151
|
Zhang J, Dinh TN, Kappeler K, Tsaprailis G, Chen QM. La autoantigen mediates oxidant induced de novo Nrf2 protein translation. Mol Cell Proteomics 2012; 11:M111.015032. [PMID: 22207702 PMCID: PMC3433904 DOI: 10.1074/mcp.m111.015032] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/25/2011] [Indexed: 01/20/2023] Open
Abstract
Nrf2 gene encodes a transcription factor that regulates the expression of a cluster of antioxidant and detoxification genes. Recent works from our laboratory indicate that oxidative stress causes rapid de novo synthesis of Nrf2 protein. We have found that 5' Untranslated Region (5'UTR) of Nrf2 allows the mRNA to undergo an Internal Ribosomal Entry Site (IRES) mediated protein translation. Using liquid chromatography tandem MS, we have discovered that La/SSB protein bound to Nrf2 5'UTR in response to oxidative stress. In vitro RNA binding and in vivo ribonucleoprotein immunoprecipitation showed H(2)O(2) dose and time dependent increases of La/SSB binding to Nrf2 5'UTR. La/SSB protein translocated from the nuclei to cytoplasm and distributed in the perinuclear space in cells treated with H(2)O(2). Isolation of ribosomal fractions indicated that oxidants caused an association of La/SSB with ribosomes. Physical interaction of La/SSB with representative proteins from the small or large subunits of ribosomes was found to increase in cells responding to H(2)O(2) treatment. Knocking down La/SSB gene with siRNA prevented Nrf2 protein elevation or Nrf2 5'UTR activation by oxidants. In contrast, overexpression of La/SSB gene was able to enhance Nrf2 5'UTR activation and Nrf2 protein increase. Our data suggest that oxidants cause nuclear export of La/SSB protein and subsequent association of La/SSB with Nrf2 5'UTR and ribosomes. These events contribute to de novo Nrf2 protein translation because of oxidative stress.
Collapse
Affiliation(s)
- Jack Zhang
- From the ‡Department of Pharmacology, University of Arizona, College of Medicine, 1501 N. Campbell Ave, Tucson, Arizona 85724
| | - Thai Nho Dinh
- From the ‡Department of Pharmacology, University of Arizona, College of Medicine, 1501 N. Campbell Ave, Tucson, Arizona 85724
| | - Kyle Kappeler
- From the ‡Department of Pharmacology, University of Arizona, College of Medicine, 1501 N. Campbell Ave, Tucson, Arizona 85724
| | - George Tsaprailis
- §Center for Toxicology, College of Pharmacy, 1703 E. Mabel St Tucson, Arizona 85721
| | - Qin M. Chen
- From the ‡Department of Pharmacology, University of Arizona, College of Medicine, 1501 N. Campbell Ave, Tucson, Arizona 85724
| |
Collapse
|
152
|
Versatility of RNA-Binding Proteins in Cancer. Comp Funct Genomics 2012; 2012:178525. [PMID: 22666083 PMCID: PMC3359819 DOI: 10.1155/2012/178525] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 02/28/2012] [Indexed: 01/22/2023] Open
Abstract
Posttranscriptional gene regulation is a rapid and efficient process to adjust the proteome of a cell to a changing environment. RNA-binding proteins (RBPs) are the master regulators of mRNA processing and translation and are often aberrantly expressed in cancer. In addition to well-studied transcription factors, RBPs are emerging as fundamental players in tumor development. RBPs and their mRNA targets form a complex network that plays a crucial role in tumorigenesis. This paper describes mechanisms by which RBPs influence the expression of well-known oncogenes, focusing on precise examples that illustrate the versatility of RBPs in posttranscriptional control of cancer development. RBPs appeared very early in evolution, and new RNA-binding domains and combinations of them were generated in more complex organisms. The identification of RBPs, their mRNA targets, and their mechanism of action have provided novel potential targets for cancer therapy.
Collapse
|
153
|
Proteomic profiling of EBNA1-host protein interactions in latent and lytic Epstein-Barr virus infections. J Virol 2012; 86:6999-7002. [PMID: 22496234 DOI: 10.1128/jvi.00194-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr nuclear antigen 1 (EBNA1) protein of Epstein-Barr virus (EBV) is expressed in both latent and lytic modes of EBV infection and contributes to EBV-associated cancers. Using a proteomics approach, we profiled EBNA1-host protein interactions in nasopharyngeal and gastric carcinoma cells in the context of latent and lytic EBV infection. We identified several interactions that occur in both modes of infection, including a previously unreported interaction with nucleophosmin and RNA-mediated interactions with several heterogeneous ribonucleoproteins (hnRNPs) and La protein.
Collapse
|
154
|
Wolin SL, Sim S, Chen X. Nuclear noncoding RNA surveillance: is the end in sight? Trends Genet 2012; 28:306-13. [PMID: 22475369 DOI: 10.1016/j.tig.2012.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/05/2012] [Accepted: 03/07/2012] [Indexed: 12/13/2022]
Abstract
Nuclear noncoding RNA (ncRNA) surveillance pathways play key roles in shaping the steady-state transcriptomes of eukaryotic cells. Defective and unneeded ncRNAs are primarily degraded by exoribonucleases that rely on protein cofactors to identify these RNAs. Recent studies have begun to elucidate both the mechanisms by which these cofactors recognize aberrant RNAs and the features that mark RNAs for degradation. One crucial RNA determinant is the presence of an accessible end; in addition, the failure of aberrant RNAs to fold into compact structures and assemble with specific binding proteins probably also contributes to their recognition and subsequent degradation. To date, ncRNA surveillance has been most extensively studied in budding yeast. However, mammalian cells possess nucleases and cofactors that have no known yeast counterparts, indicating that RNA surveillance pathways may be more complex in metazoans. Importantly, there is evidence that the failure of ncRNA surveillance pathways contributes to human disease.
Collapse
Affiliation(s)
- Sandra L Wolin
- Department of Cell Biology, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.
| | | | | |
Collapse
|
155
|
Maraia RJ, Lamichhane TN. 3' processing of eukaryotic precursor tRNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 2:362-75. [PMID: 21572561 DOI: 10.1002/wrna.64] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Biogenesis of eukaryotic tRNAs requires transcription by RNA polymerase III and subsequent processing. 5' processing of precursor tRNA occurs by a single mechanism, cleavage by RNase P, and usually occurs before 3' processing although some conditions allow observation of the 3'-first pathway. 3' processing is relatively complex and is the focus of this review. Precursor RNA 3'-end formation begins with pol III termination generating a variable length 3'-oligo(U) tract that represents an underappreciated and previously unreviewed determinant of processing. Evidence that the pol III-intrinsic 3'exonuclease activity mediated by Rpc11p affects 3'oligo(U) length is reviewed. In addition to multiple 3' nucleases, precursor tRNA(pre-tRNA) processing involves La and Lsm, distinct oligo(U)-binding proteins with proposed chaperone activities. 3' processing is performed by the endonuclease RNase Z or the exonuclease Rex1p (possibly others) along alternate pathways conditional on La. We review a Schizosaccharomyces pombe tRNA reporter system that has been used to distinguish two chaperone activities of La protein to its two conserved RNA binding motifs. Pre-tRNAs with structural impairments are degraded by a nuclear surveillance system that mediates polyadenylation by the TRAMP complex followed by 3'-digestion by the nuclear exosome which appears to compete with 3' processing. We also try to reconcile limited data on pre-tRNA processing and Lsm proteins which largely affect precursors but not mature tRNAs.A pathway is proposed in which 3' oligo(U) length is a primary determinant of La binding with subsequent steps distinguished by 3'-endo versus exo nucleases,chaperone activities, and nuclear surveillance.
Collapse
Affiliation(s)
- Richard J Maraia
- Intramural Research Program, Eunice Kennedy Shriver NationalInstitute of Child Health and Human Development, NationalInstitutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
156
|
Schenk L, Meinel DM, Strässer K, Gerber AP. La-motif-dependent mRNA association with Slf1 promotes copper detoxification in yeast. RNA (NEW YORK, N.Y.) 2012; 18:449-61. [PMID: 22271760 PMCID: PMC3285933 DOI: 10.1261/rna.028506.111] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 11/25/2011] [Indexed: 05/31/2023]
Abstract
The La-motif (LAM) is an ancient and ubiquitous RNA-binding domain defining a superfamily of proteins, which comprises the genuine La proteins and La-related proteins (LARPs). In contrast to La, which binds and stabilizes pre-tRNAs and other RNA polymerase III transcripts, data on function and RNA targets of the LARPs have remained scarce. We have undertaken a global approach to elucidate the previously suggested role of the yeast LARP Slf1p in copper homeostasis. By applying RNA-binding protein immunopurification-microarray (RIP-Chip) analysis, we show that Slf1p and its paralog Sro9p copurify with overlapping sets of hundreds of functionally related mRNAs, including many transcripts coding for ribosomal proteins and histones. Interestingly, among these potential RNA targets were also mRNAs coding for proteins critical for protection of cells against elevated copper concentrations. Mutations introduced in the conserved aromatic patch of the LAM in Slf1p drastically impaired both association with its targets and Slf1-mediated protection of cells against toxic copper concentrations. Furthermore, we show that Slf1p stabilizes copper-related mRNA targets in a LAM-dependent manner. These results provide the first evidence for post-transcriptional regulation of factors/pathways implicated in copper homeostasis by a cytoplasmic RBP.
