151
|
Kohlgrüber S, Upadhye A, Dyballa-Rukes N, McNamara CA, Altschmied J. Regulation of Transcription Factors by Reactive Oxygen Species and Nitric Oxide in Vascular Physiology and Pathology. Antioxid Redox Signal 2017; 26:679-699. [PMID: 27841660 PMCID: PMC5421514 DOI: 10.1089/ars.2016.6946] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Cardiovascular diseases are the main cause of death worldwide and pose an immense economical burden. In most cases, the underlying problem is vascular occlusion by atherosclerotic plaques. Importantly, different cell types of the vascular wall and the immune system play crucial roles in atherosclerosis at different stages of the disease. Furthermore, atherosclerosis and conditions recognized as risk factors are characterized by a reduced availability of the vasoprotective molecule nitric oxide and an increase in reactive oxygen species, so-called oxidative stress. Transcription factors function as intracellular signal integrators and relays and thus, play a central role in cellular responses to changing conditions. Recent Advances: Work on specific transcriptional regulators has uncovered many of their functions and the upstream pathways modulating their activity in response to reactive oxygen and nitrogen species. Here, we have reviewed for a few selected examples how this can contribute not only to protection against atherosclerosis development but also to disease progression and the occurrence of clinical manifestations, such as plaque rupture. CRITICAL ISSUES Transcription factors have pleiotropic outputs and often also divergent functions in different cell types and tissues. Thus, in light of potential severe adverse side effects, a global activation or inhibition of particular transcriptions factors does not seem a feasible therapeutic option. FUTURE DIRECTIONS A further in-depth characterization of the cell- and stage-specific actions and regulation of transcription factors in atherosclerosis with respect to protein-protein interactions and target genes could open up new avenues for prevention or therapeutic interventions in this vascular disease. Antioxid. Redox Signal. 26, 679-699.
Collapse
Affiliation(s)
- Stefanie Kohlgrüber
- 1 IUF-Leibniz Research Institute for Environmental Medicine , Düsseldorf, Germany
| | - Aditi Upadhye
- 2 Department of Microbiology, Immunology, Cancer Biology, University of Virginia , Charlottesville, Virginia
| | - Nadine Dyballa-Rukes
- 1 IUF-Leibniz Research Institute for Environmental Medicine , Düsseldorf, Germany
| | - Coleen A McNamara
- 3 Cardiovascular Division, Department of Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine , Charlottesville, Virginia
| | - Joachim Altschmied
- 1 IUF-Leibniz Research Institute for Environmental Medicine , Düsseldorf, Germany
| |
Collapse
|
152
|
Dostalova P, Zatecka E, Dvorakova-Hortova K. Of Oestrogens and Sperm: A Review of the Roles of Oestrogens and Oestrogen Receptors in Male Reproduction. Int J Mol Sci 2017; 18:ijms18050904. [PMID: 28441342 PMCID: PMC5454817 DOI: 10.3390/ijms18050904] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/31/2017] [Accepted: 04/20/2017] [Indexed: 01/08/2023] Open
Abstract
The crucial role that oestrogens play in male reproduction has been generally accepted; however, the exact mechanism of their action is not entirely clear and there is still much more to be clarified. The oestrogen response is mediated through oestrogen receptors, as well as classical oestrogen receptors’ variants, and their specific co-expression plays a critical role. The importance of oestrogen signalling in male fertility is indicated by the adverse effects of selected oestrogen-like compounds, and their interaction with oestrogen receptors was proven to cause pathologies. The aims of this review are to summarise the current knowledge on oestrogen signalling during spermatogenesis and sperm maturation and discuss the available information on oestrogen receptors and their splice variants. An overview is given of species-specific differences including in humans, along with a detailed summary of the methodology outcome, including all the genetically manipulated models available to date. This review provides coherent information on the recently discovered mechanisms of oestrogens’ and oestrogen receptors’ effects and action in both testicular somatic and germ cells, as well as in mature sperm, available for mammals, including humans.
Collapse
Affiliation(s)
- Pavla Dostalova
- Group of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic.
| | - Eva Zatecka
- Group of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic.
| | - Katerina Dvorakova-Hortova
- Group of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic.
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague 2, Czech Republic.
| |
Collapse
|
153
|
Yang DL, Xu JW, Zhu JG, Zhang YL, Xu JB, Sun Q, Cao XN, Zuo WL, Xu RS, Huang JH, Jiang FN, Zhuo YJ, Xiao BQ, Liu YZ, Yuan DB, Sun ZL, He HC, Lun ZR, Zhong WD, Zhou WL. Role of GPR30 in estrogen-induced prostate epithelial apoptosis and benign prostatic hyperplasia. Biochem Biophys Res Commun 2017; 487:517-524. [PMID: 28412354 DOI: 10.1016/j.bbrc.2017.04.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 04/11/2017] [Indexed: 12/26/2022]
Abstract
Several studies have implicated estrogen and the estrogen receptor (ER) in the pathogenesis of benign prostatic hyperplasia (BPH); however, the mechanism underlying this effect remains elusive. In the present study, we demonstrated that estrogen (17β-estradiol, or E2)-induced activation of the G protein-coupled receptor 30 (GPR30) triggered Ca2+ release from the endoplasmic reticulum, increased the mitochondrial Ca2+ concentration, and thus induced prostate epithelial cell (PEC) apoptosis. Both E2 and the GPR30-specific agonist G1 induced a transient intracellular Ca2+ release in PECs via the phospholipase C (PLC)-inositol 1, 4, 5-triphosphate (IP3) pathway, and this was abolished by treatment with the GPR30 antagonist G15. The release of cytochrome c and activation of caspase-3 in response to GPR30 activation were observed. Data generated from the analysis of animal models and human clinical samples indicate that treatment with the GPR30 agonist relieves testosterone propionate (TP)-induced prostatic epithelial hyperplasia, and that the abundance of GPR30 is negatively associated with prostate volume. On the basis of these results, we propose a novel regulatory mechanism whereby estrogen induces the apoptosis of PECs via GPR30 activation. Inhibition of this activation is predicted to lead to abnormal PEC accumulation, and to thereby contribute to BPH pathogenesis.
Collapse
Affiliation(s)
- Deng-Liang Yang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jia-Wen Xu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jian-Guo Zhu
- Department of Urology, Guizhou Provincial People's Hospital, Guizhou University, Guiyang, 550002, China; Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Yi-Lin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jian-Bang Xu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qing Sun
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiao-Nian Cao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Wu-Lin Zuo
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ruo-Shui Xu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jie-Hong Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Fu-Neng Jiang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Yang-Jia Zhuo
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Bai-Quan Xiao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Guangzhou General Pharmaceutical Research Institute, Guangzhou, 510240, China
| | - Yun-Zhong Liu
- Guangzhou General Pharmaceutical Research Institute, Guangzhou, 510240, China
| | - Dong-Bo Yuan
- Department of Urology, Guizhou Provincial People's Hospital, Guizhou University, Guiyang, 550002, China
| | - Zhao-Lin Sun
- Department of Urology, Guizhou Provincial People's Hospital, Guizhou University, Guiyang, 550002, China
| | - Hui-Chan He
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Zhao-Rong Lun
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Wei-De Zhong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China.
| | - Wen-Liang Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Guangzhou, 510275, China.
| |
Collapse
|
154
|
Yu T, Yang G, Hou Y, Tang X, Wu C, Wu XA, Guo L, Zhu Q, Luo H, Du YE, Wen S, Xu L, Yin J, Tu G, Liu M. Cytoplasmic GPER translocation in cancer-associated fibroblasts mediates cAMP/PKA/CREB/glycolytic axis to confer tumor cells with multidrug resistance. Oncogene 2017; 36:2131-2145. [PMID: 27721408 DOI: 10.1038/onc.2016.370] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 07/07/2016] [Accepted: 08/29/2016] [Indexed: 02/07/2023]
Abstract
Multiple drug resistance is a challenging issue in the clinic. There is growing evidence that the G-protein-coupled estrogen receptor (GPER) is a novel mediator in the development of multidrug resistance in both estrogen receptor (ER)-positive and -negative breast cancers, and that cancer-associated fibroblasts (CAFs) in the tumor microenvironment may be a new agent that promotes drug resistance in tumor cells. However, the role of cytoplasmic GPER of CAFs on tumor therapy remains unclear. Here we first show that the breast tumor cell-activated PI3K/AKT (phosphoinositide 3-kinase/AKT) signaling pathway induces the cytoplasmic GPER translocation of CAFs in a CRM1-dependent pattern, and leads to the activation of a novel estrogen/GPER/cAMP/PKA/CREB signaling axis that triggers the aerobic glycolysis switch in CAFs. The glycolytic CAFs feed the extra pyruvate and lactate to tumor cells for augmentation of mitochondrial activity, and this energy metabolically coupled in a 'host-parasite relationship' between catabolic CAFs and anabolic cancer cells confers the tumor cells with multiple drug resistance to several conventional clinical treatments including endocrine therapy (tamoxifen), Her-2-targeted therapy (herceptin) and chemotherapy (epirubicin). Moreover, the clinical data from 18F-fluorodeoxyglucose positron emission tomography/computed tomography further present a strong association between the GPER/cAMP/PKA/CREB pathway of stromal fibroblasts with tumor metabolic activity and clinical treatment, suggesting that targeting cytoplasmic GPER in CAFs may rescue the drug sensitivity in patients with breast cancer. Thus, our data define novel insights into the stromal GPER-mediated multiple drug resistance from the point of reprogramming of tumor energy metabolism and provide the rationale for CAFs as a promising target for clinical therapy.
