151
|
Elens L, van Gelder T, Hesselink DA, Haufroid V, van Schaik RHN. CYP3A4*22: promising newly identified CYP3A4 variant allele for personalizing pharmacotherapy. Pharmacogenomics 2013; 14:47-62. [PMID: 23252948 DOI: 10.2217/pgs.12.187] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many studies have attempted to explain the interindividual variability observed in drug metabolism by assessing the impact of SNPs in genes implicated in drug absorption, distribution, metabolism and excretion pathways. Particular attention has been paid to the CYP450s. CYP3A4 is the main CYP isoform in human liver and intestine and is involved in the metabolism of many drugs. Its activity, however, is characterized by widespread variation in the general population, which is thought to have a genetic basis. A new CYP3A4 allele (CYP3A4*22; rs35599367 C>T in intron 6) with a frequency of 5-7% in the Caucasian population was recently discovered through its association with low hepatic CYP3A4 expression and CYP3A4 activity, and showing effects on statin, tacrolimus and cyclosporine metabolism. This review will summarize the current literature on phenotypes linked to this new promising CYP3A4 genetic marker SNP and discusses the potential clinical relevance.
Collapse
Affiliation(s)
- Laure Elens
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
152
|
Blobaum AL, Bridges TM, Byers FW, Turlington ML, Mattmann ME, Morrison RD, Mackie C, Lavreysen H, Bartolomé JM, Macdonald GJ, Steckler T, Jones CK, Niswender CM, Conn PJ, Lindsley CW, Stauffer SR, Daniels JS. Heterotropic activation of the midazolam hydroxylase activity of CYP3A by a positive allosteric modulator of mGlu5: in vitro to in vivo translation and potential impact on clinically relevant drug-drug interactions. Drug Metab Dispos 2013; 41:2066-75. [PMID: 24003250 DOI: 10.1124/dmd.113.052662] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Allosteric modulation of G protein-coupled receptors has gained considerable attention in the drug discovery arena because it opens avenues to achieve greater selectivity over orthosteric ligands. We recently identified a series of positive allosteric modulators (PAMs) of metabotropic glutamate receptor 5 (mGlu(5)) for the treatment of schizophrenia that exhibited robust heterotropic activation of CYP3A4 enzymatic activity. The prototypical compound from this series, 5-(4-fluorobenzyl)-2-((3-fluorophenoxy)methyl)-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazine (VU0448187), was found to activate CYP3A4 to >100% of its baseline intrinsic midazolam (MDZ) hydroxylase activity in vitro; activation was CYP3A substrate specific and mGlu(5) PAM dependent. Additional studies revealed the concentration-dependence of CYP3A activation by VU0448187 in multispecies hepatic and intestinal microsomes and hepatocytes, as well as a diminished effect observed in the presence of ketoconazole. Kinetic analyses of the effect of VU0448187 on MDZ metabolism in recombinant P450 or human liver microsomes resulted in a significant increase in V(max) (minimal change in K(m)) and required the presence of cytochrome b5. The atypical kinetics translated in vivo, as rats receiving an intraperitoneal administration of VU0448187 prior to MDZ treatment demonstrated a significant increase in circulating 1- and 4-hydroxy- midazolam (1-OH-MDZ, 4-OH-MDZ) levels compared with rats administered MDZ alone. The discovery of a potent substrate-selective activator of rodent CYP3A with an in vitro to in vivo translation serves to illuminate the impact of increasing intrinsic enzymatic activity of hepatic and extrahepatic CYP3A in rodents, and presents the basis to build models capable of framing the clinical relevance of substrate-dependent heterotropic activation.
Collapse
Affiliation(s)
- Anna L Blobaum
- Drug Metabolism and Pharmacokinetics Laboratory (A.L.B., T.M.B., F.W.B., R.D.M., J.S.D.), Medicinal Chemistry Laboratory (M.L.T., M.E.M., C.W.L., S.R.S.), and Molecular Pharmacology Laboratory (C.K.J., C.M.N., P.J.C.), Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee; CREATe ADME/Tox, (C.M.), and Neuroscience (H.L., G.J.M., T.S.), Janssen Research and Development, Beerse, Belgium; and Jarama 75, Toledo, Spain (J.M.B.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Zhu ZW, Ni SQ, Wang XM, Wang J, Zeng S, Zhao ZY. Hepatic CYP3A expression and activity in low birth weight developing female rats. World J Pediatr 2013; 9:266-72. [PMID: 23929256 DOI: 10.1007/s12519-013-0429-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 06/27/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND We aimed to investigate the effects of low birth weight (LBW) on the hepatic expression of cytochrome P-450 3A (CYP3A) in developing female rats. METHODS Pregnant rats were divided into two groups, a nourished group and an under-nourished group. The offspring of the nourished rats were defined as a normal weight, normal diet group (NN group). The offspring of the under-nourished rats were designated as a LBW, normal diet group (LN group). CYP3A mRNA expression, protein expression, protein localization and activity were determined. RESULTS The CYP3A1 mRNA expression levels of the LN group on days 3, 21, and 56 were significantly higher than those of the same age in the NN group (P≤0.01). The mRNA expression of CYP3A2 in the LN group on day 21 was higher than in rats of the same age in the NN group (P<0.01). The staining intensity and frequency of CYP3A1-positive hepatocytes were significantly lower on days 7 and 21 in the LN group than those of rats of the same age in the NN group (P<0.05). The staining intensity and frequency of CYP3A2-positive hepatocytes on days 14 and 21 were higher in the LN group than those on the same days in the NN group (P<0.05). The mean CYP3A activity of the LN group on day 3 was significantly higher than that of the NN group (P<0.001). CONCLUSIONS We found the effect of LBW on CYP3A activity was most prominent during the early days of life in rats. Investigators and clinicians should consider the effect of LBW on CYP3A in both pharmacokinetic study design and data interpretation, when prescribing drugs to LBW infants.
Collapse
Affiliation(s)
- Zhi-Wei Zhu
- Department of Children's Health and Care, Children's Hospital of Zhejiang University School of Medicine and Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, Hangzhou 310003, China
| | | | | | | | | | | |
Collapse
|
154
|
Luckert C, Ehlers A, Buhrke T, Seidel A, Lampen A, Hessel S. Polycyclic aromatic hydrocarbons stimulate human CYP3A4 promoter activity via PXR. Toxicol Lett 2013; 222:180-8. [PMID: 23845848 DOI: 10.1016/j.toxlet.2013.06.243] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 06/27/2013] [Indexed: 12/22/2022]
Abstract
Metabolic activation of polycyclic aromatic hydrocarbons (PAH) is mediated mainly by cytochrome P₄₅₀ monooxygenases (CYP) CYP1A1, 1A2 and 1B1. Several PAH are known to induce these CYP via aryl hydrocarbon receptor (AhR) signaling. Recently, it was shown that the PAH benzo[a]pyrene (BaP) can induce CYP3A4 as well. The induction was suggested to be mediated by the pregnane X receptor (PXR) rather than AhR. Metabolism by CYP3A4 is only known for dihydrodiol metabolites of PAH but not for their parent compounds. In the present study, a CYP3A4 reporter gene assay, requiring the overexpression of PXR, was used to investigate whether the PAH parent compounds BaP, benzo[c]phenanthrene (BcP) and dibenzo[a,l]pyrene (DBalP) as well as their corresponding phase I metabolites, the respective dihydrodiols and diol epoxides, can induce CYP3A4 promoter activity. BaP, BcP and their dihydrodiols were found to significantly activate the CYP3A4 promoter. Moreover, activation of PXR by all four compounds was detected by using a PXR transactivation assay, supporting that PXR mediates CYP3A4 induction by PAH. Taken together, these results show that both PAH parent compounds as well as their phase I metabolites induce CYP3A4 promoter via the transcription factor PXR.
