochemical Technology , Beijing , China
| | - Teng Wang
- a Department of Pharmaceutical Engineering , Beijing Institute of Petrochemical Technology , Beijing , China
| | - Cui-Qing Li
- a Department of Pharmaceutical Engineering , Beijing Institute of Petrochemical Technology , Beijing , China
| | - Xiao-Li Song
- b School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Shuang Liu
- b School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Jian-Ping Chao
- a Department of Pharmaceutical Engineering , Beijing Institute of Petrochemical Technology , Beijing , China
| | - Xue-Tao Li
- b School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| |
Collapse
|