Collapse
Affiliation(s)
- Luca Schenk
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Dominik M. Meinel
- Department of Biochemistry, Gene Center and Center for Integrated Protein Science Munich (CIPSM), University of Munich, 81377 Munich, Germany
| | - Katja Strässer
- Department of Biochemistry, Gene Center and Center for Integrated Protein Science Munich (CIPSM), University of Munich, 81377 Munich, Germany
| | - André P. Gerber
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
157
|
Martino L, Pennell S, Kelly G, Bui TTT, Kotik-Kogan O, Smerdon SJ, Drake AF, Curry S, Conte MR. Analysis of the interaction with the hepatitis C virus mRNA reveals an alternative mode of RNA recognition by the human La protein. Nucleic Acids Res 2012; 40:1381-94. [PMID: 22009680 PMCID: PMC3273827 DOI: 10.1093/nar/gkr890] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 09/29/2011] [Accepted: 10/01/2011] [Indexed: 12/31/2022] Open
Abstract
Human La protein is an essential factor in the biology of both coding and non-coding RNAs. In the nucleus, La binds primarily to 3' oligoU containing RNAs, while in the cytoplasm La interacts with an array of different mRNAs lacking a 3' UUU(OH) trailer. An example of the latter is the binding of La to the IRES domain IV of the hepatitis C virus (HCV) RNA, which is associated with viral translation stimulation. By systematic biophysical investigations, we have found that La binds to domain IV using an RNA recognition that is quite distinct from its mode of binding to RNAs with a 3' UUU(OH) trailer: although the La motif and first RNA recognition motif (RRM1) are sufficient for high-affinity binding to 3' oligoU, recognition of HCV domain IV requires the La motif and RRM1 to work in concert with the atypical RRM2 which has not previously been shown to have a significant role in RNA binding. This new mode of binding does not appear sequence specific, but recognizes structural features of the RNA, in particular a double-stranded stem flanked by single-stranded extensions. These findings pave the way for a better understanding of the role of La in viral translation initiation.
Collapse
Affiliation(s)
- Luigi Martino
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, Division of Molecular Structure, MRC Biomedical NMR Centre, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, Pharmaceutical Science Division, King's College London, The Wolfson Wing, Guy's Campus, London SE1 1UL and Department of Life Sciences, Division of Cell and Molecular Biology, Imperial College, London SW7 2AZ, UK
| | - Simon Pennell
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, Division of Molecular Structure, MRC Biomedical NMR Centre, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, Pharmaceutical Science Division, King's College London, The Wolfson Wing, Guy's Campus, London SE1 1UL and Department of Life Sciences, Division of Cell and Molecular Biology, Imperial College, London SW7 2AZ, UK
| | - Geoff Kelly
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, Division of Molecular Structure, MRC Biomedical NMR Centre, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, Pharmaceutical Science Division, King's College London, The Wolfson Wing, Guy's Campus, London SE1 1UL and Department of Life Sciences, Division of Cell and Molecular Biology, Imperial College, London SW7 2AZ, UK
| | - Tam T. T. Bui
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, Division of Molecular Structure, MRC Biomedical NMR Centre, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, Pharmaceutical Science Division, King's College London, The Wolfson Wing, Guy's Campus, London SE1 1UL and Department of Life Sciences, Division of Cell and Molecular Biology, Imperial College, London SW7 2AZ, UK
| | - Olga Kotik-Kogan
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, Division of Molecular Structure, MRC Biomedical NMR Centre, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, Pharmaceutical Science Division, King's College London, The Wolfson Wing, Guy's Campus, London SE1 1UL and Department of Life Sciences, Division of Cell and Molecular Biology, Imperial College, London SW7 2AZ, UK
| | - Stephen J. Smerdon
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, Division of Molecular Structure, MRC Biomedical NMR Centre, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, Pharmaceutical Science Division, King's College London, The Wolfson Wing, Guy's Campus, London SE1 1UL and Department of Life Sciences, Division of Cell and Molecular Biology, Imperial College, London SW7 2AZ, UK
| | - Alex F. Drake
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, Division of Molecular Structure, MRC Biomedical NMR Centre, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, Pharmaceutical Science Division, King's College London, The Wolfson Wing, Guy's Campus, London SE1 1UL and Department of Life Sciences, Division of Cell and Molecular Biology, Imperial College, London SW7 2AZ, UK
| | - Stephen Curry
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, Division of Molecular Structure, MRC Biomedical NMR Centre, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, Pharmaceutical Science Division, King's College London, The Wolfson Wing, Guy's Campus, London SE1 1UL and Department of Life Sciences, Division of Cell and Molecular Biology, Imperial College, London SW7 2AZ, UK
| | - Maria R. Conte
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, Division of Molecular Structure, MRC Biomedical NMR Centre, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, Pharmaceutical Science Division, King's College London, The Wolfson Wing, Guy's Campus, London SE1 1UL and Department of Life Sciences, Division of Cell and Molecular Biology, Imperial College, London SW7 2AZ, UK
| |
Collapse
|
158
|
Petz M, Them N, Huber H, Beug H, Mikulits W. La enhances IRES-mediated translation of laminin B1 during malignant epithelial to mesenchymal transition. Nucleic Acids Res 2012; 40:290-302. [PMID: 21896617 PMCID: PMC3245933 DOI: 10.1093/nar/gkr717] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 07/26/2011] [Accepted: 08/21/2011] [Indexed: 12/13/2022] Open
Abstract
The majority of transcripts that harbor an internal ribosome entry site (IRES) are involved in cancer development via corresponding proteins. A crucial event in tumor progression referred to as epithelial to mesenchymal transition (EMT) allows carcinoma cells to acquire invasive properties. The translational activation of the extracellular matrix component laminin B1 (LamB1) during EMT has been recently reported suggesting an IRES-mediated mechanism. In this study, the IRES activity of LamB1 was determined by independent bicistronic reporter assays. Strong evidences exclude an impact of cryptic promoter or splice sites on IRES-driven translation of LamB1. Furthermore, no other LamB1 mRNA species arising from alternative transcription start sites or polyadenylation signals were detected that account for its translational control. Mapping of the LamB1 5'-untranslated region (UTR) revealed the minimal LamB1 IRES motif between -293 and -1 upstream of the start codon. Notably, RNA affinity purification showed that the La protein interacts with the LamB1 IRES. This interaction and its regulation during EMT were confirmed by ribonucleoprotein immunoprecipitation. In addition, La was able to positively modulate LamB1 IRES translation. In summary, these data indicate that the LamB1 IRES is activated by binding to La which leads to translational upregulation during hepatocellular EMT.
Collapse
Affiliation(s)
- Michaela Petz
- Department of Medicine I, Division: Institute of Cancer Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna and Institute for Animal Breeding and Genetics, University of Veterinary Medicine I, Veterinärplatz 1, 1210 Vienna, Austria
| | - Nicole Them
- Department of Medicine I, Division: Institute of Cancer Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna and Institute for Animal Breeding and Genetics, University of Veterinary Medicine I, Veterinärplatz 1, 1210 Vienna, Austria
| | - Heidemarie Huber
- Department of Medicine I, Division: Institute of Cancer Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna and Institute for Animal Breeding and Genetics, University of Veterinary Medicine I, Veterinärplatz 1, 1210 Vienna, Austria
| | - Hartmut Beug
- Department of Medicine I, Division: Institute of Cancer Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna and Institute for Animal Breeding and Genetics, University of Veterinary Medicine I, Veterinärplatz 1, 1210 Vienna, Austria
| | - Wolfgang Mikulits
- Department of Medicine I, Division: Institute of Cancer Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna and Institute for Animal Breeding and Genetics, University of Veterinary Medicine I, Veterinärplatz 1, 1210 Vienna, Austria
| |
Collapse
|
159
|
Whelan JT, Hollis SE, Cha DS, Asch AS, Lee MH. Post-transcriptional regulation of the Ras-ERK/MAPK signaling pathway. J Cell Physiol 2011; 227:1235-41. [DOI: 10.1002/jcp.22899] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
160
|
Cherkasova V, Maury LL, Bacikova D, Pridham K, Bähler J, Maraia RJ. Altered nuclear tRNA metabolism in La-deleted Schizosaccharomyces pombe is accompanied by a nutritional stress response involving Atf1p and Pcr1p that is suppressible by Xpo-t/Los1p. Mol Biol Cell 2011; 23:480-91. [PMID: 22160596 PMCID: PMC3268726 DOI: 10.1091/mbc.e11-08-0732] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Deletion of the sla1(+) gene, which encodes a homologue of the human RNA-binding protein La in Schizosaccharomyces pombe, causes irregularities in tRNA processing, with altered distribution of pre-tRNA intermediates. We show, using mRNA profiling, that cells lacking sla1(+) have increased mRNAs from amino acid metabolism (AAM) genes and, furthermore, exhibit slow growth in Edinburgh minimal medium. A subset of these AAM genes is under control of the AP-1-like, stress-responsive transcription factors Atf1p and Pcr1p. Although S. pombe growth is resistant to rapamycin, sla1-Δ cells are sensitive, consistent with deficiency of leucine uptake, hypersensitivity to NH4, and genetic links to the target of rapamycin (TOR) pathway. Considering that perturbed intranuclear pre-tRNA metabolism and apparent deficiency in tRNA nuclear export in sla1-Δ cells may trigger the AAM response, we show that modest overexpression of S. pombe los1(+) (also known as Xpo-t), encoding the nuclear exportin for tRNA, suppresses the reduction in pre-tRNA levels, AAM gene up-regulation, and slow growth of sla1-Δ cells. The conclusion that emerges is that sla1(+) regulates AAM mRNA production in S. pombe through its effects on nuclear tRNA processing and probably nuclear export. Finally, the results are discussed in the context of stress response programs in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Vera Cherkasova
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
161
|
Abstract
Under conditions of limited nutrients, eukaryotic cells reprogram protein expression in a way that slows growth but enhances survival. Recent data implicate stress granules, discrete cytoplasmic foci into which untranslated mRNPs are assembled during stress, in this process. In the October 1, 2011, issue of Genes & Development, Damgaard and Lykke-Andersen (p. 2057-2068) provide mechanistic insights into the regulation of a specific subset of mRNAs bearing 5'-terminal oligopyrimidine tracts (5'TOPs) by the structurally related stress granule proteins TIA-1 and TIAR.