Collapse
Affiliation(s)
- T Yu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - G Yang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Y Hou
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - X Tang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - C Wu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - X-A Wu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - L Guo
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Q Zhu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - H Luo
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Y-E Du
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - S Wen
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - L Xu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - J Yin
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - G Tu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - M Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
155
|
Deepak V, Kayastha P, McNamara LM. Estrogen deficiency attenuates fluid flow‐induced [Ca
2+
]
i
oscillations and mechanoresponsiveness of MLO‐Y4 osteocytes. FASEB J 2017; 31:3027-3039. [DOI: 10.1096/fj.201601280r] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/13/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Vishwa Deepak
- Mechanobiology and Medical Device Research GroupBiomechanics Research CentreBiomedical EngineeringCollege of Engineering and InformaticsNational University of Ireland GalwayGalway Ireland
| | - Pushpalata Kayastha
- Mechanobiology and Medical Device Research GroupBiomechanics Research CentreBiomedical EngineeringCollege of Engineering and InformaticsNational University of Ireland GalwayGalway Ireland
| | - Laoise M. McNamara
- Mechanobiology and Medical Device Research GroupBiomechanics Research CentreBiomedical EngineeringCollege of Engineering and InformaticsNational University of Ireland GalwayGalway Ireland
| |
Collapse
|
156
|
Lee KH, Jo KJ, Kim JY, Baik HW, Lee SK. 17Beta-estradiol Stimulates Glucose Uptake Through Estrogen Receptor and AMP-activated Protein Kinase Activation in C2C12 Myotubes (Korean J Obes 2016;25:190-6). J Obes Metab Syndr 2017; 26:78-79. [PMID: 31089498 PMCID: PMC6484932 DOI: 10.7570/jomes.2017.26.1.78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Affiliation(s)
- Ki-Ho Lee
- Department of Biochemistry-Molecular Biology, Eulji University School of Medicine, Daejeon, Korea
| | - Kyung-Jin Jo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Ju-Young Kim
- Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Korea
| | - Haing-Woon Baik
- Department of Biochemistry-Molecular Biology, Eulji University School of Medicine, Daejeon, Korea
| | - Seong-Kyu Lee
- Department of Biochemistry-Molecular Biology, Eulji University School of Medicine, Daejeon, Korea.,Department of Internal Medicine, Eulji University Hospital, Daejeon, Korea
| |
Collapse
|
157
|
Rodgers RJ, Reid GD, Koch J, Deans R, Ledger WL, Friedlander M, Gilchrist RB, Walters KA, Abbott JA. The safety and efficacy of controlled ovarian hyperstimulation for fertility preservation in women with early breast cancer: a systematic review. Hum Reprod 2017; 32:1033-1045. [DOI: 10.1093/humrep/dex027] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/29/2017] [Indexed: 12/29/2022] Open
|
158
|
Aravamudan B, Goorhouse KJ, Unnikrishnan G, Thompson MA, Pabelick CM, Hawse JR, Prakash YS, Sathish V. Differential Expression of Estrogen Receptor Variants in Response to Inflammation Signals in Human Airway Smooth Muscle. J Cell Physiol 2017; 232:1754-1760. [PMID: 27808402 DOI: 10.1002/jcp.25674] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 12/16/2022]
Abstract
The prevalence of asthma is higher in pre-pubescent and aging males, and in post-pubertal females, strongly indicating that sex steroids (especially estrogen) may be an important modulator in lung disease. We recently demonstrated that airway smooth muscle (ASM) expresses both alpha and beta forms of the estrogen receptor (ERα and ERβ) in males and females, and that these receptors regulate intracellular [Ca2+ ] and ASM contractility. Although both ERα and ERβ have multiple splice variants, it is unclear if and how the expression of these variants is modulated under conditions such as chronic inflammation/asthma. In order to test the hypothesis that the differential expression of ERα and ERβ variants contributes to the pathogenesis of asthma, we profiled the expression of various ERα and ERβ genes in asthmatic and inflamed (TNFα- or IL-13-treated) ASM. Gene expression was assessed at both the mRNA and protein levels in asthmatic ASM cells or non-asthmatic cells treated with TNFα (20 ng/ml) or IL-13 (50 ng/ml). We observed marked variation in the expression of ER isoforms in response to inflammatory stimuli, and in non-asthmatic versus asthmatic ASM. Changes in protein levels of ERα and ERβ corresponded with the observed differential mRNA patterns. Pharmacological studies implicate cytosolic (p42/44 MAPK and PI3 K) and nuclear (NFκB, STAT6, and AP-1) signaling pathways as putative mechanisms that mediate and/or regulate effects of inflammation on ER expression. We conclude that variations in ASM ER expression profiles occur with inflammation and that ER variants could contribute to estrogen signaling in airway diseases such as asthma. J. Cell. Physiol. 232: 1754-1760, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bharathi Aravamudan
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | | | | | - Michael A Thompson
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Christina M Pabelick
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Y S Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Venkatachalem Sathish
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota.,Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota
| |
Collapse
|
159
|
Rasmusson AM, Marx CE, Pineles SL, Locci A, Scioli-Salter ER, Nillni YI, Liang JJ, Pinna G. Neuroactive steroids and PTSD treatment. Neurosci Lett 2017; 649:156-163. [PMID: 28215878 DOI: 10.1016/j.neulet.2017.01.054] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/22/2017] [Accepted: 01/23/2017] [Indexed: 01/08/2023]
Abstract
This review highlights early efforts to translate pre-clinical and clinical findings regarding the role of neuroactive steroids in stress adaptation and PTSD into new therapeutics for PTSD. Numerous studies have demonstrated PTSD-related alterations in resting levels or the reactivity of neuroactive steroids and their targets. These studies also have demonstrated substantial variability in the dysfunction of specific neuroactive steroid systems among PTSD subpopulations. These variabilities have been related to the developmental timing of trauma, severity and type of trauma, genetic background, sex, reproductive state, lifestyle influences such as substance use and exercise, and the presence of comorbid conditions such as depression and chronic pain. Nevertheless, large naturalistic studies and a small placebo-controlled interventional study have revealed generally positive effects of glucocorticoid administration in preventing PTSD after trauma, possibly mediated by glucocorticoid receptor-mediated effects on other targets that impact PTSD risk, including other neuroactive steroid systems. In addition, clinical and preclinical studies show that administration of glucocorticoids, 17β-estradiol, and GABAergic neuroactive steroids or agents that enhance their synthesis can facilitate extinction and extinction retention, depending on dose and timing of dose in relation to these complex PTSD-relevant recovery processes. This suggests that clinical trials designed to test neuroactive steroid therapeutics in PTSD may benefit from such considerations; typical continuous dosing regimens may not be optimal. In addition, validated and clinically accessible methods for identifying specific neuroactive steroid system abnormalities at the individual level are needed to optimize both clinical trial design and precision medicine based treatment targeting.
Collapse
Affiliation(s)
- Ann M Rasmusson
- National Center for PTSD, Women's Health Science Division, Department of Veterans Affairs 150 South Huntington Avenue, Boston, MA 02135, USA; VA Boston Healthcare System 150 South Huntington Avenue, Boston, MA 02135, USA; Boston University School of Medicine 72 E Concord St, Boston, MA 02118, USA.
| | - Christine E Marx
- Durham VA Medical Center, VA Mid-Atlantic MIRECC,and Duke University Medical Center, 508 Fulton Street, Durham, NC 27705, USA
| | - Suzanne L Pineles
- National Center for PTSD, Women's Health Science Division, Department of Veterans Affairs 150 South Huntington Avenue, Boston, MA 02135, USA; Boston University School of Medicine 72 E Concord St, Boston, MA 02118, USA
| | - Andrea Locci
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor Str., Chicago, IL 60612, USA
| | - Erica R Scioli-Salter
- VA Boston Healthcare System 150 South Huntington Avenue, Boston, MA 02135, USA; Boston University School of Medicine 72 E Concord St, Boston, MA 02118, USA
| | - Yael I Nillni
- National Center for PTSD, Women's Health Science Division, Department of Veterans Affairs 150 South Huntington Avenue, Boston, MA 02135, USA; Boston University School of Medicine 72 E Concord St, Boston, MA 02118, USA
| | - Jennifer J Liang
- Boston University School of Medicine 72 E Concord St, Boston, MA 02118, USA
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor Str., Chicago, IL 60612, USA
| |
Collapse
|
160
|
Chen L, Au DWT, Hu C, Peterson DR, Zhou B, Qian PY. Identification of Molecular Targets for 4,5-Dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) in Teleosts: New Insight into Mechanism of Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:1840-1847. [PMID: 28026967 DOI: 10.1021/acs.est.6b05523] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Environmental pollutants are capable of concomitantly inducing diverse toxic effects. However, it is largely unknown which effects are directly induced and which effects are secondary, thus calling for definitive identification of the initiating molecular event for a pollutant to elucidate the mechanism of toxicity. In the present study, affinity pull-down assays were used to identify target proteins for 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT), a costal pollutant of emerging concern, in various tissues (e.g., brain, liver, plasma, and gonad) from marine medaka (Oryzias melastigma) and zebrafish (Danio rerio). Pull-down results showed that, in male and female brains from medaka and zebrafish, DCOIT had a consistently high affinity for G protein alpha subunits (Gα), suggesting the targeted effects of DCOIT on signaling transduction from G protein-coupled receptors (GPCRs) and an extrapolatable mode of action in teleost brains. Validation using recombinant proteins and molecular docking analysis confirmed that binding of DCOIT to Gα protein competitively inhibited its activation by substrate. Considering the involvement of GPCRs in the regulation of myriad biological processes, including the hypothalamus-pituitary-gonadal-liver axis, binding of DCOIT to upstream Gα proteins in the brain may provide a plausible explanation for the diversity of toxic effects resulting from DCOIT challenge, especially abnormal hormonal production through the mitogen-activated protein kinase pathway. A new mechanism of action based on GPCR signaling is thus hypothesized for endocrine disrupting chemicals and warrants further research to clearly elucidate the link between GPCR signaling and endocrine disruption.
Collapse
Affiliation(s)
- Lianguo Chen
- Division of Life Science, Hong Kong University of Science and Technology , Clear Water Bay, Hong Kong SAR, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
| | - Doris W T Au
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong , Kowloon, Hong Kong SAR, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology , Wuhan 430072, China
| | - Drew R Peterson
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong , Kowloon, Hong Kong SAR, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
| | - Pei-Yuan Qian
- Division of Life Science, Hong Kong University of Science and Technology , Clear Water Bay, Hong Kong SAR, China
| |
Collapse
|
161
|
Jia J, Zhou H, Zeng X, Feng S. Estrogen stimulates osteoprotegerin expression via the suppression of miR-145 expression in MG-63 cells. Mol Med Rep 2017; 15:1539-1546. [PMID: 28260003 PMCID: PMC5364970 DOI: 10.3892/mmr.2017.6168] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 12/12/2016] [Indexed: 12/24/2022] Open
Abstract
Osteoprotegerin (OPG) is implicated in the pathogenesis of postmenopausal osteoporosis, and other metabolic bone diseases caused by estrogen deficiency. Previous studies have demonstrated that estrogen may stimulate OPG expression in osteoblast cells at the transcriptional level; however, whether estrogen can regulate OPG expression at a post-transcriptional level remains elusive. The present study aimed to investigate the role of microRNA (miRNA) in estrogen-mediated OPG production in human osteoblast-like MG-63 cells. The results from ELISA, western blotting and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) confirmed that estrogen may upregulate OPG expression. Mechanistic studies indicated that estrogen increased the activity of a luciferase reporter harboring the OPG 3′-untranslated region (3′-UTR). Bioinformatics analysis demonstrated that there is a potential targeting site in the OPG 3′-UTR for miRNA (miR)-145, which is associated with osteoblast differentiation. The results of an RT-qPCR suggested that estrogen suppressed miR-145 expression. In addition, dual-luciferase assay, RT-qPCR and western blot analysis indicated that miR-145 directly targets and negatively regulates OPG expression. Furthermore, transfection of cells with miR-145 mimics was able to partially inhibit the induction of OPG expression by estrogen, thus confirming the role of miR-145 in estrogen-mediated OPG induction. Taken together, the results of the present study demonstrated that estrogen may post-transcriptionally regulate OPG expression through suppression of miR-145 expression.
Collapse
Affiliation(s)
- Jun Jia
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Hengxing Zhou
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xiantie Zeng
- Department of Surgery of Foot and Ankle, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
162
|
Tang L, Zheng S, Wang Y, Li F, Bao M, Zeng J, Xiang J, Luo H, Li J. Rs4265085 in GPER1 gene increases the risk for unexplained recurrent spontaneous abortion in Dai and Bai ethnic groups in China. Reprod Biomed Online 2017; 34:399-405. [PMID: 28126236 DOI: 10.1016/j.rbmo.2017.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 11/24/2022]
Abstract
Oestrogen receptors are implicated in the pathogenesis of recurrent spontaneous abortion (RSA). Non-genomic oestrogen responses can be mediated by GPER. The prevalence of polymorphisms in GPER1 gene in RSA was assessed in 747 Chinese women from Yunnan province (171 Bai, 258 Chinese Han, 234 Dai, 33 Achang and 51 Jingpo patients). Snapshot technology was used for genotyping the polymorphisms of the GPER1 gene. The rs4265085G was significantly increased in the Dai and Bai groups versus controls (Dai: P < 0.0001, Padj < 0.0001, OR 95% CI 2.34 [1.79 to 3.05]; Bai: P = 0.0004, Padj = 0.0012, OR 95% CI 1.71 [1.27 to 2.31]); recessive model of rs4265085 in the Dai (P = 0.003, Padj = 0.009, OR 95% CI 2.71 [1.38 to 5.30]); Bai (P < 0.0001, Padj < 0.0001, OR 95% CI 3.37 [1.93 to 5.91]). Haplotype frequencies containing rs10269151G-rs4265085G-rs11544331C were separately significantly different in Dai and Bai ethnic groups (Dai: P = 0.0002, Padj = 0.001, OR 95% CI = 2.12 [1.43 to 3.17]; Bai: P = 0.005, Padj = 0.025, OR 95% CI = 1.82 [1.18 to 2.78]) compared with controls. The intron variant rs4265085 may confer risk for RSA in Dai and Bai ethnic groups.
