151
|
Chen L, Wu Z, Guo J, Wang X, Zhao Z, Liang H, Zhang R, Deng J. Initial clinical and experimental analyses of ALDOA in gastric cancer, as a novel prognostic biomarker and potential therapeutic target. Clin Exp Med 2023; 23:2443-2456. [PMID: 36422738 DOI: 10.1007/s10238-022-00952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
The effect of ALDOA, an important regulator of tumor metabolism and immune cell function, on gastric cancer (GC) immune infiltration has not been elucidated. Hence, we explored the feasibility of using ALDOA combined with immune molecular markers as novel prognostic or therapeutic targets for GC patients. Bioinformatic analyses were initially performed in multiple databases to assess the prognostic prediction values of ALDOA expression in GC. Subsequently, both ALDOA expression and the clinicopathological characteristics of a total of 114 GC patients who underwent curative gastrectomy were collected to demonstrate the potential association between ALDOA expression and the biological behaviors of GC. Next, the expression of ALDOA and its effect on prognosis were determined at the mRNA and protein levels, respectively, using tissue microarrays and cellular experiments. Subsequently, several molecular mechanisms were revealed based on elaborate analyses, indicating that ALDOA expression was potentially involved in the progression of GC and could be considered a promising biomarker for evaluating the prognosis of GC. High ALDOA expression was frequently found in GC cells and GC tissues at the mRNA and protein levels. Based on survival analysis, the expression of ALDOA indicated comparatively poor overall survival (OS) in GC and was identified as an independent prognostic predictor of GC. Correlation analysis showed that ALDOA expression had a positive association with lymph node metastasis in GC patients. Additionally, microRNA-1179 was found to play a key role in inhibiting the expression of ALDOA in the metabolic pathways of GC cells, which might disrupt the expression of various immune molecules and be detrimental to the prognosis of GC. ALDOA should be considered a promising molecular target for evaluating the prognosis of GC, owing to its potential role in immune regulation.
Collapse
Affiliation(s)
- Liqiao Chen
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, People's Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Zizhen Wu
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, People's Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Jiamei Guo
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, People's Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Xinyu Wang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, People's Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Zhenzhen Zhao
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, People's Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Han Liang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, People's Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Rupeng Zhang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, People's Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Jingyu Deng
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, People's Republic of China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China.
| |
Collapse
|
152
|
Wang S, Ren C, Zhang Y, Li Y, Pang S, Song T. Identifying potential small molecule-miRNA associations via Robust PCA based on γ-norm regularization. Brief Bioinform 2023; 24:bbad312. [PMID: 37670501 DOI: 10.1093/bib/bbad312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/18/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023] Open
Abstract
Dysregulation of microRNAs (miRNAs) is closely associated with refractory human diseases, and the identification of potential associations between small molecule (SM) drugs and miRNAs can provide valuable insights for clinical treatment. Existing computational techniques for inferring potential associations suffer from limitations in terms of accuracy and efficiency. To address these challenges, we devise a novel predictive model called RPCA$\Gamma $NR, in which we propose a new Robust principal component analysis (PCA) framework based on $\gamma $-norm and $l_{2,1}$-norm regularization and design an Augmented Lagrange Multiplier method to optimize it, thereby deriving the association scores. The Gaussian Interaction Profile Kernel Similarity is calculated to capture the similarity information of SMs and miRNAs in known associations. Through extensive evaluation, including Cross Validation Experiments, Independent Validation Experiment, Efficiency Analysis, Ablation Experiment, Matrix Sparsity Analysis, and Case Studies, RPCA$\Gamma $NR outperforms state-of-the-art models concerning accuracy, efficiency and robustness. In conclusion, RPCA$\Gamma $NR can significantly streamline the process of determining SM-miRNA associations, thus contributing to advancements in drug development and disease treatment.
Collapse
Affiliation(s)
- Shudong Wang
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum (East China), 66 Changjiang Xi Lu, 266580 Shandong, China
| | - Chuanru Ren
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum (East China), 66 Changjiang Xi Lu, 266580 Shandong, China
| | - Yulin Zhang
- College of Mathematics and Systems Science, Shandong University of Science and Technology, Xin An Street, 266590 Shandong, China
| | - Yunyin Li
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum (East China), 66 Changjiang Xi Lu, 266580 Shandong, China
| | - Shanchen Pang
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum (East China), 66 Changjiang Xi Lu, 266580 Shandong, China
| | - Tao Song
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum (East China), 66 Changjiang Xi Lu, 266580 Shandong, China
| |
Collapse
|
153
|
Wang Y, Liu Y, Fei A, Tan L. CircMACF1 alleviates myocardial fibrosis after acute myocardial infarction by suppressing cardiac fibroblast activation via the miR-16-5p/SMAD7 axis. Medicine (Baltimore) 2023; 102:e35119. [PMID: 37713818 PMCID: PMC10508453 DOI: 10.1097/md.0000000000035119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 08/17/2023] [Indexed: 09/17/2023] Open
Abstract
Circular RNAs (circRNAs) played a pivotal role in myocardial fibrosis after acute myocardial infarction (AMI). The activation of cardiac fibroblasts (CFs) and accumulation of extracellular matrix are the main characteristics of myocardial fibrosis. In our research, we aimed to elucidate the functional roles of circMACF1 in CF activation after AMI as well as the underlying mechanism. Human CFs were activated by TGF-β1 treatment. qPCR and western blotting were performed to investigate gene and protein expression. CCK-8 and transwell assays were carried out to measure cell proliferation, and migration. Immunofluorescence was used to investigate α-SMA level. The interaction between miR-16-5p and circMACF1 or SMAD7 was revealed by RIP or dual luciferase reporter gene assays. CircMACF1 and SMAD7 were repressed in AMI patients and CFs treated with TGF-β1, and miR-16-5p was increased. In addition, circMACF1 was resistant to RNase R and abundantly expressed in the cytoplasm. Overexpression of circMACF1 inhibited cell proliferation and migration and reduced the expression levels of fibrosis-related proteins, including Collagen I, Collagen III, and α-SMA. Furthermore, circMCAF1 could directly bind to miR-16-5p, and SMAD7 was a target gene of miR-16-5p. Knockdown of miR-16-5p suppressed the activation, proliferation, and migration of TGF-β1-treated CFs, but silencing circMACF1 or SMAD7 partially reversed this phenomenon. CircMACF1 attenuated the TGF-β1-induced activation, proliferation and migration of CFs via the miR-16-5p/SMAD7 signaling pathway, indicating that circMACF1 might be a new therapeutic target for AMI.
Collapse
Affiliation(s)
- Yonghong Wang
- Department of Cardiology, the Fourth Hospital of Changsha, Changsha, China
| | - Yanfei Liu
- Department of Cardiology, the Fourth Hospital of Changsha, Changsha, China
| | - Aike Fei
- Department of Cardiology, the Fourth Hospital of Changsha, Changsha, China
| | - Liming Tan
- Department of Cardiology, the Fourth Hospital of Changsha, Changsha, China
| |
Collapse
|
154
|
Braga EA, Fridman MV, Burdennyy AM, Loginov VI, Dmitriev AA, Pronina IV, Morozov SG. Various LncRNA Mechanisms in Gene Regulation Involving miRNAs or RNA-Binding Proteins in Non-Small-Cell Lung Cancer: Main Signaling Pathways and Networks. Int J Mol Sci 2023; 24:13617. [PMID: 37686426 PMCID: PMC10487663 DOI: 10.3390/ijms241713617] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are crucial players in the pathogenesis of non-small-cell lung cancer (NSCLC). A competing binding of lncRNAs and mRNAs with microRNAs (miRNAs) is one of the most common mechanisms of gene regulation by lncRNAs in NSCLC, which has been extensively researched in the last two decades. However, alternative mechanisms that do not depend on miRNAs have also been reported. Among them, the most intriguing mechanism is mediated by RNA-binding proteins (RBPs) such as IGF2BP1/2/3, YTHDF1, HuR, and FBL, which increase the stability of target mRNAs. IGF2BP2 and YTHDF1 may also be involved in m6A modification of lncRNAs or target mRNAs. Some lncRNAs, such as DLGAP1-AS2, MALAT1, MNX1-AS1, and SNHG12, are involved in several mechanisms depending on the target: lncRNA/miRNA/mRNA interactome and through RBP. The target protein sets selected here were then analyzed using the DAVID database to identify the pathways overrepresented by KEGG, Wikipathways, and the Reactome pathway. Using the STRING website, we assessed interactions between the target proteins and built networks. Our analysis revealed that the JAK-STAT and Hippo signaling pathways, cytokine pathways, the VEGFA-VEGFR2 pathway, mechanisms of cell cycle regulation, and neovascularization are the most relevant to the effect of lncRNA on NSCLC.
Collapse
Affiliation(s)
- Eleonora A. Braga
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Marina V. Fridman
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Alexey M. Burdennyy
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
| | - Vitaly I. Loginov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Irina V. Pronina
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
| | - Sergey G. Morozov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
| |
Collapse
|
155
|
Xie W, Wang Z, Guo X, Guan H. MiR-409-3p regulates the proliferation and apoptosis of THP-1 through targeting Rab10. Leuk Res 2023; 132:107350. [PMID: 37437422 DOI: 10.1016/j.leukres.2023.107350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023]
Abstract
Acute myeloid leukemia cytogenetics and molecular subtypes are connected with microRNAs, although it is unclear how miRNAs affect AML pathogenesis. miR-409-3p expression is downregulated in bone marrows, as we have previously demonstrated in our team. Nevertheless, the tumor-suppressing activities and molecular mechanisms of miR-409-3p remain unknown. Hence, in this study, we investigate at the functional significance of miR-409-3p in the development of AML. We found that a significant decrease in miR-409-3p expression was observed in THP-1 cell. The expression of miR-409-3p was altered in THP-1 by transfecting with agomiR-409-3p and agomiR-409-3p NC. A series of experiments showed that overexpression of miR-409-3p expression significantly suppressed proliferation and increased the apoptosis of THP-1. Moreover, Rab10 was confirmed as a direct target gene of miR-409-3p and was negatively modulated by miR-409-3p. Rab10 downregulation imitated the suppressed proliferation and increased the apoptosis of THP-1. Furthermore, miR-409-3p overexpression or Rab10 knockdown obviously down-regulated the expression levels of Bcl-2, but up-regulated Bax expression. In a xenograft mouse model, miR-409-3p-overexpressed THP-1 cells resulted in much less tumor weight and size in the mice bearing the cells as compared to the mock-transfected mice. Collectively, our findings demonstrated that miR-409-3p exerted tumor suppressor gene effects in AML by directly targeting Rab10, which might provide a promising therapeutic target for AML.
Collapse
Affiliation(s)
- Wenjie Xie
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China
| | - Zhichao Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China
| | - Xiaofang Guo
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China
| | - Hongzai Guan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China.
| |
Collapse
|
156
|
Zhang Y, Zhao L, Bi Y, Zhao J, Gao C, Si X, Dai H, Asmamaw MD, Zhang Q, Chen W, Liu H. The role of lncRNAs and exosomal lncRNAs in cancer metastasis. Biomed Pharmacother 2023; 165:115207. [PMID: 37499455 DOI: 10.1016/j.biopha.2023.115207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Tumor metastasis is the main reason for cancer-related death, but there is still a lack of effective therapeutic to inhibit tumor metastasis. Therefore, the discovery and study of new tumor metastasis regulators is a prominent measure for cancer diagnosis and treatment. Long non-coding RNA (lncRNA) is a type of non-coding RNAs over 200 bp in length. It has been shown that the abnormally expressed lncRNAs promote tumor metastasis by participating in the epithelial-to-mesenchymal transition (EMT) process, altering the metastatic tumor microenvironment, or changing the extracellular matrix. It is,thus, critical to explore the regulation of lncRNAs expression in cells and the molecular mechanism of lncRNA-mediated cancer metastasis. Simultaneously, it has been shown that lncRNA is one kind of the main components of exosomes, which protects lncRNAs from being rapidly degraded. Meanwhile, the components of exosomes are parent-specific, making exosomal lncRNAs to be potential tumor metastasis markers and therapeutic targets. In view of this, we also summarized the aberrant enrichment of lncRNAs in exosomes and their role in metastatic cancer. The aberrant lncRNAs and exosomal lncRNAs gradually become biomarkers and therapeutic targets for tumor metastatic, and the potential of lncRNAs in therapeutics are studied here. Besides, the lncRNA-related databases, which could greatly facilitate in the study of lncRNAs and exosomal lncRNAs in metastatic of cancer are included in this review.