Collapse
Key Words
- (±)-anti-11,12-dihydroxy-13,14-epoxy-11,12,13,14-tetrahydrodibenzo[a,l]pyrene
- (±)-anti-3,4-dihydroxy-1,2-epoxy-1,2,3,4-tetrahydrobenzo[c]phenanthrene
- (±)-anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene
- (±)-trans-11,12-dihydroxy-11,12-dihydrodibenzo[a,l]pyrene
- (±)-trans-3,4-dihydroxy-3,4-dihydrobenzo[c]phenanthrene
- (±)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene
- 3-MC
- 3-methylcholanthrene
- AhR
- BaP
- BaPD
- BaPDE
- BcP
- BcPD
- BcPDE
- CAR
- CYP
- CYP3A4 induction
- DBD
- DBalP
- DBalPD
- DBalPDE
- DNA-binding domain
- DR
- ER
- GST
- LBD
- PAH
- PPARγ
- PXR
- PXR responsive element(s)
- PXRE
- Polycyclic aromatic hydrocarbons
- Reporter gene assay
- UAS
- UDP-glucuronosyltransferase(s)
- UGT
- XREM
- aryl hydrocarbon receptor
- benzo[a]pyrene
- benzo[c]phenanthrene
- constitutive androstane receptor
- cytochrome P(450) monooxygenase(s)
- dNR
- dibenzo[a,l]pyrene
- direct repeat
- distal nuclear receptor-binding element(s)
- everted repeat
- glutathione S-transferase(s)
- ligand-binding domain
- peroxisome proliferator-activated receptor γ
- polycyclic aromatic hydrocarbon(s)
- pregnane X receptor
- qRT-PCR
- real-time quantitative PCR
- upstream activation sequence
- xenobiotic-responsive enhancer module
Collapse
Affiliation(s)
- Claudia Luckert
- Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
155
|
Zemzemi N, Bernabeu MO, Saiz J, Cooper J, Pathmanathan P, Mirams GR, Pitt-Francis J, Rodriguez B. Computational assessment of drug-induced effects on the electrocardiogram: from ion channel to body surface potentials. Br J Pharmacol 2013; 168:718-33. [PMID: 22946617 PMCID: PMC3579290 DOI: 10.1111/j.1476-5381.2012.02200.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 08/06/2012] [Accepted: 08/14/2012] [Indexed: 12/20/2022] Open
Abstract
Background and Purpose Understanding drug effects on the heart is key to safety pharmacology assessment and anti-arrhythmic therapy development. Here our goal is to demonstrate the ability of computational models to simulate the effect of drug action on the electrical activity of the heart, at the level of the ion-channel, cell, heart and ECG body surface potential. Experimental Approach We use the state-of-the-art mathematical models governing the electrical activity of the heart. A drug model is introduced using an ion channel conductance block for the hERG and fast sodium channels, depending on the IC50 value and the drug dose. We simulate the ECG measurements at the body surface and compare biomarkers under different drug actions. Key Results Introducing a 50% hERG-channel current block results in 8% prolongation of the APD90 and 6% QT interval prolongation, hERG block does not affect the QRS interval. Introducing 50% fast sodium current block prolongs the QRS and the QT intervals by 12% and 5% respectively, and delays activation times, whereas APD90 is not affected. Conclusions and Implications Both potassium and sodium blocks prolong the QT interval, but the underlying mechanism is different: for potassium it is due to APD prolongation; while for sodium it is due to a reduction of electrical wave velocity. This study shows the applicability of in silico models for the investigation of drug effects on the heart, from the ion channel to the ECG-based biomarkers.
Collapse
Affiliation(s)
- Nejib Zemzemi
- Department of Computer Science, University of Oxford, Oxford, UK.
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Bloomer JC, Nash M, Webb A, Miller BE, Lazaar AL, Beaumont C, Guiney WJ. Assessment of potential drug interactions by characterization of human drug metabolism pathways using non-invasive bile sampling. Br J Clin Pharmacol 2013; 75:488-96. [PMID: 22670830 DOI: 10.1111/j.1365-2125.2012.04352.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 05/15/2012] [Indexed: 11/30/2022] Open
Abstract
AIM Characterization of the biliary disposition of GSK1325756, using a non-invasive bile sampling technique and spectrometric analyses, to inform the major routes of metabolic elimination and to enable an assessment of victim drug interaction risk. METHOD Sixteen healthy, elderly subjects underwent non-invasive bile capture using a peroral string device (Entero-Test(®)) prior to and following a single oral dose of GSK1325756 (100 mg). The device was swallowed by each subject and once the weighted string was judged to have reached the duodenum, gallbladder contraction was stimulated in order to release bile. The string was then retrieved via the mouth and bile samples were analyzed for drug-related material using spectrometric and spectroscopic techniques following solvent extraction. RESULTS Nuclear magnetic resonance spectroscopy (NMR) indicated that the O-glucuronide metabolite was the major metabolite of GSK1325756, representing approximately 80% of drug-related material in bile. As bile is the major clearance route for GSK1325756 (only 4% of the administered dose was excreted in human urine), this result indicates that uridine 5'-diphospho-glucuronosyltransferases (UGTs) are the major drug metabolizing enzymes responsible for drug clearance. The relatively minor contribution made by oxidative routes reduces the concern of CYP-mediated victim drug interactions. CONCLUSION The results from this study demonstrate the utility of deploying the Entero-Test® in early human studies to provide information on the biliary disposition of drugs and their metabolites. This technique can be readily applied in early clinical development studies to provide information on the risk of interactions for drugs that are metabolized and eliminated in bile.
Collapse
|
157
|
Shirasaka Y, Chang SY, Grubb MF, Peng CC, Thummel KE, Isoherranen N, Rodrigues AD. Effect of CYP3A5 expression on the inhibition of CYP3A-catalyzed drug metabolism: impact on modeling CYP3A-mediated drug-drug interactions. Drug Metab Dispos 2013; 41:1566-74. [PMID: 23723360 DOI: 10.1124/dmd.112.049940] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The purpose of this study was to determine the impact of CYP3A5 expression on inhibitory potency (Ki or IC50 values) of CYP3A inhibitors, using recombinant CYP3A4 and CYP3A5 (rCYP3A4 and rCYP3A5) and CYP3A5 genotyped human liver microsomes (HLMs). IC50 ratios between rCYP3A4 and rCYP3A5 (rCYP3A5/rCYP3A4) of ketoconazole (KTZ) and itraconazole (ITZ) were 8.5 and 8.8 for midazolam (MDZ), 4.7 and 9.1 for testosterone (TST), 1.3 and 2.8 for terfenadine, and 0.6 and 1.7 for vincristine, respectively, suggesting substrate- and inhibitor-dependent selectivity of the two azoles. Due to the difference in the IC50 values for CYP3A4 and CYP3A5, nonconcordant expression of CYP3A4 and CYP3A5 protein can significantly affect the observed magnitude of CYP3A-mediated drug-drug interactions in humans. Indeed, the IC50 values of KTZ and ITZ for CYP3A-catalyzed MDZ and TST metabolism were significantly higher in HLMs with CYP3A5*1/*1 and CYP3A5*1/*3 genotypes than in HLMs with the CYP3A5*3/*3 genotype, showing CYP3A5 expression-dependent IC50 values. Moreover, when IC50 values of KTZ and ITZ for different HLMs were kinetically simulated based on CYP3A5 expression level and enzyme-specific IC50 values, a good correlation between the simulated and the experimentally measured IC50 values was observed. Further simulation analysis revealed that both the Ki ratio (for inhibitors) and Vmax/Km ratio (for substrates) between CYP3A4 and CYP3A5 were major factors for CYP3A5 expression-dependent IC50 values. In conclusion, the present study demonstrates that CYP3A5 genotype and expression level have a significant impact on inhibitory potency for CYP3A-catalyzed drug metabolism, but that the magnitude of its effect is inhibitor-substrate pair specific.
Collapse
Affiliation(s)
- Yoshiyuki Shirasaka
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | |
Collapse
|
158
|
Nakanishi Y, Yamashita H, Yoshikawa T, Tominaga T, Nojiri K, Sunaga Y, Muneoka A, Iwasaki K, Utoh M, Nakamura C, Yamazaki H, Uno Y. Cytochrome P450 metabolic activities in the small intestine of cynomolgus macaques bred in Cambodia, China, and Indonesia. Drug Metab Pharmacokinet 2013; 28:510-3. [PMID: 23648676 DOI: 10.2133/dmpk.dmpk-13-nt-031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cynomolgus macaques, used in drug metabolism studies due to their evolutionary closeness to humans, are mainly bred in Asian countries, including Cambodia, China, and Indonesia. Cytochromes P450 (P450s) are important drug-metabolizing enzymes, present in the liver and small intestine, major drug metabolizing organs. Previously, our investigation did not find statistically significant differences in hepatic P450 metabolic activities measured in cynomolgus macaques bred in Cambodia (MacfaCAM) and China (MacfaCHN). In the present study, P450 metabolic activity was investigated in the small intestine of MacfaCAM and MacfaCHN, and cynomolgus macaques bred in Indonesia (MacfaIDN) using P450 substrates, including 7-ethoxyresorufin, coumarin, bupropion, paclitaxel, diclofenac, S-mephenytoin, bufuralol, chlorzoxazone, and testosterone. The results indicated that P450 metabolic activity of the small intestine was not statistically significantly different (<2.0-fold) in MacfaCAM, MacfaCHN, and MacfaIDN. In addition, statistically significant sex differences were not observed (<2.0-fold) in any P450 metabolic activity in MacfaCAM as supported by mRNA expression results. These results suggest that P450 metabolic activity of the small intestine does not significantly differ statistically among MacfaCAM, MacfaCHN, and MacfaIDN.
Collapse
Affiliation(s)
- Yasuharu Nakanishi
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Honaker MT, Acchione M, Zhang W, Mannervik B, Atkins WM. Enzymatic detoxication, conformational selection, and the role of molten globule active sites. J Biol Chem 2013; 288:18599-611. [PMID: 23649628 DOI: 10.1074/jbc.m112.445767] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The role of conformational ensembles in enzymatic reactions remains unclear. Discussion concerning "induced fit" versus "conformational selection" has, however, ignored detoxication enzymes, which exhibit catalytic promiscuity. These enzymes dominate drug metabolism and determine drug-drug interactions. The detoxication enzyme glutathione transferase A1-1 (GSTA1-1), exploits a molten globule-like active site to achieve remarkable catalytic promiscuity wherein the substrate-free conformational ensemble is broad with barrierless transitions between states. A quantitative index of catalytic promiscuity is used to compare engineered variants of GSTA1-1 and the catalytic promiscuity correlates strongly with characteristics of the thermodynamic partition function, for the substrate-free enzymes. Access to chemically disparate transition states is encoded by the substrate-free conformational ensemble. Pre-steady state catalytic data confirm an extension of the conformational selection model, wherein different substrates select different starting conformations. The kinetic liability of the conformational breadth is minimized by a smooth landscape. We propose that "local" molten globule behavior optimizes detoxication enzymes.
