151
|
Galván-Hernández A, Kobayashi N, Hernández-Cobos J, Antillón A, Nakabayashi S, Ortega-Blake I. Morphology and dynamics of domains in ergosterol or cholesterol containing membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183101. [DOI: 10.1016/j.bbamem.2019.183101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/02/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022]
|
152
|
Bakshi K, Mitra S, Sharma VK, Jayadev MSK, Sakai VG, Mukhopadhyay R, Gupta A, Ghosh SK. Imidazolium-based ionic liquids cause mammalian cell death due to modulated structures and dynamics of cellular membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183103. [DOI: 10.1016/j.bbamem.2019.183103] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/25/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022]
|
153
|
Mitra S, Das R, Singh A, Mukhopadhyay MK, Roy G, Ghosh SK. Surface Activities of a Lipid Analogue Room-Temperature Ionic Liquid and Its Effects on Phospholipid Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:328-339. [PMID: 31826620 DOI: 10.1021/acs.langmuir.9b02716] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
There are great efforts of synthesizing imidazolium-based ionic liquids (ILs) for developing new antibiotics as these molecules have shown strong antibacterial activities. Compared to a single-hydrocarbon-chained IL, the lipid analogues (LAs) with two chains are more effective. In the present study, the LA molecule MeIm(COOH)Me(Oleylamine)Iodide has been synthesized and its surface activities along with the effectiveness in restructuring of a model cellular membrane have been quantified. The molecule is found to be highly surface active as estimated from the area-pressure isotherm of a monolayer of the molecules formed at the air-water interface. The X-ray reflectivity (XRR) studies of a monolayer dip-coated on a hydrophilic substrate have shown the structural properties of the layer which resembles to those of unsaturated phospholipids. The LA molecules are observed to fluidize a phospholipid bilayer formed by the saturated lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). At a lower surface pressure, the lipid monolayer of DPPC has exhibited a thickening effect at a low concentration of added LA and a thinning effect at higher concentration. However, at a high surface pressure of the monolayer, the thickness is found to decrease monotonically. The in-plane pressure-dependent interaction of LA molecules with model cellular membrane and the corresponding perturbation in the structure and physical properties of the membrane may be linked to the strong lysing effect of these types of molecules.
Collapse
Affiliation(s)
| | | | - A Singh
- Surface Physics and Material Science Division , Saha Institute of Nuclear Physics , AF Block, Bidhannagar , Kolkata 700064 , India
| | - M K Mukhopadhyay
- Surface Physics and Material Science Division , Saha Institute of Nuclear Physics , AF Block, Bidhannagar , Kolkata 700064 , India
| | | | | |
Collapse
|
154
|
Zaremberg V, Ganesan S, Mahadeo M. Lipids and Membrane Microdomains: The Glycerolipid and Alkylphosphocholine Class of Cancer Chemotherapeutic Drugs. Handb Exp Pharmacol 2020; 259:261-288. [PMID: 31302758 DOI: 10.1007/164_2019_222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Synthetic antitumor lipids are metabolically stable lysophosphatidylcholine derivatives, encompassing a class of non-mutagenic drugs that selectively target cancerous cells. In this chapter we review the literature as relates to the clinical efficacy of these antitumor lipid drugs and how our understanding of their mode of action has evolved alongside key advances in our knowledge of membrane structure, organization, and function. First, the history of the development of this class of drugs is described, providing a summary of clinical outcomes of key members including edelfosine, miltefosine, perifosine, erufosine, and erucylphosphocholine. A detailed description of the biophysical properties of these drugs and specific drug-lipid interactions which may contribute to the selectivity of the antitumor lipids for cancer cells follows. An updated model on the mode of action of these lipid drugs as membrane disorganizing agents is presented. Membrane domain organization as opposed to targeting specific proteins on membranes is discussed. By altering membranes, these antitumor lipids inhibit many survival pathways while activating pro-apoptotic signals leading to cell demise.
Collapse
|
155
|
Li R, Muraoka T, Kinbara K. Thermo-driven self-assembly of a PEG-containing amphiphile in a bilayer membrane. RSC Adv 2020; 10:25758-25762. [PMID: 35518572 PMCID: PMC9055338 DOI: 10.1039/d0ra03920a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/01/2020] [Indexed: 11/23/2022] Open
Abstract
Self-assembly of lipid molecules in a plasma membrane, namely lipid raft formation, is involved in various dynamic functions of cells. Inspired by the raft formation observed in the cells, here we studied thermally induced self-assembly of a synthetic amphiphile, bola-AkDPA, in a bilayer membrane. The synthetic amphiphile consists of a hydrophobic unit including fluorescent aromatic and aliphatic components and hydrophilic tetraethylene glycol chains attached at both ends of the hydrophobic unit. In a polar solvent, bola-AkDPA formed aggregates to show excimer emission. In a lipid bilayer membrane, bola-AkDPA showed intensified excimer emission upon increase of its concentration or elevation of the temperature; bola-type amphiphiles containing oligoethylene glycol chains likely tend to form self-assemblies in a bilayer membrane triggered by thermal stimuli. A synthetic multi-block amphiphile containing oligoethylene glycol chains formed a self-assembly in a bilayer membrane triggered by thermal stimuli.![]()
Collapse
Affiliation(s)
- Rui Li
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Sendai
- Japan
| | - Takahiro Muraoka
- Department of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Kazushi Kinbara
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Sendai
- Japan
- Department of Life Science and Technology
| |
Collapse
|
156
|
|
157
|
Hossein A, Deserno M. Spontaneous Curvature, Differential Stress, and Bending Modulus of Asymmetric Lipid Membranes. Biophys J 2019; 118:624-642. [PMID: 31954503 DOI: 10.1016/j.bpj.2019.11.3398] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 12/24/2022] Open
Abstract
Lipid bilayers can exhibit asymmetric states, in which the physical characteristics of one leaflet differ from those of the other. This most visibly manifests in a different lipid composition, but it can also involve opposing lateral stresses in each leaflet that combine to an overall vanishing membrane tension. Here, we use theoretical modeling and coarse-grained simulation to explore the interplay between a compositional asymmetry and a nonvanishing differential stress. Minimizing the total elastic energy leads to a preferred spontaneous curvature that balances torques due to both bending moments and differential stress, with sometimes unexpected consequences. For instance, asymmetric flat bilayers, whose specific areas in each leaflet are matched to those of corresponding tensionless symmetric flat membranes, still exhibit a residual differential stress because the conditions of vanishing area strain and vanishing bending moment differ. We also measure the curvature rigidity of asymmetric bilayers and find that a sufficiently strong differential stress, but not compositional asymmetry alone, can increase the bending modulus. The likely cause is a stiffening of the compressed leaflet, which appears to be related to its gel transition but not identical with it. We finally show that the impact of cholesterol on differential stress depends on the relative strength of elastic and thermodynamic driving forces: if cholesterol solvates equally well in both leaflets, it will redistribute to cancel both leaflet tensions almost completely, but if its partitioning free energy prefers one leaflet over the other, the resulting distribution bias may even create differential stress. Because cells keep most of their lipid bilayers in an asymmetric nonequilibrium steady state, our findings suggest that biomembranes are elastically more complex than previously thought: besides a spontaneous curvature, they might also exhibit significant differential stress, which could strongly affect their curvature energetics.
Collapse
Affiliation(s)
- Amirali Hossein
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Markus Deserno
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania.
| |
Collapse
|
158
|
Dürre K, Bausch AR. Formation of phase separated vesicles by double layer cDICE. SOFT MATTER 2019; 15:9676-9681. [PMID: 31663090 DOI: 10.1039/c8sm02491j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recently, continuous droplet interface crossing encapsulation (cDICE) was developed, which allows fast and efficient production of giant unilamellar vesicles (GUVs) under high salt conditions, at low temperature and with low consumption of the encapsulated proteins. Unfortunately, cholesterol encapsulation within the lipid bilayer was not efficient for the cDICE protocol so far and thus the formation of phase separated vesicles was limited. Here we present a modified version of cDICE that allows incorporation of cholesterol into lipid bilayers and enables the reproducible formation of phase-separated vesicles. We show that cholesterol incorporation relies on the amount of mineral oil in the lipid-oil emulsions, which is essential for protein encapsulation inside GUVs by cDICE. The possibility of creating phase separated vesicles by cDICE will enable the study of the interdependence between phase separation and cytoskeletal proteins under confinement.
Collapse
Affiliation(s)
- Katharina Dürre
- Lehrstuhl für Zellbiophysik E27, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany.
| | | |
Collapse
|
159
|
Osella S, Knippenberg S. Laurdan as a Molecular Rotor in Biological Environments. ACS APPLIED BIO MATERIALS 2019; 2:5769-5778. [DOI: 10.1021/acsabm.9b00789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Silvio Osella
- Chemical and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Stefan Knippenberg
- RCPTM, Department of Physical Chemistry, Fac. Sciences, Palacký University, 771 46 Olomouc, Czech Republic
- Theoretical Physics, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
- Department of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, SE-10691 Stockholm, Sweden
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| |
Collapse
|
160
|
Azbazdar Y, Ozalp O, Sezgin E, Veerapathiran S, Duncan AL, Sansom MSP, Eggeling C, Wohland T, Karaca E, Ozhan G. More Favorable Palmitic Acid Over Palmitoleic Acid Modification of Wnt3 Ensures Its Localization and Activity in Plasma Membrane Domains. Front Cell Dev Biol 2019; 7:281. [PMID: 31803740 PMCID: PMC6873803 DOI: 10.3389/fcell.2019.00281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022] Open
Abstract
While the lateral organization of plasma membrane components has been shown to control binding of Wnt ligands to their receptors preferentially in the ordered membrane domains, the role of posttranslational lipid modification of Wnt on this selective binding is unknown. Here, we identify that the canonical Wnt is presumably acylated by palmitic acid, a saturated 16-carbon fatty acid, at a conserved serine residue. Acylation of Wnt3 is dispensable for its secretion and binding to Fz8 while it is essential for Wnt3's proper binding and domain-like diffusion in the ordered membrane domains. We further unravel that non-palmitoylated Wnt3 is unable to activate Wnt/β-catenin signaling either in zebrafish embryos or in mammalian cells. Based on these results, we propose that the lipidation of canonical Wnt, presumably by a saturated fatty acid, determines its competence in interacting with the receptors in the appropriate domains of the plasma membrane, ultimately keeping the signaling activity under control.