Collapse
Affiliation(s)
- Liang Tang
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, China; School of Basic Medical Science, Changsha Medical University, Changsha, China.
| | - Shui Zheng
- Key Laboratory for Fertility Regulation and Berth Heath of Minority Nationalities of Yunnan Province, Judicial Expertise Center, Yunnan Population and Family Planning Research Institute, Kunming, China
| | - Yan Wang
- School of Basic Medical Science, Changsha Medical University, Changsha, China; Experiment Center for Function, Changsha Medical University, Changsha, China
| | - Fang Li
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, China; School of Basic Medical Science, Changsha Medical University, Changsha, China
| | - Meihua Bao
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, China; School of Basic Medical Science, Changsha Medical University, Changsha, China
| | - Jie Zeng
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, China; School of Basic Medical Science, Changsha Medical University, Changsha, China
| | - Ju Xiang
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, China; School of Basic Medical Science, Changsha Medical University, Changsha, China
| | - Huaiqing Luo
- School of Basic Medical Science, Changsha Medical University, Changsha, China; Experiment Center for Function, Changsha Medical University, Changsha, China
| | - Jianming Li
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, China; Department of Neurology, Xiang-ya Hospital, Central South University, Changsha, China
| |
Collapse
|
163
|
Weissenborn C, Ignatov T, Nass N, Kalinski T, Dan Costa S, Zenclussen AC, Ignatov A. GPER Promoter Methylation Controls GPER Expression in Breast Cancer Patients. Cancer Invest 2017; 35:100-107. [PMID: 28118074 DOI: 10.1080/07357907.2016.1271886] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recently, we found that G-protein-coupled estrogen receptor (GPER) protein expression decreased during breast carcinogenesis, and that GPER promoter is methylated. Here we analyzed GPER promoter methylation in 260 primary breast cancer specimens by methylation-specific polymerized chain reaction. The results demonstrated that GPER protein down-regulation significantly correlated with GPER promoter hypermethylation (p < .001). Comparison of 108 tumors and matched normal breast tissues indicated a significant GPER down-regulation in cancer tissues correlating with GPER promoter hypermethylation (p < .001). The latter was an unfavorable factor for overall survival of patients with triple-negative breast cancer (p = .025). Thus GPER promoter hypermethylation might be used as a prognostic factor.
Collapse
Affiliation(s)
- Christine Weissenborn
- a Department of Obstetrics and Gynecology , Otto-von-Guericke University , Magdeburg , Germany.,b Department of Experimental Obstetrics and Gynaecology , Otto-von-Guericke University , Magdeburg , Germany
| | - Tanja Ignatov
- a Department of Obstetrics and Gynecology , Otto-von-Guericke University , Magdeburg , Germany
| | - Norbert Nass
- c Department of Pathology , Otto-von-Guericke University , Magdeburg , Germany
| | - Thomas Kalinski
- c Department of Pathology , Otto-von-Guericke University , Magdeburg , Germany
| | - Serban Dan Costa
- a Department of Obstetrics and Gynecology , Otto-von-Guericke University , Magdeburg , Germany
| | - Ana Claudia Zenclussen
- b Department of Experimental Obstetrics and Gynaecology , Otto-von-Guericke University , Magdeburg , Germany
| | - Atanas Ignatov
- a Department of Obstetrics and Gynecology , Otto-von-Guericke University , Magdeburg , Germany
| |
Collapse
|
164
|
Dworatzek E, Mahmoodzadeh S. Targeted basic research to highlight the role of estrogen and estrogen receptors in the cardiovascular system. Pharmacol Res 2017; 119:27-35. [PMID: 28119050 DOI: 10.1016/j.phrs.2017.01.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/18/2016] [Accepted: 01/17/2017] [Indexed: 10/20/2022]
Abstract
Epidemiological, clinical and animal studies revealed that sex differences exist in the manifestation and outcome of cardiovascular disease (CVD). The underlying molecular mechanisms implicated in these sex differences are not fully understood. The reasons for sex differences in CVD are definitely multifactorial, but major evidence points to the contribution of sex steroid hormone, 17β-estradiol (E2), and its receptors, estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ). In this review, we summarize past and present studies that implicate E2 and ER as important determinants of sexual dimorphism in the physiology and pathophysiology of the heart. In particular, we give an overview of studies aimed to reveal the role of E2 and ER in the physiology of the observed sex differences in CVD using ER knock-out mice. Finally, we discuss recent findings from novel transgenic mouse models, which have provided new information on the sexual dimorphic roles of ER specifically in cardiomyocytes under pathological conditions.
Collapse
Affiliation(s)
- Elke Dworatzek
- Institut of Gender in Medicine and Center for Cardiovascular Research, Charitè-Universitaetsmedizin Berlin, Berlin, Germany; DZHK (German Center for Cardiovascular Research, partner site Berlin), Berlin, Germany
| | - Shokoufeh Mahmoodzadeh
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany; DZHK (German Center for Cardiovascular Research, partner site Berlin), Berlin, Germany.
| |
Collapse
|
165
|
Vaziri-Gohar A, Zheng Y, Houston KD. IGF-1 Receptor Modulates FoxO1-Mediated Tamoxifen Response in Breast Cancer Cells. Mol Cancer Res 2017; 15:489-497. [PMID: 28096479 DOI: 10.1158/1541-7786.mcr-16-0176] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 12/02/2016] [Accepted: 12/21/2016] [Indexed: 11/16/2022]
Abstract
Tamoxifen is a common adjuvant treatment for estrogen receptor (ER)α-positive patients with breast cancer; however, acquired resistance abrogates the efficacy of this therapeutic approach. We recently demonstrated that G protein-coupled estrogen receptor 1 (GPER1) mediates tamoxifen action in breast cancer cells by inducing insulin-like growth factor-binding protein-1 (IGFBP-1) to inhibit IGF-1-dependent signaling. To determine whether dysregulation of IGFBP-1 induction is associated with tamoxifen resistance, IGFBP-1 transcription was measured in tamoxifen-resistant MCF-7 cells (TamR) after tamoxifen (Tam) treatment. IGFBP-1 transcription was not stimulated in tamoxifen-treated TamR cells whereas decreased expression of FoxO1, a known modulator of IGFBP-1, was observed. Exogenous expression of FoxO1 rescued the ability of tamoxifen to induce IGFBP-1 transcription in TamR cells. As decreased IGF-1R expression is observed in tamoxifen-resistant cells, the requirement for IGF-1R expression on tamoxifen-stimulated IGFBP-1 transcription was investigated. In TamR and SK-BR-3 cells, both characterized by low IGF-1R levels, exogenous IGF-1R expression increased FoxO1 levels and IGFBP-1 expression, whereas IGF-1R knockdown in MCF-7 cells decreased tamoxifen-stimulated IGFBP-1 transcription. Interestingly, both 17β-estradiol (E2)-stimulated ERα phosphorylation and progesterone receptor (PR) expression were altered in TamR. PR is a transcription factor known to modulate FoxO1 transcription. In addition, IGF-1R knockdown decreased FoxO1 protein levels in MCF-7 cells. Furthermore, IGF-1R or FoxO1 knockdown inhibited the ability of tamoxifen to induce IGFBP-1 transcription and tamoxifen sensitivity in MCF-7 cells. These data provide a molecular mechanistic connection between IGF-1R expression and the FoxO1-mediated mechanism of tamoxifen action in breast cancer cells.Implications: Loss of IGF-1R expression is associated with decreased tamoxifen efficacy in patients with breast cancer and the development of tamoxifen resistance. This contribution identifies potential molecular mechanisms of altered tamoxifen sensitivity in breast cancer cells resulting from decreased IGF-1R expression. Mol Cancer Res; 15(4); 489-97. ©2017 AACR.
Collapse
Affiliation(s)
- Ali Vaziri-Gohar
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico
| | - Yan Zheng
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico
| | - Kevin D Houston
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico.
| |
Collapse
|
166
|
Chen C, Wang Y, Wang S, Liu Y, Zhang J, Xu Y, Zhang Z, Bao W, Wu S. LSD1 sustains estrogen-driven endometrial carcinoma cell proliferation through the PI3K/AKT pathway via di-demethylating H3K9 of cyclin D1. Int J Oncol 2017; 50:942-952. [PMID: 28098854 DOI: 10.3892/ijo.2017.3849] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/19/2016] [Indexed: 11/05/2022] Open
Abstract
A recent study reported that histone lysine specific demethylase 1 (LSD1, KDM1A) is overexpressed in endometrioid endometrial carcinoma (EEC) and associated with tumor progression as well as poor prognosis. However, the physiological function and mechanism of LSD1 in endometrial cancer (EC) remains largely unknown. In this study, we demonstrate that β-estradiol (E2) treatment increased LSD1 expression via the GPR30/PI3K/AKT pathway in endometrial cancer cells. Both siGPR30 and the PI3K inhibitor LY294002 block this effect. RNAi-mediated silencing of LSD1 abolished estrogen-driven endometrial cancer cell (ECC) proliferation, and induced G1 cell arrest and apoptosis. Mechanistically, we find that LSD1 silencing results in PI3K/AKT signal inactivation, but without the elevation of PTEN expression as expected. This is because the inhibition of LSD1 induces dimethylation of lysine 9 on histone H3 (H3K9m2) accumulation at the promoter region of cyclin D1. Interfering with cyclin D1 leads to PI3K/AKT signal suppression. Re-overexpression of cyclin D1 in LSD1-knockdown ECCs reverses the LSD1 inhibitory action. Our finding connects estrogen signaling with epigenetic regulation in EEC and provides novel experimental support for LSD1 as a potential target for endometrial cancer therapeutics.
Collapse
Affiliation(s)
- Chunqin Chen
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yanan Wang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Shiyu Wang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yuan Liu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Shanghai Tongji University, Shanghai, P.R. China
| | - Yuyao Xu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Zhenbo Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Wei Bao
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Sufang Wu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
167
|
Origins and Functions of the Ventrolateral VMH: A Complex Neuronal Cluster Orchestrating Sex Differences in Metabolism and Behavior. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1043:199-213. [PMID: 29224096 DOI: 10.1007/978-3-319-70178-3_10] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The neuroendocrine brain or hypothalamus has emerged as one of the most highly sexually dimorphic brain regions in mammals, and specifically in rodents. It is not surprising that hypothalamic nuclei play a pivotal role in controlling sex-dependent physiology. This brain region functions as a chief executive officer or master regulator of homeostatic physiological systems to integrate both external and internal signals. In this review, we describe sex differences in energy homeostasis that arise in one area of the hypothalamus, the ventrolateral subregion of the ventromedial hypothalamus (VMHvl) with a focus on how male and female neurons function in metabolic and behavioral aspects. Because other chapters within this book provide details on signaling pathways in the VMH that contribute to sex differences in metabolism, our discussion will be limited to how the sexually dimorphic VMHvl develops and what key regulators are thought to control the many functional and physiological endpoints attributed to this region. In the last decade, several exciting new studies using state-of-the-art genetic and molecular tools are beginning to provide some understanding as to how specific neurons contribute to the coordinated physiological responses needed by male and females. New technology that combines intersectional spatial and genetic approaches is now allowing further refinement in how we describe, probe, and manipulate critical male and female neurocircuits involved in metabolism.
Collapse
|
168
|
Zhang L, Li Y, Lan L, Liu R, Wu Y, Qu Q, Wen K. Tamoxifen has a proliferative effect in endometrial carcinoma mediated via the GPER/EGFR/ERK/cyclin D1 pathway: A retrospective study and an in vitro study. Mol Cell Endocrinol 2016; 437:51-61. [PMID: 27519631 DOI: 10.1016/j.mce.2016.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 07/12/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
Abstract
Tamoxifen has been widely used to treat breast cancer as an endocrine therapy. However, tamoxifen is known to enhance the risk of developing endometrial cancer. We want to examine the effect of tamoxifen on endometrial cancer. In our retrospective study, we found that high grade, high stage, and lymph node metastasis were more common in tamoxifen users. In vitro 4-hydroxytamoxifen (OHT) induced cell proliferation and cell cycle promotion in type I and type II endometrial cancer cell lines, and this proliferation was blocked by GPER silencing. Treatment with OHT increased EGFR and ERK phosphorylation and the mRNA and protein levels of cyclin D1 and GPER. Taken together, our data demonstrate that endometrial cancer patients with tamoxifen treatment exhibit more aggressive histological subtypes and worse prognosis. OHT is a proliferation-inducing agent for endometrial cancer cells, and the GPER/EFGR/ERK/cyclin D1 pathway is involved in this process.