Collapse
Affiliation(s)
- Matthew T Honaker
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610, USA
| | | | | | | | | |
Collapse
|
160
|
Hirooka-Masui K, Lesmana R, Iwasaki T, Xu M, Hayasaka K, Haraguchi M, Takeshita A, Shimokawa N, Yamamoto K, Koibuchi N. Interaction of silencing mediator for retinoid and thyroid receptors with steroid and xenobiotic receptor on multidrug resistance 1 promoter. Life Sci 2013; 92:911-5. [PMID: 23562850 DOI: 10.1016/j.lfs.2013.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 02/22/2013] [Accepted: 03/15/2013] [Indexed: 11/16/2022]
Abstract
AIMS The steroid and xenobiotic receptor (SXR) regulates the transcription of its target genes by interacting with various nuclear receptor cofactors. We have previously shown that silencing mediator for retinoid and thyroid receptors (SMRT) interacts with SXR even in the presence of rifampicin on cytochrome P450 monooxygenase 3A4 (CYP3A4) promoter in HepG2 cells. To examine the specificity of such interaction, the involvement of SMRT on SXR-mediated transcription through multidrug resistance (MDR) 1 gene promoter was examined using LS174T intestine-derived clonal cells. MAIN METHODS Transient transfection-based reporter gene assay was carried out to examine the effect of SMRT or nuclear receptor corepressor (NCoR) on SXR-mediated transcription in LS174T cells. Semi-quantitative RT-PCR was performed to confirm the expression of MDR1 mRNA in LS174T cells. To examine the interaction of SMRT with SXR, we carried out mammalian one-hybrid assay in CV-1 cells and immunoprecipitation study in HEK-293 cells. KEY FINDINGS SMRT, but not NCoR suppressed rifampicin-induced SXR-mediated transcription. The SXR-mediated MDR1 mRNA expression was augmented in the presence of rifampicin, whereas it suppressed the expression following the overexpression of SMRT. In mammalian one-hybrid assay, only SMRT but not NCoR interacted with SXR on MDR1 promoter in the presence of rifampicin. In immunoprecipitation study, SMRT bound to SXR regardless of the presence or absence of rifampicin. SIGNIFICANCE SMRT may be recruited in the SXR-cofactor complex even in the presence of ligand. SMRT may be involved not only in SXR-mediated suppression without ligand, but also in ligand-activated transcription to suppress the overactivation of transcription.
Collapse
Affiliation(s)
- Kazumi Hirooka-Masui
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Hepatic leukemia factor promotes resistance to cell death: Implications for therapeutics and chronotherapy. Toxicol Appl Pharmacol 2013; 268:141-8. [DOI: 10.1016/j.taap.2013.01.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 12/21/2022]
|
162
|
Pereira JC, Pradella-Hallinan M, Alves RC. Saint John's wort, an herbal inducer of the cytochrome P4503A4 isoform, may alleviate symptoms of Willis-Ekbom's disease. Clinics (Sao Paulo) 2013; 68:469-74. [PMID: 23778343 PMCID: PMC3634959 DOI: 10.6061/clinics/2013(04)06] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 12/06/2012] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Certain drug classes alleviate the symptoms of Willis-Ekbom's disease, whereas others aggravate them. The pharmacological profiles of these drugs suggest that drugs that alleviate Willis-Ekbom's disease inhibit thyroid hormone activity, whereas drugs that aggravate Willis-Ekbom's disease increase thyroid hormone activity. These different effects may be secondary to the opposing actions that drugs have on the CYP4503A4 enzyme isoform. Drugs that worsen the symptoms of the Willis-Ekbom's disease inhibit the CYP4503A4 isoform, and drugs that ameliorate the symptoms induce CYP4503A4. The aim of this study is to determine whether Saint John's wort, as an inducer of the CYP4503A4 isoform, diminishes the severity of Willis-Ekbom's disease symptoms by increasing the metabolism of thyroid hormone in treated patients. METHODS In an open-label pilot trial, we treated 21 Willis-Ekbom's disease patients with a concentrated extract of Saint John's wort at a daily dose of 300 mg over the course of three months. RESULTS Saint John's wort reduced the severity of Willis-Ekbom's disease symptoms in 17 of the 21 patients. CONCLUSION Results of this trial suggest that Saint John's wort may benefit some Willis-Ekbom's disease patients. However, as this trial was not placebo-controlled, the extent to which Saint John's wort is effective as a Willis-Ekbom's disease treatment will depend on future, blinded placebo-controlled studies.
Collapse
|
163
|
Son YH, Song JS, Kim SH, Kim J. Pharmacokinetic characterization of CK2 inhibitor CX-4945. Arch Pharm Res 2013; 36:840-5. [PMID: 23543629 DOI: 10.1007/s12272-013-0103-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 03/19/2013] [Indexed: 11/24/2022]
Abstract
Over-expression of protein kinase CK2 is highly linked to the survival of cancer cells and the poor prognosis of patients with cancers. CX-4945, a potent and selective orally bioavailable ATP-competitive inhibitor of CK2, inhibits the oncogenic cellular events such as proliferation and angiogenesis, and the increase of tumor growth in mouse xenograft model. In this study, the pharmacokinetic information about CX-4945 was provided; at 10 μM, CX-4945 with high stability in human and rat liver microsome exhibited low percentage of inhibition (<10 %) in CYP450 isoforms (1A2, 2C19, 3A4), but considerable inhibition (~70 %) in CYP450 2C9 and 2D6. In hERG potassium channel inhibition assay, CX-4945 exhibited relatively low inhibition rate. Additionally, CX-4945 showed high MDCK cell permeability (>10 × 10(-6) cm/s) and above 98 % of plasma protein binding in the rat. After intravenous administration, Vss (1.39 l/kg) and extremely low CL (0.08 l/kg/h) were observed. Moreover, orally administrated CX-4945 showed high bioavailability (>70 %) and these data might be related to the MDCK cell permeability results.
Collapse
Affiliation(s)
- You Hwa Son
- Laboratory of Translational Therapeutics, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon, 305-600, Republic of Korea
| | | | | | | |
Collapse
|
164
|
Roberts JK, Moore CD, Ward RM, Yost GS, Reilly CA. Metabolism of beclomethasone dipropionate by cytochrome P450 3A enzymes. J Pharmacol Exp Ther 2013; 345:308-16. [PMID: 23512537 DOI: 10.1124/jpet.112.202556] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inhaled glucocorticoids, such as beclomethasone dipropionate (BDP), are the mainstay treatment of asthma. However, ≈ 30% of patients exhibit little to no benefit from treatment. It has been postulated that glucocorticoid resistance, or insensitivity, is attributable to individual differences in glucocorticoid receptor-mediated processes. It is possible that variations in cytochrome P450 3A enzyme-mediated metabolism of BDP may contribute to this phenomenon. This hypothesis was explored by evaluating the contributions of CYP3A4, 3A5, 3A7, and esterase enzymes in the metabolism of BDP in vitro and relating metabolism to changes in CYP3A enzyme mRNA expression via the glucocorticoid receptor in lung and liver cells. CYP3A4 and CYP3A5 metabolized BDP via hydroxylation ([M4] and [M6]) and dehydrogenation ([M5]) at similar rates; CYP3A7 did not metabolize BDP. A new metabolite [M6], formed by the combined action of esterases and CYP3A4 hydroxylation, was also characterized. To validate the results observed using microsomes and recombinant enzymes, studies were also conducted using A549 lung and DPX2 liver cells. Both liver and lung cells produced esterase-dependent metabolites [M1-M3], with [M1] correlating with CYP3A5 mRNA induction in A549 cells. Liver cells produced both hydroxylated and dehydrogenated metabolites [M4, M5, and M6], but lung cells produced only the dehydrogenated metabolite [M5]. These studies show that CYP3A4 and CYP3A5 metabolize BDP to inactive metabolites and suggest that differences in the expression or function of these enzymes in the lung and/or liver could influence BDP disposition in humans.
Collapse
Affiliation(s)
- Jessica K Roberts
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | | | | | | | | |
Collapse
|
165
|
Lam YWF, Alfaro CL, Ereshefsky L, Miller M. Pharmacokinetic and Pharmacodynamic Interactions of Oral Midazolam with Ketoconazole, Fluoxetine, Fluvoxamine, and Nefazodone. J Clin Pharmacol 2013; 43:1274-82. [PMID: 14551182 DOI: 10.1177/0091270003259216] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The objective of this study was to investigate pharmacokinetic and pharmacodynamic interactions between midazolam and fluoxetine, fluvoxamine, nefazodone, and ketoconazole. Forty healthy subjects were randomized to receive one of the four study drugs for 12 days in a parallel study design: fluoxetine 60 mg per day for 5 days, followed by 20 mg per day for 7 days; fluvoxamine titrated to a daily dose of 200 mg; nefazodone titrated to a daily dose of 400 mg; or ketoconazole 200 mg per day. All 40 subjects received oral midazolam solution before and after the 12-day study drug regimen. Blood samples for determination of midazolam concentrations were drawn for 24 hours after each midazolam dose and used for the calculation of pharmacokinetic parameters. The effects of the study drugs on midazolam pharmacodynamics were assessed using the symbol digit modalities test (SDMT). The mean area under the curve (AUC) for midazolam was increased 771.9% by ketoconazole and 444.0% by nefazodone administration. However, there was no significant change in midazolam AUC as a result of fluoxetine (13.4% decrease) and a statistical trend for fluvoxamine (66.1% increase) administration. Pharmacodynamic data are consistent with pharmacokinetic data indicating that nefazodone and ketoconazole resulted in significant increases in midazolam-related cognition impairment. The significant impairment in subjects' cognitive function reflects the changes in midazolam clearance after treatment with ketoconazole and nefazodone. These results suggest that caution with the use of midazolam is warranted with potent CYP3A4 inhibitors.