Collapse
Affiliation(s)
- Yutong Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China; The People's Hospital of Zhang Dian District, Zibo, China
| | - Lijuan Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Science, Zhengzhou University, Zhengzhou China
| | - Yaping Bi
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Jinyuan Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Chao Gao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Xiaojie Si
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Honglin Dai
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Moges Dessale Asmamaw
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Qiurong Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China.
| | - Wenchao Chen
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital; Zhengzhou University People's Hospital; Henan University People's Hospital, Zhengzhou China.
| | - Hongmin Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China.
| |
Collapse
|
157
|
Ebrahimi A, Derakhshan SM, Ghavi D, Foruzandeh Z, Hashemi S. The role of mir-151a-5p in tumorigenesis; A systematic review. Pathol Res Pract 2023; 249:154576. [PMID: 37562284 DOI: 10.1016/j.prp.2023.154576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Highly supported microRNAs (miRNAs) are key players in cancer development. Each of these miRNAs may act as an oncomir, a tumor-suppressor, or both in various cancers. Mir-151a-5p is believed to be one of these miRNAs with diverse roles. We have conducted this systematic review to clarify the role of mir-151a-5p in formation of various cancers. METHODS AND MATERIALS We searched for existing articles in PubMed, Web of Science, Cochrane, Scopus, and RNAcentral databases up to November 2022. A total of 23 articles were qualified and included in the present systematic review. This review is registered on JBI at https://jbi.global/systematic-review-register. Expression levels, diagnostic and prognostic values, biological processes, and targeted downstream genes are included. RESULTS Assembled data indicate the expression levels of mir-151a-5p vary from down- to up-regulated based on the type of the cancer. Its functional role depends on the genetic profile of cancerous tissue. Results mostly point to the oncogenic role of this miRNA in Pituitary adenomas, Acute Myeloid Leukemia (AML), Endometrial, Lung, Barrett's carcinogenesis, Colorectal, Myelodysplastic syndromes, Hepatocellular carcinoma and Breast cancers, as its inhibited targets seem to be controlling several signaling pathways, cell adhesion, and cell cycle. At the same time, tumor-suppressing role has also been observed only in Malignant Pleural Mesothelioma, Central Nerve System (CNS) lymphoma, Chronic Myeloid and Acute Lymphocytic Leukemia. Two types of cancers, prostate and colon, show contradictory results as there are studies supporting both up- and down-regulation in these cancers. Pituitary adenomas, Barrett's carcinogenesis and CNS lymphomas are top cancers diagnosed with mir-151-5p. However, prognostic feature is only applicable to Lung adenocarcinoma. DISCUSSION Based on the present findings and further studies in the future, mir-151a-5p may be used as diagnostic and prognostic biomarkers or even a therapeutic target in cancer studies. DATA AVAILABILITY STATEMENT The articles used in this study can be found with the defined search phrase in mentioned databases. A list of selected articles will be available on reasonable requests.
Collapse
Affiliation(s)
- Amir Ebrahimi
- Department of Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Genetics, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Davood Ghavi
- Department of Genetics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Foruzandeh
- Department of Genetics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Hashemi
- Department of Genetics, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
158
|
Ali M, Bamezai RNK, Singh RP. Invasive Breast Cancer: miR-24-2 Targets Genes Associated with Survival and Sensitizes MDA-MB-231 Cells to Berberine. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:409-420. [PMID: 37669117 DOI: 10.1089/omi.2023.0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
MicroRNA aberrations including that of miR-24-2 have been reported in various cancers. However, the target genes for miR-24-2 are yet to be identified and validated in invasive breast cancer and the triple-negative breast cancer (TNBC). Using in silico approaches and gene expression analyses, we identified and validated the target genes of miR-24-2 in invasive breast cancer, majority of which were TNBC. We studied the translational potential of these target genes using berberine in a TNBC cell line. Differentially expressed genes targeted by miR-24-2 were identified and analyzed for their survival effects using the The Cancer Genome Atlas-Breast Invasive Carcinoma (-BRCA) samples. Furthermore, we carried out protein-protein interaction, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, gene expression, and Kaplan-Meier survival analyses using common targets of miR-24-2 in invasive breast cancer/TNBC. We identified 11 biomarker candidate genes as crucial targets of miR-24-2. The survival of breast cancer patients was significantly associated with the low expressions of nine genes, including RACGAP1, KIAA1199, TIMM17A, LYRM7, IL1R1, SLC1A3, DTX4, L1CAM, and SAP30-like (SAP30L), and high expressions of two genes, SOD2 and HLA-DQB2. These in silico findings were validated by overexpressing miR-24-2 and assessing the expression pattern of these target genes in the TNBC MDA-MB-231 cells. miR-24-2 overexpression inhibited (by 20%; p < 0.001) cell proliferation and sensitized the anticancer effect of berberine. In all, this study reports on the novel target genes of miR-24-2 in invasive breast cancer/TNBC, and that miR-24-2 sensitizes MDA-MB-231 cells to berberine. These data lend evidence for the translational potentials of miR-24-2 for invasive breast cancer diagnostic and therapeutic innovation.
Collapse
Affiliation(s)
- Mansoor Ali
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rameshwar N K Bamezai
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rana P Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
159
|
Shang J, Wang Q, Wang J, Xu B, Liu S. miR-708-3p promotes gastric cancer progression through downregulating ETNK1. Heliyon 2023; 9:e19544. [PMID: 37809692 PMCID: PMC10558739 DOI: 10.1016/j.heliyon.2023.e19544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023] Open
Abstract
MicroRNAs (miRNAs) are small, evolutionarily conserved, non-coding RNAs playing a role in the proliferation, metastasis, apoptosis, chemo-sensitivity, and chemo-resistance of gastric cancer, as well as the stemness of gastric cancer stem cells. miR-708-3p induces gastric cancer cell chemo-resistance, but its actual role in gastric cancer progression remains unclear. This paper shows that miR-708-3p is upregulated in gastric cancer samples and that a high miR-708-3p expression in gastric cancer patients is associated with poor overall survival. Our functional study results indicate that miR-708-3p overexpression promotes gastric cancer cell proliferation and migration, inhibits cell apoptosis, and facilitates the transition from the G0/G1 to the G2/M phase. Furthermore, reducing miR-708-3p levels yielded opposite effects. Next, our in vivo experiments revealed that miR-708-3p advanced gastric cancer cell growth in nude mice. The underlying mechanism was the regulation of ethanolamine kinase 1 (ETNK1) expression by miR-708-3p, which bound to the 3'UTR of the ETNK1 gene in gastric cancer cells. Finally, the recovery assay results showed that ETNK1 overexpression could slow miR-708-3p-induced gastric cancer progression. In conclusion, we identified a new miR-708-3p/ETNK1 pathway involved in gastric cancer progression. These results may offer new targets for gastric cancer therapy and markers for gastric cancer prognosis.
Collapse
Affiliation(s)
| | | | - Jingren Wang
- Key Laboratory of Microecology-immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, 154000, China
| | - Bo Xu
- Key Laboratory of Microecology-immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, 154000, China
| | - Shuang Liu
- Key Laboratory of Microecology-immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, 154000, China
| |
Collapse
|
160
|
Ma M, Zeng G, Tan B, Zhao G, Su Q, Zhang W, Song Y, Liang J, Xu B, Wang Z, Chen J, Hou M, Yang C, Yun J, Huang Y, Lin Y, Chen D, Han Y, DeMorrow S, Liang L, Lai J, Huang L. DAGLβ is the principal synthesizing enzyme of 2-AG and promotes aggressive phenotype of intrahepatic cholangiocarcinoma via AP-1/DAGLβ/miR4516 feedforward circuitry. Am J Physiol Gastrointest Liver Physiol 2023; 325:G213-G229. [PMID: 37366545 PMCID: PMC10435072 DOI: 10.1152/ajpgi.00243.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
The endocannabinoid system (ECS) is dysregulated in various liver diseases. Previously, we had shown that the major endocannabinoid 2-arachidonoyl glycerol (2-AG) promoted tumorigenesis of intrahepatic cholangiocarcinoma (ICC). However, biosynthesis regulation and clinical significance of 2-AG remain elusive. In the present study, we quantified 2-AG by gas chromatography/mass spectrometry (GC/MS) and showed that 2-AG was enriched in patients with ICC samples as well as in thioacetamide-induced orthotopic rat ICC model. Moreover, we found that diacylglycerol lipase β (DAGLβ) was the principal synthesizing enzyme of 2-AG that significantly upregulated in ICC. DAGLβ promoted tumorigenesis and metastasis of ICC in vitro and in vivo and positively correlated with clinical stage and poor survival in patients with ICC. Functional studies showed that activator protein-1 (AP-1; heterodimers of c-Jun and FRA1) directly bound to the promoter and regulated transcription of DAGLβ, which can be enhanced by lipopolysaccharide (LPS). miR-4516 was identified as the tumor-suppressing miRNA of ICC that can be significantly suppressed by LPS, 2-AG, or ectopic DAGLβ overexpression. FRA1 and STAT3 were targets of miR-4516 and overexpression of miRNA-4516 significantly suppressed expression of FRA1, SATA3, and DAGLβ. Expression of miRNA-4516 was negatively correlated with FRA1, SATA3, and DAGLβ in patients with ICC samples. Our findings identify DAGLβ as the principal synthesizing enzyme of 2-AG in ICC. DAGLβ promotes oncogenesis and metastasis of ICC and is transcriptionally regulated by a novel AP-1/DAGLβ/miR4516 feedforward circuitry.NEW & NOTEWORTHY Dysregulated endocannabinoid system (ECS) had been confirmed in various liver diseases. However, regulation and function of 2-arachidonoyl glycerol (2-AG) and diacylglycerol lipase β (DAGLβ) in intrahepatic cholangiocarcinoma (ICC) remain to be elucidated. Here, we demonstrated that 2-AG was enriched in ICC, and DAGLβ was the principal synthesizing enzyme of 2-AG in ICC. DAGLβ promotes tumorigenesis and metastasis in ICC via a novel activator protein-1 (AP-1)/DAGLβ/miR4516 feedforward circuitry.
Collapse
Affiliation(s)
- Mingjian Ma
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Center of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Guangyan Zeng
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Center of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Bingyan Tan
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Guangyin Zhao
- Laboratory Animal Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Qiao Su
- Laboratory Animal Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wenhui Zhang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yan Song
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jiahua Liang
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Center of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Borui Xu
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Center of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zicheng Wang
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Center of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jiancong Chen
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Center of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Mengjun Hou
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Chuntao Yang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jingping Yun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yuhua Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yansong Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Demeng Chen
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yuyan Han
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, United States
| | - Sharon DeMorrow
- Research Division, Central Texas Veterans Health Care System, Temple, Texas, United States
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, United States
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, Texas, United States
| | - Lijian Liang
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Center of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jiaming Lai
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Center of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Li Huang
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Center of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
161
|
Hackl LM, Fenn A, Louadi Z, Baumbach J, Kacprowski T, List M, Tsoy O. Alternative splicing impacts microRNA regulation within coding regions. NAR Genom Bioinform 2023; 5:lqad081. [PMID: 37705830 PMCID: PMC10495541 DOI: 10.1093/nargab/lqad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/04/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that bind to target sites in different gene regions and regulate post-transcriptional gene expression. Approximately 95% of human multi-exon genes can be spliced alternatively, which enables the production of functionally diverse transcripts and proteins from a single gene. Through alternative splicing, transcripts might lose the exon with the miRNA target site and become unresponsive to miRNA regulation. To check this hypothesis, we studied the role of miRNA target sites in both coding and non-coding regions using six cancer data sets from The Cancer Genome Atlas (TCGA) and Parkinson's disease data from PPMI. First, we predicted miRNA target sites on mRNAs from their sequence using TarPmiR. To check whether alternative splicing interferes with this regulation, we trained linear regression models to predict miRNA expression from transcript expression. Using nested models, we compared the predictive power of transcripts with miRNA target sites in the coding regions to that of transcripts without target sites. Models containing transcripts with target sites perform significantly better. We conclude that alternative splicing does interfere with miRNA regulation by skipping exons with miRNA target sites within the coding region.
Collapse
Affiliation(s)
- Lena Maria Hackl
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607 Hamburg, Germany
| | - Amit Fenn
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607 Hamburg, Germany
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 3, 85354 Freising, Germany
| | - Zakaria Louadi
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607 Hamburg, Germany
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 3, 85354 Freising, Germany
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607 Hamburg, Germany
- Computational BioMedicine Lab, University of Southern Denmark, Campusvej 50, 5230 Odense, Denmark
| | - Tim Kacprowski
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, Rebenring 56, 38106 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Markus List
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 3, 85354 Freising, Germany
| | - Olga Tsoy
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607 Hamburg, Germany
| |
Collapse
|
162
|
Frydrychowicz M, Kuszel Ł, Dworacki G, Budna-Tukan J. MicroRNA in lung cancer-a novel potential way for early diagnosis and therapy. J Appl Genet 2023; 64:459-477. [PMID: 36821071 PMCID: PMC10457410 DOI: 10.1007/s13353-023-00750-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
Lung cancer is the most common cause of cancer-related deaths in the world. One of the reasons of poor prognosis and high mortality of lung cancer patients is the diagnosis of the disease in its advanced stage. Despite innovative diagnostic methods and multiple completed and ongoing clinical trials aiming at therapy improvement, no significant increase in patients' long-term survival has been noted over last decades. Patients would certainly benefit from early detection of lung cancer. Therefore, it is crucial to find new biomarkers that can help predict outcomes and tumor responses in order to maximize therapy effectiveness and avoid over- or under-treating patients with lung cancer. Nowadays, scientists' attention is mainly dedicated to so-called liquid biopsy, which is fully non-invasive and easily available method based on simple blood draw. Among common liquid biopsy elements, circulating tumor nucleic acids are worth mentioning. Epigenetic biomarkers, particularly miRNA expression, have several distinct features that make them promising prognostic markers. In this review, we described miRNA's involvement in tumorigenesis and present it as a predictor of cancer development and progression, potential indicator of treatment efficacy, and most importantly promising therapeutic target.