Collapse
Affiliation(s)
- Pavel Ivanov
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
162
|
Liu Y, Tan H, Tian H, Liang C, Chen S, Liu Q. Autoantigen La promotes efficient RNAi, antiviral response, and transposon silencing by facilitating multiple-turnover RISC catalysis. Mol Cell 2011; 44:502-8. [PMID: 22055194 PMCID: PMC3229097 DOI: 10.1016/j.molcel.2011.09.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 07/29/2011] [Accepted: 09/07/2011] [Indexed: 12/20/2022]
Abstract
The effector of RNA interference (RNAi) is the RNA-induced silencing complex (RISC). C3PO promotes the activation of RISC by degrading the Argonaute2 (Ago2)-nicked passenger strand of duplex siRNA. Active RISC is a multiple-turnover enzyme that uses the guide strand of siRNA to direct the Ago2-mediated sequence-specific cleavage of complementary mRNA. How this effector step of RNAi is regulated is currently unknown. Here, we used the human Ago2 minimal RISC system to purify Sjögren's syndrome antigen B (SSB)/autoantigen La as an activator of the RISC-mediated mRNA cleavage activity. Our reconstitution studies showed that La could promote multiple-turnover RISC catalysis by facilitating the release of cleaved mRNA from RISC. Moreover, we demonstrated that La was required for efficient RNAi, antiviral defense, and transposon silencing in vivo. Taken together, the findings of C3PO and La reveal a general concept that regulatory factors are required to remove Ago2-cleaved products to assemble or restore active RISC.
Collapse
Affiliation(s)
- Ying Liu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Huiling Tan
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Hui Tian
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Chunyang Liang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - She Chen
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China
| | - Qinghua Liu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
163
|
Sommer G, Rossa C, Chi AC, Neville BW, Heise T. Implication of RNA-binding protein La in proliferation, migration and invasion of lymph node-metastasized hypopharyngeal SCC cells. PLoS One 2011; 6:e25402. [PMID: 22016766 PMCID: PMC3189910 DOI: 10.1371/journal.pone.0025402] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 09/02/2011] [Indexed: 01/22/2023] Open
Abstract
The 5-year survival rate for oral cavity cancer is poorer than for breast, colon or prostate cancer, and has improved only slightly in the last three decades. Hence, new therapeutic strategies are urgently needed. Here we demonstrate by tissue micro array analysis for the first time that RNA-binding protein La is significantly overexpressed in oral squamous cell carcinoma (SCC). Within this study we therefore addressed the question whether siRNA-mediated depletion of the La protein may interfere with known tumor-promoting characteristics of head and neck SCC cells. Our studies demonstrate that the La protein promotes cell proliferation, migration and invasion of lymph node-metastasized hypopharyngeal SCC cells. We also reveal that La is required for the expression of β-catenin as well as matrix metalloproteinase type 2 (MMP-2) within these cells. Taken together these data suggest a so far unknown function of the RNA-binding protein La in promoting tumor progression of head and neck SCC.
Collapse
Affiliation(s)
- Gunhild Sommer
- Department of Biochemistry and Molecular Biology, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America.
| | | | | | | | | |
Collapse
|
164
|
Challa AA, Stefanovic B. A novel role of vimentin filaments: binding and stabilization of collagen mRNAs. Mol Cell Biol 2011; 31:3773-89. [PMID: 21746880 PMCID: PMC3165730 DOI: 10.1128/mcb.05263-11] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 07/04/2011] [Indexed: 12/17/2022] Open
Abstract
The stem-loop in the 5' untranslated region (UTR) of collagen α1(I) and α2(I) mRNAs (5'SL) is the key element regulating their stability and translation. Stabilization of collagen mRNAs is the predominant mechanism for high collagen expression in fibrosis. LARP6 binds the 5'SL of α1(I) and α2(I) mRNAs with high affinity. Here, we report that vimentin filaments associate with collagen mRNAs in a 5'SL- and LARP6-dependent manner and stabilize collagen mRNAs. LARP6 interacts with vimentin filaments through its La domain and colocalizes with the filaments in vivo. Knockdown of LARP6 by small interfering RNA (siRNA) or mutation of the 5'SL abrogates the interaction of collagen mRNAs with vimentin filaments. Vimentin knockout fibroblasts produce reduced amounts of type I collagen due to decreased stability of collagen α1(I) and α2(I) mRNAs. Disruption of vimentin filaments using a drug or by expression of dominant-negative desmin reduces type I collagen expression, primarily due to decreased stability of collagen mRNAs. RNA fluorescence in situ hybridization (FISH) experiments show that collagen α1(I) and α2(I) mRNAs are associated with vimentin filaments in vivo. Thus, vimentin filaments may play a role in the development of tissue fibrosis by stabilizing collagen mRNAs. This finding will serve as a rationale for targeting vimentin in the development of novel antifibrotic therapies.
Collapse
Affiliation(s)
- Azariyas A. Challa
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, Florida 32306
| | - Branko Stefanovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, Florida 32306
| |
Collapse
|
165
|
Inoue Y, Sato H, Fujita K, Tsukiyama-Kohara K, Yoneda M, Kai C. Selective translation of the measles virus nucleocapsid mRNA by la protein. Front Microbiol 2011; 2:173. [PMID: 22007186 PMCID: PMC3188812 DOI: 10.3389/fmicb.2011.00173] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 08/02/2011] [Indexed: 02/05/2023] Open
Abstract
Measles, caused by measles virus (MeV) infection, is the leading cause of death in children because of secondary infections attributable to MeV-induced immune suppression. Recently, we have shown that wild-type MeVs induce the suppression of protein synthesis in host cells (referred to as “shutoff”) and that viral mRNAs are preferentially translated under shutoff conditions in infected cells. To determine the mechanism behind the preferential translation of viral mRNA, we focused on the 5′ untranslated region (UTR) of nucleocapsid (N) mRNA. The La/SSB autoantigen (La) was found to specifically bind to an N-5′UTR probe. Recombinant La enhanced the translation of luciferase mRNA containing the N-5′UTR (N-fLuc), and RNA interference of La suppressed N-fLuc translation. Furthermore, recombinant MeV lacking the La-binding motif in the N-5′UTR displayed delayed viral protein synthesis and growth kinetics at an early phase of infection. These results suggest that La induced predominant translation of N mRNA via binding to its 5′UTR under shutoff conditions. This is the first report on a cellular factor that specifically regulates paramyxovirus mRNA translation.
Collapse
Affiliation(s)
- Yoshihisa Inoue
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
166
|
The midblastula transition defines the onset of Y RNA-dependent DNA replication in Xenopus laevis. Mol Cell Biol 2011; 31:3857-70. [PMID: 21791613 DOI: 10.1128/mcb.05411-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Noncoding Y RNAs are essential for the initiation of chromosomal DNA replication in mammalian cell extracts, but their role in this process during early vertebrate development is unknown. Here, we use antisense morpholino nucleotides (MOs) to investigate Y RNA function in Xenopus laevis and zebrafish embryos. We show that embryos in which Y RNA function is inhibited by MOs develop normally until the midblastula transition (MBT) but then fail to replicate their DNA and die before gastrulation. Consistent with this observation, Y RNA function is not required for DNA replication in Xenopus egg extracts but is required for replication in a post-MBT cell line. Y RNAs do not bind chromatin in karyomeres before MBT, but they associate with interphase nuclei after MBT in an origin recognition complex (ORC)-dependent manner. Y RNA-specific MOs inhibit the association of Y RNAs with ORC, Cdt1, and HMGA1a proteins, suggesting that these molecular associations are essential for Y RNA function in DNA replication. The MBT is thus a transition point between Y RNA-independent and Y RNA-dependent control of vertebrate DNA replication. Our data suggest that in vertebrates Y RNAs function as a developmentally regulated layer of control over the evolutionarily conserved eukaryotic DNA replication machinery.
Collapse
|
167
|
Fan L, Wang Z, Liu J, Guo W, Yan J, Huang Y. A survey of green plant tRNA 3'-end processing enzyme tRNase Zs, homologs of the candidate prostate cancer susceptibility protein ELAC2. BMC Evol Biol 2011; 11:219. [PMID: 21781332 PMCID: PMC3161902 DOI: 10.1186/1471-2148-11-219] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Accepted: 07/23/2011] [Indexed: 11/10/2022] Open
Abstract
Background tRNase Z removes the 3'-trailer sequences from precursor tRNAs, which is an essential step preceding the addition of the CCA sequence. tRNase Z exists in the short (tRNase ZS) and long (tRNase ZL) forms. Based on the sequence characteristics, they can be divided into two major types: bacterial-type tRNase ZS and eukaryotic-type tRNase ZL, and one minor type, Thermotoga maritima (TM)-type tRNase ZS. The number of tRNase Zs is highly variable, with the largest number being identified experimentally in the flowering plant Arabidopsis thaliana. It is unknown whether multiple tRNase Zs found in A. thaliana is common to the plant kingdom. Also unknown is the extent of sequence and structural conservation among tRNase Zs from the plant kingdom. Results We report the identification and analysis of candidate tRNase Zs in 27 fully sequenced genomes of green plants, the great majority of which are flowering plants. It appears that green plants contain multiple distinct tRNase Zs predicted to reside in different subcellular compartments. Furthermore, while the bacterial-type tRNase ZSs are present only in basal land plants and green algae, the TM-type tRNase ZSs are widespread in green plants. The protein sequences of the TM-type tRNase ZSs identified in green plants are similar to those of the bacterial-type tRNase ZSs but have distinct features, including the TM-type flexible arm, the variant catalytic HEAT and HST motifs, and a lack of the PxKxRN motif involved in CCA anti-determination (inhibition of tRNase Z activity by CCA), which prevents tRNase Z cleavage of mature tRNAs. Examination of flowering plant chloroplast tRNA genes reveals that many of these genes encode partial CCA sequences. Based on our results and previous studies, we predict that the plant TM-type tRNase ZSs may not recognize the CCA sequence as an anti-determinant. Conclusions Our findings substantially expand the current repertoire of the TM-type tRNase ZSs and hint at the possibility that these proteins may have been selected for their ability to process chloroplast pre-tRNAs with whole or partial CCA sequences. Our results also support the coevolution of tRNase Zs and tRNA 3'-trailer sequences in plants.