Collapse
Affiliation(s)
- Y W Francis Lam
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, USA
| | | | | | | |
Collapse
|
166
|
Percha B, Altman RB. Informatics confronts drug-drug interactions. Trends Pharmacol Sci 2013; 34:178-84. [PMID: 23414686 DOI: 10.1016/j.tips.2013.01.006] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/07/2012] [Accepted: 01/14/2013] [Indexed: 02/02/2023]
Abstract
Drug-drug interactions (DDIs) are an emerging threat to public health. Recent estimates indicate that DDIs cause nearly 74000 emergency room visits and 195000 hospitalizations each year in the USA. Current approaches to DDI discovery, which include Phase IV clinical trials and post-marketing surveillance, are insufficient for detecting many DDIs and do not alert the public to potentially dangerous DDIs before a drug enters the market. Recent work has applied state-of-the-art computational and statistical methods to the problem of DDIs. Here we review recent developments that encompass a range of informatics approaches in this domain, from the construction of databases for efficient searching of known DDIs to the prediction of novel DDIs based on data from electronic medical records, adverse event reports, scientific abstracts, and other sources. We also explore why DDIs are so difficult to detect and what the future holds for informatics-based approaches to DDI discovery.
Collapse
Affiliation(s)
- Bethany Percha
- Biomedical Informatics Program, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
167
|
Tajima M, Ikarashi N, Okaniwa T, Imahori Y, Saruta K, Toda T, Ishii M, Tanaka Y, Machida Y, Ochiai W, Yamada H, Sugiyama K. Consumption of a high-fat diet during pregnancy changes the expression of cytochrome P450 in the livers of infant male mice. Biol Pharm Bull 2013; 36:649-57. [PMID: 23358370 DOI: 10.1248/bpb.b12-01017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been recently reported that the consumption of a high-fat diet during pregnancy exerts various effects on fetuses and newborn mice. The purpose of this study was to determine the effects of a high-fat diet during pregnancy on the expression of cytochrome P450 (CYP) in the livers of offspring. Mouse dams were fed a high-fat diet during pregnancy from the time of conception. After their birth, the newborn mice were fed a normal diet until 12 weeks of age. In the livers of the infant male mice that consumed a high-fat diet, the protein expression of CYP3A and CYP2C was decreased, and the protein expression of CYP1A and CYP2E was increased at 6 and 12 weeks of age. However, almost no changes were observed in the CYP proteins at 6 and 12 weeks of age in the livers of the infant female mice that consumed a high-fat diet. The amount of pregnane X receptor (PXR) translocated into the nucleus was reduced in the livers of infant male mice that consumed a high-fat diet. However, there was neither an increase in tumor necrosis factor-α or interleukin-1β nor a decrease in lithocholic acid. These data suggested that CYP3A and CYP2C might decrease as a result of the decrease in the amount of nuclear PXR in infant male mice that consumed a high-fat diet. The results of this study suggested that the consumption of a high-fat diet by pregnant mothers may be one explanation for individual differences in pharmacokinetics.
Collapse
Affiliation(s)
- Masataka Tajima
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Tokyo 142-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Tajima M, Ikarashi N, Igeta S, Toda T, Ishii M, Tanaka Y, Machida Y, Ochiai W, Yamada H, Sugiyama K. Different Diets Cause Alterations in the Enteric Environment and Trigger Changes in the Expression of Hepatic Cytochrome P450 3A, a Drug-Metabolizing Enzyme. Biol Pharm Bull 2013; 36:624-34. [DOI: 10.1248/bpb.b12-01005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Masataka Tajima
- Department of Clinical Pharmacokinetics, Hoshi University
- Department of Pharmaceutical Sciences, International University of Health and Welfare
| | | | - Shintaro Igeta
- Department of Clinical Pharmacokinetics, Hoshi University
| | - Takahiro Toda
- Department of Clinical Pharmacokinetics, Hoshi University
| | - Makoto Ishii
- Department of Clinical Pharmacokinetics, Hoshi University
| | - Yoshikazu Tanaka
- Division of Applied Pharmaceutical Education and Research, Hoshi University
| | - Yoshiaki Machida
- Division of Applied Pharmaceutical Education and Research, Hoshi University
| | - Wataru Ochiai
- Department of Clinical Pharmacokinetics, Hoshi University
| | - Harumi Yamada
- Department of Pharmaceutical Sciences, International University of Health and Welfare
| | | |
Collapse
|
169
|
Korneeva ON, Drapkina OM. How to avoid statin hepatotoxicity in patients with obesity and liver disease? Focus on the combination of ursodeoxycholic acid and atorvastatin. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2012. [DOI: 10.15829/1728-8800-2012-6-81-84] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Obese patients demonstrate the combination of dyslipidemia (DLP) and elevated transaminase levels, as a manifestation of non-alcohol fatty liver disease (NAFLD). Therefore, statins should be administered with care in this clinical group. In the real-world clinical practice, obese patients with high cardiovascular risk and concomitant NAFLD often receive low, inadequately effective doses of statins, due to the fear of their adverse effects on the hepatic function. An alternative method of DLP treatment is a combination of statins with ursodeoxycholic acid (UDCA). The need for a long-term combination treatment with statins and UDCA stresses the importance of the problem of drug interaction and the mechanisms of drug metabolism. Even high doses of atorvastatin are safe and well tolerated. The most severe adverse effects – myopathy and rhabdomyolysis – are very rare. Currently, there is no available evidence of adverse clinical effects of the combination of UDCA and atorvastatin. Presented results emphasise the need for a wider use of new therapeutic strategies in patients with DLP, obesity, and NAFLD. The combination of UDCA and statins is safe and effective. It facilitates not only the achievement of target lipid levels, but also the improvement in the hepatic function.
Collapse
Affiliation(s)
- O. N. Korneeva
- I. M. Sechenov First Moscow State Medical University, Moscow
| | - O. M. Drapkina
- I. M. Sechenov First Moscow State Medical University, Moscow
| |
Collapse
|
170
|
Lamba JK, Lin YS, Schuetz EG, Thummel KE. Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev 2012. [DOI: 10.1016/j.addr.2012.09.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
171
|
Drug-Drug Interactions Potential of Icariin and Its Intestinal Metabolites via Inhibition of Intestinal UDP-Glucuronosyltransferases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:395912. [PMID: 23118789 PMCID: PMC3479967 DOI: 10.1155/2012/395912] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 09/14/2012] [Indexed: 02/08/2023]
Abstract
Icariin is known as an indicative constituent of the Epimedium genus, which has been commonly used in Chinese herbal medicine to enhance treat impotence and improve sexual function, as well as for several other indications for over 2000 years. In this study, we aimed to investigate the effects of icariin and its intestinal metabolites on the activities of human UDP-glucuronosyltransferase (UGT) activities. Using a panel of recombinant human UGT isoforms, we found that icariin exhibited potent inhibition against UGT1A3. It is interesting that the intestinal metabolites of icariin exhibited a different inhibition profile compared with icariin. Different from icariin, icariside II was a potent inhibitor of UGT1A4, UGT1A7, UGT1A9, and UGT2B7, and icaritin was a potent inhibitor of UGT1A7 and UGT1A9. The potential for drug interactions in vivo was also quantitatively predicted and compared. The quantitative prediction of risks indicated that in vivo inhibition against intestinal UGT1A3, UGT1A4, and UGT1A7 would likely occur after oral administration of icariin products.