Collapse
Affiliation(s)
- Yagmur Azbazdar
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir, Turkey
| | - Ozgun Ozalp
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir, Turkey
| | - Erdinc Sezgin
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Sapthaswaran Veerapathiran
- Department of Biological Sciences and Center for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Anna L. Duncan
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Super-Resolution Microscopy, Institute for Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Jena, Germany
- Department of Biophysical Imaging, Leibniz Institute of Photonic Technology e.V., Jena, Germany
| | - Thorsten Wohland
- Department of Biological Sciences and Center for BioImaging Sciences, National University of Singapore, Singapore, Singapore
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Ezgi Karaca
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir, Turkey
| |
Collapse
|
161
|
The Effect of Transmembrane Protein Shape on Surrounding Lipid Domain Formation by Wetting. Biomolecules 2019; 9:biom9110729. [PMID: 31726783 PMCID: PMC6920788 DOI: 10.3390/biom9110729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 12/11/2022] Open
Abstract
Signal transduction through cellular membranes requires the highly specific and coordinated work of specialized proteins. Proper functioning of these proteins is provided by an interplay between them and the lipid environment. Liquid-ordered lipid domains are believed to be important players here, however, it is still unclear whether conditions for a phase separation required for lipid domain formation exist in cellular membranes. Moreover, membrane leaflets are compositionally asymmetric, that could be an obstacle for the formation of symmetric domains spanning the lipid bilayer. We theoretically show that the presence of protein in the membrane leads to the formation of a stable liquid-ordered lipid phase around it by the mechanism of protein wetting by lipids, even in the absence of conditions necessary for the global phase separation in the membrane. Moreover, we show that protein shape plays a crucial role in this process, and protein conformational rearrangement can lead to changes in the size and characteristics of surrounding lipid domains.
Collapse
|
162
|
Hoferer M, Bonfanti S, Taloni A, La Porta CAM, Zapperi S. Protein-driven lipid domain nucleation in biological membranes. Phys Rev E 2019; 100:042410. [PMID: 31770996 DOI: 10.1103/physreve.100.042410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Indexed: 06/10/2023]
Abstract
Lipid rafts are heterogeneous dynamic lipid domains of the cell membranes that are involved in several biological processes, such as protein and lipid specific transport and signaling. Our understanding of lipid raft formation is still limited due to the transient and elusive nature of these domains in vivo, in contrast with the stable phase-separated domains observed in artificial membranes. Inspired by experimental findings highlighting the relevance of transmembrane proteins for lipid rafts, we investigate lipid domain nucleation by coarse-grained molecular dynamics and Ising-model simulations. We find that the presence of a transmembrane protein can trigger lipid domain nucleation in a flat membrane from an otherwise mixed lipid phase. Furthermore, we study the role of the lipid domain in the diffusion of the protein showing that its mobility is hindered by the presence of the raft. The results of our coarse-grained molecular-dynamics and Ising-model simulations thus coherently support the important role played by transmembrane proteins in lipid domain formation and stability.
Collapse
Affiliation(s)
- Moritz Hoferer
- ETH Zurich, Zürichbergstrasse 18, 8092 Zurich, Switzerland
| | - Silvia Bonfanti
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Via Celoria 16, 20133 Milano, Italy
| | - Alessandro Taloni
- CNR - Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, via dei Taurini 19, 00185 Roma, Italy
| | - Caterina A M La Porta
- Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133 Milano, Italy
- CNR - Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Via Celoria 26, 20133 Milano, Italy
| | - Stefano Zapperi
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Via Celoria 16, 20133 Milano, Italy
- CNR - Consiglio Nazionale delle Ricerche, Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia, Via R. Cozzi 53, 20125 Milano, Italy
| |
Collapse
|
163
|
Thermoresponsive liquid crystalline polymer membranes that undergo phase transition at body temperature. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
164
|
Conrard L, Tyteca D. Regulation of Membrane Calcium Transport Proteins by the Surrounding Lipid Environment. Biomolecules 2019; 9:E513. [PMID: 31547139 PMCID: PMC6843150 DOI: 10.3390/biom9100513] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
Calcium ions (Ca2+) are major messengers in cell signaling, impacting nearly every aspect of cellular life. Those signals are generated within a wide spatial and temporal range through a large variety of Ca2+ channels, pumps, and exchangers. More and more evidences suggest that Ca2+ exchanges are regulated by their surrounding lipid environment. In this review, we point out the technical challenges that are currently being overcome and those that still need to be defeated to analyze the Ca2+ transport protein-lipid interactions. We then provide evidences for the modulation of Ca2+ transport proteins by lipids, including cholesterol, acidic phospholipids, sphingolipids, and their metabolites. We also integrate documented mechanisms involved in the regulation of Ca2+ transport proteins by the lipid environment. Those include: (i) Direct interaction inside the protein with non-annular lipids; (ii) close interaction with the first shell of annular lipids; (iii) regulation of membrane biophysical properties (e.g., membrane lipid packing, thickness, and curvature) directly around the protein through annular lipids; and (iv) gathering and downstream signaling of several proteins inside lipid domains. We finally discuss recent reports supporting the related alteration of Ca2+ and lipids in different pathophysiological events and the possibility to target lipids in Ca2+-related diseases.
Collapse
Affiliation(s)
- Louise Conrard
- CELL Unit, de Duve Institute and Université catholique de Louvain, UCL B1.75.05, avenue Hippocrate, 75, B-1200 Brussels, Belgium
| | - Donatienne Tyteca
- CELL Unit, de Duve Institute and Université catholique de Louvain, UCL B1.75.05, avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| |
Collapse
|
165
|
Iyer SS, Tripathy M, Srivastava A. Fluid Phase Coexistence in Biological Membrane: Insights from Local Nonaffine Deformation of Lipids. Biophys J 2019; 115:117-128. [PMID: 29972803 DOI: 10.1016/j.bpj.2018.05.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/10/2018] [Accepted: 05/15/2018] [Indexed: 01/09/2023] Open
Abstract
Lateral heterogeneities in biomembranes play a crucial role in various physiological functions of the cell. Such heterogeneities lead to demixing of lipid constituents and formation of distinct liquid domains in the membrane. We study lateral heterogeneities in terms of topological rearrangements of lipids to identify the liquid-liquid phase coexistence in model membranes. Using ideas from the physics of amorphous systems and glasses, we calculate the degree of nonaffine deformation associated with individual lipids to characterize the liquid-ordered (Lo) and liquid-disordered (Ld) regions in model lipid bilayers. We explore the usage of this method on all-atom and coarse-grained lipid bilayer trajectories. This method is helpful in defining the instantaneous Lo-Ld domain boundaries in complex multicomponent bilayer systems. The characterization is also used to highlight the effect of line-active molecules on the phase boundaries and domain mixing. Overall, we propose a framework to explore the molecular origin of spatial and dynamical heterogeneity in biomembrane systems, which can be exploited not only in computer simulations but also in experiments.
Collapse
Affiliation(s)
- Sahithya S Iyer
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, Bangalore, Karnataka, India
| | - Madhusmita Tripathy
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, Bangalore, Karnataka, India
| | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, Bangalore, Karnataka, India.
| |
Collapse
|
166
|
Farhat E, Turenne ED, Choi K, Weber JM. Hypoxia-induced remodelling of goldfish membranes. Comp Biochem Physiol B Biochem Mol Biol 2019; 237:110326. [PMID: 31465877 DOI: 10.1016/j.cbpb.2019.110326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/18/2022]
Abstract
Hypoxia-tolerant animals use metabolic suppression as an essential strategy to survive low oxygen. Ectotherms can alter membrane lipid composition in response to changes in environmental temperature, but it is currently unknown whether chronic hypoxia can also elicit membrane restructuring. The goal of this study was to investigate a possible physiological link between membrane remodelling and metabolic suppression in goldfish exposed to prolonged hypoxia (4 weeks at 10% air saturation). We have tested the hypothesis that chronic hypoxia would modulate membrane lipid composition in ways that are consistent with known mechanisms of ion pump inhibition. Because homeoviscous membrane restructuring could interfere with the response to hypoxia, measurements were made at 2 temperatures. Results show that hypoxic goldfish suppress metabolic rate by 74% (at 13 °C) and 63% (at 20 °C). This study is the first to reveal that cold-acclimated animals undergo extensive, tissue-specific restructuring of membrane lipids as they reach minimal metabolic rates. However, hypoxia does not affect membrane composition in fish acclimated to 20 °C. The strong membrane response of cold-acclimated fish involves increases in cholesterol abundance (in white muscle and gills) and in fatty acid saturation, mainly caused by a reduction in %22:6 (docosahexaenoic acid in gills and liver). Major ion pumps like Na+/K+-ATPase are known to be inhibited by cholesterol and activated by 22:6. Because ion pumping by membrane-bound ATPases accounts for a large fraction of basal cellular energy use, we propose that the membrane responses reported here could be a novel mechanism to promote metabolic suppression in cold-acclimated animals.