Collapse
Affiliation(s)
- Magdalena Frydrychowicz
- Department of Clinical Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Łukasz Kuszel
- Department of Medical Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Grzegorz Dworacki
- Department of Clinical Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-781 Poznan, Poland
| |
Collapse
|
163
|
Kutwin M, Sosnowska M, Ostrowska A, Trzaskowski M, Lange A, Wierzbicki M, Jaworski S. Influence of GO-Antisense miRNA-21 on the Expression of Selected Cytokines at Glioblastoma Cell Lines. Int J Nanomedicine 2023; 18:4839-4855. [PMID: 37662685 PMCID: PMC10473248 DOI: 10.2147/ijn.s419957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Graphene oxide (GO) is a single layer of carbon atoms with unique properties, which are beneficial due to its surface functionalisation by miRNA. miRNAs are a non-coding small form of RNA that suppress the expression of protein-coding genes by translational repression or degradation of messenger RNA. Antisense miRNA-21 is very promising for future investigation in cancer therapy. This study aimed to detect cytokine expression levels after the administration of GO-antisense miRNA-21 into U87, U118, U251 and T98 glioma cell lines. Methods U87, U118, U251 and T98 glioma cell line were investigated in term of viability, human cytokine expression level at protein and genes after treatment with GO, GO-antisense miRNA-21 and antisense miRNA-21. The delivery of antisense miRNA-21 into the glioma cell at in vitro investigation were conducted by GO based transfection and electroporation. Results The results of the protein microarray and gene expression profile showed that complexes of GO-antisense miRNA-21 modified the metallopeptidase inhibitor 2 (TIMP-2), interleukin-6 (IL-6), interleukin 8 (IL-8), intercellular adhesion molecule 1 (ICAM-1), and monocyte chemoattractant protein-1 (MCP-1) expression level compared to transfection by electroporation of antisense miRNA-21 at investigated glioblastoma cell lines. The TIMP-2 protein and gene expression level was upregulated after antisense miRNA-21 delivery by GO complex into U87, U251 and T98 glioblastoma cell lines comparing to the non-treated control group. The downregulation at protein expression level of ICAM - 1 was observed at U87, U118, U251 and T98 glioma cell lines. Moreover, the IL-8 expression level at mRNA for genes and protein was decreased significantly after delivery the antisense-miRNA-21 by GO compared to electroporation as a transfection method. Discussion This work demonstrated that the graphene oxide complexes with antisense miRNA-21 can effectively modulate the cytokine mRNA and protein expression level at U87, U118, U251 and T98 glioma cell lines.
Collapse
Affiliation(s)
- Marta Kutwin
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Malwina Sosnowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Agnieszka Ostrowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Maciej Trzaskowski
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Warsaw, 02-822, Poland
| | - Agata Lange
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Sławomir Jaworski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| |
Collapse
|
164
|
Jiang W, Shi X, Sun L, Zhang Y, Kong X, Yang X, Yin Y, Li C, Li X. Exosomal miR-30a-5p promoted intrahepatic cholangiocarcinoma progression by increasing angiogenesis and vascular permeability in PDCD10 dependent manner. Int J Biol Sci 2023; 19:4571-4587. [PMID: 37781039 PMCID: PMC10535699 DOI: 10.7150/ijbs.83170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/05/2023] [Indexed: 10/03/2023] Open
Abstract
Tumor-associated angiogenesis positively associates with malignant metastasis of intrahepatic cholangiocarcinoma (ICCA). Cancer cell-derived exosomes carrying microRNAs involves in tumor microenvironment (TME) regulation. We aimed to evaluate exosomal miR-30a-5p in ICCA development. Our data showed that increased miR-30a-5p level was correlated with higher microvascular density (MVD) and worse prognosis. Augmented miR-30a-5p expression was induced by hypoxia induced factor 1α (HIF-1α) in ICCA cell. Further exploration revealed that ICCA-derived miR-30a-5p could be transferred to endothelial and increased endothelial cells recruitment and proliferation, induced angiogenesis and vascular permeability in exosome dependent manner. In addition, circulating exosomal miR-30a-5p was higher in ICCA patients, and correlated with ICCA tissues-expressing miR-30a-5p. Hypoxic stress enhanced the effects of exosomal miR-30a-5p on endothelial-associated phenotypes. Rescued experiments showed that exosomal miR-30a-5p modulated endothelial-associated phenotypes in a way relied on programmed cell death 10 (PDCD10). Moreover, we revealed that the packing of miR-30a-5p into ICCA cells-derived exosomes was mediated by eukaryotic translation initiation factor 4B (EIF4B). More importantly, the combined application of targeting miR-30a-5p and apatinib could synergistically improve antiangiogenic efficacy in ICCA. Combined, ICCA-derived exosomal miR-30a-5p could be an excellent therapeutic and monitoring indicator for ICCA patients.
Collapse
Affiliation(s)
- Wangjie Jiang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Xiaoli Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Lizhu Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yaodong Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Xiangxu Kong
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Xiao Yang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Changxian Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Xiangcheng Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| |
Collapse
|
165
|
Song Y, Kelava L, Kiss I. MiRNAs in Lung Adenocarcinoma: Role, Diagnosis, Prognosis, and Therapy. Int J Mol Sci 2023; 24:13302. [PMID: 37686110 PMCID: PMC10487838 DOI: 10.3390/ijms241713302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Lung cancer has emerged as a significant public health challenge and remains the leading cause of cancer-related mortality worldwide. Among various types of lung malignancies, lung adenocarcinoma (LUAD) stands as the most prevalent form. MicroRNAs (miRNAs) play a crucial role in gene regulation, and their involvement in cancer has been extensively explored. While several reviews have been published on miRNAs and lung cancer, there remains a gap in the review regarding miRNAs specifically in LUAD. In this review, we not only highlight the potential diagnostic, prognostic, and therapeutic implications of miRNAs in LUAD, but also present an inclusive overview of the extensive research conducted on miRNAs in this particular context.
Collapse
Affiliation(s)
- Yongan Song
- Department of Public Health Medicine, University of Pécs Medical School, Szigeti Str. 12, 7624 Pécs, Hungary
| | - Leonardo Kelava
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Szigeti Str. 12, 7624 Pécs, Hungary
| | - István Kiss
- Department of Public Health Medicine, University of Pécs Medical School, Szigeti Str. 12, 7624 Pécs, Hungary
| |
Collapse
|
166
|
Dou Q, Wang J, Yang Y, Zhuo W. Roles of exosome-derived non-coding RNA in tumor micro-environment and its clinical application. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:429-438. [PMID: 37643977 PMCID: PMC10495245 DOI: 10.3724/zdxbyxb-2023-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023]
Abstract
Tumor-derived exosomes play an important role in the tumor micro-environment. The exosome-derived non-coding RNAs are transmitted in the tumor microenvironment in three ways, communication between tumor cells, normal cells affecting tumor cells, and tumor cells affecting normal cells. Through these three ways, exosomal non-coding RNAs are involved in the regulation of tumor progression, affecting tumor angiogenesis, tumor invasiveness, drug resistance, stemness, tumor metabolic repro-gramming and immune escape, resulting in dual roles in promoting or inhibiting tumor development. Exosomes have a membranous structure and their contents are resistant to degradation by extracellular proteases and remain highly stable in body fluids, thus exosome-derived non-coding RNAs are expected to serve as diagnostic and prognostic indicators for a variety of cancers. In addition, exosomes can be used to deliver non-coding RNAs for targeted therapy, or to knock down or modify tumor-promoting non-coding RNAs for tumor therapy. This article reviews the function and communication mechanism of exosomal non-coding RNAs in the tumor microenvironment, including their pathways of action, effects, potential values for tumor biomarkers and treatment targets. This article also points out the issues that need to be further studied in order to promote the progress of extracellular non-coding RNAs in cancer research and their application in tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Qinyi Dou
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Center for Medical Research and Innovation in Digestive System Tumors of the Ministry of Education, Hangzhou 310020, China.
- Zhejiang University Cancer Center, Hangzhou 310058, China.
| | - Jiazheng Wang
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Center for Medical Research and Innovation in Digestive System Tumors of the Ministry of Education, Hangzhou 310020, China.
- Zhejiang University Cancer Center, Hangzhou 310058, China.
| | - Yingshuo Yang
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Center for Medical Research and Innovation in Digestive System Tumors of the Ministry of Education, Hangzhou 310020, China.
- Zhejiang University Cancer Center, Hangzhou 310058, China.
| | - Wei Zhuo
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Center for Medical Research and Innovation in Digestive System Tumors of the Ministry of Education, Hangzhou 310020, China.
- Zhejiang University Cancer Center, Hangzhou 310058, China.
| |
Collapse
|
167
|
Li Z, Lei Z, Cai Y, Cheng DB, Sun T. MicroRNA therapeutics and nucleic acid nano-delivery systems in bacterial infection: a review. J Mater Chem B 2023; 11:7804-7833. [PMID: 37539650 DOI: 10.1039/d3tb00694h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Bacteria that have worked with humans for thousands of years pose a major threat to human health even today, as drug resistance has become a prominent problem. Compared to conventional drug therapy, nucleic acid-based therapies are a promising and potential therapeutic strategy for diseases in which nucleic acids are delivered through a nucleic acid delivery system to regulate gene expression in specific cells, offering the possibility of curing intractable diseases that are difficult to treat at this stage. Among the many nucleic acid therapeutic ideas, microRNA, a class of small nucleic acids with special properties, has made great strides in biology and medicine in just over two decades, showing promise in preclinical drug development. In this review, we introduce recent advances in nucleic acid delivery systems and their clinical applications, highlighting the potential of nucleic acid therapies, especially miRNAs extracted from traditional herbs, in combination with the existing set of nucleic acid therapeutic systems, to potentially open up a new line of thought in the treatment of cancer, viruses, and especially bacterial infectious diseases.
Collapse
Affiliation(s)
- Ze Li
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Yilun Cai
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
168
|
Bayramov B, Bayramov N, Aslanov H, Karimova N, Gasimov K, Shahmuradov I, Reißfelder C, Yagublu V. Association of miR-149 T>C and miR-196a2 C>T Polymorphisms with Colorectal Cancer Susceptibility: A Case-Control Study. Biomedicines 2023; 11:2341. [PMID: 37760783 PMCID: PMC10525737 DOI: 10.3390/biomedicines11092341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
The principal aim of the current study was to investigate the relationship between miR-149 T>C (rs2292832) and miR-196a2 C>T (rs11614913) small non-coding RNA polymorphisms and the risk of developing CRC in the Azerbaijani population. The study included 120 patients diagnosed with CRC and 125 healthy individuals. Peripheral blood samples were collected from all the subjects in EDTA tubes and DNA extraction was performed by salting out. Polymorphisms were determined using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. While comparing without gender distinction no statistical correlation was found between the heterozygous TC (OR = 0.66; 95% CI = 0.37-1.15; p = 0.142), mutant CC (OR = 1.23; 95% CI = 0.62-2.45; p = 0.550), and mutant C (OR = 1.03; 95% CI = 0.72-1.49; p = 0.859) alleles of the miR-149 gene and the CT (OR = 1.23; 95% CI = 0.69-2.20; p = 0.485), mutant TT (OR = 1.29; 95% CI = 0.67-2.47; p = 0.452), and mutant T (OR = 1.17; 95% CI = 0.82-1.67; p = 0.388) alleles of the miR-196a2 gene and the risk of CRC. However, among women, miR-149 TC (OR = 0.43; 95% CI = 0.19-1.01; p = 0.048) correlated with a reduced risk of CRC, whereas miR-196a2 CT (OR = 2.77; 95% CI = 1.13-6.79; p = 0.025) correlated with an increased risk of CRC. Our findings indicated that miR-149 T>C (rs2292832) might play a protective role in the development of CRC in female patients, whereas the miR-196a2 (rs11614913) polymorphism is associated with an increased risk of CRC in women in the Azerbaijani population, highlighting the importance of gender dimorphism in cancer etiology.
Collapse
Affiliation(s)
- Bayram Bayramov
- Laboratory of Human Genetics, Genetic Resources Institute of Ministry of Science and Education, Baku AZ1106, Azerbaijan; (B.B.); (N.K.)
| | - Nuru Bayramov
- Department of Surgery, Azerbaijan Medical University, Baku AZ1022, Azerbaijan;
| | - Hazi Aslanov
- Department of Surgery, Scientific Center of Surgery, Baku AZ1122, Azerbaijan;
| | - Nigar Karimova
- Laboratory of Human Genetics, Genetic Resources Institute of Ministry of Science and Education, Baku AZ1106, Azerbaijan; (B.B.); (N.K.)
| | - Karim Gasimov
- Laboratory of Molecular and Cellular Biochemistry, Institute of Biophysics of Ministry of Science and Education, Baku AZ1141, Azerbaijan;
| | - Ilham Shahmuradov
- Bioinformatics Lab, Institute of Molecular Biology and Biotechnologies of Ministry of Science and Education, Baku AZ1141, Azerbaijan;
- Integrative Biology Lab, Institute of Biophysics of Ministry of Science and Education, Baku AZ1141, Azerbaijan
| | - Christoph Reißfelder
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Vugar Yagublu
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| |
Collapse
|
169
|
Tolue Ghasaban F, Maharati A, Zangouei AS, Zangooie A, Moghbeli M. MicroRNAs as the pivotal regulators of cisplatin resistance in head and neck cancers. Cancer Cell Int 2023; 23:170. [PMID: 37587481 PMCID: PMC10428558 DOI: 10.1186/s12935-023-03010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023] Open
Abstract
Although, there is a high rate of good prognosis in early stage head and neck tumors, about half of these tumors are detected in advanced stages with poor prognosis. A combination of chemotherapy, radiotherapy, and surgery is the treatment option in head and neck cancer (HNC) patients. Although, cisplatin (CDDP) as the first-line drug has a significant role in the treatment of HNC patients, CDDP resistance can be observed in a large number of these patients. Therefore, identification of the molecular mechanisms involved in CDDP resistance can help to reduce the side effects and also provides a better therapeutic management. MicroRNAs (miRNAs) as the post-transcriptional regulators play an important role in drug resistance. Therefore, in the present review we investigated the role of miRNAs in CDDP response of head and neck tumors. It has been reported that the miRNAs exerted their roles in CDDP response by regulation of signaling pathways such as WNT, NOTCH, PI3K/AKT, TGF-β, and NF-kB as well as apoptosis, autophagy, and EMT process. The present review paves the way to suggest a non-invasive miRNA based panel marker for the prediction of CDDP response among HNC patients. Therefore, such diagnostic miRNA based panel marker reduces the CDDP side effects and improves the clinical outcomes of these patients following an efficient therapeutic management.