Collapse
Affiliation(s)
- Lijuan Fan
- Laboratory of Yeast Genetics and Molecular Biology, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | | | | | | | | | | |
Collapse
|
168
|
Verhagen APM, Pruijn GJM. Are the Ro RNP-associated Y RNAs concealing microRNAs? Y RNA-derived miRNAs may be involved in autoimmunity. Bioessays 2011; 33:674-82. [PMID: 21735459 DOI: 10.1002/bies.201100048] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 06/06/2011] [Accepted: 06/09/2011] [Indexed: 12/21/2022]
Abstract
Here we discuss the hypothesis that the RNA components of the Ro ribonucleoproteins (RNPs), the Y RNAs, can be processed into microRNAs (miRNAs). Although Ro RNPs, whose main protein components Ro60 and La are targeted by the immune system in several autoimmune diseases, were discovered many years ago, their function is still poorly understood. Indeed, recent data show that miRNA-sized small RNAs can be generated from Y RNAs. This hypothesis leads also to a model in which Ro60 acts as a modulator in the Y RNA-derived miRNA biogenesis pathway. The implications of these Y RNA-derived miRNAs, which may be specifically produced under pathological circumstances such as in autoimmunity or during viral infections, for the enigmatic function of Ro RNPs are discussed.
Collapse
Affiliation(s)
- Anja P M Verhagen
- Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | | |
Collapse
|
169
|
van Domselaar R, Bovenschen N. Cell death-independent functions of granzymes: hit viruses where it hurts. Rev Med Virol 2011; 21:301-14. [PMID: 21714121 DOI: 10.1002/rmv.697] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 05/03/2011] [Accepted: 05/06/2011] [Indexed: 12/24/2022]
Abstract
Granule exocytosis by cytotoxic lymphocytes is the key mechanism of our immune response to eliminate virus-infected cells. These lytic granules contain the pore-forming protein perforin and a set of five serine proteases called granzymes (GrA, GrB, GrH, GrK, GrM) that display distinct substrate specificities. Granzymes have mostly been studied for their ability to induce cell death. However, viruses have evolved many inhibitors to effectively block apoptosis. Evidence is emerging that granzymes also use noncytotoxic strategies to inhibit viral replication and potential viral reactivation from latency. Granzymes directly cleave viral or host cell proteins that are required in the viral life cycle. Furthermore, granzymes induce a pro-inflammatory cytokine response to create an antiviral environment. In this review, we summarize and discuss these novel strategies by which the immune system counteracts viral infections, and we will address the potential therapeutic applications that could emerge from this intriguing mechanism.
Collapse
Affiliation(s)
- Robert van Domselaar
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | |
Collapse
|
170
|
Vashist S, Bhullar D, Vrati S. La protein can simultaneously bind to both 3'- and 5'-noncoding regions of Japanese encephalitis virus genome. DNA Cell Biol 2011; 30:339-46. [PMID: 21294637 DOI: 10.1089/dna.2010.1114] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Japanese encephalitis virus (JEV) genome is a single-stranded, positive-sense RNA with noncoding regions (NCRs) of 95 and 585 bases at its 5' and 3' ends, respectively. These may interact with viral or host proteins important for viral replication. We have previously shown that La protein binds the 3'-stem-loop (SL) structure of JEV 3'-NCR. Using electrophoretic mobility shift and ultraviolet crosslinking assays, we now show that La protein binds both 3'-SL and 5'-NCR of JEV. La protein binding to 5'-NCR RNA was stable under high salt condition (300 mM KCl) and the affinity of RNA protein interaction was high; the dissociation constant (K(d)) for La binding with 5'-NCR RNA was 8.8 nM, indicating the physiological relevance of the interaction. RNA toe-printing assays showed that La protein interacted with nucleotides located in the top loop of the predicted structure of 5'-NCR RNA. Using competitive binding studies and 5'-3' coprecipitation assay, we have demonstrated that La protein could simultaneously bind both JEV 3'- and 5'-NCRs. This may help circularize the viral genome for its efficient transcription and translation.
Collapse
Affiliation(s)
- Surender Vashist
- National Institute of Immunology, Aruna Asaf Ali Marg, JNU Complex, New Delhi, India.
| | | | | |
Collapse
|
171
|
Zhang AT, Langley AR, Christov CP, Kheir E, Shafee T, Gardiner TJ, Krude T. Dynamic interaction of Y RNAs with chromatin and initiation proteins during human DNA replication. J Cell Sci 2011; 124:2058-69. [PMID: 21610089 DOI: 10.1242/jcs.086561] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Non-coding Y RNAs are required for the initiation of chromosomal DNA replication in mammalian cells. It is unknown how they perform this function or if they associate with a nuclear structure during DNA replication. Here, we investigate the association of Y RNAs with chromatin and their interaction with replication proteins during DNA replication in a human cell-free system. Our results show that fluorescently labelled Y RNAs associate with unreplicated euchromatin in late G1 phase cell nuclei before the initiation of DNA replication. Following initiation, Y RNAs are displaced locally from nascent and replicated DNA present in replication foci. In intact human cells, a substantial fraction of endogenous Y RNAs are associated with G1 phase nuclei, but not with G2 phase nuclei. Y RNAs interact and colocalise with the origin recognition complex (ORC), the pre-replication complex (pre-RC) protein Cdt1, and other proteins implicated in the initiation of DNA replication. These data support a molecular 'catch and release' mechanism for Y RNA function during the initiation of chromosomal DNA replication, which is consistent with Y RNAs acting as replication licensing factors.
Collapse
Affiliation(s)
- Alice Tianbu Zhang
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB23EJ, UK
| | | | | | | | | | | | | |
Collapse
|
172
|
Michaud M, Cognat V, Duchêne AM, Maréchal-Drouard L. A global picture of tRNA genes in plant genomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:80-93. [PMID: 21443625 DOI: 10.1111/j.1365-313x.2011.04490.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Although transfer RNA (tRNA) has a fundamental role in cell life, little is known about tRNA gene organization and expression on a genome-wide scale in eukaryotes, particularly plants. Here, we analyse the content and distribution of tRNA genes in five flowering plants and one green alga. The tRNA gene content is homogenous in plants, and is mostly correlated with genome size. The number of tRNA pseudogenes and organellar-like tRNA genes present in nuclear genomes varies greatly from one plant species to another. These pseudogenes or organellar-like genes appear to be generated or inserted randomly during evolution. Interestingly, we identified a new family of tRNA-related short interspersed nuclear elements (SINEs) in the Populus trichocarpa nuclear genome. In higher plants, intron-containing tRNA genes are rare, and correspond to genes coding for tRNA(Tyr) and tRNA(Mete) . By contrast, in green algae, more than half of the tRNA genes contain an intron. This suggests divergent means of intron acquisition and the splicing process between green algae and land plants. Numerous tRNAs are co-transcribed in Chlamydomonas, but they are mostly transcribed as a single unit in flowering plants. The only exceptions are tRNA(Gly) -snoRNA and tRNA(Mete) -snoRNA cotranscripts in dicots and monocots, respectively. The internal or external motifs required for efficient transcription of tRNA genes by RNA polymerase III are well conserved among angiosperms. A brief analysis of the mitochondrial and plastidial tRNA gene populations is also provided.
Collapse
Affiliation(s)
- Morgane Michaud
- Institut de Biologie Moléculaire des Plantes, UPR 2357-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg Cedex, France
| | | | | | | |
Collapse
|
173
|
Garlapati S, Saraiya AA, Wang CC. A La autoantigen homologue is required for the internal ribosome entry site mediated translation of giardiavirus. PLoS One 2011; 6:e18263. [PMID: 21479239 PMCID: PMC3066225 DOI: 10.1371/journal.pone.0018263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 02/28/2011] [Indexed: 12/11/2022] Open
Abstract
Translation of Giardiavirus (GLV) mRNA is initiated at an internal ribosome entry site (IRES) in the viral transcript. The IRES localizes to a downstream portion of 5′ untranslated region (UTR) and a part of the early downstream coding region of the transcript. Recent studies indicated that the IRES does not require a pre-initiation complex to initiate translation but may directly recruit the small ribosome subunit with the help of a number of trans-activating protein factors. A La autoantigen homologue in the viral host Giardia lamblia, GlLa, was proposed as one of the potential trans-activating factors based on its specific binding to GLV-IRES in vitro. In this study, we further elucidated the functional role of GlLa in GLV-IRES mediated translation in Giardia by knocking down GlLa with antisense morpholino oligo, which resulted in a reduction of GLV-IRES activity by 40%. An over-expression of GlLa in Giardia moderately stimulated GLV-IRES activity by 20%. A yeast inhibitory RNA (IRNA), known to bind mammalian and yeast La autoantigen and inhibit Poliovirus and Hepatitis C virus IRES activities in vitro and in vivo, was also found to bind to GlLa protein in vitro and inhibited GLV-IRES function in vivo. The C-terminal domain of La autoantigen interferes with the dimerization of La and inhibits its function. An over-expression of the C-terminal domain (200–348aa) of GlLa in Giardia showed a dominant-negative effect on GLV-IRES activity, suggesting a potential inhibition of GlLa dimerization. HA tagged GlLa protein was detected mainly in the cytoplasm of Giardia, thus supporting a primary role of GlLa in translation initiation in Giardiavirus.
Collapse
Affiliation(s)
- Srinivas Garlapati
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Ashesh A. Saraiya
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Ching C. Wang
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
174
|
Steitz J, Borah S, Cazalla D, Fok V, Lytle R, Mitton-Fry R, Riley K, Samji T. Noncoding RNPs of viral origin. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a005165. [PMID: 20719877 DOI: 10.1101/cshperspect.a005165] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Like their host cells, many viruses produce noncoding (nc)RNAs. These show diversity with respect to time of expression during viral infection, length and structure, protein-binding partners and relative abundance compared with their host-cell counterparts. Viruses, with their limited genomic capacity, presumably evolve or acquire ncRNAs only if they selectively enhance the viral life cycle or assist the virus in combating the host's response to infection. Despite much effort, identifying the functions of viral ncRNAs has been extremely challenging. Recent technical advances and enhanced understanding of host-cell ncRNAs promise accelerated insights into the RNA warfare mounted by this fascinating class of RNPs.