Collapse
Affiliation(s)
- Elie Farhat
- Biology Department, University of Ottawa, Ottawa, Ontario, Canada
| | - Eric D Turenne
- Biology Department, University of Ottawa, Ottawa, Ontario, Canada
| | - Kevin Choi
- Biology Department, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
167
|
Mužić T, Tounsi F, Madsen SB, Pollakowski D, Konrad M, Heimburg T. Melting transitions in biomembranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183026. [PMID: 31465764 DOI: 10.1016/j.bbamem.2019.07.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/26/2022]
Abstract
We investigated melting transitions in native biological membranes containing their membrane proteins. The membranes originated from E. coli, B. subtilis, lung surfactant and nerve tissue from the spinal cord of several mammals. For some preparations, we studied the pressure, pH and ionic strength dependence of the transition. For porcine spine, we compared the transition of the native membrane to that of the extracted lipids. All preparations displayed melting transitions of 10-20° below physiological or growth temperature, independent of the organism of origin and the respective cell type. We found that the position of the transitions in E. coli membranes depends on the growth temperature. We discuss these findings in the context of the thermodynamic theory of membrane fluctuations close to transition that predicts largely altered elastic constants, an increase in fluctuation lifetime and in membrane permeability. We also discuss how to distinguish lipid melting from protein unfolding transitions. Since the feature of a transition slightly below physiological temperature is conserved even when growth conditions change, we conclude that the transitions are likely to be of major biological importance for the survival and the function of the cell.
Collapse
Affiliation(s)
- Tea Mužić
- Membrane Biophysics Group, Niels Bohr Institute, University of Copenhagen, Denmark
| | - Fatma Tounsi
- Membrane Biophysics Group, Niels Bohr Institute, University of Copenhagen, Denmark
| | - Søren B Madsen
- Membrane Biophysics Group, Niels Bohr Institute, University of Copenhagen, Denmark
| | - Denis Pollakowski
- Membrane Biophysics Group, Niels Bohr Institute, University of Copenhagen, Denmark
| | - Manfred Konrad
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Thomas Heimburg
- Membrane Biophysics Group, Niels Bohr Institute, University of Copenhagen, Denmark.
| |
Collapse
|
168
|
Zeitler S, Ye L, Andreyeva A, Schumacher F, Monti J, Nürnberg B, Nowak G, Kleuser B, Reichel M, Fejtová A, Kornhuber J, Rhein C, Friedland K. Acid sphingomyelinase - a regulator of canonical transient receptor potential channel 6 (TRPC6) activity. J Neurochem 2019; 150:678-690. [PMID: 31310676 DOI: 10.1111/jnc.14823] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/28/2022]
Abstract
Recent investigations propose the acid sphingomyelinase (ASM)/ceramide system as a novel target for antidepressant action. ASM catalyzes the breakdown of the abundant membrane lipid sphingomyelin to the lipid messenger ceramide. This ASM-induced lipid modification induces a local shift in membrane properties, which influences receptor clustering and downstream signaling. Canonical transient receptor potential channels 6 (TRPC6) are non-selective cation channels located in the cell membrane that play an important role in dendritic growth, synaptic plasticity and cognition in the brain. They can be activated by hyperforin, an ingredient of the herbal remedy St. John's wort for treatment of depression disorders. Because of their role in the context of major depression, we investigated the crosstalk between the ASM/ceramide system and TRPC6 ion channels in a pheochromocytoma cell line 12 neuronal cell model (PC12 rat pheochromocytoma cell line). Ca2+ imaging experiments indicated that hyperforin-induced Ca2+ influx through TRPC6 channels is modulated by ASM activity. While antidepressants, known as functional inhibitors of ASM activity, reduced TRPC6-mediated Ca2+ influx, extracellular application of bacterial sphingomyelinase rebalanced TRPC6 activity in a concentration-related way. This effect was confirmed in whole-cell patch clamp electrophysiology recordings. Lipidomic analyses revealed a decrease in very long chain ceramide/sphingomyelin molar ratio after ASM inhibition, which was connected with changes in the abundance of TRPC6 channels in flotillin-1-positive lipid rafts as visualized by western blotting. Our data provide evidence that the ASM/ceramide system regulates TRPC6 channels likely by controlling their recruitment to specific lipid subdomains and thereby fine-tuning their physical properties.
Collapse
Affiliation(s)
- Stefanie Zeitler
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lian Ye
- Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Aksana Andreyeva
- Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fabian Schumacher
- Department of Toxicology, Faculty of Mathematics and Natural Science, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Department of Molecular Biology, University Clinic, University of Duisburg-Essen, Essen, Germany
| | - Juliana Monti
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bernd Nürnberg
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics and Interfaculty Center of Pharmacogenomics and Drug Research (ICePhA), Tübingen, Germany
| | - Gabriel Nowak
- Department of Pharmacobiology, Jagiellonian University Medical College, Kraków, Poland.,Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Burkhard Kleuser
- Department of Toxicology, Faculty of Mathematics and Natural Science, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Martin Reichel
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Fejtová
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Cosima Rhein
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kristina Friedland
- Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Institute for Pharmacy and Biochemistry, Pharmacology and Toxicology, Johannes-Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
169
|
Dogra N, Balaraman RP, Kohli P. Chemically Engineered Synthetic Lipid Vesicles for Sensing and Visualization of Protein-Bilayer Interactions. Bioconjug Chem 2019; 30:2136-2149. [PMID: 31314501 DOI: 10.1021/acs.bioconjchem.9b00366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
From pathogen intrusion to immune response, the cell membrane plays an important role in signal transduction. Such signals are important for cellular proliferation and survival. However, measurement of these subtle signals through the lipid membrane scaffold is challenging. We present a chromatic model membrane vesicle system engineered to covalently bind with lysine residues of protein molecules for investigation of cellular interactions and signaling. We discovered that different protein molecules induced differential spectroscopic signals, which is based on the chemical and physical properties of protein interacting at the vesicle surface. The observed chromatic response (CR) for bound protein molecules with higher molecular weight was much larger (∼5-15×) than those for low molecular weight proteins. Through mass spectrometry (MS), we found that only 6 out of 60 (10%) lysine groups present in bovine serum albumin (BSA) were accessible to the membrane of the vesicles. Finally, a "sphere-shell" model representing the protein-vesicle complex was used for evaluating the contribution of van der Waals interactions between proteins and vesicles. Our analysis points to contributions from van der Waals, hydrophobic, and electrostatic interactions toward observed CR signals resulting from molecular interactions at the vesicle membrane surface. Overall, this study provided a convenient, chromatic, semiquantitative method of detecting biomolecules and their interactions with model membranes at sub-nanomolar concentration.
Collapse
Affiliation(s)
- Navneet Dogra
- Department of Chemistry and Biochemistry , Southern Illinois University , Carbondale , Illinois 62901 , United States.,IBM T. J. Watson Research Center , Yorktown Heights , New York 10058 , United States.,Department of Genetics and Genomic Sciences , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Rajesh P Balaraman
- Department of Chemistry and Biochemistry , Southern Illinois University , Carbondale , Illinois 62901 , United States
| | - Punit Kohli
- Department of Chemistry and Biochemistry , Southern Illinois University , Carbondale , Illinois 62901 , United States
| |
Collapse
|
170
|
Kwon HJ, Park MI, Park SJ, Moon W, Kim SE, Kim JH, Choi YJ, Lee SK. Insulin Resistance Is Associated with Early Gastric Cancer: A Prospective Multicenter Case Control Study. Gut Liver 2019; 13:154-160. [PMID: 30400721 PMCID: PMC6430436 DOI: 10.5009/gnl17556] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 12/15/2022] Open
Abstract
Background/Aims Recently, increased body weight has been found to be associated with an increasing risk of several cancers, including gastric cancer. The true pathogenic role of hyperglycemia in the development of gastric cancer remains unclear as hyperglycemia and its associated conditions may work as carcinogenic factors. The goal of this study was to clarify the factors associated with early gastric cancer and evaluate a homeostasis model assessment of the insulin resistance (HOMA-IR) index, fasting glucose, and lipid profile as predictors of early gastric cancer. Methods A total of 63 patients with early gastric cancer between November 2012 and March 2013 were included. Preoperative serum lipid profile levels and serum fasting glucose were examined prospectively in patients with early gastric cancer. The same number of controls were evaluated and matched to the early gastric cancer group for age and gender. We performed multivariate logistic regression analysis to identify independent risk factors for early gastric cancer. Results Univariate analysis showed that risk for early gastric cancer was associated with diastolic blood pressure (BP), total cholesterol, fasting glucose, and HOMA-IR. In the multivariate-adjusted model, higher total cholesterol, fasting glucose, body mass index, and diastolic BP were strongly associated with an increased risk of early gastric cancer. Conclusions Hyperglycemia, a lower high-density lipoprotein cholesterol level, and a low HOMA-IR level appear to be associated with early gastric cancer risk.