Collapse
|
172
|
Ancrenaz V, Déglon J, Samer C, Staub C, Dayer P, Daali Y, Desmeules J. Pharmacokinetic interaction between prasugrel and ritonavir in healthy volunteers. Basic Clin Pharmacol Toxicol 2012; 112:132-7. [PMID: 22900583 PMCID: PMC3561686 DOI: 10.1111/j.1742-7843.2012.00932.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 08/09/2012] [Indexed: 12/22/2022]
Abstract
The new anti-aggregating agent prasugrel is bioactivated by cytochromes P450 (CYP) 3A and 2B6. Ritonavir is a potent CYP3A inhibitor and was shown in vitro as a CYP2B6 inhibitor. The aim of this open-label cross-over study was to assess the effect of ritonavir on prasugrel active metabolite (prasugrel AM) pharmacokinetics in healthy volunteers. Ten healthy male volunteers received 10 mg prasugrel. After at least a week washout, they received 100 mg ritonavir, followed by 10 mg prasugrel 2 hr later. We used dried blood spot sampling method to monitor prasugrel AM pharmacokinetics (Cmax, t1/2, tmax, AUC0–6 hr) at 0, 0.25, 0.5, 1, 1.5, 2, 4 and 6 hr after prasugrel administration. A ‘cocktail’ approach was used to measure CYP2B6, 2C9, 2C19 and 3A activities. In the presence of ritonavir, prasugrel AM Cmax and AUC were decreased by 45% (mean ratio: 0.55, CI 90%: 0.40–0.7, p = 0.007) and 38% (mean ratio: 0.62, CI 90%: 0.54–0.7, p = 0.005), respectively, while t1/2 and tmax were not affected. Midazolam metabolic ratio (MR) dramatically decreased in presence of ritonavir (6.7 ± 2.6 versus 0.13 ± 0.07) reflecting an almost complete inhibition of CYP3A4, whereas omeprazole, flurbiprofen and bupropion MR were not affected. These data demonstrate that ritonavir is able to block prasugrel CYP3A4 bioactivation. This CYP-mediated drug–drug interaction might lead to a significant reduction of prasugrel efficacy in HIV-infected patients with acute coronary syndrome.
Collapse
Affiliation(s)
- Virginie Ancrenaz
- Clinical Pharmacology and Toxicology Service, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
173
|
Zaied C, Abid S, Mtiraoui N, Zellema D, Achour A, Bacha H. Cytochrome P450 (CYP3A4*18) and Glutathione-S-Transferase (GSTP1) Polymorphisms in a Healthy Tunisian Population. Genet Test Mol Biomarkers 2012; 16:1184-7. [DOI: 10.1089/gtmb.2012.0095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Chiraz Zaied
- Laboratory for Research on Biologically Compatible Compounds (LRSBC), Faculty of Dentistry, Monastir, Tunisia
| | - Salwa Abid
- Laboratory for Research on Biologically Compatible Compounds (LRSBC), Faculty of Dentistry, Monastir, Tunisia
| | - Nabil Mtiraoui
- Research Unit of Haematological and Autoimmune Diseases, Faculty of Pharmacy, Monastir, Tunisia
| | | | | | - Hassan Bacha
- Laboratory for Research on Biologically Compatible Compounds (LRSBC), Faculty of Dentistry, Monastir, Tunisia
| |
Collapse
|
174
|
Tydén E, Löfgren M, Hakhverdyan M, Tjälve H, Larsson P. The genes of all seven CYP3A isoenzymes identified in the equine genome are expressed in the airways of horses. J Vet Pharmacol Ther 2012; 36:370-5. [PMID: 22966936 DOI: 10.1111/jvp.12012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 08/14/2012] [Indexed: 01/07/2023]
Abstract
In the present study, we examined the gene expression of cytochrome P450 3A (CYP3A) isoenzymes in the tracheal and bronchial mucosa and in the lung of equines using TaqMan probes. The results show that all seven CYP3A isoforms identified in the equine genome, that is, CYP3A89, CYP3A93, CYP3A94, CYP3A95, CYP3A96, CYP3A97 and CYP3A129, are expressed in the airways of the investigated horses. Though in previous studies, CYP3A129 was found to be absent in equine intestinal mucosa and liver, this CYP3A isoform is expressed in the airways of horses. The gene expression of the CYP3A isoenzymes varied considerably between the individual horses studied. However, in most of the horses CYP3A89, CYP3A93, CYP3A96, CYP3A97 and CYP3A129 were expressed to a high extent, while CYP3A94 and CYP3A95 were expressed to a low extent in the different parts of the airways. The CYP3A isoenzymes present in the airways may play a role in the metabolic degradation of inhaled xenobiotics. In some instances, the metabolism may, however, result in bioactivation of the xenobiotics and subsequent tissue injury.
Collapse
Affiliation(s)
- E Tydén
- Division of Pathology, Pharmacology and Toxicology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
175
|
Bezirtzoglou EEV. Intestinal cytochromes P450 regulating the intestinal microbiota and its probiotic profile. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2012; 23:18370. [PMID: 23990816 PMCID: PMC3747728 DOI: 10.3402/mehd.v23i0.18370] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 08/06/2012] [Accepted: 08/17/2012] [Indexed: 12/29/2022]
Abstract
Cytochromes P450 (CYPs) enzymes metabolize a large variety of xenobiotic substances. In this vein, a plethora of studies were conducted to investigate their role, as cytochromes are located in both liver and intestinal tissues. The P450 profile of the human intestine has not been fully characterized. Human intestine serves primarily as an absorptive organ for nutrients, although it has also the ability to metabolize drugs. CYPs are responsible for the majority of phase I drug metabolism reactions. CYP3A represents the major intestinal CYP (80%) followed by CYP2C9. CYP1A is expressed at high level in the duodenum, together with less abundant levels of CYP2C8-10 and CYP2D6. Cytochromes present a genetic polymorphism intra- or interindividual and intra- or interethnic. Changes in the pharmacokinetic profile of the drug are associated with increased toxicity due to reduced metabolism, altered efficacy of the drug, increased production of toxic metabolites, and adverse drug interaction. The high metabolic capacity of the intestinal flora is due to its enormous pool of enzymes, which catalyzes reactions in phase I and phase II drug metabolism. Compromised intestinal barrier conditions, when rupture of the intestinal integrity occurs, could increase passive paracellular absorption. It is clear that high microbial intestinal charge following intestinal disturbances, ageing, environment, or food-associated ailments leads to the microbial metabolism of a drug before absorption. The effect of certain bacteria having a benefic action on the intestinal ecosystem has been largely discussed during the past few years by many authors. The aim of the probiotic approach is to repair the deficiencies in the gut flora and establish a protective effect. There is a tentative multifactorial association of the CYP (P450) cytochrome role in the different diseases states, environmental toxic effects or chemical exposures and nutritional status.
Collapse
Affiliation(s)
- Eugenia Elefterios Venizelos Bezirtzoglou
- Laboratory of Microbiology, Biotechnology and Hygiene, Department of Food Science, Faculty of Agricultural Development, Democritus University of Thrace, Orestiada, Greece
| |
Collapse
|
176
|
Chiou YH, Wang LY, Wang TH, Huang SP. Genetic polymorphisms influence the steroid treatment of children with idiopathic nephrotic syndrome. Pediatr Nephrol 2012; 27:1511-7. [PMID: 22610055 DOI: 10.1007/s00467-012-2182-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 03/29/2012] [Accepted: 03/29/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND Idiopathic nephrotic syndrome (INS) is the most frequent type of nephrotic syndrome that occurs in children. Its response to treatment with steroids varies. The aim of this study was to analyze the correlation between steroid metabolism-related genes and the response to steroid treatment. METHODS The patient cohort comprised 74 children with INS, of whom were 58 steroid-sensitive (SS) cases and 16 steroid-resistant (SR) cases. The genetic polymorphisms analyzed were those of the CYP3A5 gene (A6986G) and ABCB1 gene (C1236T, G2677T/A, and C3435T), and the polymorphisms between SS and SR children were compared. RESULTS C1236T in ABCB1 was associated with steroid resistance in INS children [odds ratio (OR) 2.65, 95 % confidence interval (CI) 1.01-6.94; p = 0.042] The frequency of the T allele was significantly higher in SR subjects than in SS subjects (0.81 vs. 0.62, respectively). A6986G in CYP3A5 showed a trend of association, but this association did not reach statistical significance (OR 2.63, 95 % CI 0.94-7.37; p = 0.059). No significant correlation was found between treatment response and G2677T/A or C3435T in ABCB1. CONCLUSIONS Our results indicate that among our pediatric patients with INS the C1236T polymorphism in the ABCB1 gene was associated with steroid resistance, while the A6986G polymorphism in the CYP3A5 gene showed a trend of association, but did not reach statistical significance, requiring further analysis.
Collapse
Affiliation(s)
- Yee-Hsuan Chiou
- Division of Pediatric Nephrology, Department of Pediatrics, Kaohsiung Veterans General Hospital, 386, Ta-Chung 1st Road, Zuoying District, Kaohsiung City, Taiwan.
| | | | | | | |
Collapse
|
177
|
Won CS, Oberlies NH, Paine MF. Mechanisms underlying food-drug interactions: inhibition of intestinal metabolism and transport. Pharmacol Ther 2012; 136:186-201. [PMID: 22884524 DOI: 10.1016/j.pharmthera.2012.08.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 07/23/2012] [Indexed: 12/21/2022]
Abstract
Food-drug interaction studies are critical to evaluate appropriate dosing, timing, and formulation of new drug candidates. These interactions often reflect prandial-associated changes in the extent and/or rate of systemic drug exposure. Physiologic and physicochemical mechanisms underlying food effects on drug disposition are well-characterized. However, biochemical mechanisms involving drug metabolizing enzymes and transport proteins remain underexplored. Several plant-derived beverages have been shown to modulate enzymes and transporters in the intestine, leading to altered pharmacokinetic (PK) and potentially negative pharmacodynamic (PD) outcomes. Commonly consumed fruit juices, teas, and alcoholic drinks contain phytochemicals that inhibit intestinal cytochrome P450 and phase II conjugation enzymes, as well as uptake and efflux transport proteins. Whereas myriad phytochemicals have been shown to inhibit these processes in vitro, translation to the clinic has been deemed insignificant or undetermined. An overlooked prerequisite for elucidating food effects on drug PK is thorough knowledge of causative bioactive ingredients. Substantial variability in bioactive ingredient composition and activity of a given dietary substance poses a challenge in conducting robust food-drug interaction studies. This confounding factor can be addressed by identifying and characterizing specific components, which could be used as marker compounds to improve clinical trial design and quantitatively predict food effects. Interpretation and integration of data from in vitro, in vivo, and in silico studies require collaborative expertise from multiple disciplines, from botany to clinical pharmacology (i.e., plant to patient). Development of more systematic methods and guidelines is needed to address the general lack of information on examining drug-dietary substance interactions prospectively.