Collapse
Affiliation(s)
- Faezeh Tolue Ghasaban
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Zangooie
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Student research committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
170
|
Yu F, Luo K, Wang M, Luo J, Sun L, Yu S, Zuo J, Wang Y. Selenomethionine Antagonized microRNAs Involved in Apoptosis of Rat Articular Cartilage Induced by T-2 Toxin. Toxins (Basel) 2023; 15:496. [PMID: 37624253 PMCID: PMC10467099 DOI: 10.3390/toxins15080496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
T-2 toxin and selenium deficiency are considered important etiologies of Kashin-Beck disease (KBD), although the exact mechanism is still unclear. To identify differentially expressed microRNAs (DE-miRNAs) in the articular cartilage of rats exposed to T-2 toxin and selenomethionine (SeMet) supplementation, thirty-six 4-week-old Sprague Dawley rats were divided into a control group (gavaged with 4% anhydrous ethanol), a T-2 group (gavaged with 100 ng/g·bw/day T-2 toxin), and a T-2 + SeMet group (gavaged with 100 ng/g·bw/day T-2 toxin and 0.5 mg/kg·bw/day SeMet), respectively. Toluidine blue staining was performed to detect the pathological changes of articular cartilage. Three rats per group were randomly selected for high-throughput sequencing of articular cartilage. Target genes of DE-miRNAs were predicted using miRanda and RNAhybrid databases, and the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway were enriched. The network map of miRNA-target genes was constructed using Cytoscape software. The expression profiles of miRNAs associated with KBD were obtained from the Gene Expression Omnibus database. Additionally, the DE-miRNAs were selected for real-time quantitative PCR (RT-qPCR) verification. Toluidine blue staining demonstrated that T-2 toxin damaged articular cartilage and SeMet effectively alleviated articular cartilage lesions. A total of 50 DE-miRNAs (28 upregulated and 22 downregulated) in the T-2 group vs. the control group, 18 DE-miRNAs (6 upregulated and 12 downregulated) in the T-2 + SeMet group vs. the control group, and 25 DE-miRNAs (5 upregulated and 20 downregulated) in the T-2 + SeMet group vs. the T-2 group were identified. Enrichment analysis showed the target genes of DE-miRNAs were associated with apoptosis, and in the MAPK and TGF-β signaling pathways in the T-2 group vs. the control group. However, the pathway of apoptosis was not significant in the T-2 + SeMet group vs. the control group. These results indicated that T-2 toxin induced apoptosis, whereas SeMet supplementation antagonized apoptosis. Apoptosis and autophagy occurred simultaneously in the T-2 + SeMet group vs. T-2 group, and autophagy may inhibit apoptosis to protect cartilage. Compared with the GSE186593 dataset, the evidence of miR-133a-3p involved in apoptosis was more abundant. The results of RT-qPCR validation were consistent with RNA sequencing results. Our findings suggested that apoptosis was involved in articular cartilage lesions induced by T-2 toxin, whereas SeMet supplementation antagonized apoptosis, and that miR-133a-3p most probably played a central role in the apoptosis process.
Collapse
Affiliation(s)
- Fangfang Yu
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (F.Y.); (K.L.); (M.W.); (L.S.); (S.Y.); (J.Z.)
| | - Kangting Luo
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (F.Y.); (K.L.); (M.W.); (L.S.); (S.Y.); (J.Z.)
| | - Miao Wang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (F.Y.); (K.L.); (M.W.); (L.S.); (S.Y.); (J.Z.)
| | - Jincai Luo
- Sanmenxia Center for Disease Control and Prevention, Sanmenxia 472000, China;
| | - Lei Sun
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (F.Y.); (K.L.); (M.W.); (L.S.); (S.Y.); (J.Z.)
| | - Shuiyuan Yu
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (F.Y.); (K.L.); (M.W.); (L.S.); (S.Y.); (J.Z.)
| | - Juan Zuo
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (F.Y.); (K.L.); (M.W.); (L.S.); (S.Y.); (J.Z.)
| | - Yanjie Wang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (F.Y.); (K.L.); (M.W.); (L.S.); (S.Y.); (J.Z.)
| |
Collapse
|
171
|
Li Y, Kong Y, An M, Luo Y, Zheng H, Lin Y, Chen J, Yang J, Liu L, Luo B, Huang J, Lin T, Chen C. ZEB1-mediated biogenesis of circNIPBL sustains the metastasis of bladder cancer via Wnt/β-catenin pathway. J Exp Clin Cancer Res 2023; 42:191. [PMID: 37528489 PMCID: PMC10394821 DOI: 10.1186/s13046-023-02757-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) circularized by back-splicing of pre-mRNA are widely expressed and affected the proliferation, invasion and metastasis of bladder cancer (BCa). However, the mechanism underlying circRNA biogenesis in mediating the distant metastasis of BCa still unexplored. METHODS RNA sequencing data between BCa and normal adjacent tissues was applied to identify the differentially expressed circRNAs. The functions of circNIPBL in BCa were investigated via a series of biochemical experiments. The Clinical significance of circNIPBL was examined in a cohort of larger BCa tissues. RESULTS In the present study, we identified a novel circRNA (hsa_circ_0001472), circNIPBL, which was significantly upregulated and had great influence on the poor prognosis of patients with BCa. Functionally, circNIPBL promotes BCa metastasis in vitro and in vivo. Mechanistically, circNIPBL upregulate the expression of Wnt5a and activated the Wnt/β-catenin signaling pathway via directly sponged miR-16-2-3p, leading to the upregulation of ZEB1, which triggers the EMT of BCa. Moreover, we revealed that ZEB1 interacted with the flanking introns of exons 2-9 on NIPBL pre-mRNA to trigger circNIPBL biogenesis, thus forming a positive feedback loop. Importantly, circNIPBL overexpression significantly facilitated the distant metastasis of BCa in the orthotopic bladder cancer model, while silencing ZEB1 remarkably blocked the effects of metastasis induced by circNIPBL overexpression. CONCLUSIONS Our study highlights that circNIPBL-induced Wnt signaling pathway activation triggers ZEB1-mediated circNIPBL biogenesis, which forms a positive feedback loop via the circNIPBL/miR-16-2-3p/Wnt5a/ZEB1 axis, supporting circNIPBL as a novel therapeutic target and potential biomarker for BCa patients.
Collapse
Affiliation(s)
- Yuanlong Li
- Department of Urology, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, 510120, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P. R. China
| | - Yao Kong
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, P. R. China
| | - Mingjie An
- Department of Urology, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, 510120, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P. R. China
| | - Yuming Luo
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, P. R. China
| | - Hanhao Zheng
- Department of Urology, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, 510120, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P. R. China
| | - Yan Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, 510120, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P. R. China
| | - Jiancheng Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, 510120, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P. R. China
| | - Jin Yang
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, P. R. China
| | - Libo Liu
- Department of Urology, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, 510120, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P. R. China
| | - Baoming Luo
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P. R. China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, 510120, Guangdong, P. R. China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P. R. China.
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, 510120, Guangdong, P. R. China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P. R. China.
| | - Changhao Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, 510120, Guangdong, P. R. China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P. R. China.
| |
Collapse
|
172
|
Wu L, Xiao H, Hong Y, Xie M, Yu Y, Jiang L. CircRNA Circ_0000118 Regulates Malignancy of Cervical Cancer Cells by Regulating miR-211-5p/miR-377-3p/AKT2 Axis. Biochem Genet 2023; 61:1625-1644. [PMID: 36719624 PMCID: PMC10371915 DOI: 10.1007/s10528-023-10332-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 01/06/2023] [Indexed: 02/01/2023]
Abstract
CircRNAs are implicated in the development of several cancers. Nevertheless, the involvement of circ_0000118 in the development of cervical cancer (CC) remains unclear. Circ_0000118 levels in tumor tissues and cells were examined by qRT-PCR. The function of circ_0000118 in regulating the malignancy of CC cells was investigated using functional assays, including CCK-8, colony formation, transwell, and tube formation experiments. The functional interaction between circ_0000118 and microRNAs were validated by dual-luciferase activity assay and RNA precipitation experiments. In vivo mouse model was employed to assess the effect of circ_0000118 in the tumorigenesis of CC cells. Circ_0000118 was overexpressed in CC cells and tissues. Loss-of-function experiments demonstrated that circ_0000118 knockdown impaired the proliferation and tumor sphere formation, as well as the angiogenic potential of CC cells. RNA interaction experiments confirmed that circ_0000118 sponged miR-211-5p and miR-377-3p. AKT2 was found to be a target gene negatively modulated by miR-211-5p and miR-377-3p. AKT2 overexpression rescued the inhibition of circ_0000118 downregulation on CC cells. Our study suggested that circ_0000118 functions as an oncogenic factor in progression of CC by maintaining AKT2 level through targeting miR-211-5p and miR-377-3p as a ceRNA (competitive endogenous RNA), which provides novel therapeutic target in the management of CC.
Collapse
Affiliation(s)
- Lilan Wu
- Department of Obstetrics and Gynecology, Chunan County Traditional Chinese Medicine Hospital, No.1 Xin'an West Road, Chun'an, Hangzhou, 311700, Zhejiang, China
| | - Huiqin Xiao
- Department of Obstetrics and Gynecology, Chunan County Traditional Chinese Medicine Hospital, No.1 Xin'an West Road, Chun'an, Hangzhou, 311700, Zhejiang, China
| | - Yaqin Hong
- Department of Obstetrics and Gynecology, Chunan County Traditional Chinese Medicine Hospital, No.1 Xin'an West Road, Chun'an, Hangzhou, 311700, Zhejiang, China
| | - Meihua Xie
- Department of Obstetrics and Gynecology, Chunan County Traditional Chinese Medicine Hospital, No.1 Xin'an West Road, Chun'an, Hangzhou, 311700, Zhejiang, China
| | - Yanxia Yu
- Department of Obstetrics and Gynecology, Chunan County Traditional Chinese Medicine Hospital, No.1 Xin'an West Road, Chun'an, Hangzhou, 311700, Zhejiang, China
| | - Lijuan Jiang
- Department of Obstetrics and Gynecology, Chunan County Traditional Chinese Medicine Hospital, No.1 Xin'an West Road, Chun'an, Hangzhou, 311700, Zhejiang, China.
| |
Collapse
|
173
|
Wang HN, Vo-Dinh T. Cascade Amplified Plasmonics Molecular Biosensor for Sensitive Detection of Disease Biomarkers. BIOSENSORS 2023; 13:774. [PMID: 37622860 PMCID: PMC10452163 DOI: 10.3390/bios13080774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Recent advances in molecular technologies have provided various assay strategies for monitoring biomarkers, such as miRNAs for early detection of various diseases and cancers. However, there is still an urgent unmet need to develop practical and accurate miRNA analytical tools that could facilitate the incorporation of miRNA biomarkers into clinical practice and management. In this study, we demonstrate the feasibility of using a cascade amplification method, referred to as the "Cascade Amplification by Recycling Trigger Probe" (CARTP) strategy, to improve the detection sensitivity of the inverse Molecular Sentinel (iMS) nanobiosensor. The iMS nanobiosensor developed in our laboratory is a unique homogeneous multiplex bioassay technique based on surface-enhanced Raman scattering (SERS) detection, and was used to successfully detect miRNAs from clinical samples. The CARTP strategy based on the toehold-mediated strand displacement reaction is triggered by a linear DNA strand, called the "Recycling Trigger Probe" (RTP) strand, to amplify the iMS SERS signal. Herein, by using the CARTP strategy, we show a significantly improved detection sensitivity with the limit of detection (LOD) of 45 fM, which is 100-fold more sensitive than the non-amplified iMS assay used in our previous report. We envision that the further development and optimization of this strategy ultimately will allow multiplexed detection of miRNA biomarkers with ultra-high sensitivity for clinical translation and application.
Collapse
Affiliation(s)
- Hsin-Neng Wang
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA;
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Tuan Vo-Dinh
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA;
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| |
Collapse
|
174
|
Guo J, Tong CY, Shi JG, Li XJ, Chen XQ. Deletion of osteopontin in non-small cell lung cancer cells affects bone metabolism by regulating miR-34c/Notch1 axis: a clue to bone metastasis. Eur J Histochem 2023; 67:3631. [PMID: 37491944 PMCID: PMC10476534 DOI: 10.4081/ejh.2023.3631] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/13/2023] [Indexed: 07/27/2023] Open
Abstract
Lung cancer is prone to bone metastasis, and osteopontin (OPN) has an important significance in maintaining bone homeostasis. The goal of this study was to explore the impact of OPN level on bone metabolism and the molecular mechanism of inhibiting bone metastasis in non-small cell lung cancer (NSCLC). The expression of OPN in NSCLC was ascertained by Western blot and immunohistochemistry, and the correlation between the expression level of OPN and survival of patients was analyzed. Then the shRNA technology was applied to reduce the expression of OPN in NSCLC cells, and CCK-8 assay was carried out to investigate the effect of low expression of OPN on the proliferation of NSCLC cells. In addition, the effects of low expression of OPN on osteoclast differentiation, osteoblast generation and mineralization were studied using osteoclast precursor RAW264.7 and human osteoblast SaOS-2 cells, and whether OPN could regulate miR-34c/ Notch pathway to affect bone metabolism was further explored. The findings showed that the high level of OPN in NSCLC was closely related to the poor prognosis of patients and the abnormal proliferation of NSCLC cell lines. The suppression of OPN was beneficial to inhibit the differentiation of osteoclasts and promote the mineralization of osteoblasts. Besides, this study confirmed that the deletion of OPN can regulate bone metabolism through the regulation of miR-34c/Notch1 pathway, which will contribute to inhibiting the occurrence of osteolytic bone metastasis in NSCLC.