Collapse
Affiliation(s)
- Hye Jung Kwon
- Division of Gastroenterology, Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| | - Moo In Park
- Division of Gastroenterology, Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| | - Seun Ja Park
- Division of Gastroenterology, Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| | - Won Moon
- Division of Gastroenterology, Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| | - Sung Eun Kim
- Division of Gastroenterology, Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| | - Jae Hyun Kim
- Division of Gastroenterology, Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| | - Youn Jung Choi
- Division of Gastroenterology, Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| | - Sang Kil Lee
- Division of Gastroenterology, Department of Internal Medicine, Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
171
|
Kotani N, Yamaguchi A, Ohnishi T, Kuwahara R, Nakano T, Nakano Y, Ida Y, Murakoshi T, Honke K. Proximity proteomics identifies cancer cell membrane cis-molecular complex as a potential cancer target. Cancer Sci 2019; 110:2607-2619. [PMID: 31228215 PMCID: PMC6676139 DOI: 10.1111/cas.14108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/10/2019] [Accepted: 06/15/2019] [Indexed: 12/22/2022] Open
Abstract
Cancer‐specific antigens expressed in the cell membrane have been used as targets for several molecular targeted strategies in the last 20 years with remarkable success. To develop more effective cancer treatments, novel targets and strategies for targeted therapies are needed. Here, we examined the cancer cell membrane‐resident “cis‐bimolecular complex” as a possible cancer target (cis‐bimolecular cancer target: BiCAT) using proximity proteomics, a technique that has attracted attention in the last 10 years. BiCAT were detected using a previously developed method termed the enzyme‐mediated activation of radical source (EMARS), to label the components proximal to a given cell membrane molecule. EMARS analysis identified some BiCAT, such as close homolog of L1 (CHL1), fibroblast growth factor 3 (FGFR3) and α2 integrin, which are commonly expressed in mouse primary lung cancer cells and human lung squamous cell carcinoma cells. Analysis of cancer specimens from 55 lung cancer patients revealed that CHL1 and α2 integrin were highly co–expressed in almost all cancer tissues compared with normal lung tissues. As an example of BiCAT application, in vitro simulation of effective drug combinations used for multiple drug treatment strategies was performed using reagents targeted to BiCAT molecules. The combination treatment based on BiCAT information moderately suppressed cancer cell proliferation compared with single administration, suggesting that the information about BiCAT in cancer cells is useful for the appropriate selection of the combination among molecular targeted reagents. Thus, BiCAT has the potential to contribute to several molecular targeted strategies in future.
Collapse
Affiliation(s)
- Norihiro Kotani
- Department of Biochemistry, Saitama Medical University, Saitama, Japan
| | - Arisa Yamaguchi
- Department of Biochemistry, Kochi University Medical School, Kochi, Japan
| | - Tomoko Ohnishi
- Department of Biochemistry, Kochi University Medical School, Kochi, Japan
| | - Ryusuke Kuwahara
- Quantum Wave Microscopy Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Takanari Nakano
- Department of Biochemistry, Saitama Medical University, Saitama, Japan
| | - Yuka Nakano
- Department of Biochemistry, Saitama Medical University, Saitama, Japan
| | - Yui Ida
- Department of Biochemistry, Saitama Medical University, Saitama, Japan
| | | | - Koichi Honke
- Department of Biochemistry, Kochi University Medical School, Kochi, Japan
| |
Collapse
|
172
|
Smith LK, Kuhn TB, Chen J, Bamburg JR. HIV Associated Neurodegenerative Disorders: A New Perspective on the Role of Lipid Rafts in Gp120-Mediated Neurotoxicity. Curr HIV Res 2019; 16:258-269. [PMID: 30280668 PMCID: PMC6398609 DOI: 10.2174/1570162x16666181003144740] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/17/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023]
Abstract
The implementation of combination antiretroviral therapy (cART) as the primary means of treatment for HIV infection has achieved a dramatic decline in deaths attributed to AIDS and the reduced incidence of severe forms of HIV-associated neurocognitive disorders (HAND) in infected individuals. Despite these advances, milder forms of HAND persist and prevalence of these forms of neurocognitive impairment are rising with the aging population of HIV infected individuals. HIV enters the CNS early in the pathophysiology establishing persistent infection in resident macrophages and glial cells. These infected cells, in turn, secrete neurotoxic viral proteins, inflammatory cytokines, and small metabolites thought to contribute to neurodegenerative processes. The viral envelope protein gp120 has been identified as a potent neurotoxin affecting neurodegeneration via indirect and direct mechanisms involving interactions with chemokine co-receptors CCR5 and CXCR4. This short review focuses on gp120 neurotropism and associated mechanisms of neurotoxicity linked to chemokine receptors CCR5 and CXCR4 with a new perspective on plasma membrane lipid rafts as an active participant in gp120-mediated neurodegeneration underlying HIV induced CNS pathology.
Collapse
Affiliation(s)
- Lisa K Smith
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Thomas B Kuhn
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Jack Chen
- Department of Biology and Wildlife, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - James R Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
173
|
Nair A, Chauhan P, Saha B, Kubatzky KF. Conceptual Evolution of Cell Signaling. Int J Mol Sci 2019; 20:E3292. [PMID: 31277491 PMCID: PMC6651758 DOI: 10.3390/ijms20133292] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/27/2022] Open
Abstract
During the last 100 years, cell signaling has evolved into a common mechanism for most physiological processes across systems. Although the majority of cell signaling principles were initially derived from hormonal studies, its exponential growth has been supported by interdisciplinary inputs, e.g., from physics, chemistry, mathematics, statistics, and computational fields. As a result, cell signaling has grown out of scope for any general review. Here, we review how the messages are transferred from the first messenger (the ligand) to the receptor, and then decoded with the help of cascades of second messengers (kinases, phosphatases, GTPases, ions, and small molecules such as cAMP, cGMP, diacylglycerol, etc.). The message is thus relayed from the membrane to the nucleus where gene expression ns, subsequent translations, and protein targeting to the cell membrane and other organelles are triggered. Although there are limited numbers of intracellular messengers, the specificity of the response profiles to the ligands is generated by the involvement of a combination of selected intracellular signaling intermediates. Other crucial parameters in cell signaling are its directionality and distribution of signaling strengths in different pathways that may crosstalk to adjust the amplitude and quality of the final effector output. Finally, we have reflected upon its possible developments during the coming years.
Collapse
Affiliation(s)
- Arathi Nair
- National Center for Cell Science (NCCS), Ganeshkhind, Pune 411007, India
| | - Prashant Chauhan
- National Center for Cell Science (NCCS), Ganeshkhind, Pune 411007, India
| | - Bhaskar Saha
- National Center for Cell Science (NCCS), Ganeshkhind, Pune 411007, India.
| | - Katharina F Kubatzky
- Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| |
Collapse
|
174
|
Lu C, Liu Z, Zhang E, He F, Ma Z, Wang H. MPLs-Pred: Predicting Membrane Protein-Ligand Binding Sites Using Hybrid Sequence-Based Features and Ligand-Specific Models. Int J Mol Sci 2019; 20:ijms20133120. [PMID: 31247932 PMCID: PMC6651575 DOI: 10.3390/ijms20133120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/23/2019] [Accepted: 06/23/2019] [Indexed: 02/07/2023] Open
Abstract
Membrane proteins (MPs) are involved in many essential biomolecule mechanisms as a pivotal factor in enabling the small molecule and signal transport between the two sides of the biological membrane; this is the reason that a large portion of modern medicinal drugs target MPs. Therefore, accurately identifying the membrane protein-ligand binding sites (MPLs) will significantly improve drug discovery. In this paper, we propose a sequence-based MPLs predictor called MPLs-Pred, where evolutionary profiles, topology structure, physicochemical properties, and primary sequence segment descriptors are combined as features applied to a random forest classifier, and an under-sampling scheme is used to enhance the classification capability with imbalanced samples. Additional ligand-specific models were taken into consideration in refining the prediction. The corresponding experimental results based on our method achieved an appreciable performance, with 0.63 MCC (Matthews correlation coefficient) as the overall prediction precision, and those values were 0.604, 0.7, and 0.692, respectively, for the three main types of ligands: drugs, metal ions, and biomacromolecules. MPLs-Pred is freely accessible at http://icdtools.nenu.edu.cn/.
Collapse
Affiliation(s)
- Chang Lu
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
- Institute of Computational Biology, Northeast Normal University, Changchun 130117, China
| | - Zhe Liu
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
- Institute of Computational Biology, Northeast Normal University, Changchun 130117, China
| | - Enju Zhang
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
- Institute of Computational Biology, Northeast Normal University, Changchun 130117, China
| | - Fei He
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China.
- Institute of Computational Biology, Northeast Normal University, Changchun 130117, China.
| | - Zhiqiang Ma
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China.
- Institute of Computational Biology, Northeast Normal University, Changchun 130117, China.
| | - Han Wang
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China.
- Institute of Computational Biology, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
175
|
Hanashima S, Murakami K, Yura M, Yano Y, Umegawa Y, Tsuchikawa H, Matsumori N, Seo S, Shinoda W, Murata M. Cholesterol-Induced Conformational Change in the Sphingomyelin Headgroup. Biophys J 2019; 117:307-318. [PMID: 31303249 DOI: 10.1016/j.bpj.2019.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 06/07/2019] [Accepted: 06/17/2019] [Indexed: 12/19/2022] Open
Abstract
Sphingomyelin (SM) and cholesterol (Cho) are the important lipids for the formation of biologically functional membrane domains, lipid rafts. However, the interaction between Cho and the headgroup of SM remains unclear. In this study, we performed solid-state NMR experiments to reveal the Cho effects on the headgroup conformation using 2H-labeled stearoyl-SM (SSM). Deuterated SSMs at the Cα, Cβ, and Cγ positions of a choline moiety were separately prepared and subjected to NMR measurements to determine the quadrupolar splitting of 2H signals in hydrated SSM unitary and SSM/Cho (1:1) bilayers. Using 2H NMR and 13C-31P REDOR data, the conformation and orientation of the choline moiety were deduced and compared with those derived from molecular dynamics simulations. In SSM unitary bilayers, three torsional angles in the phosphocholine moiety, P-O-Cα-Cβ, were found to be consecutive +gauche(g)/+g/+g or -g/-g/-g. The orientation and conformation of the SSM headgroup were consistent with the results of our molecular dynamics simulations and the previous results on phosphatidylcholines. The quadrupolar coupling at the α methylene group slightly increased in the presence of Cho, and those at the Cβ and Cγ decreased more significantly, thus suggesting that Cho reduced the gauche conformation at the Cα-Cβ torsion. The conformational ensemble in the presence of Cho may enhance the so-called umbrella effect of the SSM headgroup, resulting in the stabilization of Cho near the SM molecules by concealing the hydrophobic Cho core from interfacial water. We also examined the effect of the chiral centers at the sphingosine chain to the headgroup conformation by determining the enantiomeric excess between the diastereomeric +g/+g/+g and -g/-g/-g conformers using (S)-Cα-deuterated and (R)-Cα-deuterated SSMs. Their 2H NMR measurements showed that the chiral centers induced the slight diastereomeric excess in the SM headgroup conformation.