Collapse
Affiliation(s)
- Joan Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536-0812, USA.
| | | | | | | | | | | | | | | |
Collapse
|
175
|
Ciganda M, Williams N. Eukaryotic 5S rRNA biogenesis. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:523-33. [PMID: 21957041 DOI: 10.1002/wrna.74] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ribosome is a large complex containing both protein and RNA which must be assembled in a precise manner to allow proper functioning in the critical role of protein synthesis. 5S rRNA is the smallest of the RNA components of the ribosome, and although it has been studied for decades, we still do not have a clear understanding of its function within the complex ribosome machine. It is the only RNA species that binds ribosomal proteins prior to its assembly into the ribosome. Its transport into the nucleolus requires this interaction. Here we present an overview of some of the key findings concerning the structure and function of 5S rRNA and how its association with specific proteins impacts its localization and function.
Collapse
Affiliation(s)
- Martin Ciganda
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, USA
| | | |
Collapse
|
176
|
The cellular protein La functions in enhancement of virus release through lipid rafts facilitated by murine leukemia virus glycosylated Gag. mBio 2011; 2:e00341-10. [PMID: 21343359 PMCID: PMC3042739 DOI: 10.1128/mbio.00341-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Murine leukemia viruses (MuLVs) encode two forms of Gag polyprotein: the precursor for the viral core proteins (Pr65gag for Moloney MuLV [M-MuLV]) and a longer glycosylated form (glyco-gag, or gPr80gag). gPr80gag is translated from the same unspliced viral RNA as Pr65gag, from an upstream in-frame CUG initiation codon. As a result, gPr80gag contains 88 unique N-terminal amino acids that include a signal peptide that conducts gPr80gag into the rough endoplasmic reticulum, where it is glycosylated, exported to the cell surface, and cleaved into two proteins of 55 and 40 kDa. The amino-terminal 55-kDa protein remains cell associated with the 88 unique amino acids exposed to the cytosol. We previously showed that gPr80gag facilitates efficient M-MuLV release through lipid rafts. In this report, we found that the unique N-terminal domain of gPr80gag is sufficient to facilitate enhanced M-MuLV particle release from transfected 293T cells. A search for cellular proteins involved in gPr80gag function led to cellular La protein. Overexpression of mouse or human La enhanced M-MuLV particle release in the absence of glyco-gag, and the released virus had a reduced buoyant density characteristic of increased cholesterol content. Moreover, small interfering RNA (siRNA) knockdown of human La abolished glyco-gag enhancement of M-MuLV release. These results implicate La as a cellular protein involved in M-MuLV glyco-gag function. We also found that overexpression of mouse or human La could enhance HIV-1 release in the absence of gPr80gag. Therefore, M-MuLV and HIV-1 may share a pathway for release through lipid rafts involving La. Retroviruses cause diseases such as leukemia and AIDS. An important aspect of viral replication is how viruses are released from infected cells. We previously found that a unique protein encoded by murine leukemia viruses (MuLVs), glyco-gag (or gPr80gag), enhances efficient virus release through cholesterol-rich membrane subdomains called lipid rafts. In this study, we found that the N-terminal domain of gPr80gag is sufficient to enhance viral release. A search for cellular proteins that participate in gPr80gag function led to cellular La protein. Overexpression of La phenocopied glyco-gag in enhancing M-MuLV release, and knockdown of La abolished glyco-gag function. M-MuLV glyco-gag also enhanced release of HIV-1, as did overexpression La in the absence of glyco-gag. Thus, M-MuLV and HIV-1 may share a cellular pathway for release through lipid rafts involving La. These results may also be relevant for other viruses that are released through lipid rafts.
Collapse
|
177
|
Iben JR, Epstein JA, Bayfield MA, Bruinsma MW, Hasson S, Bacikova D, Ahmad D, Rockwell D, Kittler ELW, Zapp ML, Maraia RJ. Comparative whole genome sequencing reveals phenotypic tRNA gene duplication in spontaneous Schizosaccharomyces pombe La mutants. Nucleic Acids Res 2011; 39:4728-42. [PMID: 21317186 PMCID: PMC3113579 DOI: 10.1093/nar/gkr066] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We used a genetic screen based on tRNA-mediated suppression (TMS) in a Schizosaccharomyces pombe La protein (Sla1p) mutant. Suppressor pre-tRNASerUCA-C47:6U with a debilitating substitution in its variable arm fails to produce tRNA in a sla1-rrm mutant deficient for RNA chaperone-like activity. The parent strain and spontaneous mutant were analyzed using Solexa sequencing. One synonymous single-nucleotide polymorphism (SNP), unrelated to the phenotype, was identified. Further sequence analyses found a duplication of the tRNASerUCA-C47:6U gene, which was shown to cause the phenotype. Ninety percent of 28 isolated mutants contain duplicated tRNASerUCA-C47:6U genes. The tRNA gene duplication led to a disproportionately large increase in tRNASerUCA-C47:6U levels in sla1-rrm but not sla1-null cells, consistent with non-specific low-affinity interactions contributing to the RNA chaperone-like activity of La, similar to other RNA chaperones. Our analysis also identified 24 SNPs between ours and S. pombe 972h- strain yFS101 that was recently sequenced using Solexa. By including mitochondrial (mt) DNA in our analysis, overall coverage increased from 52% to 96%. mtDNA from our strain and yFS101 shared 14 mtSNPs relative to a ‘reference’ mtDNA, providing the first identification of these S. pombe mtDNA discrepancies. Thus, strain-specific and spontaneous phenotypic mutations can be mapped in S. pombe by Solexa sequencing.
Collapse
Affiliation(s)
- James R Iben
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Chaves SR, Rosenblum JS. Efficient nuclear transport of structurally disturbed cargo: mutations in a cargo protein switch its cognate karyopherin. PLoS One 2011; 6:e16846. [PMID: 21347375 PMCID: PMC3036716 DOI: 10.1371/journal.pone.0016846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 01/16/2011] [Indexed: 11/18/2022] Open
Abstract
The Karyopherin (Kap) family of nuclear transport receptors enables trafficking of proteins to and from the nucleus in a precise, regulated manner. Individual members function in overlapping pathways, while simultaneously being very specific for their main cargoes. The details of this apparent contradiction and rules governing pathway preference remain to be further elucidated. S. cerevisiae Lhp1 is an abundant protein that functions as an RNA chaperone in a variety of biologically important processes. It localizes almost exclusively to the nucleus and is imported by Kap108. We show that mutation of 3 of the 275 residues in Lhp1 alters its import pathway to a Kap121-dependent process. This mutant does not retain wild-type function and is bound by several chaperones. We propose that Kap121 also acts as a chaperone, one that can act as a genetic buffer by transporting mutated proteins to the nucleus.
Collapse
Affiliation(s)
- Susana R Chaves
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal.
| | | |
Collapse
|
179
|
Sommer G, Dittmann J, Kuehnert J, Reumann K, Schwartz PE, Will H, Coulter BL, Smith MT, Heise T. The RNA-binding protein La contributes to cell proliferation and CCND1 expression. Oncogene 2011; 30:434-44. [PMID: 20856207 DOI: 10.1038/onc.2010.425] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 07/22/2010] [Accepted: 08/10/2010] [Indexed: 11/08/2022]
Abstract
The La protein is an essential RNA-binding protein implicated in different aspects of RNA metabolism. Herein, we report that small interfering (siRNA)-mediated La depletion reduces cell proliferation of different cell lines concomitant with a reduction in cyclin D1 (CCND1) protein. To exclude off-target effects we demonstrate that exogenous La expression in La-depleted cells restores cell proliferation and CCND1 protein levels. In contrast, proliferation of immortalized CCND1 knockout cells is not affected by La depletion, supporting a functional coherence between La, CCND1 and proliferation. Furthermore, we document by reversible in vivo crosslinking and ribonucleoprotein (RNP) immunoprecipitation an association of the La protein with CCND1 messengerRNA and that CCND1 internal ribosome entry site (IRES)-dependent translation is modulated by La protein level within the cell. In addition, we show elevated La protein expression in cervical cancer tissue and its correlation with aberrant CCND1 protein levels in cervical tumor tissue lysates. In conclusion, this study establishes a role of La in cell proliferation and CCND1 expression and demonstrates for the first time an overexpression of the RNA-binding protein La in solid tumors.
Collapse
Affiliation(s)
- G Sommer
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Perrotti D, Harb JG. BCR-ABL1 kinase-dependent alteration of mRNA metabolism: potential alternatives for therapeutic intervention. Leuk Lymphoma 2011; 52 Suppl 1:30-44. [PMID: 21299458 DOI: 10.3109/10428194.2010.546914] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The use of first- and second-generation tyrosine kinase inhibitors (TKIs) significantly improves prognosis for patients with early chronic phase chronic myeloid leukemia (CML) and efficiently counteracts leukemia in most patients with CML bearing a disease characterized by the expression of BCR-ABL1 mutants. However, the so-called 'tinib' TKIs (e.g. imatinib, nilotinib, dasatinib, and bosutinib) are both ineffective in patients who undergo blastic transformation and unable to eradicate CML at the stem cell level. This raises a few important questions. Is BCR-ABL1 expression and/or activity essential for blastic transformation? Is blastic transformation the result of genetic or epigenetic events that occur at the stem cell level which only become apparent in the granulocyte-macrophage progenitor (GMP) cell pool, or does it arise directly at the GMP level? As altered mRNA metabolism contributes to the phenotype of blast crisis CML progenitors (decreased translation of tumor suppressor genes and transcription factors essential for terminal differentiation and increased translation of anti-apoptotic genes), one attractive concept is to restore levels of these essential molecules to their normal levels. In this review, we discuss the mechanisms by which mRNA processing, translation, and degradation are deregulated in BCR-ABL1 myeloid blast crisis CML progenitors, and present encouraging results from studies with pharmacologic inhibitors which support their inclusion in the clinic.