Collapse
Affiliation(s)
- Lizhi Zhang
- Department of Obstetrics and Gynecology, Tianjin First Center Hospital, Tianjin, 300192, China.
| | - Yanmin Li
- Department of Pathology, Tianjin First Center Hospital, Tianjin, 300192, China.
| | - Lan Lan
- Department of Synergistic Chinese and Western Medicine Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
| | - Rong Liu
- Department of Obstetrics and Gynecology, Tianjin First Center Hospital, Tianjin, 300192, China.
| | - Yanhong Wu
- Department of Obstetrics and Gynecology, Tianjin First Center Hospital, Tianjin, 300192, China.
| | - Quanxin Qu
- Department of Obstetrics and Gynecology, Tianjin First Center Hospital, Tianjin, 300192, China.
| | - Ke Wen
- Department of Pharmacology, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
169
|
Lu P, Wang F, Song X, Liu Y, Zhang K, Cao N. Relative abundance of G protein-coupled receptor 30 and localization in testis and epididymis of sheep at different developmental stages. Anim Reprod Sci 2016; 175:10-17. [DOI: 10.1016/j.anireprosci.2016.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/03/2016] [Accepted: 10/07/2016] [Indexed: 12/11/2022]
|
170
|
Borahay MA, Asoglu MR, Mas A, Adam S, Kilic GS, Al-Hendy A. Estrogen Receptors and Signaling in Fibroids: Role in Pathobiology and Therapeutic Implications. Reprod Sci 2016; 24:1235-1244. [PMID: 27872195 DOI: 10.1177/1933719116678686] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Uterine fibroids are the most common gynecologic tumors with a significant medical and financial burden. Several genetic, hormonal, and biological factors have been shown to contribute to the development and growth of fibroid tumors. Of these factors, estrogen is particularly critical since fibroids are considered estrogen dependent because no prepubertal cases have been described in the literature and tumors tend to regress after menopause. Understanding the role of estrogen in fibroids is not only important for understanding the pathobiology of fibroids but also for the development of successful therapeutics. In this review, we discuss the types and structure of estrogen receptors (nuclear and membrane bound, including α and β receptors and G protein-coupled estrogen receptor 1 GPER1). Estrogen-signaling pathways in fibroids include genomic (direct and indirect) and nongenomic including Ras-Raf-MEK (MAPK/Erk Kinase)-mitogen-activated protein kinase (MAPK) and phosphatidylinositide 3-kinase (PI3K)-phosphatidylinositol-3,4,5-trisphosphate (PIP3)-Akt (Protein kinase B)-mammalian target of rapamycin (mTOR) pathways; shortly Ras-Raf-MEK-MAPK and PI3K-PIP3-Akt-mTOR pathways. Several aberrations in estrogen receptors and signaling pathways are implicated in fibroid pathobiology. Current therapeutic and research agents targeting ERs/signaling include gonadotropin-releasing hormone (GnRH) agonists, GnRH antagonists, aromatase inhibitors, selective ER modulators, gene therapy, and others. Future research can identify potential targets for the development of novel treatments. In particular, epigenomics of estrogen activity and individualized (precision) medicine appear to be attractive areas for future research.
Collapse
Affiliation(s)
- Mostafa A Borahay
- 1 Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,2 Department of Obstetrics & Gynecology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Mehmet R Asoglu
- 2 Department of Obstetrics & Gynecology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Aymara Mas
- 3 Department of Obstetrics & Gynecology, Georgia Regents University, Augusta, GA, USA
| | - Sarah Adam
- 4 Department of Obstetrics & Gynecology, Mercer University, Macon, GA, USA
| | - Gokhan S Kilic
- 2 Department of Obstetrics & Gynecology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Ayman Al-Hendy
- 3 Department of Obstetrics & Gynecology, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|
171
|
Fındıklı E, Camkurt MA, Karaaslan MF, Kurutas EB, Altun H, İzci F, Fındıklı HA, Kardas S. Serum levels of G protein-coupled estrogen receptor 1 (GPER1) in drug-naive patients with generalized anxiety disorder. Psychiatry Res 2016; 244:312-6. [PMID: 27512921 DOI: 10.1016/j.psychres.2016.04.098] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/08/2016] [Accepted: 04/27/2016] [Indexed: 10/21/2022]
Abstract
Sex hormones, particularly estrogen, are suggested to play a role in the physiopathology of generalized anxiety disorder (GAD). Estrogen functions through the estrogen receptors alpha and beta and the recently discovered G protein-coupled estrogen receptor 1 (GPER1). This study aimed, for the first time, to evaluate serum GPER1 levels in drug-naive patients with GAD. This study included 40 newly diagnosed drug-naive patients with GAD aged between 18 and 50 years and 40 age- and gender-matched healthy controls. Medical histories were obtained, and physical examinations and laboratory tests were conducted; the Hamilton Anxiety Rating Scale (HAM-A) was also used for all participants. Serum GPER1 levels were measured. The serum GPER1 level was significantly higher in the patients with GAD than in the controls. A positive significant correlation was observed between the GPER1 level and the HAM-A score. The receiver operating characteristic analysis revealed a sensitivity, specificity, positive predictive value, and negative predictive value of 85.0%, 82.5%, 82.9%, and 84.6%, respectively, for the presence of anxiety when the serum GPER1 value was ≥0.14 (the area under the curve was 0.904.). In conclusion, this study demonstrated that GPER1 levels were associated with the anxiety levels of patients, and that the serum GPER1 level was a valuable predictor of the presence of anxiety independent of gender.
Collapse
Affiliation(s)
- Ebru Fındıklı
- Department of Psychiatry, Sütçü İmam University, Kahramanmaras, Turkey.
| | | | | | | | - Hatice Altun
- Department of Child and Adolescent Psychiatry, Sütçü İmam University, Kahramanmaras, Turkey
| | - Filiz İzci
- Department of Psychiatry, Bilim University, İstanbul, Turkey
| | | | - Selçuk Kardas
- Department of Psychiatry, Sütçü İmam University, Kahramanmaras, Turkey
| |
Collapse
|
172
|
Manna PR, Molehin D, Ahmed AU. Dysregulation of Aromatase in Breast, Endometrial, and Ovarian Cancers: An Overview of Therapeutic Strategies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 144:487-537. [PMID: 27865465 DOI: 10.1016/bs.pmbts.2016.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aromatase is the rate-limiting enzyme in the biosynthesis of estrogens, which play crucial roles on a spectrum of developmental and physiological processes. The biological actions of estrogens are classically mediated by binding to two estrogen receptors (ERs), ERα and ERβ. Encoded by the cytochrome P450, family 19, subfamily A, polypeptide 1 (CYP19A1) gene, aromatase is expressed in a wide variety of tissues, as well as benign and malignant tumors, and is regulated in a pathway- and tissue-specific manner. Overexpression of aromatase, leading to elevated systemic levels of estrogen, is unequivocally linked to the pathogenesis and growth of a number malignancies, including breast, endometrium, and ovarian cancers. Aromatase inhibitors (AIs) are routinely used to treat estrogen-dependent breast cancers in postmenopausal women; however, their roles in endometrial and ovarian cancers remain obscure. While AI therapy is effective in hormone sensitive cancers, they diminish estrogen production throughout the body and, thus, generate undesirable side effects. Despite the effectiveness of AI therapy, resistance to endocrine therapy remains a major concern and is the leading cause of cancer death. Considerable advances, toward mitigating these issues, have evolved in conjunction with a number of histone deacetylase (HDAC) inhibitors for countering an assortment of diseases and cancers, including the aforesaid malignancies. HDACs are a family of enzymes that are frequently dysregulated in human tumors. This chapter will discuss the current understanding of aberrant regulation and expression of aromatase in breast, endometrial, and ovarian cancers, and potential therapeutic strategies for prevention and treatment of these life-threatening diseases.
Collapse
Affiliation(s)
- P R Manna
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, United States.
| | - D Molehin
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, United States
| | - A U Ahmed
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, United States
| |
Collapse
|
173
|
Borrow AP, Handa RJ. Estrogen Receptors Modulation of Anxiety-Like Behavior. VITAMINS AND HORMONES 2016; 103:27-52. [PMID: 28061972 DOI: 10.1016/bs.vh.2016.08.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Estrogens exert profound effects on the expression of anxiety in humans and rodents; however, the directionality of these effects varies considerably within both clinical and preclinical literature. It is believed that discrepancies regarding the nature of estrogens' effects on anxiety are attributable to the differential effects of specific estrogen receptor (ER) subtypes. In this chapter we will discuss the relative impact on anxiety and anxiety-like behavior of each of the three main ERs: ERα, which has a generally anxiogenic effect, ERβ, which has a generally anxiolytic effect, and the G-protein-coupled ER known as GPR30, which has been found to both increase and decrease anxiety-like behavior. In addition, we will describe the known mechanisms by which these receptor subtypes exert their influence on emotional responses, focusing on the hypothalamic-pituitary-adrenal axis and the oxytocinergic and serotonergic systems. The impact of estrogens on the expression of anxiety is likely the result of their combined effects on all of these neurobiological systems.
Collapse
Affiliation(s)
- A P Borrow
- Colorado State University, Fort Collins, CO, United States
| | - R J Handa
- Colorado State University, Fort Collins, CO, United States.
| |
Collapse
|
174
|
McLain DE, Rea AC, Widegren MB, Dore TM. Photoactivatable, biologically-relevant phenols with sensitivity toward 2-photon excitation. Photochem Photobiol Sci 2016; 14:2151-8. [PMID: 26467796 DOI: 10.1039/c5pp00334b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spatio-temporal release of biologically relevant small molecules provides exquisite control over the activation of receptors and signaling pathways. This can be accomplished via a photochemical reaction that releases the desired small molecule in response to irradiation with light. A series of biologically-relevant signaling molecules (serotonin, octopamine, capsaicin, N-vanillyl-nonanoylamide, estradiol, and tyrosine) that contain a phenol moiety were conjugated to the 8-bromo-7-hydroxyquinolinyl (BHQ) or 8-cyano-7-hydroxyquinolinyl (CyHQ) photoremovable protecting groups (PPGs). The CyHQ caged compounds proved sensitive toward 1PE and 2PE processes with quantum efficiencies of 0.2-0.4 upon irradiation at 365 nm and two-photon action cross sections of 0.15-0.31 GM when irradiated at 740 nm. All but one BHQ caged compound, BHQ-estradiol, were found to be sensitive to photolysis through 1PE and 2PE with quantum efficiencies of 0.30-0.40 and two photon cross sections of 0.40-0.60 GM. Instead of releasing estradiol, BHQ-estradiol underwent debromination.