Collapse
Affiliation(s)
- Shinya Hanashima
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan.
| | - Kazuhiro Murakami
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Michihiro Yura
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Yo Yano
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Yuichi Umegawa
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan; ERATO Lipid Active Structure Project, Japan Science and Technology Agency, Graduate School of Science, Osaka University, Osaka, Japan
| | - Hiroshi Tsuchikawa
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan; Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka, Japan
| | - Sangjae Seo
- Department of Materials Chemistry, Nagoya University, Nagoya, Japan
| | - Wataru Shinoda
- Department of Materials Chemistry, Nagoya University, Nagoya, Japan
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan; ERATO Lipid Active Structure Project, Japan Science and Technology Agency, Graduate School of Science, Osaka University, Osaka, Japan.
| |
Collapse
|
176
|
Mostofian B, Zhuang T, Cheng X, Nickels JD. Branched-Chain Fatty Acid Content Modulates Structure, Fluidity, and Phase in Model Microbial Cell Membranes. J Phys Chem B 2019; 123:5814-5821. [DOI: 10.1021/acs.jpcb.9b04326] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Barmak Mostofian
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Tony Zhuang
- College of Medicine, University of Tennessee, Memphis, Tennessee 38163, United States
| | - Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jonathan D. Nickels
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
177
|
Głowacka P, Żakowska D, Naylor K, Niemcewicz M, Bielawska-Drózd A. Brucella - Virulence Factors, Pathogenesis and Treatment. Pol J Microbiol 2019; 67:151-161. [PMID: 30015453 PMCID: PMC7256693 DOI: 10.21307/pjm-2018-029] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2018] [Indexed: 12/27/2022] Open
Abstract
Brucellae are Gram-negative, small rods infecting mammals and capable of causing disease called brucellosis. The infection results in abortion and sterility in domestic animals (sheeps, pigs, rams etc). Especially dangerous for humans are: Brucella melitensis, Brucella suis, Brucella abortus, and Brucella canis that trigger unspecific symptoms (flu-like manifestation). Brucella rods are introduced via host cells, by inhalation, skin abrasions, ingestion or mucosal membranes. The most important feature of Brucella is the ability to survive and multiply within both phagocytic and non-phagocytic cells. Brucella does not produce classical virulence factors: exotoxin, cytolisins, exoenzymes, plasmids, fimbria, and drug resistant forms. Major virulence factors are: lipopolysaccharide (LPS), T4SS secretion system and BvrR/BvrS system, which allow interaction with host cell surface, formation of an early, late BCV (Brucella Containing Vacuole) and interaction with endoplasmic reticulum (ER) when the bacteria multiply. The treatment of brucellosis is based on two-drug therapy, the most common combinations of antibiotics are: doxycycline with rifampicin or fluoroquinolones with rifampicin. Currently, also other methods are used to disrupt Brucella intracellular replication (tauroursodeoxycholic acid or ginseng saponin fraction A).
Collapse
Affiliation(s)
- Patrycja Głowacka
- Biological Threats Identification and Countermeasure Center of the General Karol Kaczkowski Military Institute of Hygiene and Epidemiology,Puławy,Poland
| | - Dorota Żakowska
- Biological Threats Identification and Countermeasure Center of the General Karol Kaczkowski Military Institute of Hygiene and Epidemiology,Puławy,Poland
| | - Katarzyna Naylor
- Lublin Medical University, Department of Didactics and Medical Simulation,Lublin,Poland
| | - Marcin Niemcewicz
- Biological Threats Identification and Countermeasure Center of the General Karol Kaczkowski Military Institute of Hygiene and Epidemiology,Puławy,Poland
| | - Agata Bielawska-Drózd
- Biological Threats Identification and Countermeasure Center of the General Karol Kaczkowski Military Institute of Hygiene and Epidemiology,Puławy,Poland
| |
Collapse
|
178
|
Ge Y, Gao J, Jordan R, Naumann CA. Changes in Cholesterol Level Alter Integrin Sequestration in Raft-Mimicking Lipid Mixtures. Biophys J 2019; 114:158-167. [PMID: 29320683 DOI: 10.1016/j.bpj.2017.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 11/30/2022] Open
Abstract
The influence of cholesterol (CHOL) level on integrin sequestration in raft-mimicking lipid mixtures forming coexisting liquid-ordered (lo) and liquid-disordered (ld) lipid domains is investigated using complementary, single-molecule-sensitive, confocal detection methods. Systematic analysis of membrane protein distribution in such a model membrane environment demonstrates that variation of CHOL level has a profound influence on lo-ld sequestration of integrins, thereby exhibiting overall ld preference in the absence of ligands and lo affinity upon vitronectin addition. Accompanying photon-counting histogram analysis of integrins in the different model membrane mixtures shows that the observed changes of integrin sequestration in response to variations of membrane CHOL level are not associated with altering integrin oligomerization states. Instead, our experiments suggest that the strong CHOL dependence of integrin sequestration can be attributed to CHOL-mediated changes of lipid packing and bilayer thickness in coexisting lo and ld domains, highlighting the significance of a biophysical mechanism of CHOL-mediated regulation of integrin sequestration. We envision that this model membrane study may help clarify the influence of CHOL in integrin functionality in plasma membranes, thus providing further insight into the role of lipid heterogeneities in membrane protein distribution and function in a cellular membrane environment.
Collapse
Affiliation(s)
- Yifan Ge
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Jiayun Gao
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Rainer Jordan
- Makromolekulare Chemie, TU Dresden, Dresden, Germany
| | - Christoph A Naumann
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana; Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana.
| |
Collapse
|
179
|
Tabbasum VG, Cooper DMF. Structural and Functional Determinants of AC8 Trafficking, Targeting and Responsiveness in Lipid Raft Microdomains. J Membr Biol 2019; 252:159-172. [PMID: 30746562 PMCID: PMC6556161 DOI: 10.1007/s00232-019-00060-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/21/2019] [Indexed: 01/01/2023]
Abstract
The fidelity of cAMP in controlling numerous cellular functions rests crucially on the precise organization of cAMP microdomains that are sustained by the scaffolding properties of adenylyl cyclase. Earlier studies suggested that AC8 enriches in lipid rafts where it interacts with cytoskeletal elements. However, these are not stable structures and little is known about the dynamics of AC8 secretion and its interactions. The present study addresses the role of the cytoskeleton in maintaining the AC8 microenvironment, particularly in the context of the trafficking route of AC8 and its interaction with caveolin1. Here, biochemical and live-cell imaging approaches expose a complex, dynamic interaction between AC8 and caveolin1 that affects AC8 processing, targeting and responsiveness in plasma membrane lipid rafts. Site-directed mutagenesis and pharmacological approaches reveal that AC8 is processed with complex N-glycans and associates with lipid rafts en route to the plasma membrane. A dynamic picture emerges of the trafficking and interactions of AC8 while travelling to the plasma membrane, which are key to the organization of the AC8 microdomain.
Collapse
Affiliation(s)
- Valentina G Tabbasum
- Department of Pharmacology, University of Cambridge, Tennis Court Rd., Cambridge, CB2 1PD, UK
| | - Dermot M F Cooper
- Department of Pharmacology, University of Cambridge, Tennis Court Rd., Cambridge, CB2 1PD, UK.
| |
Collapse
|
180
|
Cyclodextrin-membrane interaction in drug delivery and membrane structure maintenance. Int J Pharm 2019; 564:59-76. [DOI: 10.1016/j.ijpharm.2019.03.063] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 01/14/2023]
|
181
|
The Effect of Anticoagulants, Temperature, and Time on the Human Plasma Metabolome and Lipidome from Healthy Donors as Determined by Liquid Chromatography-Mass Spectrometry. Biomolecules 2019; 9:biom9050200. [PMID: 31126114 PMCID: PMC6571950 DOI: 10.3390/biom9050200] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/14/2019] [Accepted: 05/21/2019] [Indexed: 12/27/2022] Open
Abstract
Liquid-chromatography mass spectrometry is commonly used to identify and quantify metabolites from biological samples to gain insight into human physiology and pathology. Metabolites and their abundance in biological samples are labile and sensitive to variations in collection conditions, handling and processing. Variations in sample handling could influence metabolite levels in ways not related to biology, ultimately leading to the misinterpretation of results. For example, anticoagulants and preservatives modulate enzyme activity and metabolite oxidization. Temperature may alter both enzymatic and non-enzymatic chemistry. The potential for variation induced by collection conditions is particularly important when samples are collected in remote locations without immediate access to specimen processing. Data are needed regarding the variation introduced by clinical sample collection processes to avoid introducing artifact biases. In this study, we used metabolomics and lipidomics approaches paired with univariate and multivariate statistical analyses to assess the effects of anticoagulant, temperature, and time on healthy human plasma samples collected to provide guidelines on sample collection, handling, and processing for vaccinology. Principal component analyses demonstrated clustering by sample collection procedure and that anticoagulant type had the greatest effect on sample metabolite variation. Lipids such as glycerophospholipids, acylcarnitines, sphingolipids, diacylglycerols, triacylglycerols, and cholesteryl esters are significantly affected by anticoagulant type as are amino acids such as aspartate, histidine, and glutamine. Most plasma metabolites and lipids were unaffected by storage time and temperature. Based on this study, we recommend samples be collected using a single anticoagulant (preferably EDTA) with sample processing at <24 h at 4 °C.