Collapse
Affiliation(s)
- Christina S Won
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7569, USA
| | | | | |
Collapse
|
178
|
Consumption of a high-fat diet during pregnancy decreases the activity of cytochrome P450 3a in the livers of offspring. Eur J Pharm Sci 2012; 47:108-16. [DOI: 10.1016/j.ejps.2012.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/13/2012] [Indexed: 12/31/2022]
|
179
|
Nima S, Kasiwong S, Ridtitid W, Thaenmanee N, Mahattanadul S. Gastrokinetic activity of Morinda citrifolia aqueous fruit extract and its possible mechanism of action in human and rat models. JOURNAL OF ETHNOPHARMACOLOGY 2012; 142:354-361. [PMID: 22580040 DOI: 10.1016/j.jep.2012.04.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 04/16/2012] [Accepted: 04/24/2012] [Indexed: 05/31/2023]
Abstract
AIMS OF THE STUDY This study was to investigate the gastrokinetic activity of Morinda citrifolia aqueous fruit extract (AFE) in human subjects by examining the GI absorption of ranitidine, a putative indicator of GI motility and to elucidate its possible gastrokinetic mechanism of action in rats. MATERIALS AND METHODS The single-dose, randomized, open-label and 2-period crossover study was performed on 20 Thai healthy volunteers with a washout period of 14 day between the doses. AFE or drinking water was administered orally 30 min prior to a single oral administration of ranitidine (300 mg). Blood samples were collected over a 12 h period after drug administration and the pharmacokinetic parameters of ranitidine were calculated. The gastrokinetic mechanism of action of AFE was elucidated by measurement of its contractile response on the isolated rat gastric fundus strip. RESULTS The area under the plasma ranitidine concentration-time curve and the maximal plasma ranitidine concentration were significantly increased after pretreatment with AFE (p=0.001). The plasma ranitidine concentrations were significantly greater at 30-120 min after its administration. AFE produced a definite contractile response of a rat gastric fundus strip with a dose dependency. Scopoletin at the same equivalent dose present in AFE elicited a concentration-dependent contraction that amounted to 45% of the maximal response to AFE. The contractile response of both AFE and scopoletin was mediated through the 5-HT(4) receptor. CONCLUSION AFE has a unique gastrokinetic activity in enhancement of the rate and the extent of ranitidine absorption. The underlying mechanism can be attributed, at least in part, to the ability of its active component: scopoletin to stimulate the 5-HT(4) receptor.
Collapse
Affiliation(s)
- Sawpheeyah Nima
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | | | | | | | | |
Collapse
|
180
|
Quinney SK, Malireddy SR, Vuppalanchi R, Hamman MA, Chalasani N, Gorski JC, Hall SD. Rate of onset of inhibition of gut-wall and hepatic CYP3A by clarithromycin. Eur J Clin Pharmacol 2012; 69:439-48. [PMID: 22777148 DOI: 10.1007/s00228-012-1339-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 06/18/2012] [Indexed: 12/12/2022]
Abstract
AIMS To determine the extent and time-course of hepatic and intestinal cytochrome P450 3A (CYP3A) inactivation due to the mechanism-based inhibitor clarithromycin. METHODS Intestinal and hepatic CYP3A inhibition was examined in 12 healthy volunteers following the administration of single and multiple doses of oral clarithromycin (500 mg). Intestinal biopsies were obtained under intravenous midazolam sedation at baseline and after the first dose, on days 2-4, and on days 6-8 of the clarithromycin treatment. The formation of 1'-hydroxymidazolam in biopsy tissue and the serum 1'-hydroxymidazolam:midazolam ratio were indicators of intestinal and hepatic CYP3A activity, respectively. RESULTS Intestinal CYP3A activity decreased by 64 % (p = 0.0029) following the first dose of clarithromycin, but hepatic CYP3A activity did not significantly decrease. Repeated dosing of clarithromycin caused a significant decrease in hepatic CYP3A activity (p = 0.005), while intestinal activity showed little further decline. The CYP3A5 or CYP3A4*1B genotype were unable to account for inter-individual variability in CYP3A activity. CONCLUSIONS Following the administration of clarithromycin, the onset of hepatic CYP3A inactivation is delayed compared to that of intestinal CYP3A. The time-course of drug-drug interactions due to clarithromycin will vary with the relative contribution of intestinal and hepatic CYP3A to the clearance and bioavailability of a victim substrate.
Collapse
Affiliation(s)
- Sara K Quinney
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | | | |
Collapse
|
181
|
Pao LH, Hu OYP, Fan HY, Lin CC, Liu LC, Huang PW. Herb-drug interaction of 50 Chinese herbal medicines on CYP3A4 activity in vitro and in vivo. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 40:57-73. [PMID: 22298448 DOI: 10.1142/s0192415x1250005x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The purpose of this study is to evaluate the effects of Chinese herbal medicines on the enzymatic activity of CYP3A4 and the possible metabolism-based herb-drug interactions in human liver microsomes and in rats. Fifty single-herbal preparations were screened for the activity of CYP3A4 using human liver microsomes for an in vitro probe reaction study. The enzymatic activity of CYP3A4 was estimated by determing the 6β-hydroxytestosterone metabolized from testosterone performed on a liquid chromatography-tandem mass spectrometry (LC-MS/MS). Huang Qin (Scutellaria baicalensis Geprgi), Mu Dan Pi (Paeonia suffruticosa Andr.), Ji Shiee Terng (Spatholobus suberectus Dunn.) and Huang Qi (Astragalus membranaceus [Fisch] Bge) have been demonstrated to have remarkable inhibiting effects on the metabolism of CYP3A4, whereas Xi Yi Hua (Magnolia biondii Pamp.) exhibited a moderate inhibition. These five single herbs were further investigated in an animal study using midazolam. Mu Dan Pi, Ji Shiee Terng and Huang Qi were observed to have greatly increased in the C(max) and AUC of midazolam. This study provides evidence of possible herb-drug interactions involved with certain single herbs.
Collapse
Affiliation(s)
- Li-Heng Pao
- School of Pharmacy, National Defense Medical Center, 161 MinchuanEast Road Section 6, Taipei, Taiwan.
| | | | | | | | | | | |
Collapse
|
182
|
Influencia de polimorfismos genéticos de CYP3A4/5 en la farmacocinética de levonorgestrel: estudio piloto. BIOMEDICA 2012. [DOI: 10.7705/biomedica.v32i4.789] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
183
|
Irving RM, Elfarra AA. Role of reactive metabolites in the circulation in extrahepatic toxicity. Expert Opin Drug Metab Toxicol 2012; 8:1157-72. [PMID: 22681489 DOI: 10.1517/17425255.2012.695347] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Reactive metabolite-mediated toxicity is frequently limited to the organ where the electrophilic metabolites are generated. Some reactive metabolites, however, might have the ability to translocate from their site of formation. This suggests that for these reactive metabolites, investigations into the role of organs other than the one directly affected could be relevant to understanding the mechanism of toxicity. AREAS COVERED The authors discuss the physiological and biochemical factors that can enable reactive metabolites to cause toxicity in an organ distal from the site of generation. Furthermore, the authors present a case study which describes studies that demonstrate that S-(1,2-dichlorovinyl)-L-cysteine sulfoxide (DCVCS) and N-acetyl-S-(1,2-dichlorovinyl-L-cysteine sulfoxide (N-AcDCVCS), reactive metabolites of the known trichloroethylene metabolites S-(1,2-dichlorovinyl)-L-cysteine (DCVC), and N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine (N-AcDCVC), are generated in the liver and translocate through the circulation to the kidney to cause nephrotoxicity. EXPERT OPINION The ability of reactive metabolites to translocate could be important to consider when investigating mechanisms of toxicity. A mechanistic approach, similar to the one described for DCVCS and N-AcDCVCS, could be useful in determining the role of circulating reactive metabolites in extrahepatic toxicity of drugs and other chemicals. If this is the case, intervention strategies that would not otherwise be feasible might be effective for reducing extrahepatic toxicity.