Collapse
Affiliation(s)
- Jing Guo
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo, Zhejiang.
| | - Chang-Yong Tong
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo, Zhejiang.
| | - Jian-Guang Shi
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo, Zhejiang.
| | - Xin-Jian Li
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo, Zhejiang.
| | - Xue-Qin Chen
- Department of Chinese Traditional Medicine, Ningbo First Hospital, Ningbo, Zhejiang.
| |
Collapse
|
175
|
Czarnywojtek A, Borowska M, Dyrka K, Van Gool S, Sawicka-Gutaj N, Moskal J, Kościński J, Graczyk P, Hałas T, Lewandowska AM, Czepczyński R, Ruchała M. Glioblastoma Multiforme: The Latest Diagnostics and Treatment Techniques. Pharmacology 2023; 108:423-431. [PMID: 37459849 DOI: 10.1159/000531319] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 05/05/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a WHO grade 4 glioma and the most common malignant primary brain tumour. Recently, there has been outstanding progress in the treatment of GBM. In addition to the newest form of GBM removal using fluorescence, three-dimensional (3D) imaging, tomoradiotherapy, moderate electro-hyperthermia, and adjuvant temozolomide (post-operative chemotherapy), new developments have been made in the fields of immunology, molecular biology, and virotherapy. An unusual and modern treatment has been created, especially for stage 4 GBM, using the latest therapeutic techniques, including immunotherapy and virotherapy. Modern oncological medicine is producing extraordinary and progressive therapeutic methods. Oncological therapy includes individual analysis of the properties of a tumour and targeted therapy using small-molecule inhibitors. Individualised medicine covers the entire patient (tumour and host) in the context of immunotherapy. An example is individualised multimodal immunotherapy (IMI), which relies on individual immunological tumour-host interactions. In addition, IMI is based on the concept of oncolytic virus-induced immunogenic tumour cell death. SUMMARY In this review, we outline current knowledge of the various available treatment options used in the therapy of GBM including both traditional therapeutic strategy and modern therapies, such as tomotherapy, electro-hyperthermia, and oncolytic virotherapy, which are promising treatment strategies with the potential to improve prognosis in patients with GBM. KEY MESSAGES This newest therapy, immunotherapy combined with virotherapy (oncolytic viruses and cancer vaccines), is displaying encouraging signs for combating GBM. Additionally, the latest 3D imaging is compared to conventional two-dimensional imaging.
Collapse
Affiliation(s)
- Agata Czarnywojtek
- Chair and Department of Pharmacology, Poznan University of Medical Sciences, Poznan, Poland
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Magdalena Borowska
- Chair and Department of Pharmacology, Poznan University of Medical Sciences, Poznan, Poland
| | - Kamil Dyrka
- Department of Pediatric Endocrinology and Rheumatology, Institute of Pediatrics, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Nadia Sawicka-Gutaj
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Jakub Moskal
- Department of Neurosurgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Jeremi Kościński
- Department of Neurosurgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Patryk Graczyk
- Chair and Department of Pharmacology, Poznan University of Medical Sciences, Poznan, Poland
| | - Tomasz Hałas
- Chair and Department of Pharmacology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Rafał Czepczyński
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
176
|
Chen ZH, Chen YB, Yue HR, Zhou XJ, Ma HY, Wang X, Cao XC, Yu Y. PAX5-miR-142 feedback loop promotes breast cancer proliferation by regulating DNMT1 and ZEB1. Mol Med 2023; 29:89. [PMID: 37403081 DOI: 10.1186/s10020-023-00681-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 06/07/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Breast cancer is one of the most common malignancies occurred in female around the globe. Recent studies have revealed the crucial characters of miRNA and genes, as well as the essential roles of epigenetic regulation in breast cancer initiation and progression. In our previous study, miR-142-3p was identified as a tumor suppressor and led to G2/M arrest through targeting CDC25C. However, the specific mechanism is still uncertain. METHODS We identified PAX5 as the upstream regulator of miR-142-5p/3p through ALGGEN website and verified by series of assays in vitro and in vivo. The expression of PAX5 in breast cancer was detected by qRT-PCR and western blot. Besides, bioinformatics analysis and BSP sequencing were performed to analyze the methylation of PAX5 promoter region. Finally, the binding sites of miR-142 on DNMT1 and ZEB1 were predicted by JASPAR, and proved by luciferase reporter assay, ChIP analysis and co-IP. RESULTS PAX5 functioned as a tumor suppressor by positive regulation of miR-142-5p/3p both in vitro and in vivo. The expression of PAX5 was regulated by the methylation of its promoter region induced by DNMT1 and ZEB1. In addition, miR-142-5p/3p could regulate the expression of DNMT1 and ZEB1 through binding with their 3'UTR region, respectively. CONCLUSION In summary, PAX5-miR-142-DNMT1/ZEB1 constructed a negative feedback loop to regulate the progression of breast cancer, which provided emerging strategies for breast cancer therapy.
Collapse
Affiliation(s)
- Zhao-Hui Chen
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huan-Hu-Xi Road, He-Xi District, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yi-Bo Chen
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huan-Hu-Xi Road, He-Xi District, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Department of General Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Hao-Ran Yue
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huan-Hu-Xi Road, He-Xi District, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xue-Jie Zhou
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huan-Hu-Xi Road, He-Xi District, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hai-Yan Ma
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huan-Hu-Xi Road, He-Xi District, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xin Wang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huan-Hu-Xi Road, He-Xi District, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xu-Chen Cao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huan-Hu-Xi Road, He-Xi District, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yue Yu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huan-Hu-Xi Road, He-Xi District, Tianjin, 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
177
|
Kern AE, Ortmayr G, Assinger A, Starlinger P. The role of microRNAs in the different phases of liver regeneration. Expert Rev Gastroenterol Hepatol 2023; 17:959-973. [PMID: 37811642 DOI: 10.1080/17474124.2023.2267422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
INTRODUCTION Since the first discovery of microRNAs (miRs) extensive evidence reveals their indispensable role in different patho-physiological processes. They are recognized as critical regulators of hepatic regeneration, as they modulate multiple complex signaling pathways affecting liver regeneration. MiR-related translational suppression and degradation of target mRNAs and proteins are not limited to one specific gene, but act on multiple targets. AREAS COVERED In this review, we are going to explore the role of miRs in the context of liver regeneration and discuss the regulatory effects attributed to specific miRs. Moreover, specific pathways crucial for liver regeneration will be discussed, with a particular emphasis on the involvement of miRs within the respective signaling cascades. EXPERT OPINION The considerable amount of studies exploring miR functions in a variety of diseases paved the way for the development of miR-directed therapeutics. Clinical implementation has already shown promising results, but additional research is warranted to assure safe and efficient delivery. Nevertheless, given the broad functional properties of miRs and their critical involvement during hepatic regeneration, they represent an attractive treatment target to promote liver recovery after hepatic resection.
Collapse
Affiliation(s)
- Anna Emilia Kern
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
| | - Gregor Ortmayr
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Department of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Patrick Starlinger
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, Mayo Clinic, Rochester, MN, USA
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
178
|
Peng Y, Gao Z, Qiao B, Li D, Pang H, Lai X, Pu Q, Zhang R, Zhao X, Zhao G, Xu D, Wang Y, Ji Y, Pei H, Wu Q. Size-Controlled DNA Tile Self-Assembly Nanostructures Through Caveolae-Mediated Endocytosis for Signal-Amplified Imaging of MicroRNAs in Living Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300614. [PMID: 37189216 PMCID: PMC10375201 DOI: 10.1002/advs.202300614] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/30/2023] [Indexed: 05/17/2023]
Abstract
Signal-amplified imaging of microRNAs (miRNAs) is a promising strategy at the single-cell level because liquid biopsy fails to reflect real-time dynamic miRNA levels. However, the internalization pathways for available conventional vectors predominantly involve endo-lysosomes, showing nonideal cytoplasmic delivery efficiency. In this study, size-controlled 9-tile nanoarrays are designed and constructed by integrating catalytic hairpin assembly (CHA) with DNA tile self-assembly technology to achieve caveolae-mediated endocytosis for the amplified imaging of miRNAs in a complex intracellular environment. Compared with classical CHA, the 9-tile nanoarrays possess high sensitivity and specificity for miRNAs, achieve excellent internalization efficiency by caveolar endocytosis, bypassing lysosomal traps, and exhibit more powerful signal-amplified imaging of intracellular miRNAs. Because of their excellent safety, physiological stability, and highly efficient cytoplasmic delivery, the 9-tile nanoarrays can realize real-time amplified monitoring of miRNAs in various tumor and identical cells of different periods, and imaging effects are consistent with the actual expression levels of miRNAs, ultimately demonstrating their feasibility and capacity. This strategy provides a high-potential delivery pathway for cell imaging and targeted delivery, simultaneously offering a meaningful reference for the application of DNA tile self-assembly technology in relevant fundamental research and medical diagnostics.
Collapse
Affiliation(s)
- Yanan Peng
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Zhijun Gao
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Bin Qiao
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
- Key Laboratory of Emergency and Trauma of Ministry of EducationResearch Unit of Island Emergency MedicineChinese Academy of Medical Sciences (No. 2019RU013)Hainan Medical UniversityHaikou571199P. R. China
| | - Dongxia Li
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Huajie Pang
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Xiangde Lai
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Qiumei Pu
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Rui Zhang
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Xuan Zhao
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Guangyuan Zhao
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Dan Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of PharmacyHainan Medical UniversityHaikou571199P. R. China
| | - Yuanyuan Wang
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
- Key Laboratory of Emergency and Trauma of Ministry of EducationResearch Unit of Island Emergency MedicineChinese Academy of Medical Sciences (No. 2019RU013)Hainan Medical UniversityHaikou571199P. R. China
| | - Yuxiang Ji
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Hua Pei
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Qiang Wu
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
- Key Laboratory of Emergency and Trauma of Ministry of EducationResearch Unit of Island Emergency MedicineChinese Academy of Medical Sciences (No. 2019RU013)Hainan Medical UniversityHaikou571199P. R. China
| |
Collapse
|
179
|
Wang L, Wang D, Xu Z, Qiu Y, Chen G, Tan F. Circ_0010235 confers cisplatin resistance in lung cancer by upregulating E2F7 through absorbing miR-379-5p. Thorac Cancer 2023; 14:1946-1957. [PMID: 37277864 PMCID: PMC10344743 DOI: 10.1111/1759-7714.14941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Cisplatin (DDP) treatment is one of the most predominant chemotherapeutic strategies for lung cancer patients. Circular RNAs (circRNAs) have been revealed to participate in the chemoresistance in lung cancer. Hence, the role and mechanism of circ_0010235 in cisplatin resistance in lung cancer was investigated. METHODS Expression levels of circ_0010235, microRNA (miR)-379-5p and E2F transcription factor 7 (E2F7) were analyzed using quantitative reverse transcription PCR (qRT-PCR) and western blot. Cell DDP sensitivity, proliferation, apoptosis, invasion, and migration were detected by cell counting kit-8 assay, 5-ethynyl-2'-deoxyuridine (EDU) assay, flow cytometry and western blot, respectively. The binding interaction was verified using dual-luciferase reporter assay. A murine xenograft model was established to investigate effects in vivo. RESULTS Circ_0010235 was highly expressed in DDP-resistant lung cancer tissues and cells. Knockdown of circ_0010235 elevated DDP sensitivity, constrained proliferation, invasion and migration as well as fostered apoptosis in DDP-resistant lung cancer cells. Moreover, circ_0010235 silencing boosted DDP sensitivity and impeded tumor growth in lung cancer in vivo. Mechanistically, circ_0010235 acted as a sponge for miR-379-5p to elevate the expression of its target E2F7. Rescue experiments showed that miR-379-5p inhibition attenuated circ_0010235 knockdown-evoked reduction on DDP resistance of DDP-resistant cancer cells. In addition, miR-379-5p re-expression elevated DDP sensitivity and suppressed the malignant phenotype of DDP-resistant lung cancer cells through miR-379-5p. CONCLUSION Circ_0010235 knockdown reduced DDP resistance and tumor growth via miR-379-5p/ E2F7 axis in lung cancer, suggesting an effective therapeutic target for lung cancer patients.