Collapse
|
182
|
Zhang T, Wang Q, Wang Y, Wang J, Su Y, Wang F, Wang G. AIBP and APOA-I synergistically inhibit intestinal tumor growth and metastasis by promoting cholesterol efflux. J Transl Med 2019; 17:161. [PMID: 31101050 PMCID: PMC6524272 DOI: 10.1186/s12967-019-1910-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/07/2019] [Indexed: 12/24/2022] Open
Abstract
Background The roles played by cholesterol in cancer development and progression represent a popular field in the cancer community. High cholesterol levels are positively correlated with the risk of various types of cancer. APOA-I binding protein (AIBP) promotes the reverse cholesterol transport pathway (RCT) in cooperation with Apolipoprotein A-I (APOA-I) or high-density lipoprotein cholesterol. However, the combined effect of AIBP and APOA-I on intestinal tumor cells is still unclear. Methods Immunohistochemistry, western blot and qPCR were performed to investigate the expression of AIBP and APOA-I in intestinal tumor tissues and cell lines. The anti-tumor activity of AIBP and APOA-I was evaluated by overexpression or recombinant protein treatment. Cholesterol efflux and localization of lipid raft-related proteins were analyzed by a cholesterol efflux assay and lipid raft fraction assay, respectively. Results Here, we reported that both AIBP expression and APOA-I expression were associated with the degree of malignancy in intestinal tumors. Co-overexpression of AIBP and APOA-I more potently inhibited colon cancer cell-mediated tumor growth and metastasis compared to overexpression of each protein individually. Additionally, the recombinant fusion proteins of AIBP and APOA-I exhibited a significant therapeutic effect on tumor growth in Apcmin/+ mice as an inherited intestinal tumor model. The synergistic effect of the two proteins inhibited colon cancer cell migration, invasion and tumor-induced angiogenesis by promoting cholesterol efflux, reducing the membrane raft content, and eventually disrupting the proper localization of migration- and invasion-related proteins on the membrane raft. Moreover, cyclosporine A, a cholesterol efflux inhibitor, rescued the inhibitory effect induced by the combination of AIBP and APOA-I. Conclusions These results indicate that the combination of APOA-I and AIBP has an obvious anticancer effect on colorectal cancer by promoting cholesterol efflux. Electronic supplementary material The online version of this article (10.1186/s12967-019-1910-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.,Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, China
| | - Qilong Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Yeqi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Junping Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, China
| | - Yongping Su
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, China
| | - Fengchao Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| |
Collapse
|
183
|
Heuninck J, Perpiñá Viciano C, Işbilir A, Caspar B, Capoferri D, Briddon SJ, Durroux T, Hill SJ, Lohse MJ, Milligan G, Pin JP, Hoffmann C. Context-Dependent Signaling of CXC Chemokine Receptor 4 and Atypical Chemokine Receptor 3. Mol Pharmacol 2019; 96:778-793. [PMID: 31092552 DOI: 10.1124/mol.118.115477] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/21/2019] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are regulated by complex molecular mechanisms, both in physiologic and pathologic conditions, and their signaling can be intricate. Many factors influence their signaling behavior, including the type of ligand that activates the GPCR, the presence of interacting partners, the kinetics involved, or their location. The two CXC-type chemokine receptors, CXC chemokine receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3), both members of the GPCR superfamily, are important and established therapeutic targets in relation to cancer, human immunodeficiency virus infection, and inflammatory diseases. Therefore, it is crucial to understand how the signaling of these receptors works to be able to specifically target them. In this review, we discuss how the signaling pathways activated by CXCR4 and ACKR3 can vary in different situations. G protein signaling of CXCR4 depends on the cellular context, and discrepancies exist depending on the cell lines used. ACKR3, as an atypical chemokine receptor, is generally reported to not activate G proteins but can broaden its signaling spectrum upon heteromerization with other receptors, such as CXCR4, endothelial growth factor receptor, or the α 1-adrenergic receptor (α 1-AR). Also, CXCR4 forms heteromers with CC chemokine receptor (CCR) 2, CCR5, the Na+/H+ exchanger regulatory factor 1, CXCR3, α 1-AR, and the opioid receptors, which results in differential signaling from that of the monomeric subunits. In addition, CXCR4 is present on membrane rafts but can go into the nucleus during cancer progression, probably acquiring different signaling properties. In this review, we also provide an overview of the currently known critical amino acids involved in CXCR4 and ACKR3 signaling.
Collapse
Affiliation(s)
- Joyce Heuninck
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Cristina Perpiñá Viciano
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Ali Işbilir
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Birgit Caspar
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Davide Capoferri
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Stephen J Briddon
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Thierry Durroux
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Stephen J Hill
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Martin J Lohse
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Graeme Milligan
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Jean-Philippe Pin
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| | - Carsten Hoffmann
- IGF, CNRS, Inserm, Université de Montpellier, Montpellier, France (J.H., T.D., J.-P.P.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.V., A.I., M.J.L., C.H.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (D.C., G.M.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (B.C., S.J.B., S.J.H.); and Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., S.J.B., S.J.H.)
| |
Collapse
|
184
|
Genova J, Chamati H, Slavkova Z, Petrov M. Differential Scanning Calorimetric Study of the Effect of Cholesterol on the Thermotropic Phase Behavior of the Phospholipid 1‐Stearoyl‐2‐Oleoyl‐sn‐Glycero‐3‐Phosphocholine. J SURFACTANTS DETERG 2019. [DOI: 10.1002/jsde.12289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Julia Genova
- Acad. G. Nadjakov Institute of Solid State PhysicsBulgarian Academy of Sciences Sofia Bulgaria
| | - Hassan Chamati
- Acad. G. Nadjakov Institute of Solid State PhysicsBulgarian Academy of Sciences Sofia Bulgaria
| | - Zdravka Slavkova
- Acad. G. Nadjakov Institute of Solid State PhysicsBulgarian Academy of Sciences Sofia Bulgaria
| | - Minko Petrov
- Acad. G. Nadjakov Institute of Solid State PhysicsBulgarian Academy of Sciences Sofia Bulgaria
| |
Collapse
|
185
|
Marinko J, Huang H, Penn WD, Capra JA, Schlebach JP, Sanders CR. Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chem Rev 2019; 119:5537-5606. [PMID: 30608666 PMCID: PMC6506414 DOI: 10.1021/acs.chemrev.8b00532] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 12/13/2022]
Abstract
Advances over the past 25 years have revealed much about how the structural properties of membranes and associated proteins are linked to the thermodynamics and kinetics of membrane protein (MP) folding. At the same time biochemical progress has outlined how cellular proteostasis networks mediate MP folding and manage misfolding in the cell. When combined with results from genomic sequencing, these studies have established paradigms for how MP folding and misfolding are linked to the molecular etiologies of a variety of diseases. This emerging framework has paved the way for the development of a new class of small molecule "pharmacological chaperones" that bind to and stabilize misfolded MP variants, some of which are now in clinical use. In this review, we comprehensively outline current perspectives on the folding and misfolding of integral MPs as well as the mechanisms of cellular MP quality control. Based on these perspectives, we highlight new opportunities for innovations that bridge our molecular understanding of the energetics of MP folding with the nuanced complexity of biological systems. Given the many linkages between MP misfolding and human disease, we also examine some of the exciting opportunities to leverage these advances to address emerging challenges in the development of therapeutics and precision medicine.
Collapse
Affiliation(s)
- Justin
T. Marinko
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Hui Huang
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Wesley D. Penn
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - John A. Capra
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37245, United States
| | - Jonathan P. Schlebach
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Charles R. Sanders
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
186
|
Zhang D, Shah PK, Culver HR, David SN, Stansbury JW, Yin X, Bowman CN. Photo-responsive liposomes composed of spiropyran-containing triazole-phosphatidylcholine: investigation of merocyanine-stacking effects on liposome-fiber assembly-transition. SOFT MATTER 2019; 15:3740-3750. [PMID: 31042253 DOI: 10.1039/c8sm02181c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A spiropyran-containing triazole-phosphatidylcholine (SPTPC) was synthesized through a copper-catalyzed azide alkyne cyclo-addition (CuAAC) reaction. In water, SPTPCs self-assembled and a spontaneous spiropyran-to-merocyanine (SP-to-MC) isomerization occurred, resulting in coexistence of liposomes and fibers, and switching from the spiropyran (SP) to the merocyanine (MC) isomeric structure induced a reversible transition between these molecular assemblies. Study of the self-assembly of SPTPCs and photo-induced liposome-fiber assembly-transition revealed that the presence of MC enabled additional inter-membrane interaction during self-assembly and that the MC-stacking effect was the driving force for the assembly-transition. Exposure to UV light induced switching from SP to MC, where the planar structure of MC and the confinement of MC led to enhanced MC-stacking. The effect of MC-stacking was both advantageous and disadvantageous: MC-stacking perturbed the hydrophobic phase in the bilayer membrane and facilitated the liposome-to-fiber transition, otherwise the MC-stacking retarded switching of MC to SP, and caused an incomplete recovery of MC to SP during fiber-to-liposome recovery, thus a fatigue of SP was induced by MC-stacking during the liposome-to-fiber transition cycle. To decrease the intermolecular interactions and suppress MC-stacking, photo-inert triazole-phosphatidylcholine (TPC) was incorporated to prepare two-component TPC/SPTPC-liposomes, which exhibited better recovery kinetics. The photo-adaptive behavior of TPC/SPTPC-liposomes confirmed the disturbance of bilayer membranes by inter-membrane MC-stacking and the formation of MCTPC-enriched phases in the bilayer membrane.