Collapse
Affiliation(s)
- Duncan E McLain
- New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates. and Department of Chemistry, University of Georgia, Athens, Georgia30602, USA
| | - Adam C Rea
- Department of Chemistry, University of Georgia, Athens, Georgia30602, USA
| | - Magnus B Widegren
- New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.
| | - Timothy M Dore
- New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates. and Department of Chemistry, University of Georgia, Athens, Georgia30602, USA
| |
Collapse
|
175
|
GPR30 regulates diet-induced adiposity in female mice and adipogenesis in vitro. Sci Rep 2016; 6:34302. [PMID: 27698362 PMCID: PMC5048424 DOI: 10.1038/srep34302] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/09/2016] [Indexed: 01/08/2023] Open
Abstract
Recent studies showed that GPR30, a seven-transmembrane G-protein-coupled receptor, is a novel estrogen receptor (ER) that mediates some biological events elicited by estrogen in several types of cancer cells. However, its physiological or pathological role in vivo is unclear. Here, we show that GPR30 knockout (GPRKO) female mice were protected from high-fat diet (HFD)-induced obesity, blood glucose intolerance, and insulin resistance. The decreased body weight gain in GPRKO female mice is due to the reduction in body fat mass. These effects occurred in the absence of significant changes in food intake, intestinal fat absorption, triglyceride metabolism, or energy expenditure. However, GPR30 had no significant metabolic effects in male mice fed the HFD and both sexes of mice fed a chow diet. Further, GPR30 expression levels in fat tissues of WT obese female mice were greatly increased, whereas ERα and β expression was not altered. Deletion of GPR30 reduced adipogenic differentiation of adipose tissue-derived stromal cells. Conversely, activation of GPR30 enhanced adipogenic differentiation of 3T3-L1 preadipocytes. These findings provide evidence for the first time that GPR30 promotes adipogenesis and therefore the development of obesity in female mice exposed to excess fat energy.
Collapse
|
176
|
Wesołowska M, Pawlik P, Jagodziński P. The clinicopathologic significance of estrogen receptors in human gastric carcinoma. Biomed Pharmacother 2016; 83:314-322. [DOI: 10.1016/j.biopha.2016.06.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/27/2016] [Indexed: 02/07/2023] Open
|
177
|
Affiliation(s)
| | - Eva Kassi
- Deparment of Biological Chemistry, Medical Scholl, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
178
|
Tamoxifen Resistance: Emerging Molecular Targets. Int J Mol Sci 2016; 17:ijms17081357. [PMID: 27548161 PMCID: PMC5000752 DOI: 10.3390/ijms17081357] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/10/2016] [Accepted: 08/16/2016] [Indexed: 12/12/2022] Open
Abstract
17β-Estradiol (E2) plays a pivotal role in the development and progression of breast cancer. As a result, blockade of the E2 signal through either tamoxifen (TAM) or aromatase inhibitors is an important therapeutic strategy to treat or prevent estrogen receptor (ER) positive breast cancer. However, resistance to TAM is the major obstacle in endocrine therapy. This resistance occurs either de novo or is acquired after an initial beneficial response. The underlying mechanisms for TAM resistance are probably multifactorial and remain largely unknown. Considering that breast cancer is a very heterogeneous disease and patients respond differently to treatment, the molecular analysis of TAM’s biological activity could provide the necessary framework to understand the complex effects of this drug in target cells. Moreover, this could explain, at least in part, the development of resistance and indicate an optimal therapeutic option. This review highlights the implications of TAM in breast cancer as well as the role of receptors/signal pathways recently suggested to be involved in the development of TAM resistance. G protein—coupled estrogen receptor, Androgen Receptor and Hedgehog signaling pathways are emerging as novel therapeutic targets and prognostic indicators for breast cancer, based on their ability to mediate estrogenic signaling in ERα-positive or -negative breast cancer.
Collapse
|
179
|
Gautier C, Barrier-Battut I, Guénon I, Goux D, Delalande C, Bouraïma-Lelong H. Implication of the estrogen receptors GPER, ESR1, ESR2 in post-testicular maturations of equine spermatozoa. Gen Comp Endocrinol 2016; 233:100-108. [PMID: 27222348 DOI: 10.1016/j.ygcen.2016.05.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 11/26/2022]
Abstract
Estrogen receptors ESR1, ESR2 and GPER are present on mature ejaculated horse spermatozoa, suggesting these cells as putative targets for estrogens. Indeed, spermatozoa are exposed to high level of estrogens during the transit in the male and female genital tracts but their roles are not investigated. So, we evaluated in vitro the role of 17β-estradiol during post-testicular maturations: regulation of motility, capacitation and acrosome reaction. Moreover according to the pseudo-seasonal breeder status of the stallion, we analyzed the putative seasonal variations in the presence of ESRs in spermatozoa. We showed that ESRs are more present on stallion sperm during the breeding season. We showed that capacitation and acrosome reaction are independent of estradiol action in horse. Estradiol can weakly modulate the motility and this effect is strictly associated with GPER and not with ESR1 and ESR2. The subcellular localization of GPER in the neck on stallion sperm is coherent with this effect. It seems that estrogens are not major regulators of sperm maturations associated to mare genital tract, so they could act during the epididymal maturations.
Collapse
Affiliation(s)
- Camille Gautier
- Normandie Univ, France; UNICAEN, EA2608, OeReCa, F-14032 Caen, France; USC-INRA 1377, F-14032 Caen, France
| | | | - Isabelle Guénon
- Normandie Univ, France; UNICAEN, EA2608, OeReCa, F-14032 Caen, France; USC-INRA 1377, F-14032 Caen, France
| | - Didier Goux
- Normandie Univ, France; UNICAEN, CMABIO, F-14032 Caen, France
| | - Christelle Delalande
- Normandie Univ, France; UNICAEN, EA2608, OeReCa, F-14032 Caen, France; USC-INRA 1377, F-14032 Caen, France
| | - Hélène Bouraïma-Lelong
- Normandie Univ, France; UNICAEN, EA2608, OeReCa, F-14032 Caen, France; USC-INRA 1377, F-14032 Caen, France.
| |
Collapse
|
180
|
Rossetti MF, Cambiasso MJ, Holschbach MA, Cabrera R. Oestrogens and Progestagens: Synthesis and Action in the Brain. J Neuroendocrinol 2016; 28. [PMID: 27306650 DOI: 10.1111/jne.12402] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/14/2016] [Accepted: 06/14/2016] [Indexed: 12/25/2022]
Abstract
When steroids, such as pregnenolone, progesterone and oestrogen, are synthesised de novo in neural tissues, they are more specifically referred to as neurosteroids. These neurosteroids bind specific receptors to promote essential brain functions. Pregnenolone supports cognition and protects mouse hippocampal cells against glutamate and amyloid peptide-induced cell death. Progesterone promotes myelination, spinogenesis, synaptogenesis, neuronal survival and dendritic growth. Allopregnanolone increases hippocampal neurogenesis, neuronal survival and cognitive functions. Oestrogens, such as oestradiol, regulate synaptic plasticity, reproductive behaviour, aggressive behaviour and learning. In addition, neurosteroids are neuroprotective in animal models of Alzheimer's disease, Parkinson's disease, brain injury and ageing. Using in situ hybridisation and/or immunohistochemistry, steroidogenic enzymes, including cytochrome P450 side-chain cleavage, 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase, cytochrome P450arom, steroid 5α-reductase and 3α-hydroxysteroid dehydrogenase, have been detected in numerous brain regions, including the hippocampus, hypothalamus and cerebral cortex. In the present review, we summarise some of the studies related to the synthesis and function of oestrogens and progestagens in the central nervous system.
Collapse
Affiliation(s)
- M F Rossetti
- Departamento de Bioquímica Clínica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Instituto de Salud y Ambiente del Litoral, CONICET-Universidad Nacional del Litoral, Santa Fe, Argentina
| | - M J Cambiasso
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Biología Bucal, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M A Holschbach
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - R Cabrera
- Instituto de Investigaciones Biomédicas, INBIOMED-IMBECU-CONICET, Universidad de Mendoza, Mendoza, Argentina
| |
Collapse
|
181
|
Hao Y, Chow AW, Yip WC, Li CH, Wan TF, Tong BC, Cheung KH, Chan WY, Chen Y, Cheng CH, Ko WH. G protein-coupled estrogen receptor inhibits the P2Y receptor-mediated Ca(2+) signaling pathway in human airway epithelia. Pflugers Arch 2016; 468:1489-503. [PMID: 27271044 PMCID: PMC4951515 DOI: 10.1007/s00424-016-1840-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/11/2016] [Accepted: 05/22/2016] [Indexed: 12/18/2022]
Abstract
P2Y receptor activation causes the release of inflammatory cytokines in the bronchial epithelium, whereas G protein-coupled estrogen receptor (GPER), a novel estrogen (E2) receptor, may play an anti-inflammatory role in this process. We investigated the cellular mechanisms underlying the inhibitory effect of GPER activation on the P2Y receptor-mediated Ca2+ signaling pathway and cytokine production in airway epithelia. Expression of GPER in primary human bronchial epithelial (HBE) or 16HBE14o- cells was confirmed on both the mRNA and protein levels. Stimulation of HBE or 16HBE14o- cells with E2 or G1, a specific agonist of GPER, attenuated the nucleotide-evoked increases in [Ca2+]i, whereas this effect was reversed by G15, a GPER-specific antagonist. G1 inhibited the secretion of two proinflammatory cytokines, interleukin (IL)-6 and IL-8, in cells stimulated by adenosine 5′-(γ-thio)triphosphate (ATPγS). G1 stimulated a real-time increase in cAMP levels in 16HBE14o- cells, which could be inhibited by adenylyl cyclase inhibitors. The inhibitory effects of E2 or G1 on P2Y receptor-induced increases in Ca2+ were reversed by treating the cells with a protein kinase A (PKA) inhibitor. These results demonstrated that the inhibitory effects of G1 or E2 on P2Y receptor-mediated Ca2+ mobilization and cytokine secretion were due to GPER-mediated activation of a cAMP-dependent PKA pathway. This study has reported, for the first time, the expression and function of GPER as an anti-inflammatory component in human bronchial epithelia, which may mediate through its opposing effects on the pro‐inflammatory pathway activated by the P2Y receptors in inflamed airway epithelia.
Collapse
Affiliation(s)
- Yuan Hao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Alison W Chow
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wallace C Yip
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chi H Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Tai F Wan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Benjamin C Tong
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - King H Cheung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Wood Y Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yangchao Chen
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Christopher H Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Wing H Ko
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
182
|
Kinch CD, Kurrasch DM, Habibi HR. Adverse morphological development in embryonic zebrafish exposed to environmental concentrations of contaminants individually and in mixture. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:286-98. [PMID: 27107150 DOI: 10.1016/j.aquatox.2016.03.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 03/23/2016] [Accepted: 03/28/2016] [Indexed: 05/07/2023]
Abstract
Exposure to environmental contaminants has been linked to developmental and reproductive abnormalities leading to infertility, spontaneous abortion, reduced number of offspring, and metabolic disorders. In addition, there is evidence linking environmental contaminants and endocrine disruption to abnormal developmental rate, defects in heart and eye morphology, and alterations in behavior. Notably, these effects could not be explained by interaction with a single hormone receptor. Here, using a whole-organism approach, we investigated morphological changes to developing zebrafish caused by exposure to a number of environmental contaminants, including bisphenol A (BPA), di(2-ethylhexyl)phthalate (DEHP), nonylphenol, and fucosterol at concentrations measured in a local water body (Oldman River, AB), individually and in mixture. Exposure to nanomolar contaminant concentrations resulted in abnormal morphological development, including changes to body length, pericardia (heart), and the head. We also characterize the spatiotemporal expression profiles of estrogen, androgen, and thyroid hormone receptors to demonstrate that localization of these receptors might be mediating contaminant effects on development. Finally, we examined the effects of contaminants singly and in mixture. Combined, our results support the hypothesis that adverse effects of contaminants are not mediated by single hormone receptor signaling, and adversity of contaminants in mixture could not be predicted by simple additive effect of contaminants. The findings provide a framework for better understanding of developmental toxicity of environmental contaminants in zebrafish and other vertebrate species.
Collapse
Affiliation(s)
- Cassandra D Kinch
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada; Department of Medical Genetics, Cummings School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Heritage Medical Research Building, 3330 Hospital Dr. NW, Calgary, Alberta, T2N 4N1, Canada.
| | - Deborah M Kurrasch
- Department of Medical Genetics, Cummings School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Heritage Medical Research Building, 3330 Hospital Dr. NW, Calgary, Alberta, T2N 4N1, Canada.