Collapse
Affiliation(s)
- Roy M Irving
- University of Wisconsin-Madison, School of Veterinary Medicine, Department of Comparative Biosciences and Molecular and Environmental Toxicology Center, Madison, WI 53706, USA
| | | |
Collapse
|
184
|
Corcoran J, Lange A, Winter MJ, Tyler CR. Effects of pharmaceuticals on the expression of genes involved in detoxification in a carp primary hepatocyte model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:6306-6314. [PMID: 22559005 DOI: 10.1021/es3005305] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Fish in many surface freshwaters are exposed to a range of pharmaceuticals via wastewater treatment works effluent discharges. In mammals the pregnane X receptor (PXR) plays a key role in the regulation of a suite of genes involved in drug biotransformation, but information on the role of this response pathway in fish is limited. Here we investigated the effects of exposure of carp (Cyprinus carpio) primary hepatocytes to the human PXR agonist rifampicin (RIF) on expression of target genes involved in phase I (cyp2k, cyp3a) and phase II (gstα, gstπ) drug metabolism and drug transporters mdr1 and mrp2. RIF induced expression of all target genes measured and the PXR antagonist ketoconazole (KET) inhibited responses of cyp2k and cyp3a. Exposure of the primary carp hepatocytes to the pharmaceuticals ibuprofen (IBU), clotrimazole (CTZ), clofibric acid (CFA) and propranolol (PRP), found responses to IBU and CFA, but not CTZ or PRP. This is in contrast with mammals, where CTZ is a potent PXR-agonist. Collectively our data indicate potential PXR involvement in regulating selected genes involved in drug metabolism in fish, but suggest some divergence in the regulation pathways with those in mammals. The carp primary hepatocyte model serves as a useful system for screening for responses in these target genes involved in drug metabolism.
Collapse
Affiliation(s)
- Jenna Corcoran
- University of Exeter, Biosciences, College of Life & Environmental Sciences, Exeter, United Kingdom
| | | | | | | |
Collapse
|
185
|
Walsky RL, Obach RS, Hyland R, Kang P, Zhou S, West M, Geoghegan KF, Helal CJ, Walker GS, Goosen TC, Zientek MA. Selective Mechanism-Based Inactivation of CYP3A4 by CYP3cide (PF-04981517) and Its Utility as an In Vitro Tool for Delineating the Relative Roles of CYP3A4 versus CYP3A5 in the Metabolism of Drugs. Drug Metab Dispos 2012; 40:1686-97. [DOI: 10.1124/dmd.112.045302] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
186
|
The inhibition of major human hepatic cytochrome P450 enzymes by 18 pesticides: comparison of the N-in-one and single substrate approaches. Toxicol In Vitro 2012; 27:1584-8. [PMID: 22634058 DOI: 10.1016/j.tiv.2012.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 04/18/2012] [Accepted: 05/14/2012] [Indexed: 12/28/2022]
Abstract
In the present study on human hepatic microsomes, the N-in-one assay with ten probe substrates for nine cytochrome-P450 enzymes (CYPs) was compared with the single substrate assays to investigate pesticides-CYP interactions. CYP inhibition was measured by liquid chromatography-tandem mass spectrometry (LC/MS-MS). As illustrated by the initial screening at 100 μM concentration of 18 pesticides, CYPs are more sensitive to organophosphates (OPs) than to other pesticide groups. Chlorpyrifos and fenitrothion were most effective in inhibiting CYP1A1/2, and CYP2B6. Profenofos was also inhibitory towards multiple CYPs. Pyrethroids, e.g. deltamethrin, fenvalerate and lambda-cyhalothrin, potently inhibited CYP2D6. CYP3A4 activity was moderately inhibited by fenvalerate and potently by alpha-cypermethrin. The correlations between IC50 values obtained from the N-in-one and single substrate approaches were highly significant for CYP2Cs (r(2)=0.94), CYP3A4, omeprazole-sulfoxidation, (r(2)=0.89), followed by CYP1A2 and CYP2B6 (r(2)=0.82), and CYP2D6 (r(2)=0.80). In contrast no correlation was observed with CYP2E1 and CYP3A4 (midazolam-1'-hydroxylation). The N-in-one screening assay seems useful and reliable for most CYP activities when a comprehensive and quick evaluation of potential interactions with CYPs is needed. However, at the present moment, it does not enable discrimination on the basis of mechanism of inhibition. A strict comparison between single and N-in-one assays is a prerequisite for more extensive routine use.
Collapse
|
187
|
Haas DM, Lehmann AS, Skaar T, Philips S, McCormick CL, Beagle K, Hebbring SJ, Dantzer J, Li L, Jung J. The impact of drug metabolizing enzyme polymorphisms on outcomes after antenatal corticosteroid use. Am J Obstet Gynecol 2012; 206:447.e17-24. [PMID: 22445700 PMCID: PMC3340461 DOI: 10.1016/j.ajog.2012.02.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 02/15/2012] [Accepted: 02/21/2012] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To determine the impact of maternal and fetal single nucleotide polymorphisms in key betamethasone pathways on neonatal outcomes. STUDY DESIGN DNA was obtained from women given betamethasone and their infants. Samples were genotyped for 73 exploratory drug metabolism and glucocorticoid pathway single nucleotide polymorphisms. Clinical variables and neonatal outcomes were obtained. Logistic regression analysis using relevant clinical variables and genotypes to model for associations with neonatal respiratory distress syndrome was performed. RESULTS One hundred nine women delivering 117 infants were analyzed. Sixty-four infants (49%) developed respiratory distress syndrome. Multivariable analysis revealed that respiratory distress syndrome was associated with maternal single nucleotide polymorphisms in CYP3A5 (odds ratio [OR], 1.63; 95% confidence interval [CI], 1.16-2.30) and the glucocorticoid resistance (OR, 0.28; 95% CI, 0.08-0.95) and fetal single nucleotide polymorphisms in ADCY9 (OR, 0.17; 95% CI, 0.03-0.80) and CYP3A7*1E (rs28451617; OR, 23.68; 95% CI, 1.33-420.6). CONCLUSION Maternal and fetal genotypes are independently associated with neonatal respiratory distress syndrome after treatment with betamethasone for preterm labor.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Adenylyl Cyclases/genetics
- Adult
- Arylsulfotransferase/genetics
- Betamethasone/metabolism
- Betamethasone/therapeutic use
- Cytochrome P-450 CYP3A/genetics
- Female
- Genetic Markers
- Genotyping Techniques
- Glucocorticoids/metabolism
- Glucocorticoids/therapeutic use
- Humans
- Infant, Newborn
- Logistic Models
- Multivariate Analysis
- Obstetric Labor, Premature
- Polymorphism, Single Nucleotide
- Pregnancy
- ROC Curve
- Receptors, Corticotropin-Releasing Hormone/genetics
- Receptors, Glucocorticoid/genetics
- Respiratory Distress Syndrome, Newborn/enzymology
- Respiratory Distress Syndrome, Newborn/genetics
- Respiratory Distress Syndrome, Newborn/prevention & control
- Treatment Outcome
Collapse
Affiliation(s)
- David M Haas
- The Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Abstract
There are considerable interindividual variations in drug absorption, distribution, metabolism and excretion (ADME) in humans, which may lead to undesired drug effects in pharmacotherapy. Some of the mechanistic causes are known, e.g., genetic polymorphism, inhibition and induction of ADME enzymes and transporters, while others such as posttranscriptional regulation of ADME genes are under active study. MicroRNAs (miRNAs) are a large group of small, noncoding RNAs that control posttranscriptional expression of target genes. More than 1000 miRNAs have been identified in the human genome, which may regulate thousands of protein-coding genes. Some miRNAs directly or indirectly control the expression of xenobiotic-metabolizing cytochrome P450 enzymes, ATP-binding cassette or solute carrier transporters and/or nuclear receptors. Consequently, intervention of miRNA epigenetic signaling may alter ADME gene expression, change the capacity of drug metabolism and transport, and influence the sensitivity of cells to xenobiotics. In addition, the expression of some ADME regulatory miRNAs is significantly changed in cells following the exposure to a given drug, and the consequent changes in ADME gene expression might result in distinct ADME properties and drug response. In this review, we summarized recent findings on the role of noncoding miRNAs in epigenetic regulation of ADME genes and discussed the potential impact on pharmacokinetics and pharmacodynamics.
Collapse
Affiliation(s)
- Ai-Ming Yu
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260-1200, USA
| | - Yu-Zhuo Pan
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260-1200, USA
| |
Collapse
|
189
|
Denisov IG, Sligar SG. A novel type of allosteric regulation: functional cooperativity in monomeric proteins. Arch Biochem Biophys 2012; 519:91-102. [PMID: 22245335 PMCID: PMC3329180 DOI: 10.1016/j.abb.2011.12.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 10/14/2022]
Abstract
Cooperative functional properties and allosteric regulation in cytochromes P450 play an important role in xenobiotic metabolism and define one of the main mechanisms of drug-drug interactions. Recent experimental results suggest that ability to bind simultaneously two or more small organic molecules can be the essential feature of cytochrome P450 fold, and often results in rich and complex pattern of allosteric behavior. Manifestations of non-Michaelis kinetics include homotropic and heterotropic activation and inhibition effects depending on the stoichiometric ratios of substrate and effector, changes in the regio- and stereospecificity of catalytic transformations, and often give rise to the clinically important drug-drug interactions. In addition, functional response of P450 systems is modulated by the presence of specific and non-specific effector molecules, metal ions, membrane incorporation, formation of homo- and hetero-oligomers, and interactions with the protein redox partners. In this article we briefly overview the main factors contributing to the allosteric effects in cytochromes P450 with the main focus on the sources of cooperative behavior in xenobiotic metabolizing monomeric heme enzymes with their conformational flexibility and extremely broad substrate specificity. The novel mechanism of functional cooperativity in P450 enzymes does not require substantial binding cooperativity, rather it implies the presence of one or more binding sites with higher affinity than the single catalytically active site in the vicinity of the heme iron.