Collapse
Affiliation(s)
- Danilo Perrotti
- Human Cancer Genetics Program, Depatment of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center and Center for RNA Biology, The Ohio State University, Columbus, OH 43210-2207, USA.
| | | |
Collapse
|
181
|
An intrinsically disordered C terminus allows the La protein to assist the biogenesis of diverse noncoding RNA precursors. Proc Natl Acad Sci U S A 2011; 108:1308-13. [PMID: 21212361 DOI: 10.1073/pnas.1017085108] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The La protein binds the 3' ends of many newly synthesized noncoding RNAs, protecting these RNAs from nucleases and influencing folding, maturation, and ribonucleoprotein assembly. Although 3' end binding by La involves the N-terminal La domain and adjacent RNA recognition motif (RRM), the mechanisms by which La stabilizes diverse RNAs from nucleases and assists subsequent events in their biogenesis are unknown. Here we report that a conserved feature of La proteins, an intrinsically disordered C terminus, is required for the accumulation of certain noncoding RNA precursors and for the role of the Saccharomyces cerevisiae La protein Lhp1p in assisting formation of correctly folded pre-tRNA anticodon stems in vivo. Footprinting experiments using purified Lhp1p reveal that the C terminus is required to protect a pre-tRNA anticodon stem from chemical modification. Although the C terminus of Lhp1p is hypersensitive to proteases in vitro, it becomes protease-resistant upon binding pre-tRNAs, U6 RNA, or pre-5S rRNA. Thus, while high affinity binding to 3' ends requires the La domain and RRM, a conformationally flexible C terminus allows La to interact productively with a diversity of noncoding RNA precursors. We propose that intrinsically disordered domains adjacent to well characterized RNA-binding motifs in other promiscuous RNA-binding proteins may similarly contribute to the ability of these proteins to influence the cellular fates of multiple distinct RNA targets.
Collapse
|
182
|
Pawlik A, Alibert O, Baulande S, Vaigot P, Tronik-Le Roux D. Transcriptome characterization uncovers the molecular response of hematopoietic cells to ionizing radiation. Radiat Res 2011; 175:66-82. [PMID: 21175349 DOI: 10.1667/rr2282.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ionizing radiation causes rapid and acute suppression of hematopoietic cells that manifests as the hematopoietic syndrome. However, the roles of molecules and regulatory pathways induced in vivo by irradiation of different hematopoietic cells have not been completely elaborated. Using a strategy that combined different microarray bioinformatics tools, we identified gene networks that might be involved in the early response of hematopoietic cells radiation response in vivo. The grouping of similar time-ordered gene expression profiles using quality threshold clustering enabled the successful identification of common binding sites for 56 transcription factors that may be involved in the regulation of the early radiation response. We also identified novel genes that are responsive to the transformation-related protein 53; all of these genes were biologically validated in p53-transgenic null mice. Extension of the analysis to purified bone marrow cells including highly purified long-term hematopoietic stem cells, combined with functional classification, provided evidence of gene expression modifications that were largely unknown in this primitive population. Our methodology proved particularly useful for analyzing the transcriptional regulation of the complex ionizing radiation response of hematopoietic cells. Our data may help to elucidate the molecular mechanisms involved in tissue radiosensitivity and to identify potential targets for improving treatment in radiation emergencies.
Collapse
|
183
|
Proteins with RNA chaperone activity: a world of diverse proteins with a common task-impediment of RNA misfolding. Biochem Res Int 2010; 2011:532908. [PMID: 21234377 PMCID: PMC3017892 DOI: 10.1155/2011/532908] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 11/12/2010] [Accepted: 11/19/2010] [Indexed: 11/18/2022] Open
Abstract
Proteins with RNA chaperone activity are ubiquitous proteins that play important roles in cellular mechanisms. They prevent RNA from misfolding by loosening misfolded structures without ATP consumption. RNA chaperone activity is studied in vitro and in vivo using oligonucleotide- or ribozyme-based assays. Due to their functional as well as structural diversity, a common chaperoning mechanism or universal motif has not yet been identified. A growing database of proteins with RNA chaperone activity has been established based on evaluation of chaperone activity via the described assays. Although the exact mechanism is not yet understood, it is more and more believed that disordered regions within proteins play an important role. This possible mechanism and which proteins were found to possess RNA chaperone activity are discussed here.
Collapse
|
184
|
Pei Y, Hancock PJ, Zhang H, Bartz R, Cherrin C, Innocent N, Pomerantz CJ, Seitzer J, Koser ML, Abrams MT, Xu Y, Kuklin NA, Burke PA, Sachs AB, Sepp-Lorenzino L, Barnett SF. Quantitative evaluation of siRNA delivery in vivo. RNA (NEW YORK, N.Y.) 2010; 16:2553-63. [PMID: 20940339 PMCID: PMC2995415 DOI: 10.1261/rna.2255810] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 08/30/2010] [Indexed: 05/22/2023]
Abstract
Effective small interfering RNA (siRNA)-mediated therapeutics require the siRNA to be delivered into the cellular RNA-induced silencing complex (RISC). Quantitative information of this essential delivery step is currently inferred from the efficacy of gene silencing and siRNA uptake in the tissue. Here we report an approach to directly quantify siRNA in the RISC in rodents and monkey. This is achieved by specific immunoprecipitation of the RISC from tissue lysates and quantification of small RNAs in the immunoprecipitates by stem-loop PCR. The method, expected to be independent of delivery vehicle and target, is label-free, and the throughput is acceptable for preclinical animal studies. We characterized a lipid-formulated siRNA by integrating these approaches and obtained a quantitative perspective on siRNA tissue accumulation, RISC loading, and gene silencing. The described methodologies have utility for the study of silencing mechanism, the development of siRNA therapeutics, and clinical trial design.
Collapse
Affiliation(s)
- Yi Pei
- Department of RNA Therapeutics, Merck Research Laboratories, West Point, Pennsylvania 19486, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Abstract
Assembly of ribonucleoprotein complexes is a facilitated quality-controlled process that typically includes modification to the RNA component from precursor to mature form. The SRP (signal recognition particle) is a cytosolic ribonucleoprotein that catalyses protein targeting to the endoplasmic reticulum. Assembly of SRP is largely nucleolar, and most of its protein components are required to generate a stable complex. A pre-SRP is exported from the nucleus to the cytoplasm where the final protein, Srp54p, is incorporated. Although this outline of the SRP assembly pathway has been determined, factors that facilitate this and/or function in quality control of the RNA are poorly understood. In the present paper, the SRP assembly pathway is summarized, and evidence for the involvement of both the Rex1p and nuclear exosome nucleases and the TRAMP (Trf4-Air2-Mtr4p polyadenylation) adenylase in quality control of SRP RNA is discussed. The RNA component of SRP is transcribed by RNA polymerase III, and both La, which binds all newly transcribed RNAs generated by this enzyme, and the nuclear Lsm complex are implicated in SRP RNA metabolism.
Collapse
|
186
|
B-cell epitopes of the intracellular autoantigens Ro/SSA and La/SSB: Tools to study the regulation of the autoimmune response. J Autoimmun 2010; 35:256-64. [DOI: 10.1016/j.jaut.2010.06.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
187
|
Abstract
BACKGROUND Primary Sjogren's syndrome (pSS) is characterized by the presence of autoantibodies targeting mainly the Ro/La ribonucleoprotein complex. It is now appreciated that the production of autoantibodies is an antigen-driven immune response. DESIGN In this review, candidate mechanisms for autoantigen presentation and perpetuation of the autoimmune response within the autoimmune tissue lesion of pSS are discussed. RESULTS Several studies have shown that the epithelial cell in labial salivary glands of patients with Sjogren's syndrome is activated, bearing characteristics of an antigen-presenting cell, as suggested by inappropriate expression of class II HLA and co-stimulatory molecules. Other studies have confirmed that in salivary glands, there is an increased autoantigen presentation via apoptotic blebs and bodies, exosomes and heat shock protein-mediated cross-priming. There is also an increased expression of interferon (IFN)-induced genes, such as the autoantigen Ro52, which provide negative feedback regulation in inflammation. Ro60 and La autoantigens also appear to play a major role in the local autoimmune response in Sjogren's syndrome. In this regard, La and Ro60 the messenger RNA (mRNA) expression is upregulated in the affected salivary glands with different isoforms of La autoantigen mRNA to be expressed in patients with pSS. At the protein level, La/SSB in pSS salivary glands is found to be post-translationally modified. CONCLUSIONS Autoantigen alterations in a microenvironment of local inflammation with increased in situ apoptosis, Toll-like receptor (TLR) signalling and antigen presentation may drive the autoimmune response and local autoantibody production in pSS.
Collapse
Affiliation(s)
- John G Routsias
- Department of Pathophysiology, School of Medicine, University of Athens, Greece
| | | |
Collapse
|
188
|
Langley AR, Chambers H, Christov CP, Krude T. Ribonucleoprotein particles containing non-coding Y RNAs, Ro60, La and nucleolin are not required for Y RNA function in DNA replication. PLoS One 2010; 5:e13673. [PMID: 21060685 PMCID: PMC2965120 DOI: 10.1371/journal.pone.0013673] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 10/06/2010] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Ro ribonucleoprotein particles (Ro RNPs) consist of a non-coding Y RNA bound by Ro60, La and possibly other proteins. The physiological function of Ro RNPs is controversial as divergent functions have been reported for its different constituents. We have recently shown that Y RNAs are essential for the initiation of mammalian chromosomal DNA replication, whereas Ro RNPs are implicated in RNA stability and RNA quality control. Therefore, we investigate here the functional consequences of RNP formation between Ro60, La and nucleolin proteins with hY RNAs for human chromosomal DNA replication. METHODOLOGY/PRINCIPAL FINDINGS We first immunoprecipitated Ro60, La and nucleolin together with associated hY RNAs from HeLa cytosolic cell extract, and analysed the protein and RNA compositions of these precipitated RNPs by Western blotting and quantitative RT-PCR. We found that Y RNAs exist in several RNP complexes. One RNP comprises Ro60, La and hY RNA, and a different RNP comprises nucleolin and hY RNA. In addition about 50% of the Y RNAs in the extract are present outside of these two RNPs. Next, we immunodepleted these RNP complexes from the cytosolic extract and tested the ability of the depleted extracts to reconstitute DNA replication in a human cell-free system. We found that depletion of these RNP complexes from the cytosolic extract does not inhibit DNA replication in vitro. Finally, we tested if an excess of recombinant pure Ro or La protein inhibits Y RNA-dependent DNA replication in this cell-free system. We found that Ro60 and La proteins do not inhibit DNA replication in vitro. CONCLUSIONS/SIGNIFICANCE We conclude that RNPs containing hY RNAs and Ro60, La or nucleolin are not required for the function of hY RNAs in chromosomal DNA replication in a human cell-free system, which can be mediated by Y RNAs outside of these RNPs. These data suggest that Y RNAs can support different cellular functions depending on associated proteins.