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
183
|
Zhu G, Huang Y, Wu C, Wei D, Shi Y. Activation of G-Protein-Coupled Estrogen Receptor Inhibits the Migration of Human Nonsmall Cell Lung Cancer Cells via IKK-β/NF-κB Signals. DNA Cell Biol 2016; 35:434-42. [PMID: 27082459 DOI: 10.1089/dna.2016.3235] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Estrogen signals have been suggested to modulate the progression and metastasis of nonsmall cell lung cancer (NSCLC), which is one of the leading causes of cancer deaths worldwide. While there are limited data concerning the roles and effects of G-protein-coupled estrogen receptor (GPER) on the progression of NSCLC, our present study reveals that the expression of GPER in NSCLC cells is obviously greater than that in lung fibroblast cell line MRC-5. Activation of GPER via its specific agonist G-1 decreases the in vitro motility of A549 and H358 cells and the expression of matrix metalloproteinase 2 (MMP-2) and MMP-9. Further, G-1 treatment can rapidly decrease the phosphorylation, nuclear translocation, and promoter activities of NF-κB in NSCLC cells. BAY 11-7082, the inhibitor of NF-κB, also inhibits the expression of MMP-2/9, while overexpression of p65 significantly attenuates G-1-induced downregulation of MMP-2/9. It suggests that inhibition of NF-κB mediates G-1-induced MMP-2/9 downregulation. G-1 treatment significantly down regulates the phosphorylation of IκB kinase β (IKK-β) and IκBα, while not IKK-α, in both 549 and H358 cells. ACHP, the specific inhibitor of IKK-β, can reinforce G-1-induced MMP-2/9 downregulation and invasion suppression of A549 cells. Collectively, our results suggest that activation of GPER can inhibit the migration of human NSCLC cells via suppression of IKK-β/NF-κB signals. These findings will help to better understand the roles and mechanisms of GPER as a potential therapy target for NSCLC patients.
Collapse
Affiliation(s)
- Guangfa Zhu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University , Beijing, People's Republic of China
| | - Yan Huang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University , Beijing, People's Republic of China
| | - Chunting Wu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University , Beijing, People's Republic of China
| | - Dong Wei
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University , Beijing, People's Republic of China
| | - Yingxin Shi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University , Beijing, People's Republic of China
| |
Collapse
|
184
|
Bruno A, Aiello F, Costantino G, Radi M. Homology Modeling, Validation and Dynamics of the G Protein-coupled Estrogen Receptor 1 (GPER-1). Mol Inform 2016; 35:333-9. [PMID: 27546037 DOI: 10.1002/minf.201501024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/10/2016] [Indexed: 12/31/2022]
Abstract
Estrogens exert their action mainly by binding three receptors, namely estrogen receptors α and β (ERα and ERβ) and GPER-1 (G-protein coupled estrogen receptor 1). While the patho-physiological role of both ERα and ERβ has been deeply investigated, the role of GPER-1 in estrogens' signaling has not been clearly defined yet. Unfortunately, only few GPER-1 selective ligands were discovered so far, and the real efficiency of such compounds is still matter of debate. To better understand the physiological relevance of GPER-1, new selective chemical probes are higly needed. In this scenario, we report herein the generation and validation of a three-dimensional (3-D) GPER-1 homology model by means of docking studies and molecular dynamics simulations. The model thus generated was employed to (i) decipher the structural basis underlying the ability of estrogens and some Selective Estrogen Receptor Modulators (SERMs) to bind GPER-1 and classical ERα and ERβ, and (ii) generate a reliable G1/GPER-1 complex useful in rationalizing the pharmacological profile of G1 reported in the literature. The G1/GPER-1 complex herein reported could be further exploited in drug design approaches aimed at improving the pharmacological profile of G1 or at identifying new chemical entities (NCEs) as potential modulators of GPER-1.
Collapse
Affiliation(s)
- Agostino Bruno
- P4T Group, Dipartimento di Farmacia, Università degli Studi di Parma, Viale delle Scienze, 27/A, 43124, Parma, Italy .
| | - Francesca Aiello
- Dipartimento di Farmacia e Sienze della Salute e della Nutrizione, Università della Calabria, Edificio Polifunzionale, 87036, Arcavacata di Rende (CS, Italy
| | - Gabriele Costantino
- P4T Group, Dipartimento di Farmacia, Università degli Studi di Parma, Viale delle Scienze, 27/A, 43124, Parma, Italy
| | - Marco Radi
- P4T Group, Dipartimento di Farmacia, Università degli Studi di Parma, Viale delle Scienze, 27/A, 43124, Parma, Italy .
| |
Collapse
|
185
|
Méndez-Luna D, Bello M, Correa-Basurto J. Understanding the molecular basis of agonist/antagonist mechanism of GPER1/GPR30 through structural and energetic analyses. J Steroid Biochem Mol Biol 2016; 158:104-116. [PMID: 26772481 DOI: 10.1016/j.jsbmb.2016.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/13/2015] [Accepted: 01/04/2016] [Indexed: 12/25/2022]
Abstract
The G-protein coupled receptors (GPCRs) represent the largest superfamily of membrane proteins in charge to pass the cell signaling after binding with their cognate ligands to the cell interior. In breast cancer, a GPCR named GPER1 plays a key role in the process of growth and the proliferation of cancer cells. In a previous study, theoretical methods were applied to construct a model of GPER1, which later was submitted to molecular dynamics (MD) simulations to perform a docking calculation. Based on this preceding work, it is known that GPER1 is sensitive to structural differences in its binding site. However, due to the nature of that past study, conformational changes linked to the ligand binding were not observed. Therefore, in this study, in order to explore the conformational changes coupled to the agonist/antagonist binding, MD simulations of about 0.25μs were performed for the free and bound states, summarizing 0.75μs of MD simulation in total. For the bound states, one agonist (G-1) and antagonist (G-15) were chosen since is widely known that these two molecules cause an impact on GPER1 mobility. Based on the conformational ensemble generated through MD simulations, we found that despite G-1 and G-15 being stabilized by similar map of residues, the structural differences between both ligands impact the hydrogen bond pattern not only at the GPER1 binding site but also along the seven-helix bundle, causing significant differences in the conformational mobility along the extracellular and cytoplasmic domain, and to a lesser degree in the curvatures of helix 2, helix 3 and helix 7 between the free and bound states, which is in agreement with reported literature, and might be linked to microscopic characteristics of the activated-inactivated transition. Furthermore, binding free energy calculations using the MM/GBSA method for the bound states, followed by an alanine scanning analysis allowed us to identify some important residues for the complex stabilization.
Collapse
Affiliation(s)
- David Méndez-Luna
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomas, Mexico City CP 11340, Mexico
| | - Martiniano Bello
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomas, Mexico City CP 11340, Mexico.
| | - José Correa-Basurto
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomas, Mexico City CP 11340, Mexico
| |
Collapse
|
186
|
Wei A, Shen B, Williams LA, Bhargav D, Yan F, Chong BH, Diwan AD. Expression and functional roles of estrogen receptor GPR30 in human intervertebral disc. J Steroid Biochem Mol Biol 2016; 158:46-55. [PMID: 26815911 DOI: 10.1016/j.jsbmb.2016.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 01/21/2023]
Abstract
Estrogen withdrawal, a characteristic of female aging, is associated with age-related intervertebral disc (IVD) degeneration. The function of estrogen is mediated by two classic nuclear receptors, estrogen receptor (ER)-α and -β, and a membrane bound G-protein-coupled receptor 30 (GPR30). To date, the expression and function of GPR30 in human spine is poorly understood. This study aimed to evaluate GPR30 expression in IVD, and its role in estrogen-related regulation of proliferation and apoptosis of disc nucleus pulposus (NP) cells. GPR30 expression was examined in 30 human adult NP and 9 fetal IVD. Results showed that GPR30 was expressed in NP cells at both mRNA and protein levels. In human fetal IVD, GPR30 protein was expressed in the NP at 12-14 weeks gestation, but was undetectable at 8-11 weeks. The effect of 17β-estradiol (E2) on GPR30-mediated proliferation and interleukin-1β (IL-1β)-induced apoptosis of NP cells was investigated. Cultured NP cells were treated with or without E2, GPR30 antagonist G36, and ER antagonist ICI 182,780. NP cell viability was tested by MTS assay. Apoptosis was determined by flow cytometry using fluorescence labeled annexin-V, TUNEL assay and immumnocytochemical staining of activated caspase-3. E2 enhanced cell proliferation and prevented IL-1β-induced cell death, but the effect was partially blocked by G36 and completely abrogated by a combination of ICI 182,780 and G36. This study demonstrates that GPR30 is expressed in human IVD to transmit signals triggering E2-induced NP cell proliferation and protecting against IL-1β-induced apoptosis. The effects of E2 on NP cells require both GPR30 and classic estrogen receptors.
Collapse
Affiliation(s)
- Aiqun Wei
- Department of Orthopedic Research, Orthopedic Research Institute, St George Hospital, University of New South Wales, Sydney, Australia
| | - Bojiang Shen
- Department of Orthopedic Research, Orthopedic Research Institute, St George Hospital, University of New South Wales, Sydney, Australia
| | - Lisa A Williams
- Department of Orthopedic Research, Orthopedic Research Institute, St George Hospital, University of New South Wales, Sydney, Australia
| | - Divya Bhargav
- Department of Orthopedic Research, Orthopedic Research Institute, St George Hospital, University of New South Wales, Sydney, Australia
| | - Feng Yan
- Department of Hematology, St George Hospital, University of New South Wales, Sydney, Australia
| | - Beng H Chong
- Department of Hematology, St George Hospital, University of New South Wales, Sydney, Australia
| | - Ashish D Diwan
- Department of Orthopedic Research, Orthopedic Research Institute, St George Hospital, University of New South Wales, Sydney, Australia.
| |
Collapse
|
187
|
G protein-coupled receptor 30 regulates trophoblast invasion and its deficiency is associated with preeclampsia. J Hypertens 2016; 34:710-8. [DOI: 10.1097/hjh.0000000000000844] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
188
|
Smith LC, Ralston-Hooper KJ, Ferguson PL, Sabo-Attwood T. The G Protein-Coupled Estrogen Receptor Agonist G-1 Inhibits Nuclear Estrogen Receptor Activity and Stimulates Novel Phosphoproteomic Signatures. Toxicol Sci 2016; 151:434-46. [PMID: 27026707 DOI: 10.1093/toxsci/kfw057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Estrogen exerts cellular effects through both nuclear (ESR1 and ESR2) and membrane-bound estrogen receptors (G-protein coupled estrogen receptor, GPER); however, it is unclear if they act independently or engage in crosstalk to influence hormonal responses. To investigate each receptor's role in proliferation, transcriptional activation, and protein phosphorylation in breast cancer cells (MCF-7), we employed selective agonists for ESR1 propyl-pyrazole-triol (PPT), ESR2 diarylpropionitrile (DPN), and GPER (G-1) and also determined the impact of xenoestrogens bisphenol-A (BPA) and genistein on these effects. As anticipated, 17β-estradiol (E2), PPT, DPN, BPA, and genistein each enhanced proliferation and activation of an ERE-driven reporter gene whereas G-1 had no significant impact. However, G-1 significantly reduced E2-, PPT-, DPN-, BPA-, and genistein-induced proliferation and ERE activation at doses greater than 500 nM indicating that G-1 mediated inhibition is not ESR isotype specific. As membrane receptors initiate cascades of phosphorylation events, we performed a global phosphoproteomic analysis on cells exposed to E2 or G-1 to identify potential targets of receptor crosstalk via downstream protein phosphorylation targets. Of the 211 phosphorylated proteins identified, 40 and 13 phosphoproteins were specifically modified by E2 and G-1, respectively. Subnetwork enrichment analysis revealed several processes related to cell cycle were specifically enriched by G-1 compared with E2. Further there existed a number of newly identified proteins that were specifically phosphorylated by G-1. These phosphorylation networks highlight specific proteins that may modulate the inhibitory effects of G-1 and suggest a novel role for interference with nuclear receptor activity driven by E2 and xenoestrogens.