Collapse
Affiliation(s)
- Lifei Wang
- Department of Pulmonary and Critical Care MedicineChangzhou Third People's HospitalChangzhouChina
| | - Dongchang Wang
- Department of Pulmonary and Critical Care MedicineThe Third Affiliated Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Zhen Xu
- Department of Pulmonary and Critical Care MedicineChangzhou Third People's HospitalChangzhouChina
| | - Yali Qiu
- Department of Pulmonary and Critical Care MedicineChangzhou Third People's HospitalChangzhouChina
| | - Gang Chen
- Department of Pulmonary and Critical Care MedicineThe Third Affiliated Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Furong Tan
- Department of Pulmonary and Critical Care MedicineChangzhou Third People's HospitalChangzhouChina
| |
Collapse
|
180
|
Hou J, Sun X. Let -7i : A key player and a promising biomarker in diseases. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:909-919. [PMID: 37587077 PMCID: PMC10930445 DOI: 10.11817/j.issn.1672-7347.2023.220146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Indexed: 08/18/2023]
Abstract
MicroRNAs (miRNAs) are endogenous non-coding single-stranded small RNAs that regulate gene expression by recognizing homologous sequences and interfering with transcriptional, translational or epigenetic processes. MiRNAs are involved in a variety of disease processes, and regulate the physiological and pathological status of diseases by modulating target cell activity, migration, invasion, apoptosis, autophagy and other processes. Among them, let-7i is highly expressed in various systems, which participates in the process of tumors, cardiovascular and cerebrovascular diseases, fibrotic diseases, inflammatory diseases, neurodegenerative diseases and other diseases, and plays a positive or negative regulatory role in these diseases through different signal pathways and key molecules. Moreover, it can be used as an early diagnosis and prognostic marker for a variety of diseases and become a potential therapeutic target. As a biomarker, let-7i is frequently tested in combination with other miRNAs to diagnose multiple diseases and evaluate the clinical treatment or prognosis.
Collapse
Affiliation(s)
- Jiali Hou
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha 410078.
- National Engineering Research Center of Human Stem Cells, Changsha 410205, China.
| | - Xuan Sun
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha 410078.
- National Engineering Research Center of Human Stem Cells, Changsha 410205, China.
| |
Collapse
|
181
|
Xiang Y, Yang Y, Liu J, Yang X. Functional role of MicroRNA/PI3K/AKT axis in osteosarcoma. Front Oncol 2023; 13:1219211. [PMID: 37404761 PMCID: PMC10315918 DOI: 10.3389/fonc.2023.1219211] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor that occurs in children and adolescents, and the PI3K/AKT pathway is overactivated in most OS patients. MicroRNAs (miRNAs) are highly conserved endogenous non-protein-coding RNAs that can regulate gene expression by repressing mRNA translation or degrading mRNA. MiRNAs are enriched in the PI3K/AKT pathway, and aberrant PI3K/AKT pathway activation is involved in the development of osteosarcoma. There is increasing evidence that miRNAs can regulate the biological functions of cells by regulating the PI3K/AKT pathway. MiRNA/PI3K/AKT axis can regulate the expression of osteosarcoma-related genes and then regulate cancer progression. MiRNA expression associated with PI3K/AKT pathway is also clearly associated with many clinical features. In addition, PI3K/AKT pathway-associated miRNAs are potential biomarkers for osteosarcoma diagnosis, treatment and prognostic assessment. This article reviews recent research advances on the role and clinical application of PI3K/AKT pathway and miRNA/PI3K/AKT axis in the development of osteosarcoma.
Collapse
|
182
|
Su R, Li C, Wang X, Li Z, Wen Z, Yin Z, Huang G, Liu Y, Yang J, Hu H, Nie H, Zhang K, Fei J. PPFIA1-targeting miR-181a mimic and saRNA overcome imatinib resistance in BCR-ABL1-independent chronic myeloid leukemia by suppressing leukemia stem cell regeneration. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:729-742. [PMID: 37234746 PMCID: PMC10208829 DOI: 10.1016/j.omtn.2023.04.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
A large proportion of patients with chronic myeloid leukemia (CML; 20%-50%) develop resistance to imatinib in a BCR-ABL1-independent manner. Therefore, new therapeutic strategies for use in this subset of imatinib-resistant CML patients are urgently needed. In this study, we used a multi-omics approach to show that PPFIA1 was targeted by miR-181a. We demonstrate that both miR-181a and PPFIA1-siRNA reduced the cell viability and proliferative capacity of CML cells in vitro, as well as prolonged the survival of B-NDG mice harboring human BCR-ABL1-independent imatinib-resistant CML cells. Furthermore, treatment with miR-181a mimic and PPFIA1-siRNA inhibited the self-renewal of c-kit+ and CD34+ leukemic stem cells and promoted their apoptosis. Small activating (sa)RNAs targeting the promoter of miR-181a increased the expression of endogenous primitive miR-181a (pri-miR-181a). Transfection with saRNA 1-3 inhibited the proliferation of imatinib-sensitive and -resistant CML cells. However, only saRNA-3 showed a stronger and more sustained inhibitory effect than the miR-181a mimic. Collectively, these results show that miR-181a and PPFIA1-siRNA may overcome the imatinib resistance of BCR-ABL1-independent CML, partially by inhibiting the self-renewal of leukemia stem cells and promoting their apoptosis. Moreover, exogenous saRNAs represent promising therapeutic agents in the treatment of imatinib-resistant BCR-ABL1-independent CML.
Collapse
Affiliation(s)
- Rui Su
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China
- Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou 510632, China
- Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Chuting Li
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China
- Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou 510632, China
- Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Xiuyuan Wang
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China
- Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou 510632, China
- Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Zhendong Li
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong, China
| | - Ziqi Wen
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China
- Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou 510632, China
- Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Zhao Yin
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China
- Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou 510632, China
- Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Guiping Huang
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China
- Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou 510632, China
- Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Yanjun Liu
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China
- Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou 510632, China
- Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Juhua Yang
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China
- Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou 510632, China
- Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Haiyan Hu
- Clinical Trial Center of Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Hong Nie
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Keda Zhang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Jia Fei
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China
- Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou 510632, China
- Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| |
Collapse
|
183
|
Zhao W, Li X, Ren Q, Wang Q, Liao C, Ding T, Li P, Liu J. Molecular mechanism of miRNA regulating PD-L1 expression. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2023.101763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
184
|
Pimenta R, Mioshi CM, Gonçalves GL, Candido P, Camargo JA, Guimarães VR, Chiovatto C, Ghazarian V, Romão P, da Silva KS, Dos Santos GA, Silva IA, Srougi M, Nahas WC, Leite KR, Viana NI, Reis ST. Intratumoral Restoration of miR-137 Plus Cholesterol Favors Homeostasis of the miR-137/Coactivator p160/AR Axis and Negatively Modulates Tumor Progression in Advanced Prostate Cancer. Int J Mol Sci 2023; 24:ijms24119633. [PMID: 37298588 DOI: 10.3390/ijms24119633] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
MicroRNAs (miRNAs) have gained a prominent role as biomarkers in prostate cancer (PCa). Our study aimed to evaluate the potential suppressive effect of miR-137 in a model of advanced PCa with and without diet-induced hypercholesterolemia. In vitro, PC-3 cells were treated with 50 pmol of mimic miR-137 for 24 h, and gene and protein expression levels of SRC-1, SRC-2, SRC-3, and AR were evaluated by qPCR and immunofluorescence. We also assessed migration rate, invasion, colony-forming ability, and flow cytometry assays (apoptosis and cell cycle) after 24 h of miRNA treatment. For in vivo experiments, 16 male NOD/SCID mice were used to evaluate the effect of restoring miR-137 expression together with cholesterol. The animals were fed a standard (SD) or hypercholesterolemic (HCOL) diet for 21 days. After this, we xenografted PC-3 LUC-MC6 cells into their subcutaneous tissue. Tumor volume and bioluminescence intensity were measured weekly. After the tumors reached 50 mm3, we started intratumor treatments with a miR-137 mimic, at a dose of 6 μg weekly for four weeks. Ultimately, the animals were killed, and the xenografts were resected and analyzed for gene and protein expression. The animals' serum was collected to evaluate the lipid profile. The in vitro results showed that miR-137 could inhibit the transcription and translation of the p160 family, SRC-1, SRC-2, and SRC-3, and indirectly reduce the expression of AR. After these analyses, it was determined that increased miR-137 inhibits cell migration and invasion and impacts reduced proliferation and increased apoptosis rates. The in vivo results demonstrated that tumor growth was arrested after the intratumoral restoration of miR-137, and proliferation levels were reduced in the SD and HCOL groups. Interestingly, the tumor growth retention response was more significant in the HCOL group. We conclude that miR-137 is a potential therapeutic miRNA that, in association with androgen precursors, can restore and reinstate the AR-mediated axis of transcription and transactivation of androgenic pathway homeostasis. Further studies involving the miR-137/coregulator/AR/cholesterol axis should be conducted to evaluate this miR in a clinical context.
Collapse
Affiliation(s)
- Ruan Pimenta
- Laboratório de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246903, SP, Brazil
- D'Or Institute for Research and Education (ID'Or), São Paulo 04501000, SP, Brazil
| | - Carolina Mie Mioshi
- Laboratório de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246903, SP, Brazil
- Campus Santo André, Universidade Federal do ABC, Santo André 09210580, SP, Brazil
| | - Guilherme L Gonçalves
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, SP, Brazil
| | - Patrícia Candido
- Laboratório de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246903, SP, Brazil
| | - Juliana A Camargo
- Laboratório de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246903, SP, Brazil
| | - Vanessa R Guimarães
- Laboratório de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246903, SP, Brazil
| | - Caroline Chiovatto
- Laboratório de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246903, SP, Brazil
- Campus Ipiranga, Centro Universitário São Camilo, São Paulo 04263200, SP, Brazil
| | - Vitória Ghazarian
- Laboratório de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246903, SP, Brazil
| | - Poliana Romão
- Laboratório de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246903, SP, Brazil
| | - Karina Serafim da Silva
- Laboratório de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246903, SP, Brazil
- Campus Ipiranga, Centro Universitário São Camilo, São Paulo 04263200, SP, Brazil
| | - Gabriel A Dos Santos
- Laboratório de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246903, SP, Brazil
| | - Iran A Silva
- Laboratório de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246903, SP, Brazil
| | - Miguel Srougi
- Laboratório de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246903, SP, Brazil
- D'Or Institute for Research and Education (ID'Or), São Paulo 04501000, SP, Brazil
| | - William C Nahas
- Uro-Oncology Group, Urology Department, Institute of Cancer Estate of São Paulo (ICESP), São Paulo 01246000, SP, Brazil
| | - Kátia R Leite
- Laboratório de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246903, SP, Brazil
| | - Nayara I Viana
- Laboratório de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246903, SP, Brazil
- Campus Passos, Universidade do Estado de Minas Gerais-UEMG, Passos 37900106, MG, Brazil
| | - Sabrina T Reis
- Laboratório de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246903, SP, Brazil
| |
Collapse
|
185
|
Arnesen S, Polaski J, Blanchard Z, Osborne K, Welm A, O’Connell R, Gertz J. Estrogen receptor alpha mutations regulate gene expression and cell growth in breast cancer through microRNAs. NAR Cancer 2023; 5:zcad027. [PMID: 37275275 PMCID: PMC10233889 DOI: 10.1093/narcan/zcad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/18/2023] [Accepted: 05/18/2023] [Indexed: 06/07/2023] Open
Abstract
Estrogen receptor α (ER) mutations occur in up to 30% of metastatic ER-positive breast cancers. Recent data has shown that ER mutations impact the expression of thousands of genes not typically regulated by wildtype ER. While the majority of these altered genes can be explained by constant activity of mutant ER or genomic changes such as altered ER binding and chromatin accessibility, as much as 33% remain unexplained, indicating the potential for post-transcriptional effects. Here, we explored the role of microRNAs in mutant ER-driven gene regulation and identified several microRNAs that are dysregulated in ER mutant cells. These differentially regulated microRNAs target a significant portion of mutant-specific genes involved in key cellular processes. When the activity of microRNAs is altered using mimics or inhibitors, significant changes are observed in gene expression and cellular proliferation related to mutant ER. An in-depth evaluation of miR-301b led us to discover an important role for PRKD3 in the proliferation of ER mutant cells. Our findings show that microRNAs contribute to mutant ER gene regulation and cellular effects in breast cancer cells.
Collapse
Affiliation(s)
- Spencer Arnesen
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Jacob T Polaski
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Zannel Blanchard
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Kyle S Osborne
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Ryan M O’Connell
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
186
|
Chu YH, Huang YC, Chiu PY, Kuo WH, Pan YR, Kuo YT, Wang RH, Kao YC, Wang YH, Lin YF, Lin KT. Combating breast cancer progression through combination therapy with hypomethylating agent and glucocorticoid. iScience 2023; 26:106597. [PMID: 37128608 PMCID: PMC10148121 DOI: 10.1016/j.isci.2023.106597] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/09/2022] [Accepted: 04/03/2023] [Indexed: 05/03/2023] Open
Abstract
Breast cancer is the leading cause of cancer-related death in women. Among breast cancer types, triple-negative breast cancer (TNBC) accounts for 15% of all breast cancers with aggressive tumor behavior. By using bioinformatic approaches, we observed that the microRNA-708 promoter is highly methylated in breast carcinomas, and this methylation is linked to a poor prognosis. Moreover, microRNA-708 expression correlates with better clinical outcomes in TNBC patients. Combination treatment with the hypomethylating agent decitabine and synthetic glucocorticoid significantly increased the expression of microRNA-708, reactivated DNMT-suppressed pathways, and decreased the expression of multiple metastasis-promoting genes such as matrix metalloproteinases (MMPs) and IL-1β, leading to the suppression of breast cancer cell proliferation, migration, and invasion, as well as reduced tumor growth and distant metastasis in the TNBC xenograft mouse model. Overall, our study reveals a therapeutic opportunity in which a combined regimen of decitabine with glucocorticoid may have therapeutic potential in treating TNBC patients.