Collapse
Affiliation(s)
| | - Helen Chambers
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | | | - Torsten Krude
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
189
|
Wilkinson KA, Nakamura Y, Henley JM. Targets and consequences of protein SUMOylation in neurons. BRAIN RESEARCH REVIEWS 2010; 64:195-212. [PMID: 20382182 PMCID: PMC3310160 DOI: 10.1016/j.brainresrev.2010.04.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 03/24/2010] [Accepted: 04/01/2010] [Indexed: 11/26/2022]
Abstract
The post-translational modification of proteins is critical for the spatial and temporal regulation of signalling cascades. This is especially important in the CNS where the processes affecting differentiation, growth, targeting and communication between neurones are highly complex and very tightly regulated. In recent years it has emerged that modification of proteins by members of the SUMO (small ubiquitin-related modifier) family of proteins play key roles in neuronal function. SUMOylation involves the covalent conjugation of a member of the SUMO family to lysine residues in target proteins. Multiple nuclear and perinuclear SUMOylation targets have been reported to be involved in nuclear organisation and transcriptional regulation. In addition, a growing number of extranuclear SUMO substrates have been identified that can have important acute effects on neuronal function. The SUMOylation of both intra- and extranuclear proteins have been implicated in a diverse array of processes that have far-reaching implications for neuronal function and pathophysiology. Here we review the current understanding of the targets and consequences of protein SUMOylation in the brain and examine its established and potential involvement in a wide range of neurological and neurodegenerative diseases.
Collapse
Affiliation(s)
- Kevin A. Wilkinson
- Medical Research Council Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Yasuko Nakamura
- Medical Research Council Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Jeremy M. Henley
- Medical Research Council Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| |
Collapse
|
190
|
Abstract
Nuclear ribonuclease (RNase) P is a ubiquitous essential ribonucleoprotein complex, one of only two known RNA-based enzymes found in all three domains of life. The RNA component is the catalytic moiety of RNases P across all phylogenetic domains; it contains a well-conserved core, whereas peripheral structural elements are diverse. RNA components of eukaryotic RNases P tend to be less complex than their bacterial counterparts, a simplification that is accompanied by a dramatic reduction of their catalytic ability in the absence of protein. The size and complexity of the protein moieties increase dramatically from bacterial to archaeal to eukaryotic enzymes, apparently reflecting the delegation of some structural functions from RNA to proteins and, perhaps, in response to the increased complexity of the cellular environment in the more evolutionarily advanced organisms; the reasons for the increased dependence on proteins are not clear. We review current information on RNase P and the closely related universal eukaryotic enzyme RNase MRP, focusing on their functions and structural organization.
Collapse
Affiliation(s)
- Olga Esakova
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
191
|
Hamill S, Wolin SL, Reinisch KM. Structure and function of the polymerase core of TRAMP, a RNA surveillance complex. Proc Natl Acad Sci U S A 2010; 107:15045-50. [PMID: 20696927 PMCID: PMC2930566 DOI: 10.1073/pnas.1003505107] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Trf4p/Air2p/Mtr4p polyadenylation (TRAMP) complex recognizes aberrant RNAs in Saccharomyces cerevisiae and targets them for degradation. A TRAMP subcomplex consisting of a noncanonical poly(A) RNA polymerase in the Pol ss superfamily of nucleotidyl transferases, Trf4p, and a zinc knuckle protein, Air2p, mediates initial substrate recognition. Trf4p and related eukaryotic poly(A) and poly(U) polymerases differ from other characterized enzymes in the Pol ss superfamily both in sequence and in the lack of recognizable nucleic acid binding motifs. Here we report, at 2.7-A resolution, the structure of Trf4p in complex with a fragment of Air2p comprising two zinc knuckle motifs. Trf4p consists of a catalytic and central domain similar in fold to those of other noncanonical Pol beta RNA polymerases, and the two zinc knuckle motifs of Air2p interact with the Trf4p central domain. The interaction surface on Trf4p is highly conserved across eukaryotes, providing evidence that the Trf4p/Air2p complex is conserved in higher eukaryotes as well as in yeast and that the TRAMP complex may also function in RNA surveillance in higher eukaryotes. We show that Air2p, and in particular sequences encompassing a zinc knuckle motif near its N terminus, modulate Trf4p activity, and we present data supporting a role for this zinc knuckle in RNA binding. Finally, we show that the RNA 3' end plays a role in substrate recognition.
Collapse
Affiliation(s)
| | - Sandra L. Wolin
- Departments of Cell Biology, and
- Molecular Biophysics and Biochemistry, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | | |
Collapse
|
192
|
Schäffler K, Schulz K, Hirmer A, Wiesner J, Grimm M, Sickmann A, Fischer U. A stimulatory role for the La-related protein 4B in translation. RNA (NEW YORK, N.Y.) 2010; 16:1488-99. [PMID: 20573744 PMCID: PMC2905749 DOI: 10.1261/rna.2146910] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
La-related proteins (LARPs) belong to an evolutionarily conserved family of factors with predicted roles in RNA metabolism. Here, we have analyzed the cellular interactions and function of LARP4B, a thus far uncharacterized member of the LARP family. We show that LARP4B is a cytosolic protein that accumulates upon arsenite treatment in cellular stress granules. Biochemical experiments further uncovered an interaction of LARP4B with the cytosolic poly(A) binding protein 1 (PABPC1) and the receptor for activated C Kinase (RACK1), a component of the 40S ribosomal subunit. Under physiological conditions, LARP4B co-sedimented with polysomes in cellular extracts, suggesting a role in translation. In agreement with this notion, overexpression of LARP4B stimulated protein synthesis, whereas knockdown of the factor by RNA interference impaired translation of a large number of cellular mRNAs. In sum, we identified LARP4B as a stimulatory factor of translation. We speculate that LARP4B exerts its function by bridging mRNA factors of the 3' end with initiating ribosomes.
Collapse
Affiliation(s)
- Katrin Schäffler
- Department of Biochemistry, Theodor Boveri-Institute, University of Wuerzburg, Wuerzburg D-97074, Germany
| | | | | | | | | | | | | |
Collapse
|
193
|
Zanin E, Pacquelet A, Scheckel C, Ciosk R, Gotta M. LARP-1 promotes oogenesis by repressing fem-3 in the C. elegans germline. J Cell Sci 2010; 123:2717-24. [PMID: 20663921 DOI: 10.1242/jcs.066761] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
LA-related protein 1 (LARP-1) belongs to an RNA-binding protein family containing a LA motif. Here, we identify LARP-1 as a regulator of sex determination. In C. elegans hermaphrodites, a complex regulatory network regulates the switch from sperm to oocyte production. We find that simultaneous depletion of larp-1 and the Nanos homologue nos-3 results in germline masculinization. This phenotype is accompanied by a strong reduction of the levels of TRA-1, a GLI-family transcription factor that promotes oogenesis. TRA-1 levels are regulated by CBC(FEM-1), a ubiquitin ligase consisting of the FEM proteins, FEM-1, FEM-2 and FEM-3 and the cullin CUL-2. We show that both the masculinization phenotype and the reduction of TRA-1 levels observed in nos-3;larp-1 mutants require fem-3 activity, suggesting that nos-3 and larp-1 regulate the sperm-oocyte switch by inhibiting the fem genes. Consistently, fem-3 mRNA levels are increased in larp-1 mutants. By contrast, levels of fem-3 mRNA are not affected in nos-3 mutants. Therefore, our data indicate that LARP-1 and NOS-3 promote oogenesis by regulating fem-3 expression through distinct mechanisms.
Collapse
Affiliation(s)
- Esther Zanin
- ETH Zurich, Institute of Biochemistry, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
194
|
Cai L, Fritz D, Stefanovic L, Stefanovic B. Nonmuscle myosin-dependent synthesis of type I collagen. J Mol Biol 2010; 401:564-78. [PMID: 20603131 DOI: 10.1016/j.jmb.2010.06.057] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 06/09/2010] [Accepted: 06/25/2010] [Indexed: 01/15/2023]
Abstract
Type I collagen, synthesized in all tissues as the heterotrimer of two alpha1(I) polypeptides and one alpha2(I) polypeptide, is the most abundant protein in the human body. Here we show that intact nonmuscle myosin filaments are required for the synthesis of heterotrimeric type I collagen. Conserved 5' stem-loop in collagen alpha1(I) and alpha2(I) mRNAs binds the RNA-binding protein LARP6. LARP6 interacts with nonmuscle myosin through its C-terminal domain and associates collagen mRNAs with the filaments. Dissociation of nonmuscle myosin filaments results in secretion of collagen alpha1(I) homotrimer, diminished intracellular colocalization of collagen alpha1(I) and alpha2(I) polypeptides (required for folding of the heterotrimer), and their increased intracellular degradation. Inhibition of the motor function of myosin has similar collagen-specific effects, while disruption of actin filaments has a general effect on protein secretion. Nonmuscle myosin copurifies with polysomes, and there is a subset of polysomes involved in myosin-dependent translation of collagen mRNAs. These results indicate that association of collagen mRNAs with nonmuscle myosin filaments is necessary to coordinately synthesize collagen alpha1(I) and alpha2(I) polypeptides. We postulate that LARP6/myosin-dependent mechanism regulates the synthesis of heterotrimeric type I collagen by coordinating the translation of collagen mRNAs.