Collapse
Affiliation(s)
- L Cody Smith
- *Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32611
| | - Kimberly J Ralston-Hooper
- Department of Civil and Environmental Engineering, Nicholas School of the Environment, Duke University, Durham, North Carolina 27708
| | - P Lee Ferguson
- Department of Civil and Environmental Engineering, Nicholas School of the Environment, Duke University, Durham, North Carolina 27708
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32611;
| |
Collapse
|
189
|
Li Z, Lu J, Sun X, Pang Q, Zhao Y. Molecular Cloning, mRNA Expression, and Localization of the G-protein Subunit Galphaq in Sheep Testis and Epididymis. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:1702-1709. [PMID: 27004818 PMCID: PMC5088417 DOI: 10.5713/ajas.15.1037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/06/2016] [Accepted: 03/15/2016] [Indexed: 02/04/2023]
Abstract
The reproductive function of G-protein subunit Galphaq (GNAQ), a member of the G protein alpha subunit family, has been extensively studied in humans and rats. However, no data is available on its status in ruminants. The objectives of this study were to evaluate the expression pattern of the GNAQ in the testis and epididymis of sheep by polymerase chain reaction (PCR). The mRNA expression levels were detected by real-time fluorescent quantitative PCR, and cellular localization of GNAQ in the testis and epididymis was examined by immunohistochemistry. Additionally, GNAQ protein was qualitatively evaluated via western blot, with the results indicating that similarities between GNAQ mRNA levels from sheep was highly conserved with those observed in Bos taurus and Sus scrofa. Our results also indicated that GNAQ exists in the caput and cauda epididymis of sheep, while GNAQ in the testis and epididymis was localized to Leydig cells, spermatogonial stem cells, spermatocytes, Sertoli cells, spermatid, principal cells, and epididymis interstitial cells. The concentrations of GNAQ mRNA and protein in the caput and cauda epididymis were significantly greater than those observed in the corpus epididymis (p<0.01) and testis (p<0.05). Our results indicated that GNAQ exists at high concentrations in the caput and cauda epididymis of sheep, suggesting that GNAQ may play an important role in gonad development and sperm maturation.
Collapse
Affiliation(s)
- Zhen Li
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030801, China.,Lab of China clinical veterinary, Shanxi Agricultural University, Taigu 030801, China
| | - Jieli Lu
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030801, China.,Lab of China clinical veterinary, Shanxi Agricultural University, Taigu 030801, China
| | - Xiaowei Sun
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030801, China.,Lab of China clinical veterinary, Shanxi Agricultural University, Taigu 030801, China
| | - Quanhai Pang
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030801, China
| | - Yiwen Zhao
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030801, China.,Lab of China clinical veterinary, Shanxi Agricultural University, Taigu 030801, China
| |
Collapse
|
190
|
Bernardino RL, Costa AR, Martins AD, Silva J, Barros A, Sousa M, Sá R, Alves MG, Oliveira PF. Estradiol modulates Na(+) -dependent HCO3 (-) transporters altering intracellular pH and ion transport in human Sertoli cells: A role on male fertility? Biol Cell 2016; 108:179-88. [PMID: 26888167 DOI: 10.1111/boc.201500094] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND INFORMATION Infertile men often present deregulation of serum estrogen levels. Notably, high levels of estradiol (E2) are associated with low sperm production and quality. Sertoli cells (SCs) are responsible for spermatogenesis maintenance and are major targets for the hormonal signalling that regulates this complex process. RESULTS In this study, we used primary cultures of human SCs and studied the localisation, expression and functionality of the Na(+) -dependent HCO3 (-) transporters by confocal microscopy, immunoblot, epifluorescence and voltage clamp after 24 h of exposure to E2 (100 nM). All studied transporters were identified in human SCs. In E2-treated human SCs, there was an increase in NBCn1, NBCe1 and NDCBE protein levels, as well as an increase in intracellular pH and a decrease in transcellular transport. CONCLUSIONS We report an association between increased levels of E2 and the expression/function of Na(+) -dependent HCO3 (-) transporters in human SCs. Our results provide new evidence on the mechanisms by which E2 can regulate SCs physiology and consequently spermatogenesis. These mechanisms may have an influence on male reproductive potential and help to explain male infertility conditions associated with estrogen deregulation. SIGNIFICANCE Exposure to E2 increased human SCs intracellular pH. E2 is a modulator of ionic transcellular transport in human SCs.
Collapse
Affiliation(s)
- Raquel L Bernardino
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal
| | - Ana R Costa
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana D Martins
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal.,CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Joaquina Silva
- Centre for Reproductive Genetics Prof. Alberto Barros, Porto, Portugal
| | - Alberto Barros
- Centre for Reproductive Genetics Prof. Alberto Barros, Porto, Portugal.,Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal.,I3S, Institute for Innovation and Health Research, University of Porto, Porto, Portugal
| | - Mário Sousa
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal.,Centre for Reproductive Genetics Prof. Alberto Barros, Porto, Portugal
| | - Rosália Sá
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal
| | - Marco G Alves
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal.,I3S, Institute for Innovation and Health Research, University of Porto, Porto, Portugal
| |
Collapse
|
191
|
Vaziri-Gohar A, Houston KD. GPER1-mediated IGFBP-1 induction modulates IGF-1-dependent signaling in tamoxifen-treated breast cancer cells. Mol Cell Endocrinol 2016; 422:160-171. [PMID: 26690777 PMCID: PMC4742395 DOI: 10.1016/j.mce.2015.11.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/05/2015] [Accepted: 11/26/2015] [Indexed: 01/10/2023]
Abstract
Tamoxifen, a selective estrogen receptor modulator, is a commonly prescribed adjuvant therapy for estrogen receptor-α (ERα)-positive breast cancer patients. To determine if extracellular factors contribute to the modulation of IGF-1 signaling after tamoxifen treatment, MCF-7 cells were treated with IGF-1 in conditioned medium (CM) obtained from 4-OHT-treated MCF-7 cells and the accumulation of phospho-Akt (S473) was measured. CM inhibited IGF-1-dependent cell signaling and suggesting the involvement of extracellular factors (ie. IGFBPs). A significant increase in IGFBP-1 mRNA and extracellular IGFBP-1 protein was observed in 4-OHT-treated MCF-7 cells. Knockdown experiments demonstrated that both GPER1 and CREB mediate IGFBP-1 induction. Furthermore, experiments showed that 4-OHT-dependent IGFBP-1 transcription is downstream of GPER1-activation in breast cancer cells. Additionally, neutralization and knockdown experiments demonstrated a role for IGFBP-1 in the observed inhibition of IGF-1 signaling. These results suggested that 4-OHT inhibits IGF-1 signaling via GPER1 and CREB mediated extracellular IGFBP-1 accumulation in breast cancer cells.
Collapse
Affiliation(s)
- Ali Vaziri-Gohar
- Molecular Biology Program, New Mexico State University, Las Cruces, NM 88003, USA
| | - Kevin D Houston
- Molecular Biology Program, New Mexico State University, Las Cruces, NM 88003, USA; Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA.
| |
Collapse
|
192
|
Silva RDCPDCE, Moura KKVDO, Ribeiro Júnior CL, Guillo LA. Estrogen signaling in the proliferative endometrium: implications in endometriosis. Rev Assoc Med Bras (1992) 2016; 62:72-7. [DOI: 10.1590/1806-9282.62.01.72] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/06/2015] [Indexed: 01/09/2023] Open
Abstract
SUMMARY Even though the physiological role of estrogen in the female reproductive cycle and endometrial proliferative phase is well established, the signaling pathways by which estrogen exerts its action in the endometrial tissue are still little known. In this regard, advancements in cell culture techniques and maintenance of endometrial cells in cultures enabled the discovery of new signaling mechanisms activated by estrogen in the normal endometrium and in endometriosis. This review aims to present the recent findings in the genomic and non-genomic estrogen signaling pathways in the proliferative human endometrium specifically associated with the pathogenesis and development of endometriosis.
Collapse
|
193
|
Ma H, Gollahon LS. ERα Mediates Estrogen-Induced Expression of the Breast Cancer Metastasis Suppressor Gene BRMS1. Int J Mol Sci 2016; 17:ijms17020158. [PMID: 26821020 PMCID: PMC4783892 DOI: 10.3390/ijms17020158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/13/2016] [Accepted: 01/18/2016] [Indexed: 12/21/2022] Open
Abstract
Recently, estrogen has been reported as putatively inhibiting cancer cell invasion and motility. This information is in direct contrast to the paradigm of estrogen as a tumor promoter. However, data suggests that the effects of estrogen are modulated by the receptor isoform with which it interacts. In order to gain a clearer understanding of the role of estrogen in potentially suppressing breast cancer metastasis, we investigated the regulation of estrogen and its receptor on the downstream target gene, breast cancer metastasis suppressor 1 (BRMS1) in MCF-7, SKBR3, TTU-1 and MDA-MB-231 breast cancer cells. Our results showed that estrogen increased the transcription and expression of BRMS1 in the ERα positive breast cancer cell line, MCF-7. Additionally, the ERα specific agonist PPT also induced the transcription and expression of BRMS1. However, the two remaining estrogen receptor (ER) subtype agonists had no effect on BRMS1 expression. In order to further examine the influence of ERα on BRMS1 expression, ERα expression was knocked down using siRNA (siERα). Western blot analysis showed that siERα reduced estrogen-induced and PPT-induced BRMS1 expression. In summary, this study demonstrates estrogen, via its α receptor, positively regulates the expression of BRMS1, providing new insight into a potential inhibitory effect of estrogen on metastasis suppression.
Collapse
Affiliation(s)
- Hongtao Ma
- Department of Biological Sciences, Texas Tech University, 2901 Main St. Suite 108, Lubbock, TX 79409, USA.
| | - Lauren S Gollahon
- Department of Biological Sciences, Texas Tech University, 2901 Main St. Suite 108, Lubbock, TX 79409, USA.
| |
Collapse
|
194
|
Huang C, Yuan P, Wu J, Huang J. Estrogen regulates excitatory amino acid carrier 1 (EAAC1) expression through sphingosine kinase 1 (SphK1) transacting FGFR-mediated ERK signaling in rat C6 astroglial cells. Neuroscience 2016; 319:9-22. [PMID: 26804240 DOI: 10.1016/j.neuroscience.2016.01.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/04/2016] [Accepted: 01/12/2016] [Indexed: 12/28/2022]
Abstract
Excitatory amino acid carrier 1 (EAAC1) is one important subtype of the excitatory amino acid transporters (EAATs), and its absence can increase the vulnerability to oxidative stress in neural tissue. Enhanced expression of EAAC1 can provide neuroprotection in multiple disorders, including ischemia and multiple sclerosis. However, the mechanism regulating EAAC1 expression is not fully understood. Using rat C6 astroglial cells, which specifically express EAAC1, we found that 17β-estradiol (E2) and (±)-1-[(3aR(∗),4S(∗),9bS(∗))-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-8-yl]-ethanone (G1), an agonist of the G-protein-coupled estrogen receptor (GPR30), strongly increased EAAC1 protein levels and protected cells from hydrogen peroxide (H2O2) toxicity. We further found that E2/G1 activated sphingosine kinase 1 (SphK1) via GPR30, resulting in the transcription of fibroblast growth factor 2 (FGF2), which stimulated its receptor (FGFR) and led to the phosphorylation of FGFR substrate 2α (FRS2α). This triggered downstream ERK1/2 signaling for the expression of EAAC1. Both the knockdown of FGF2 by siRNA and the pharmacological suppression of the FGFR-ERK cascade abolished the E2/G1 effect on EAAC1 expression. Overall, our work characterizes a signaling pathway by which E2 transactivates FGFR-ERK to induce EAAC1 expression in an FGF2-dependent manner. This occurs through SphK1 activation via GPR30 and leads to a resistance to H2O2 toxicity. This signal transduction pathway may provide novel insights into our understanding of the neuroprotective effects of E2 and may reveal new therapeutic targets or drugs for regulating the oxidative toxicity effects of various neurological diseases.