Collapse
Affiliation(s)
- Dawei Zhang
- Department of Chemical and Biological Engineering, University of Colorado Boulder, UCB 596, Colorado 80309, USA.
| | | | | | | | | | | | | |
Collapse
|
187
|
Ladjohounlou R, Lozza C, Pichard A, Constanzo J, Karam J, Le Fur P, Deshayes E, Boudousq V, Paillas S, Busson M, Le Blay M, Jarlier M, Marcatili S, Bardiès M, Bruchertseifer F, Morgenstern A, Torgue J, Navarro-Teulon I, Pouget JP. Drugs That Modify Cholesterol Metabolism Alter the p38/JNK-Mediated Targeted and Nontargeted Response to Alpha and Auger Radioimmunotherapy. Clin Cancer Res 2019; 25:4775-4790. [PMID: 31061069 DOI: 10.1158/1078-0432.ccr-18-3295] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/18/2019] [Accepted: 05/01/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE For the development of new anticancer therapeutic radiopharmaceuticals, including alpha particle emitters, it is important to determine the contribution of targeted effects in irradiated cells, and also of nontargeted effects in nonirradiated neighboring cells, because they may affect the therapeutic efficacy and contribute to side effects. EXPERIMENTAL DESIGN Here, we investigated the contribution of nontargeted cytotoxic and genotoxic effects in vitro and in vivo (in xenografted mice) during alpha (212Pb/212Bi, 213Bi) and Auger (125I) radioimmunotherapy (RIT). RESULTS Between 67% and 94% (alpha RIT) and 8% and 15% (Auger RIT) of cancer cells were killed by targeted effects, whereas 7% to 36% (alpha RIT) and 27% to 29% (Auger RIT) of cells were killed by nontargeted effects. We then demonstrated that the nontargeted cell response to alpha and Auger RIT was partly driven by lipid raft-mediated activation of p38 kinase and JNK. Reactive oxygen species also played a significant role in these nontargeted effects, as demonstrated by NF-κB activation and the inhibitory effects of antioxidant enzymes and radical scavengers. Compared with RIT alone, the use of RIT with ASMase inhibitor (imipramine) or with a lipid raft disruptor (e.g., methyl-beta-cyclodextrin or filipin) led to an increase in clonogenic cell survival in vitro and to larger tumors and less tissue DNA damage in vivo. These results were supported by an inhibitory effect of pravastatin on Auger RIT. CONCLUSIONS Cell membrane-mediated nontargeted effects play a significant role during Auger and alpha RIT, and drugs that modulate cholesterol level, such as statins, could interfere with RIT efficacy.
Collapse
Affiliation(s)
- Riad Ladjohounlou
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Catherine Lozza
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Alexandre Pichard
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Julie Constanzo
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Jihad Karam
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Pierre Le Fur
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Emmanuel Deshayes
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Vincent Boudousq
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Salomé Paillas
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Muriel Busson
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Marion Le Blay
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Marta Jarlier
- Institut Régional du Cancer de Montpellier, Université de Montpellier, Montpellier, France
| | - Sara Marcatili
- UMR 1037 INSERM/UPS, Centre de Recherche en Cancérologie de Toulouse, Toulouse, France
| | - Manuel Bardiès
- UMR 1037 INSERM/UPS, Centre de Recherche en Cancérologie de Toulouse, Toulouse, France
| | - Frank Bruchertseifer
- Directorate for Nuclear Safety and Security, European Commission - Joint Research Centre, Karlsruhe, Germany
| | - Alfred Morgenstern
- Directorate for Nuclear Safety and Security, European Commission - Joint Research Centre, Karlsruhe, Germany
| | | | - Isabelle Navarro-Teulon
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Jean-Pierre Pouget
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France.
| |
Collapse
|
188
|
Ferreira-Venter L, Venter E, Theron J, van Staden V. Targeted mutational analysis to unravel the complexity of African horse sickness virus NS3 function in mammalian cells. Virology 2019; 531:149-161. [DOI: 10.1016/j.virol.2019.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 10/27/2022]
|
189
|
Visualizing Biological Membrane Organization and Dynamics. J Mol Biol 2019; 431:1889-1919. [DOI: 10.1016/j.jmb.2019.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/02/2019] [Accepted: 02/13/2019] [Indexed: 11/22/2022]
|
190
|
Chatterjee S, Das A, Raghuraman H. Biochemical and biophysical characterization of a prokaryotic Mg 2+ ion channel: Implications for cost-effective purification of membrane proteins. Protein Expr Purif 2019; 161:8-16. [PMID: 31028884 DOI: 10.1016/j.pep.2019.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/19/2019] [Indexed: 10/26/2022]
Abstract
Although magnesium is the second most abundant cation present in the cell, the transport mechanism of Mg2+ across membranes is poorly understood. Importantly, the prokaryotic MgtE Mg2+ channel is related to mammalian SLC41A1 transporters and, therefore, biochemical and biophysical characterization of MgtE and its orthologs assumes significance. To date, the purification and structure determination of MgtE from Thermus thermophilus has been carried out using the widely used nonionic detergent, n-dodecyl-β-d-maltopyranoside (DDM). However, DDM is an expensive detergent and alternative methods to produce high-quality proteins in stable and functional form will be practically advantageous to carry out structural studies in a cost-effective manner. In this work, we have utilized 'dual-detergent strategy' to successfully purify MgtE channel in a stable and functional form by employing relatively inexpensive detergents (Triton X-100 and Anzergent 3-14) for membrane solubilization and subsequently changed to DDM during purification. Our results show that Triton X-100 and Anzergent 3-14 extract MgtE well and the quality of purified protein is comparable to DDM-extracted MgtE. Interestingly, addition of high concentration of salt and glycerol during solubilization does not significantly affect the quantity and quality of MgtE. Importantly, limited proteolysis assay, circular dichroism spectroscopy and ensemble tryptophan fluorescence strongly support the use of Triton X-100, in particular, as an inexpensive, alternative detergent for the purification of MgtE without compromising the structural integrity of the channel and Mg2+-induced gating-related conformational dynamics. Overall, these results are relevant for the cost-effective purification of stable and functional membrane proteins in general, and magnesium channels, in particular.
Collapse
Affiliation(s)
- Satyaki Chatterjee
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, 700 064, India
| | - Anindita Das
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, 700 064, India
| | - H Raghuraman
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, 700 064, India.
| |
Collapse
|
191
|
Tian F, Qiu Y, Lan X, Li M, Yang H, Gao Z. A Small-Molecule Compound Selectively Activates K2P Channel TASK-3 by Acting at Two Distant Clusters of Residues. Mol Pharmacol 2019; 96:26-35. [DOI: 10.1124/mol.118.115303] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/17/2019] [Indexed: 11/22/2022] Open
|
192
|
Elastic compliance as a tool to understand Hofmeister ion specific effect in DMPC liposomes. Biophys Chem 2019; 249:106148. [PMID: 30981138 DOI: 10.1016/j.bpc.2019.106148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 11/21/2022]
Abstract
Elastic compliance of DMPC liposomes with Hofmeister electrolytes: NaCl, Na2SO4, Na2CO3, NaNO3, KCl and MgCl2 studied using Quartz crystal microbalance with dissipation has been correlated with changes in their lamellar spacing from SAXS. The study suggests that hydration water of the different ions has an effect on the overall packing of the lipid bilayer that results as either a dehydrated liposome or where water smears the surface of the liposomes. Ratio of hydrogen bonded carbonyl and phosphate of polar region of the liposomes from ATR-FTIR spectroscopy, suggests that the polar groups are less hydrated due to the displacement of water by the electrolytes compared to pure DMPC and ordered in the sequence for cations as: K+ < Na+,Mg2+ and for anions as SO42- < CO32- < Cl- < NO3-. These findings show the usefulness of Elastic compliance for structural studies of composite phospholipid bilayers, lipid-protein complexes and lipid systems of reduced dimensionalities.
Collapse
|
193
|
Omidvar R, Römer W. Glycan-decorated protocells: novel features for rebuilding cellular processes. Interface Focus 2019; 9:20180084. [PMID: 30842879 PMCID: PMC6388021 DOI: 10.1098/rsfs.2018.0084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2019] [Indexed: 02/06/2023] Open
Abstract
In synthetic biology approaches, lipid vesicles are widely used as protocell models. While many compounds have been encapsulated in vesicles (e.g. DNA, cytoskeleton and enzymes), the incorporation of glycocalyx components in the lipid bilayer has attracted much less attention so far. In recent years, glycoconjugates have been integrated in the membrane of giant unilamellar vesicles (GUVs). These minimal membrane systems have largely contributed to shed light on the molecular mechanisms of cellular processes. In this review, we first introduce several preparation and biophysical characterization methods of GUVs. Then, we highlight specific applications of protocells investigating glycolipid-mediated endocytosis of toxins, viruses and bacteria. In addition, we delineate how prototissues have been assembled from glycan-decorated protocells by using lectin-mediated cross-linking of opposed glycoreceptors (e.g. glycolipids and glycopeptides). In future applications, glycan-decorated protocells might be useful for investigating cell-cell interactions (e.g. adhesion and communication). We also speculate about the implication of lectin-glycoreceptor interactions in membrane fusion processes.
Collapse
Affiliation(s)
- Ramin Omidvar
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Winfried Römer
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
194
|
Borcik CG, Versteeg DB, Wylie BJ. An Inward-Rectifier Potassium Channel Coordinates the Properties of Biologically Derived Membranes. Biophys J 2019; 116:1701-1718. [PMID: 31010661 DOI: 10.1016/j.bpj.2019.03.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 12/13/2022] Open
Abstract
KirBac1.1 is a prokaryotic inward-rectifier K+ channel from Burkholderia pseudomallei. It shares the common inward-rectifier K+ channel fold with eukaryotic channels, including conserved lipid-binding pockets. Here, we show that KirBac1.1 changes the phase properties and dynamics of the surrounding bilayer. KirBac1.1 was reconstituted into vesicles composed of 13C-enriched biological lipids. Two-dimensional liquid-state and solid-state NMR experiments were used to assign lipid 1H and 13C chemical shifts as a function of lipid identity and conformational degrees of freedom. A solid-state NMR temperature series reveals that KirBac1.1 lowers the primary thermotropic phase transition of Escherichia coli lipid membranes while introducing both fluidity and internal lipid order into the fluid phases. In B. thailandensis liposomes, the bacteriohopanetetrol hopanoid, and potentially ornithine lipids, introduce a similar primary lipid-phase transition and liquid-ordered properties. Adding KirBac1.1 to B. thailandensis lipids increases B. thailandensis lipid fluidity while preserving internal lipid order. This synergistic effect of KirBac1.1 in bacteriohopanetetrol-rich membranes has implications for bilayer dynamic structure. If membrane proteins can anneal lipid translational degrees of freedom while preserving internal order, it could offer an explanation to the nature of liquid-ordered protein-lipid organization in vivo.