Collapse
Affiliation(s)
- Le Cai
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA
| | | | | | | |
Collapse
|
195
|
Röther S, Burkert C, Brünger KM, Mayer A, Kieser A, Strässer K. Nucleocytoplasmic shuttling of the La motif-containing protein Sro9 might link its nuclear and cytoplasmic functions. RNA (NEW YORK, N.Y.) 2010; 16:1393-1401. [PMID: 20494970 PMCID: PMC2885688 DOI: 10.1261/rna.2089110] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 04/01/2010] [Indexed: 05/29/2023]
Abstract
Diverse steps in gene expression are tightly coupled. Curiously, the La-motif-containing protein Sro9 has been shown to play a role in transcription and translation. Here, we show that Sro9 interacts with nuclear and cytoplasmic protein complexes involved in gene expression. In addition, Sro9 shuttles between nucleus and cytoplasm and is exported from the nucleus in an mRNA export-dependent manner. Importantly, Sro9 is recruited to transcribed genes. However, whole genome expression analysis shows that loss of Sro9 function does not greatly change the level of specific transcripts indicating that Sro9 does not markedly affect their synthesis and/or stability. Taken together, Sro9 might bind to the mRNP already during transcription and accompany the mature mRNP to the cytoplasm where it modulates translation of the mRNA.
Collapse
Affiliation(s)
- Susanne Röther
- Department of Biochemistry, Ludwig-Maximilians-University Munich, Gene Center and Center for Integrated Protein Science Munich, 81377 Munich, Germany
| | | | | | | | | | | |
Collapse
|
196
|
Liao JY, Ma LM, Guo YH, Zhang YC, Zhou H, Shao P, Chen YQ, Qu LH. Deep sequencing of human nuclear and cytoplasmic small RNAs reveals an unexpectedly complex subcellular distribution of miRNAs and tRNA 3' trailers. PLoS One 2010; 5:e10563. [PMID: 20498841 PMCID: PMC2871053 DOI: 10.1371/journal.pone.0010563] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 04/19/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are approximately 22-nt small non-coding regulatory RNAs that have generally been considered to regulate gene expression at the post-transcriptional level in the cytoplasm. However, recent studies have reported that some miRNAs localize to and function in the nucleus. METHODOLOGY/PRINCIPAL FINDINGS To determine the number of miRNAs localized to the nucleus, we systematically investigated the subcellular distribution of small RNAs (sRNAs) by independent deep sequencing sequenced of the nuclear and cytoplasmic pools of 18- to 30-nucleotide sRNAs from human cells. We identified 339 nuclear and 324 cytoplasmic known miRNAs, 300 of which overlap, suggesting that the majority of miRNAs are imported into the nucleus. With the exception of a few miRNAs evidently enriched in the nuclear pool, such as the mir-29b, the ratio of miRNA abundances in the nuclear fraction versus in the cytoplasmic fraction vary to some extent. Moreover, our results revealed that a large number of tRNA 3' trailers are exported from the nucleus and accumulate in the cytoplasm. These tRNA 3' trailers accumulate in a variety of cell types, implying that the biogenesis of tRNA 3' trailers is conserved and that they have a potential functional role in vertebrate cells. CONCLUSION/SIGNIFICANCE Our results provide the first comprehensive view of the subcellular distribution of diverse sRNAs and new insights into the roles of miRNAs and tRNA 3' trailers in the cell.
Collapse
Affiliation(s)
- Jian-You Liao
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Li-Ming Ma
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yan-Hua Guo
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yu-Chan Zhang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hui Zhou
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Peng Shao
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yue-Qin Chen
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Liang-Hu Qu
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, Sun Yat-sen University, Guangzhou, People's Republic of China
- * E-mail:
| |
Collapse
|
197
|
Andrade F. Non-cytotoxic antiviral activities of granzymes in the context of the immune antiviral state. Immunol Rev 2010; 235:128-46. [DOI: 10.1111/j.0105-2896.2010.00909.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
198
|
Keech CL, Pang KC, McCluskey J, Chen W. Direct antigen presentation by DC shapes the functional CD8(+) T-cell repertoire against the nuclear self-antigen La-SSB. Eur J Immunol 2010; 40:330-8. [PMID: 19950171 DOI: 10.1002/eji.200939522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Controversy still surrounds the importance of cross-presentation versus endogenous or direct presentation of MHC-I restricted Ag in CD8(+) T-cell (T(CD8+)) immunity. It is even less clear what relative role these pathways play in shaping the T-cell repertoire specific for ubiquitous self-antigens, especially in cases where both Ag presentation pathways could potentially be involved. Here we provide evidence that a T(CD8+) repertoire specific for a determinant from the nuclear autoantigen La-SSB is largely shaped by direct presentation. In this system, mouse T(CD8+) reactive to a xenogeneic human La (hLa(51-58)) K(b) peptide did not recognize directly presented peptide on either spleen cells from hLa-Tg mice or hLa transfected syngeneic cells. Interestingly, the same T(CD8+) were activated by in vivo challenge with allogeneic APC expressing either the Tg hLa or loaded with intact recombinant hLa protein, indicating functional cross-presentation of the hLa(51-58). However, in irradiated bone marrow chimeric mice, DC expressing Tg hLa, but not WT DC that matured in hLa-Tg mice, constitutively presented the hLa(51-58) to T(CD8+). These data demonstrate that although both the direct- and cross-presentation pathways are potentially operative in revealing hLa(51-58) to T(CD8+), the T(CD8+) repertoire to this determinant is shaped quantitatively according to the efficiency of Ag presentation.
Collapse
Affiliation(s)
- Catherine L Keech
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
199
|
Cai L, Fritz D, Stefanovic L, Stefanovic B. Binding of LARP6 to the conserved 5' stem-loop regulates translation of mRNAs encoding type I collagen. J Mol Biol 2010; 395:309-26. [PMID: 19917293 PMCID: PMC2826804 DOI: 10.1016/j.jmb.2009.11.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 11/05/2009] [Accepted: 11/09/2009] [Indexed: 10/20/2022]
Abstract
Type I collagen is the most abundant protein in the human body, produced by folding of two alpha1(I) polypeptides and one alpha2(I) polypeptide into the triple helix. A conserved stem-loop structure is found in the 5' untranslated region of collagen mRNAs, encompassing the translation start codon. We cloned La ribonucleoprotein domain family member 6 (LARP6) as the protein that binds the collagen 5' stem-loop in a sequence-specific manner. LARP6 has a distinctive bipartite RNA binding domain not found in other members of the La superfamily. LARP6 interacts with the two single-stranded regions of the 5' stem-loop. The K(d) for binding of LARP6 to the 5' stem-loop is 1.4 nM. LARP6 binds the 5' stem-loop in both the nucleus and the cytoplasm. In the cytoplasm, LARP6 does not associate with polysomes; however, overexpression of LARP6 blocks ribosomal loading on collagen mRNAs. Knocking down LARP6 by small interfering RNA also decreased polysomal loading of collagen mRNAs, suggesting that it regulates translation. Collagen protein is synthesized at discrete regions of the endoplasmic reticulum. Using collagen-GFP (green fluorescent protein) reporter protein, we could reproduce this focal pattern of synthesis, but only when the reporter was encoded by mRNA with the 5' stem-loop and in the presence of LARP6. When the reporter was encoded by mRNA without the 5' stem-loop, or in the absence of LARP6, it accumulated diffusely throughout the endoplasmic reticulum. This indicates that LARP6 activity is needed for focal synthesis of collagen polypeptides. We postulate that the LARP6-dependent mechanism increases local concentration of collagen polypeptides for more efficient folding of the collagen heterotrimer.
Collapse
Affiliation(s)
- Le Cai
- Department of Biomedical Sciences, College of Medicine, Tallahassee, FL 32306, USA
| | | | | | | |
Collapse
|
200
|
Samanta M, Takada K. Modulation of innate immunity system by Epstein-Barr virus-encoded non-coding RNA and oncogenesis. Cancer Sci 2010; 101:29-35. [PMID: 19886912 PMCID: PMC11159826 DOI: 10.1111/j.1349-7006.2009.01377.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Epstein-Barr virus (EBV)-encoded small RNAs (EBERs) are polyA-, non-coding RNAs that are expressed abundantly in all forms of cells latently infected with EBV. EBERs (EBER1 and EBER2) contribute to the clonal proliferation of EBV-negative Burkitt's lymphoma (BL) cells in soft agar, tumorigenicity in SCID mice, up-regulation of the bcl-2 oncoprotein, resistance to apoptosis, and maintenance of malignant phenotypes in BL cells. EBERs induce the expression of interleukin (IL)-10 in BL cells, insulin-like growth factor 1 (IGF-I) in gastric and nasopharyngeal carcinoma cells, IL-9 in T cells, and IL-6 in lymphoblastoid cell lines. Additionally, each of these cytokines acts as an autocrine growth factor. In BL cells, EBERs bind the double-stranded RNA-activated protein kinase PKR, inhibit its phosphorylation, and thereby prevent IFN-alpha-mediated apoptosis. In epithelial cells, EBERs confer resistance to Fas-mediated apoptosis by blocking PKR activity. EBERs form complexes with PKR, ribosomal protein L22, lupus erythematosis-associated antigen (La), and retinoic acid-inducible gene I (RIG-I). In BL cells, EBERs activate RIG-I signaling and induce the expression of type-I IFNs and interferon stimulated genes (ISGs) through the activation of RIG-I substrates, nuclear factor-kappa B (NF-kappaB), and IFN regulatory factor 3 (IRF-3), and anti-inflamatory cytokine IL-10 through IRF-3 but not NF-kappaB signaling. EBERs also play critical roles in the growth transformation of B lymphocytes. Although EBER1 and EBER2 exhibit similarities in their primary (54%) and secondary structures, recent findings have shown that recombinant EBVs carrying only the EBER2 gene play a greater role in the growth transformation of B lymphocytes than EBVs carrying only the EBER1 gene. Thus, EBERs play multiple roles in various cell types, and we present a model that highlights the functions of EBERs in EBV-mediated oncogenesis in BL cells.
Collapse
Affiliation(s)
- Mrinal Samanta
- Department of Tumor Virology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|