Collapse
Affiliation(s)
- Yu-Hsin Chu
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Chen Huang
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Pei-Yun Chiu
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen-Hung Kuo
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yan-Ru Pan
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yuan-Ting Kuo
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Rong-Hsuan Wang
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Chin Kao
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Hsiang Wang
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Fan Lin
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Kai-Ti Lin
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- Department of Medical Science, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- Corresponding author
| |
Collapse
|
187
|
Hu Q, Huang T. Regulation of the Cell Cycle by ncRNAs Affects the Efficiency of CDK4/6 Inhibition. Int J Mol Sci 2023; 24:ijms24108939. [PMID: 37240281 DOI: 10.3390/ijms24108939] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) regulate cell division at multiple levels. Aberrant proliferation induced by abnormal cell cycle is a hallmark of cancer. Over the past few decades, several drugs that inhibit CDK activity have been created to stop the development of cancer cells. The third generation of selective CDK4/6 inhibition has proceeded into clinical trials for a range of cancers and is quickly becoming the backbone of contemporary cancer therapy. Non-coding RNAs, or ncRNAs, do not encode proteins. Many studies have demonstrated the involvement of ncRNAs in the regulation of the cell cycle and their abnormal expression in cancer. By interacting with important cell cycle regulators, preclinical studies have demonstrated that ncRNAs may decrease or increase the treatment outcome of CDK4/6 inhibition. As a result, cell cycle-associated ncRNAs may act as predictors of CDK4/6 inhibition efficacy and perhaps present novel candidates for tumor therapy and diagnosis.
Collapse
Affiliation(s)
- Qingyi Hu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
188
|
Rocchetti MT, Bellanti F, Zadorozhna M, Fiocco D, Mangieri D. Multi-Faceted Role of Luteolin in Cancer Metastasis: EMT, Angiogenesis, ECM Degradation and Apoptosis. Int J Mol Sci 2023; 24:ijms24108824. [PMID: 37240168 DOI: 10.3390/ijms24108824] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Luteolin (3',4',5,7-tetrahydroxyflavone), a member of the flavonoid family derived from plants and fruits, shows a wide range of biomedical applications. In fact, due to its anti-inflammatory, antioxidant and immunomodulatory activities, Asian medicine has been using luteolin for centuries to treat several human diseases, including arthritis, rheumatism, hypertension, neurodegenerative disorders and various infections. Of note, luteolin displays many anti-cancer/anti-metastatic properties. Thus, the purpose of this review consists in highlighting the relevant mechanisms by which luteolin inhibits tumor progression in metastasis, i.e., affecting epithelial-mesenchymal transition (EMT), repressing angiogenesis and lysis of extracellular matrix (ECM), as well as inducing apoptosis.
Collapse
Affiliation(s)
- Maria Teresa Rocchetti
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy
| | - Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, Via Pinto 1, 71122 Foggia, Italy
| | - Mariia Zadorozhna
- Medical Genetics Unit, Department of Molecular Medicine, University of Pavia, Via Forlanini 14, 27100 Pavia, Italy
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy
| | - Domenica Mangieri
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy
| |
Collapse
|
189
|
Zhang D, Lu R, Wang M, Ji J, Zhang S, Wang S, Zhang D, Chen M. Effects of Banxia Xiexin Decoction on apoptosis of interstitial cells of cajal by regulation of MiR-451-5p: An in vivo and in vitro study. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116606. [PMID: 37192721 DOI: 10.1016/j.jep.2023.116606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/19/2023] [Accepted: 05/04/2023] [Indexed: 05/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Banxia Xiexin Decoction (BXD) is a traditional Chinese medical formula applied to gastrointestinal (GI) motility disorders. Previous studies showed that miR-451-5p was down-regulated in rats with GI motility disorders induced by gastric electrical dysrhythmia. Interstitial cells of cajal (ICCs) are pacemakers for GI motility, while loss of ICCs is responsible for GI motility disturbance. Thus, the underlying interaction mechanisms for BXD regulating ICCs apoptosis via miR-451-5p remain to be explored. AIM OF THE STUDY In this work, the main objectives were to examine the efficacy of BXD on ICCs via miR-451-5p both in GI motility disorders rats model and in vitro, as well as the potential contributions of SCF/c-kit signaling. MATERIALS AND METHODS Rats with gastric electrical dysrhythmia were established in male SD rats by using a single-day diet and a double fasting method (drinking diluted hydrochloric acid water during the period) for 4 weeks. The gastric slow wave (GSW) recording, RT-qPCR, and western blot were performed to examine the effects of BXD on ICCs apoptosis in rats with GED and miR-451-5p expression. In vitro assays included CCK-8, flow cytometry analysis, RT-qPCR, and western blot were applied to investigate the potential molecular mechanism of BXD on ICCs apoptosis via miR-451-5p. RESULTS BXD promoted gastric motility, reduced ICCs apoptosis, and elevated miR-451-5p in GED rats. In addition, miR-451-5p was significantly up-regulated in ICCs after BXD treatment compared with that in ICCs with miR-451-5p inhibitor transfection. Meanwhile, high miR-451-5p expression with either BXD treatment or miRNA mimics enhanced ICCs proliferation and inhibit apoptosis. Moreover, overexpression of miR-451-5p can reverse G0/G1 arrest in ICCs by BXD treatment. Further, SCF and c-kit protein levels were detected to demonstrate that modulation of miR-451-5p by BXD treatment was involved in this signaling. CONCLUSIONS Through this study, we demonstrated that BXD could promote ICCs proliferation and inhibit apoptosis via miR-451-5p and may involve the modulations of SCF/c-kit signaling, thus suggesting a new therapy basis for GI motility dysfunction from the perspective of modulation of ICCs apoptosis by targeting miR-451-5p.
Collapse
Affiliation(s)
- Di Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, PR China.
| | - Ruimin Lu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, PR China.
| | - Mengwei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, PR China.
| | - Jing Ji
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, PR China.
| | - Shujing Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, PR China.
| | - Shuyan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, PR China.
| | - Dongmei Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, No.5 Haiyuncang Road, Dongcheng District, Beijing, 101121, PR China.
| | - Meng Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, PR China.
| |
Collapse
|
190
|
Pei G, Chen L, Wang Y, He C, Fu C, Wei Q. Role of miR-182 in cardiovascular and cerebrovascular diseases. Front Cell Dev Biol 2023; 11:1181515. [PMID: 37228653 PMCID: PMC10203221 DOI: 10.3389/fcell.2023.1181515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
The treatment of cardiovascular and cerebrovascular diseases have undergone major advances in recent decades, allowing for a more effective prevention of cardiovascular and cerebrovascular events. However, cardiac and cerebral atherothrombotic complications still account for substantial morbidity and mortality worldwide. Novel therapeutic strategies are critical to improve patient outcomes following cardiovascular diseases. miRNAs are small non-coding RNAs, that regulate gene expression. Here, we discuss the role of miR-182 in regulating myocardial proliferation, migration, hypoxia, ischemia, apoptosis and hypertrophy in atherosclerosis, CAD, MI, I/R injury, organ transplant, cardiac hypertrophy, hypertension, heart failure, congenital heart disease and cardiotoxicity. Besides, we also summarize the current progress of miR-182 therapeutics in clinical development and discuss challenges that will need to be overcome to enter the clinic for patients with cardiac disease.
Collapse
Affiliation(s)
- Gaiqin Pei
- Department of Rehabilitation Medicine and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| | - Li Chen
- Department of Rehabilitation, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
| | - Yang Wang
- Department of Rehabilitation Medicine and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| | - Chengqi He
- Department of Rehabilitation Medicine and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| | - Chenying Fu
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Aging and Geriatric Mechanism Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Quan Wei
- Department of Rehabilitation Medicine and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| |
Collapse
|
191
|
Wu N, Sun H, Sun Q, Zhang F, Ma L, Hu Y, Cong X. Circulating microRNAs as diagnostic biomarkers for melanoma: a systematic review and meta-analysis. BMC Cancer 2023; 23:414. [PMID: 37158840 PMCID: PMC10165832 DOI: 10.1186/s12885-023-10891-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Recent studies have shown that circulating microRNAs (miRNAs) can be used as diagnostic biomarkers for melanoma. This study aimed to evaluate the diagnostic value of circulating miRNAs for melanoma. METHODS A comprehensive literature search was conducted and the quality of the included literature was evaluated using QUADAS-2 (Quality Assessment for diagnostic accuracy studies), and the diagnostic accuracy was assessed by pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under the curve (AUC). We used Deeks' funnel plot to evaluate publication bias. RESULTS The meta-analysis included 10 articles covering 16 studies, and the results showed that circulating miRNAs provide high diagnostic accuracy for melanoma. The overall pooled sensitivity was 0.87 (95% CI: 0.82-0.91), specificity was 0.81 (95% CI: 0.77-0.85), PLR was 4.6 (95% CI: 3.7-5.8), NLR was 0.16 (95% CI: 0.11-0.23), DOR was 29 (95% CI: 18-49), and AUC was 0.90 (95% CI: 0.87-0.92), respectively. Subgroup analysis showed better diagnostic value in miRNA clusters, European population, plasma miRNAs, and upregulated miRNAs compared to other subgroups. CONCLUSIONS The results indicated that circulating microRNAs can be used as a non-invasive biomarker for the diagnosis of melanoma.
Collapse
Affiliation(s)
- Nan Wu
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Xiantai Road 126, Changchun, Jilin, 130033, PR China
| | - Hongyan Sun
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
| | - Qian Sun
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Xiantai Road 126, Changchun, Jilin, 130033, PR China
| | - Fangqing Zhang
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Xiantai Road 126, Changchun, Jilin, 130033, PR China
| | - Lingli Ma
- Department of Endocrinology and Metabolism, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
| | - Yue Hu
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
| | - Xianling Cong
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Xiantai Road 126, Changchun, Jilin, 130033, PR China.
| |
Collapse
|
192
|
Guo J, Zhang W, Sun L, Yu H, Wang Y, Feng L, Yang H. KIF2C accelerates the development of non-small cell lung cancer and is suppressed by miR-186-3p via the AKT-GSK3β-β-catenin pathway. Sci Rep 2023; 13:7288. [PMID: 37142638 PMCID: PMC10160078 DOI: 10.1038/s41598-023-30073-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/15/2023] [Indexed: 05/06/2023] Open
Abstract
This study aimed to explore how kinesin family member 2C (KIF2C) influences the progression of non-small cell lung cancer (NSCLC). The levels of KIF2C and microRNA-186-3p (miR-186-3p) were examined by quantitative real-time polymerase chain reaction (qRT-PCR). Through the utilization of cell counting kit-8 (CCK-8) assay, colony formation assay, wound closure assay, and Transwell assay, NSCLC cell proliferation, migration, and invasion were identified, respectively. NSCLC cell apoptosis was assessed using the TUNEL assay and flow cytometry (FCM) assay. Luciferase reporter analysis was used to investigate the relationship between KIF2C and miR-186-3p. Western blot assays were conducted to investigate the influence of KIF2C on the AKT-GSK3β-β-catenin pathway. The results showed that KIF2C was up-regulated in NSCLC cells, which predicted poor prognosis. KIF2C overexpression promoted the proliferation, migration, and invasion of NSCLC cells as well as inhibited NSCLC cell apoptosis. KIF2C was as a key target of miR-186-3p. High expression of KIF2C, meanwhile, increased the levels of β-catenin, p-GSK-3β and phosphorylated protein kinase B (p-AKT). KIF2C downregulation and miR-186-3p upregulation reversed these outcomes. As an oncogenic factor, KIF2C is negatively regulated by miR-186-3p and participates in the progression of NSCLC through the AKT-GSK3β-β-catenin pathway.
Collapse
Affiliation(s)
- Junmei Guo
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Huhhot, 010020, China
- The Laboratory of Radiation Physics and Biology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Huhhot, 010020, China
| | - Wei Zhang
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Huhhot, 010020, China
- The Laboratory of Radiation Physics and Biology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Huhhot, 010020, China
| | - Liping Sun
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Huhhot, 010020, China
- The Laboratory of Radiation Physics and Biology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Huhhot, 010020, China
| | - Hongfang Yu
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Huhhot, 010020, China
- The Laboratory of Radiation Physics and Biology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Huhhot, 010020, China
| | - Yuzhe Wang
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Huhhot, 010020, China
- The Laboratory of Radiation Physics and Biology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Huhhot, 010020, China
| | - Li Feng
- Abdominal Surgery Department, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Huhhot, 010020, China.
| | - Hao Yang
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Huhhot, 010020, China.
- The Laboratory of Radiation Physics and Biology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Huhhot, 010020, China.
| |
Collapse
|
193
|
Di Fazio A, Gullerova M. An old friend with a new face: tRNA-derived small RNAs with big regulatory potential in cancer biology. Br J Cancer 2023; 128:1625-1635. [PMID: 36759729 PMCID: PMC10133234 DOI: 10.1038/s41416-023-02191-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Transfer RNAs (tRNAs) are small non-coding RNAs (sncRNAs) essential for protein translation. Emerging evidence suggests that tRNAs can also be processed into smaller fragments, tRNA-derived small RNAs (tsRNAs), a novel class of sncRNAs with powerful applications and high biological relevance to cancer. tsRNAs biogenesis is heterogeneous and involves different ribonucleases, such as Angiogenin and Dicer. For many years, tsRNAs were thought to be just degradation products. However, accumulating evidence shows their roles in gene expression: either directly via destabilising the mRNA or the ribosomal machinery, or indirectly via regulating the expression of ribosomal components. Furthermore, tsRNAs participate in various biological processes linked to cancer, including apoptosis, cell cycle, immune response, and retroviral insertion into the human genome. It is emerging that tsRNAs have significant therapeutic potential. Endogenous tsRNAs can be used as cancer biomarkers, while synthetic tsRNAs and antisense oligonucleotides can be employed to regulate gene expression. In this review, we are recapitulating the regulatory roles of tsRNAs, with a focus on cancer biology.