Collapse
Affiliation(s)
- Collin G Borcik
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Derek B Versteeg
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Benjamin J Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas.
| |
Collapse
|
195
|
Effect of sterol structure on ordered membrane domain (raft) stability in symmetric and asymmetric vesicles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1112-1122. [PMID: 30904407 DOI: 10.1016/j.bbamem.2019.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022]
Abstract
Sterol structure influences liquid ordered domains in membranes, and the dependence of biological functions on sterol structure can help identify processes dependent on ordered domains. In this study we compared the effect of sterol structure on ordered domain formation in symmetric vesicles composed of mixtures of sphingomyelin, 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and cholesterol, and in asymmetric vesicles in which sphingomyelin was introduced into the outer leaflet of vesicles composed of DOPC and cholesterol. In most cases, sterol behavior was similar in symmetric and asymmetric vesicles, with ordered domains most strongly stabilized by 7-dehydrocholesterol (7DHC) and cholesterol, stabilized to a moderate degree by lanosterol, epicholesterol and desmosterol, and very little if at all by 4-cholesten-3-one. However, in asymmetric vesicles desmosterol stabilized ordered domain almost as well as cholesterol, and to a much greater degree than epicholesterol, so that the ability to support ordered domains decreased in the order 7-DHC > cholesterol > desmosterol > lanosterol > epicholesterol > 4-cholesten-3-one. This contrasts with values for intermediate stabilizing sterols in symmetric vesicles in which the ranking was cholesterol > lanosterol ~ desmosterol ~ epicholesterol or prior studies in which the ranking was cholesterol ~ epicholesterol > lanosterol ~ desmosterol. The reasons for these differences are discussed. Based on these results, we re-evaluated our prior studies in cells and conclude that endocytosis levels and bacterial uptake are even more closely correlated with the ability of sterols to form ordered domains than previously thought, and do not necessarily require that a sterol have a 3β-OH group.
Collapse
|
196
|
Bres EE, Faissner A. Low Density Receptor-Related Protein 1 Interactions With the Extracellular Matrix: More Than Meets the Eye. Front Cell Dev Biol 2019; 7:31. [PMID: 30931303 PMCID: PMC6428713 DOI: 10.3389/fcell.2019.00031] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) is a biological substrate composed of collagens, proteoglycans and glycoproteins that ensures proper cell migration and adhesion and keeps the cell architecture intact. The regulation of the ECM composition is a vital process strictly controlled by, among others, proteases, growth factors and adhesion receptors. As it appears, ECM remodeling is also essential for proper neuronal and glial development and the establishment of adequate synaptic signaling. Hence, disturbances in ECM functioning are often present in neurodegenerative diseases like Alzheimer’s disease. Moreover, mutations in ECM molecules are found in some forms of epilepsy and malfunctioning of ECM-related genes and pathways can be seen in, for example, cancer or ischemic injury. Low density lipoprotein receptor-related protein 1 (Lrp1) is a member of the low density lipoprotein receptor family. Lrp1 is involved not only in ligand uptake, receptor mediated endocytosis and lipoprotein transport—functions shared by low density lipoprotein receptor family members—but also regulates cell surface protease activity, controls cellular entry and binding of toxins and viruses, protects against atherosclerosis and acts on many cell signaling pathways. Given the plethora of functions, it is not surprising that Lrp1 also impacts the ECM and is involved in its remodeling. This review focuses on the role of Lrp1 and some of its major ligands on ECM function. Specifically, interactions with two Lrp1 ligands, integrins and tissue plasminogen activator are described in more detail.
Collapse
Affiliation(s)
- Ewa E Bres
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
197
|
Bai C, Kang N, Zhao J, Dai J, Gao H, Chen Y, Dong H, Huang C, Dong Q. Cryopreservation disrupts lipid rafts and heat shock proteins in yellow catfish sperm. Cryobiology 2019; 87:32-39. [PMID: 30876909 DOI: 10.1016/j.cryobiol.2019.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 11/25/2022]
Abstract
Lipid rafts and associated membrane proteins (flotillin, caveolin) play important roles in cell signaling and sperm fertilization while heat shock proteins (Hsp) ensure properly protein folding to fulfill their physiological functions. The markedly reduced fertility in thawed sperm after cryopreservation could result from disrupted membrane lipid rafts and these proteins. To explore the effect of sperm cryopreservation on lipid rafts and heat shock proteins, we compared lipid raft integrity, and the expression levels of lipid raft associated proteins (Flot-1, Flot-2, Cav-1) as well as heat shock proteins (Hsp90, Hsp70) in fresh and thawed sperm cryopreserved under different scenarios in yellow catfish. We found higher lipid raft integrity, higher protein expression levels of Flot-1, Flot-2, Cav-1, Hsp90, and Hsp70 in fresh sperm samples than in thawed sperm samples, in thawed sperm samples cryopreserved with optimal cooling rate than those cryopreserved with sub-optimal cooling rate, and in thawed sperm samples cryopreserved with extenders supplemented with cholesterol than those supplemented with methyl-β-cyclodextrin (for cholesterol removal). Our findings indicate that lipid raft integrity, and expression levels of Flot-1, Flot-2, Cav-1, Hsp90, and Hsp70 are clearly associated with sperm quality, and together they may play a cumulative role in reduced fertility associated with thawed sperm in aquatic species.
Collapse
Affiliation(s)
- Chenglian Bai
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Ning Kang
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Junping Zhao
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Jun Dai
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Hui Gao
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Yuanhong Chen
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Haojia Dong
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Changjiang Huang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Qiaoxiang Dong
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China.
| |
Collapse
|
198
|
Singh H. Symposium review: Fat globules in milk and their structural modifications during gastrointestinal digestion. J Dairy Sci 2019; 102:2749-2759. [DOI: 10.3168/jds.2018-15507] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/12/2018] [Indexed: 11/19/2022]
|
199
|
Meinhardt S, Schmid F. Structure of lateral heterogeneities in a coarse-grained model for multicomponent membranes. SOFT MATTER 2019; 15:1942-1952. [PMID: 30662989 DOI: 10.1039/c8sm02261e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We study the lateral domain structure in a coarse-grained molecular model for multicomponent lipid bilayers by semi-grandcanonical Monte Carlo simulations. The membranes are filled with liquid ordered (lo) domains surrounded by a liquid disordered (ld) matrix. Depending on the membrane composition and temperature, we identify different morphological regimes: one regime (I) where the lo domains are small and relatively compact, and two regimes (II, II') where they are larger and often interconnected. In the latter two regimes, the ld matrix forms a network of disordered trenches separating the lo domains, with a relatively high content of interdigitated line defects. Since such defects are also a structural element of the modulated ripple phase in one component membranes, we argue that the regimes II, II' may be amorphous equivalents of the ripple phase in multicomponent membranes. We also analyze the local structure and provide evidence that the domains in regime I are stabilized by a monolayer curvature mechanism postulated in earlier work [S. Meinhardt et al., PNAS, 2013, 110, 4476].
Collapse
Affiliation(s)
- Sebastian Meinhardt
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, USA
| | | |
Collapse
|
200
|
Lin HJ, Jiang ZP, Lo HR, Feng CL, Chen CJ, Yang CY, Huang MZ, Wu HY, Chen YA, Chen Y, Chiu CH, Lai CH. Coalescence of RAGE in Lipid Rafts in Response to Cytolethal Distending Toxin-Induced Inflammation. Front Immunol 2019; 10:109. [PMID: 30863392 PMCID: PMC6399302 DOI: 10.3389/fimmu.2019.00109] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/15/2019] [Indexed: 12/19/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE) interacts with various molecules in the cell membrane to induce an inflammatory response. The cytolethal distending toxin (CDT) produced by Campylobacter jejuni contains three subunits: CdtA, CdtB, and CdtC. Amongst, CdtA and CdtC interact with membrane lipid rafts, by which CdtB enters the nucleus to induce pathogenesis. In this study, we first explored the relationships between RAGE, lipid rafts, and inflammation in gastrointestinal epithelial cells exposed to CDT. Our results showed that CDT activated the expression of RAGE and high mobility group box 1 (HMGB1), followed by the recruitment of RAGE into lipid rafts. In contrast, RAGE antagonist inhibited CDT-induced inflammation via the RAGE-HMGB1 axis. Disruption of lipid rafts decreased CDT-induced downstream signaling, which in turn attenuated the inflammatory response. Furthermore, in vivo studies revealed severe inflammation and upregulation of RAGE and IL-1β in the intestinal tissues of CDT-treated mice. These results demonstrate that mobilization of RAGE to lipid rafts plays a crucial role in CDT-induced inflammation.
Collapse
Affiliation(s)
- Hwai-Jeng Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, Shuang-Ho Hospital, New Taipei, Taiwan
| | - Zhi-Pei Jiang
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Colon and Rectal Surgery, Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Horng-Ren Lo
- Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung, Taiwan
| | - Chun-Lung Feng
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, China Medical University Hsinchu Hospital, Hsinchu, Taiwan.,Department of Microbiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Jung Chen
- Department of Pediatrics, Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chia-Yu Yang
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Colon and Rectal Surgery, Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Mei-Zi Huang
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hui-Yu Wu
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-An Chen
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu Chen
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Pediatrics, Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Microbiology, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Pediatrics, Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan.,Department of Nursing, Asia University, Taichung, Taiwan
| |
Collapse
|