Collapse
Affiliation(s)
- Ilia G. Denisov
- Department of Biochemistry, University of Illinois, Urbana, IL, 61801
| | - Stephen G. Sligar
- Department of Biochemistry, University of Illinois, Urbana, IL, 61801
- Beckman Institute, University of Illinois, Urbana, IL, 61801
- School of Molecular and Cellular Biology, University of Illinois, Urbana, IL, 61801
| |
Collapse
|
190
|
Keubler A, Weiss J, Haefeli WE, Mikus G, Burhenne J. Drug Interaction of Efavirenz and Midazolam: Efavirenz Activates the CYP3A-Mediated Midazolam 1′-Hydroxylation In Vitro. Drug Metab Dispos 2012; 40:1178-82. [DOI: 10.1124/dmd.111.043844] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
191
|
Marino SE, Birnbaum AK, Leppik IE, Conway JM, Musib LC, Brundage RC, Ramsay RE, Pennell PB, White JR, Gross CR, Rarick JO, Mishra U, Cloyd JC. Steady-state carbamazepine pharmacokinetics following oral and stable-labeled intravenous administration in epilepsy patients: effects of race and sex. Clin Pharmacol Ther 2012; 91:483-8. [PMID: 22278332 PMCID: PMC4038037 DOI: 10.1038/clpt.2011.251] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Carbamazepine is a widely prescribed antiepileptic drug. Owing to the lack of an intravenous formulation, its absolute bioavailability, absolute clearance, and half-life in patients at steady state have not been determined. We developed an intravenous, stable-labeled (SL) formulation in order to characterize carbamazepine pharmacokinetics in patients. Ninety-two patients received a 100-mg infusion of SL-carbamazepine as part of their morning dose. Blood samples were collected up to 96 hours after drug administration. Plasma drug concentrations were measured with liquid chromatography-mass spectrometry, and concentration-time data were analyzed using a noncompartmental approach. Absolute clearance (l/hr/kg) was significantly lower in men (0.039 ± 0.017) than in women (0.049 ± 0.018; P = 0.007) and in African Americans (0.039 ± 0.017) when compared with Caucasians (0.048 ± 0.018; P = 0.019). Half-life was significantly longer in men than in women as well as in African Americans as compared with Caucasians. The absolute bioavailability was 0.78. Sex and racial differences in clearance may contribute to variable dosing requirements and clinical response.
Collapse
Affiliation(s)
- S E Marino
- Center for Clinical and Cognitive Neuropharmacology, University of Minnesota, Minneapolis, Minnesota, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Chatuphonprasert W, Nemoto N, Sakuma T, Jarukamjorn K. Modulations of cytochrome P450 expression in diabetic mice by berberine. Chem Biol Interact 2012; 196:23-9. [PMID: 22342832 DOI: 10.1016/j.cbi.2012.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 01/19/2012] [Accepted: 01/22/2012] [Indexed: 02/06/2023]
Abstract
Berberine, an isoquinoline alkaloid isolated from medicinal plants such as Berberis aristata, Coptis chinesis, Coptis japonica, Coscinium fenestatun, and Hydrastis Canadensis, is widely used in Asian countries for the treatment of diabetes, hypertension, and hypercholesterolemia. Interaction between berberine and the cytochrome P450 enzymes (CYPs) has been extensively reported, but there are only a few reports of this interaction in the diabetic state. In this study, the effect of berberine on the mRNA of the CYPs in primary mouse hepatocytes and in streptozotocin (STZ)-induced diabetic mice was investigated. In primary mouse hepatocytes, berberine suppressed the induction of Cyp1a1, Cyp1a2, Cyp2e1, Cyp3a11, Cyp4a10, and Cyp4a14 mRNA expression by their prototypical inducers in a concentration-dependent fashion. However, berberine treatment alone increased the expression of Cyp2b9 and Cyp2b10 mRNA. In vivo, berberine showed the same hypoglycemic activity as metformin, an established hypoglycemic drug. The hepatic mRNA levels of Cyp1a1, Cyp2b9, Cyp2b10, Cyp3a11, Cyp4a10, and Cyp4a14 were increased in STZ-induced diabetic mice. Interestingly, berberine itself suppressed the expression of Cyp2e1, an adverse hepatic event-associated enzyme, while the expression of Cyp3a11, Cyp4a10, and Cyp4a14 were restored to normal levels by berberine. In conclusion, berberine has the potential to modify the expression of CYPs by either suppression or enhancement of CYPs' levels. Consumption of berberine as an anti-hyperglycemic compound by diabetic patients might provide an extra benefit due to its potential to restore the expression of Cyp2e1, Cyp3a, and Cyp4a to normal levels. However, an herb-drug interaction might be of concern since any berberine-containing product would definitely cause pronounced interactions based on CYP3A4 inhibition.
Collapse
Affiliation(s)
- Waranya Chatuphonprasert
- Research Group for Pharmaceutical Activities of Natural Products using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, National Research University - Khon Kaen University, Khon Kaen 40002, Thailand
| | | | | | | |
Collapse
|
193
|
Deb S, Pandey M, Adomat H, Guns EST. Cytochrome P450 3A-Mediated Microsomal Biotransformation of 1α,25-Dihydroxyvitamin D3 in Mouse and Human Liver: Drug-Related Induction and Inhibition of Catabolism. Drug Metab Dispos 2012; 40:907-18. [DOI: 10.1124/dmd.111.041681] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
194
|
Zuo LJ, Guo T, Xia DY, Jia LH. Allele and Genotype Frequencies of CYP3A4, CYP2C19, and CYP2D6 in Han, Uighur, Hui, and Mongolian Chinese Populations. Genet Test Mol Biomarkers 2012; 16:102-8. [PMID: 22224559 DOI: 10.1089/gtmb.2011.0084] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Liang Jin Zuo
- Department of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
- Departmant of Pharmacy, Shenyang Northern Hospital, Shenyang, China
| | - Tao Guo
- Departmant of Pharmacy, Shenyang Northern Hospital, Shenyang, China
| | - Dong Ya Xia
- Departmant of Pharmacy, Shenyang Northern Hospital, Shenyang, China
| | - Li Hui Jia
- Departmant of Pharmacy, Shenyang Northern Hospital, Shenyang, China
| |
Collapse
|
195
|
The effect of aprepitant and race on the pharmacokinetics of cyclophosphamide in breast cancer patients. Cancer Chemother Pharmacol 2012; 69:1189-96. [DOI: 10.1007/s00280-011-1815-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 12/24/2011] [Indexed: 10/14/2022]
|
196
|
Ni S, Wang X, Wang J, Zhao Z, Zeng S. The effects of a high-fat and high-energy diet on the hepatic expression of CYP3A in developing female rats. Xenobiotica 2012; 42:587-95. [PMID: 22235918 DOI: 10.3109/00498254.2011.645907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We aimed to investigate the effects of high-fat and high-energy (HFHE) diets on the hepatic expression of cytochrome P-450 3A (CYP3A) in developing female rats. The pups of the dams fed with the standard diet were defined as the NN group and those fed the HFHE diet were defined as the NH group. The mRNA and protein expression, the protein localization and activity was determined. The mRNA expression of CYP3A1 on day 3 in the NH group were higher versus NN groups (p < 0.05) and the expression of the NH group on days 28 and 56 were lower versus the NN group (p < 0.01). CYP3A1 immunolabeling had a zonal-restricted expressions pattern on day 28 and after in the NN groups, while the obvious zonal expression pattern was observed in the NH group on day 84. The mean activity for the NH groups on days 3, 7, 14 and 28 was higher versus the NN groups (p < 0.05). On day 84, the activity was lower for the NH group versus the NN group (p < 0.05). Our findings provide a basis for further studies on appropriate medication regimen in obese children.
Collapse
Affiliation(s)
- Shaoqing Ni
- The Children hospital of Zhejiang University School of Medicine, People's Republic of China
| | | | | | | | | |
Collapse
|
197
|
Takezawa T, Matsunaga T, Aikawa K, Nakamura K, Ohmori S. Lower Expression of HNF4α and PGC1α Might Impair Rifampicin-mediated CYP3A4 Induction under Conditions Where PXR Is Overexpressed in Human Fetal Liver Cells. Drug Metab Pharmacokinet 2012; 27:430-8. [DOI: 10.2133/dmpk.dmpk-11-rg-126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
198
|
Lee SJ, Goldstein JA. Comparison of CYP3A4 and CYP3A5: The Effects of Cytochrome b5 and NADPH-cytochrome P450 Reductase on Testosterone Hydroxylation Activities. Drug Metab Pharmacokinet 2012; 27:663-7. [DOI: 10.2133/dmpk.dmpk-12-sh-030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
199
|
Wu Y, Shi X, Liu Y, Zhang X, Wang J, Luo X, Wen A. Histone deacetylase 1 is required for Carbamazepine-induced CYP3A4 expression. J Pharm Biomed Anal 2012; 58:78-82. [DOI: 10.1016/j.jpba.2011.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 08/17/2011] [Accepted: 09/17/2011] [Indexed: 01/28/2023]
|
200
|
Milone MC. Therapeutic Drug Monitoring of Selected Anticancer Drugs. Ther Drug Monit 2012. [DOI: 10.1016/b978-0-12-385467-4.00014-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|