Collapse
Affiliation(s)
- Arianna Di Fazio
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.
| |
Collapse
|
194
|
Tajik F, Alian F, Yousefi M, Azadfallah A, Hoseini A, Mohammadi F, Karimi-Dehkordi M, Alizadeh-Fanalou S. MicroRNA-372 acts as a double-edged sword in human cancers. Heliyon 2023; 9:e15991. [PMID: 37251909 PMCID: PMC10208947 DOI: 10.1016/j.heliyon.2023.e15991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
MicroRNAs (miRNAs or miRs) are non-coding, single-stranded, endogenous RNAs that regulate various biological processes, most notably the pathophysiology of many human malignancies. It process is accomplished by binding to 3'-UTR mRNAs and controlling gene expression at the post-transcriptional level. As an oncogene, miRNAs can either accelerate cancer progression or slow it down as a tumor suppressor. MicroRNA-372 (miR-372) has been found to have an abnormal expression in numerous human malignancies, implying that the miRNA plays a role in carcinogenesis. It is both increased and downregulated in various cancers, and it serves as both a tumor suppressor and an oncogene. This study examines the functions of miR-372 as well as the LncRNA/CircRNA-miRNA-mRNA signaling pathways in various malignancies and analyses its potential prognostic, diagnostic, and therapeutic implications.
Collapse
Affiliation(s)
- Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Alian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mohammad Yousefi
- Department of Medicine, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Azadfallah
- Department of Medicine, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Aref Hoseini
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Forogh Mohammadi
- Department of Veterinary, Agriculture Faculty, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Maryam Karimi-Dehkordi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Shahin Alizadeh-Fanalou
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
195
|
Yang H, Sun W, Bi T, Sun J, Lu Z, Li J, Wei H. ZNF8-miR-552-5p Axis Modulates ACSL4-Mediated Ferroptosis in Hepatocellular Carcinoma. DNA Cell Biol 2023. [PMID: 37126948 DOI: 10.1089/dna.2022.0582] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy that is associated with poor prognosis in humans. Despite the development of targeted drugs, overall survival remains a significant challenge, and new therapeutic strategies are urgently needed. The aim of this study was to investigate the function of miR-552-5p in ferroptosis and the underlying mechanism, as well as to explore novel strategies for HCC treatment. CCK8 assay results showed that the viability of Huh-7 and Hep3B cells decreased significantly after transfection of the miR-552-5p inhibitor. In addition, we found that glutathione levels were depleted, intracellular Fe2+ levels were elevated, and the mean fluorescence intensity of C11-BODIPY was increased after miR-552-5p transfection. Transmission electron microscopy revealed that mitochondria became smaller and mitochondrial membrane intensity was increased in the inhibitor+RSL3 group. Mechanistically, a dual-luciferase reporter assay confirmed that miR-552-5p interacted with the 3' untranslated region (3' UTR) of acyl-CoA synthetase long-chain family member 4 (ACSL4) mRNA. qPCR and Western blotting results verified that miR-552-5p negatively regulated ACSL4 expression. In addition, we found that overexpression of ZNF8, which is a transcription factor, reduced intracellular miR-552-5p levels and enhanced sensitivity to ferroptosis. miR-552-5p reduces sensitivity to ferroptosis by targeting the 3' UTR of ACSL4 in HCC. The ZNF8-miR-552-5p-ACSL4 axis is involved in regulation of ferroptosis in HCC, and these findings may provide a new therapeutic target for treatment of HCC.
Collapse
Affiliation(s)
- Hao Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Wensheng Sun
- Department of Hepatobiliary Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Tao Bi
- Department of Gastrointestinal Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Jiahao Sun
- Department of Hepatobiliary Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Zhihua Lu
- Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Jie Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Honglong Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
196
|
Gao H, Zhang C. miR-3133 is an unfavorable prognosis factor and tumor suppressor in colon cancer. Funct Integr Genomics 2023; 23:132. [PMID: 37079151 DOI: 10.1007/s10142-023-01059-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Dysregulated miRNAs have been demonstrated to be associated with the progression of colon cancer. The dysregulation of miR-3133 was observed in colon cancer, but its specific function was unclear. The functional role of miR-3133 in colon cancer was investigated in this study. A total of 113 colon cancer patients were included. miR-3133 expression was evaluated by PCR. The biological effects of miR-3133 in colon cancer cells were assessed with the help of the transwell and CCK8 assay. The prognostic value of miR-3133 was estimated by a series of statistical analyses. In mechanism, the interaction between miR-3133 and RUFY3 was evaluated by luciferase reporter. The significant downregulation of miR-3133 was observed in colon cancer, which showed a significant association with the advanced TNM stage and bad survival of patients. miR-3133 and TNM stage were identified as independent prognostic indicators of colon cancer. In vitro, the overexpression of miR-3133 exerted a dramatically inhibitory effect on cellular processes of colon cancer, which were enhanced by miR-3133 knockdown. Additionally, miR-3133 could negatively regulate the luciferase activity and expression of RUFY3, which was speculated as the underlying mechanism mediating the regulatory effect of miR-3133. miR-3133 functioned as a prognostic biomarker indicating the progression and prognosis of colon cancer, and it also served as a tumor suppressor via negatively regulating RUFY3, which provides a potential therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Hongjian Gao
- Department of Gastrointestinal Tumor Surgery, Shenyang Coloproctology Hospital, Shenyang, 110001, China
| | - Chunxia Zhang
- Department of Anorectal, Shenyang Coloproctology Hospital, No. 9, Nanjing North Street, Heping District, Shenyang, 110001, China.
| |
Collapse
|
197
|
He B, Xu HM, Liu HW, Zhang YF. Unique regulatory roles of ncRNAs changed by PM 2.5 in human diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114812. [PMID: 36963186 DOI: 10.1016/j.ecoenv.2023.114812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
PM2.5 is a type of particulate matter with an aerodynamic diameter smaller than 2.5 µm, and exposure to PM2.5 can adversely damage human health. PM2.5 may impair health through oxidative stress, inflammatory reactions, immune function alterations and chromosome or DNA damage. Through increasing in-depth studies, researchers have found that noncoding RNAs (ncRNAs), particularly microRNAs (miRNAs), circular RNAs (circRNAs) as well as long noncoding RNAs (lncRNAs), might play significant roles in PM2.5-related human diseases via some of the abovementioned mechanisms. Therefore, in this review, we mainly discuss the regulatory function of ncRNAs altered by PM2.5 in human diseases and summarize the potential molecular mechanisms. The findings reveal that these ncRNAs might induce or promote diseases via inflammation, the oxidative stress response, cell autophagy, apoptosis, cell junction damage, altered cell proliferation, malignant cell transformation, disruption of synaptic function and abnormalities in the differentiation and status of immune cells. Moreover, according to a bioinformatics analysis, the altered expression of potential genes caused by these ncRNAs might be related to the development of some human diseases. Furthermore, some ncRNAs, including lncRNAs, miRNAs and circRNAs, or processes in which they are involved may be used as biomarkers for relevant diseases and potential targets to prevent these diseases. Additionally, we performed a meta-analysis to identify more promising diagnostic ncRNAs as biomarkers for related diseases.
Collapse
Affiliation(s)
- Bo He
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Hai-Ming Xu
- Department of Occupational and Environmental Medicine, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Hao-Wen Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
198
|
Qin T, Yan J, Li S, Lin X, Wu J, Huang Z, Zhang C, Zhang Y, Deng Z, Xiao D, Jin S, Xiao Y, Xu K, Ye W. MicroRNA-155 suppressed cholesterol-induced matrix degradation, pyroptosis and apoptosis by targeting RORα in nucleus pulposus cells. Cell Signal 2023; 107:110678. [PMID: 37062437 DOI: 10.1016/j.cellsig.2023.110678] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/18/2023]
Abstract
Intervertebral disc degeneration (IDD) is associated with low back pain, yet its inherent mechanism remains obscure. Hypercholesteremia was regarded as a risk factor for IDD, and our previous study showed that cholesterol accumulation could elicit matrix degradation in the nucleus pulposus (NP). MicroRNA-155 (miR-155) was substantiated as protective in IDD, but its role in cholesterol-induced IDD was unclear. The present study investigated whether miR-155 could mediate cholesterol-related IDD and its internal mechanisms. In vivo experiments revealed high-fat diet-induced hypercholesteremia in wild-type (WT) mice along with the occurrence of IDD, whereas Rm155LG transgenic mice showed milder NP degeneration, as evidenced by Safranin O-fast green (SF) staining and immunohistochemistry (IHC). Meanwhile, IHC showed that NLRP3 and Bax expression was also suppressed in Rm155LG mice. In vitro studies using Western blotting (WB) and immunofluorescence (IF) confirmed that the miR-155 mimic could alleviate cholesterol-induced matrix degradation, apoptosis and pyroptosis in NP. Moreover, RORα was upregulated in severely degenerated NP compared to mild IDD. It was also noted that RORα was suppressed in Rm155LG mice. In this study, we demonstrated that miR-155 could target RORα and that inhibition of RORα could prevent cholesterol-induced matrix degradation, apoptosis, and pyroptosis in NP, indicating the protective effect of miR-155 in cholesterol-induced IDD by targeting RORα.
Collapse
Affiliation(s)
- Tianyu Qin
- Department of Orthopedics, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 528406, China; Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jiansen Yan
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Orthopedics, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 528406, China
| | - Shuangxing Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Orthopedics, Sun Yat-sen Memorial Hospital Shenshan Central Hospital of Sun Yat-sen University, Shanwei 516621, China; Department of Orthopedics, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 528406, China
| | - Xiaolin Lin
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China; Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Jiajun Wu
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zhengqi Huang
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Chao Zhang
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yangyang Zhang
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zhihuai Deng
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Dong Xiao
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Song Jin
- Department of Orthopedics, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 528406, China
| | - Yin Xiao
- School of Medicine and Dentistry & Menzies Health Institute Queensland, Griffith University, QLD 4222, Australia; Australia-China Centre for Tissue Engineering and Regenerative Medicine, Griffith University and Queensland University of Technology, Brisbane, QLD 4222, Australia
| | - Kang Xu
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Wei Ye
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
199
|
Alsayed RKME, Sheikhan KSAM, Alam MA, Buddenkotte J, Steinhoff M, Uddin S, Ahmad A. Epigenetic programing of cancer stemness by transcription factors-non-coding RNAs interactions. Semin Cancer Biol 2023; 92:74-83. [PMID: 37054905 DOI: 10.1016/j.semcancer.2023.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/30/2023] [Accepted: 04/09/2023] [Indexed: 04/15/2023]
Abstract
Cancer 'stemness' is fundamental to cancer existence. It defines the ability of cancer cells to indefinitely perpetuate as well as differentiate. Cancer stem cell populations within a growing tumor also help evade the inhibitory effects of chemo- as well as radiation-therapies, in addition to playing an important role in cancer metastases. NF-κB and STAT-3 are representative transcription factors (TFs) that have long been associated with cancer stemness, thus presenting as attractive targets for cancer therapy. The growing interest in non-coding RNAs (ncRNAs) in the recent years has provided further insight into the mechanisms by which TFs influence cancer stem cell characteristics. There is evidence for a direct regulation of TFs by ncRNAs, such as, microRNAs (miRNAs), long non-coding RNAs (lncRNAs) as well as circular RNAs (circRNAs), and vice versa. Additionally, the TF-ncRNAs regulations are often indirect, involving ncRNA-target genes or the sponging of other ncRNA species by individual ncRNAs. The information is rapidly evolving and this review provides a comprehensive review of TF-ncRNAs interactions with implications on cancer stemness and in response to therapies. Such knowledge will help uncover the many levels of tight regulations that control cancer stemness, providing novel opportunities and targets for therapy in the process.
Collapse
Affiliation(s)
- Reem Khaled M E Alsayed
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | | | - Majid Ali Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Jorg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar; Weill Cornell Medicine-Qatar, Medical School, Doha, 24144, Qatar; Dept. of Dermatology, Weill Cornell Medicine, New York, 10065, NY, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha, 2713, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar.
| |
Collapse
|
200
|
Wang S, Ren C, Zhang Y, Pang S, Qiao S, Wu W, Lin B. AMCSMMA: Predicting Small Molecule-miRNA Potential Associations Based on Accurate Matrix Completion. Cells 2023; 12:cells12081123. [PMID: 37190032 DOI: 10.3390/cells12081123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Exploring potential associations between small molecule drugs (SMs) and microRNAs (miRNAs) is significant for drug development and disease treatment. Since biological experiments are expensive and time-consuming, we propose a computational model based on accurate matrix completion for predicting potential SM-miRNA associations (AMCSMMA). Initially, a heterogeneous SM-miRNA network is constructed, and its adjacency matrix is taken as the target matrix. An optimization framework is then proposed to recover the target matrix with the missing values by minimizing its truncated nuclear norm, an accurate, robust, and efficient approximation to the rank function. Finally, we design an effective two-step iterative algorithm to solve the optimization problem and obtain the prediction scores. After determining the optimal parameters, we conduct four kinds of cross-validation experiments based on two datasets, and the results demonstrate that AMCSMMA is superior to the state-of-the-art methods. In addition, we implement another validation experiment, in which more evaluation metrics in addition to the AUC are introduced and finally achieve great results. In two types of case studies, a large number of SM-miRNA pairs with high predictive scores are confirmed by the published experimental literature. In summary, AMCSMMA has superior performance in predicting potential SM-miRNA associations, which can provide guidance for biological experiments and accelerate the discovery of new SM-miRNA associations.
Collapse
Affiliation(s)
- Shudong Wang
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Chuanru Ren
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Yulin Zhang
- College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266580, China
| | - Shanchen Pang
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Sibo Qiao
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Wenhao Wu
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Boyang Lin
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| |
Collapse
|