Collapse
Affiliation(s)
- C Huang
- College of Life Science, Wuhan University, Wuhan 430072, PR China
| | - P Yuan
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| | - J Wu
- College of Life Science, Wuhan University, Wuhan 430072, PR China
| | - J Huang
- College of Life Science, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
195
|
Ulitzky L, Lafer MM, KuKuruga MA, Silberstein E, Cehan N, Taylor DR. A New Signaling Pathway for HCV Inhibition by Estrogen: GPR30 Activation Leads to Cleavage of Occludin by MMP-9. PLoS One 2016; 11:e0145212. [PMID: 26731262 PMCID: PMC4701175 DOI: 10.1371/journal.pone.0145212] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 12/01/2015] [Indexed: 12/12/2022] Open
Abstract
Poor outcome in response to hepatitis C virus, including higher viral load, hepatocellular carcinoma and cirrhosis, is more associated with men and postmenopausal women than with premenopausal women and women receiving hormone replacement therapy, suggesting that β-estradiol plays an innate role in preventing viral infection and liver disease. Consequently, most research in the field has concluded that estrogen affects HCV replication through viral interactions with estrogen receptor-α. Previously, estrogen-like antagonists, including Tamoxifen, were shown to reduce HCV RNA production and prevent viral entry, although the authors did not identify host factors involved. Estrogen can act alternatively through the membrane-bound G-protein-coupled estrogen receptor, GPR30. Here, human hepatoma Huh7.5 cells were infected with HCV J6/JFH-1 and treated with estrogen or Tamoxifen, resulting in a marked decrease in detectable virus. The effect was mimicked by G1, a GPR30-specific agonist, and was reversed by the GPR30-specific antagonist, G15. While previous studies have demonstrated that estrogen down-regulated occludin in cervical cancer cells, its action on liver cells was unknown. Occludin is a tight junction protein and HCV receptor and here we report that activation and cellular export of MMP-9 led to the cleavage of occludin upon estrogen treatment of liver cells. This is the first report of the cleavage of an HCV receptor in response to estrogen. We also identify the occludin cleavage site in extracellular Domain D; the motif required for HCV entry and spread. This pathway gives new insight into a novel innate antiviral pathway and the suboptimal environment that estrogen provides for the proliferation of the virus. It may also explain the disparate host-virus responses to HCV demonstrated by the two sexes. Moreover, these data suggest that hormone replacement therapy may have beneficial antiviral enhancement properties for HCV-infected postmenopausal women and show promise for new antiviral treatments for both men and women.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/virology
- Cell Line, Tumor
- Cyclopentanes/pharmacology
- Estrogen Antagonists/pharmacology
- Estrogens/pharmacology
- Hepacivirus/drug effects
- Hepacivirus/genetics
- Hepacivirus/physiology
- Host-Pathogen Interactions/drug effects
- Humans
- Immunoblotting
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/virology
- MCF-7 Cells
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/metabolism
- Matrix Metalloproteinase Inhibitors/pharmacology
- Occludin/metabolism
- Phenyl Ethers/pharmacology
- Proteolysis/drug effects
- Quinolines/pharmacology
- RNA Interference
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Receptors, Estrogen/antagonists & inhibitors
- Receptors, Estrogen/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/drug effects
- Tamoxifen/pharmacology
Collapse
Affiliation(s)
- Laura Ulitzky
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993–0002, United States of America
| | - Manuel M. Lafer
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993–0002, United States of America
| | - Mark A. KuKuruga
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993–0002, United States of America
| | - Erica Silberstein
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993–0002, United States of America
| | - Nicoleta Cehan
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993–0002, United States of America
| | - Deborah R. Taylor
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993–0002, United States of America
- * E-mail:
| |
Collapse
|
196
|
Rago V, Romeo F, Giordano F, Ferraro A, Carpino A. Identification of the G protein-coupled estrogen receptor (GPER) in human prostate: expression site of the estrogen receptor in the benign and neoplastic gland. Andrology 2015; 4:121-7. [PMID: 26714890 DOI: 10.1111/andr.12131] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 10/02/2015] [Accepted: 10/19/2015] [Indexed: 12/11/2022]
Abstract
Estrogens are involved in growth, differentiation and pathogenesis of human prostate through the mediation of the classical estrogen receptors ERα and ERβ. The G protein-coupled estrogen receptor (GPER) is a 'novel' mediator of estrogen signaling which has been recently recognized in some human reproductive tissues, but its expression in the prostate gland is still unknown. Here, we investigated GPER in benign (from 5 patients) and neoplastic prostatic tissues (from 50 patients) by immunohistochemical analysis and Western blotting. Normal areas of benign prostates revealed a strong GPER immunoreactivity in the basal epithelial cells while luminal epithelial cells were unreactive and stromal cells were weakly immunostained. GPER was also immunolocalized in adenocarcinoma samples but the immunoreactivity of tumoral areas decreased from Gleason pattern 2 to Gleason pattern 4. Furthermore, a strong GPER immunostaining was also revealed in cells of pre-neoplastic lesions (high-grade prostatic intra-epithelial neoplasia). Western blot analysis of benign and tumor protein extracts showed the presence of a ~42 kDa band, consistent with the GPER molecular weight. An increase in both pAkt and p cAMP-response-binding protein (pCREB) levels was also observed in poorly differentiated PCa samples. Finally, this work identified GPER in the epithelial basal cells of benign human prostate, with a different localization with respect to the classical estrogen receptors. Furthermore, the expression of GPER in prostatic adenocarcinoma cells was also observed but with a modulation of the immunoreactivity according to tumor cell arrangements.
Collapse
Affiliation(s)
- V Rago
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Cosenza, Italy
| | - F Romeo
- Pathologic Anatomy Unit, Annunziata Hospital, Cosenza, Italy
| | - F Giordano
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Cosenza, Italy
| | - A Ferraro
- Pathologic Anatomy Unit, Annunziata Hospital, Cosenza, Italy
| | - A Carpino
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Cosenza, Italy
| |
Collapse
|
197
|
Rodenas MC, Cabas I, Abellán E, Meseguer J, Mulero V, García-Ayala A. Tamoxifen persistently disrupts the humoral adaptive immune response of gilthead seabream (Sparus aurata L.). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:283-292. [PMID: 26234710 DOI: 10.1016/j.dci.2015.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/22/2015] [Accepted: 06/24/2015] [Indexed: 06/04/2023]
Abstract
There is increasing concern about the possible effect of pharmaceutical compounds may have on the fish immune system. Bath exposition of 17α-ethynylestradiol (EE2), a synthetic estrogen used in oral contraceptives, altered the immune response of the gilthead seabream (Sparus aurata L.), a marine hermaphrodite teleost. Tamoxifen (Tmx) is a selective estrogen-receptor modulator used in hormone replacement therapy, the effects of which are unknown in fish immunity. This study aims to investigate the effects of dietary administration of EE2 (5 μg/g food) and Tmx (100 μg/g food) on the immune response of gilthead seabream, and the capacity of the immune system to recover its functionality after a recovery period. The results show for the first time the reversibility of the effect of EE2 and Tmx on the fish immune response. Tmx promoted a transient alteration in hepatic vitellogenin gene expression of a different magnitude to that produced by EE2. Both, EE2 and Tmx inhibited the induction of interleukin-1β gene expression while reversed the inhibition of ROI production in leukocytes following vaccination. However, none of these effects were observed after ceasing EE2 and Tmx exposure. EE2 and Tmx stimulated the antibody response of vaccinated fish although Tmx, but not EE2, altered the antibody response and modulated the percentage of IgM(+) B lymphocytes of vaccinated fish during the recovery phase. Taken together, our results suggest that EE2 and Tmx might alter the capacity of fish to appropriately respond to infection and show that Tmx has a long-lasting effect on humoral adaptive immunity.
Collapse
Affiliation(s)
- M C Rodenas
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
| | - I Cabas
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
| | - E Abellán
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Carretera de la Azohía s/n, Puerto de Mazarrón, 30860 Murcia, Spain
| | - J Meseguer
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
| | - V Mulero
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
| | - A García-Ayala
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain.
| |
Collapse
|
198
|
Zekas E, Prossnitz ER. Estrogen-mediated inactivation of FOXO3a by the G protein-coupled estrogen receptor GPER. BMC Cancer 2015; 15:702. [PMID: 26470790 PMCID: PMC4608161 DOI: 10.1186/s12885-015-1699-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 10/07/2015] [Indexed: 02/06/2023] Open
Abstract
Background Estrogen (17β-estradiol) promotes the survival and proliferation of breast cancer cells and its receptors represent important therapeutic targets. The cellular actions of estrogen are mediated by the nuclear estrogen receptors ERα and ERβ as well as the 7-transmembrane spanning G protein-coupled estrogen receptor (GPER). We previously reported that estrogen activates the phosphoinositide 3-kinase (PI3Kinase) pathway via GPER, resulting in phosphatidylinositol (3,4,5)-trisphosphate (PIP3) production within the nucleus of breast cancer cells; however, the mechanisms and consequences of this activity remained unclear. Methods MCF7 breast cancer cells were transfected with GFP-fused Forkhead box O3 (FOXO3) as a reporter to assess localization in response to estrogen stimulation. Inhibitors of PI3Kinases and EGFR were employed to determine the mechanisms of estrogen-mediated FOXO3a inactivation. Receptor knockdown with siRNA and the selective GPER agonist G-1 elucidated the estrogen receptor(s) responsible for estrogen-mediated FOXO3a inactivation. The effects of selective estrogen receptor modulators and downregulators (SERMs and SERDs) on FOXO3a in MCF7 cells were also determined. Cell survival (inhibition of apoptosis) was assessed by caspase activation. Results In the estrogen-responsive breast cancer cell line MCF7, FOXO3a inactivation occurs on a rapid time scale as a result of GPER, but not ERα, stimulation by estrogen, established by the GPER-selective agonist G-1 and knockdown of GPER and ERα. GPER-mediated inactivation of FOXO3a is effected by the p110α catalytic subunit of PI3Kinase as a result of transactivation of the EGFR. The SERMs tamoxifen and raloxifene, as well as the SERD ICI182,780, were active in mediating FOXO3a inactivation in a GPER-dependent manner. Additionally, estrogen-and G-1-mediated stimulation of MCF7 cells results in a decrease in caspase activation under proapoptotic conditions. Conclusions Our results suggest that non-genomic signaling by GPER contributes, at least in part, to the survival of breast cancer cells, particularly in the presence of ER-targeted therapies involving SERMs and SERDs. Our results further suggest that GPER expression and FOXO3a localization could be utilized as prognostic markers in breast cancer therapy and that GPER antagonists could promote apoptosis in GPER-positive breast cancers, particularly in combination with chemotherapeutic and ER-targeted drugs, by antagonizing estrogen-mediated FOXO3a inactivation.
Collapse
Affiliation(s)
- Erin Zekas
- Department of Internal Medicine and UNM Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
| | - Eric R Prossnitz
- Department of Internal Medicine and UNM Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
| |
Collapse
|
199
|
Abstract
Bisphenol A (BPA) exposure has been associated with serious endocrine-disrupting effects in humans and wildlife. Toxicological and epidemiological studies evidenced that BPA increases body mass index and disrupts normal cardiovascular physiology by interfering with endogenous hormones in rodents, nonhuman primates, and cell culture test systems. The BPA concentration derived from these experiments were used by government regulatory agencies to determine the safe exposure levels of BPA in humans. However, accumulating literature in vivo and in vitro indicate that at concentrations lower than that reported in toxicological studies, BPA could elicit a different endocrine-disrupting capacity. To further complicate this picture, BPA effects rely on several and diverse mechanisms that converge upon endocrine and reproductive systems. If all or just few of these mechanisms concur to the endocrine-disrupting potential of low doses of BPA is at present still unclear. Thus, taking into account that the incidence and/or prevalence of health problems associated with endocrine disruption have increased worldwide, the goal of the present review is to give an overview of the many mechanisms of BPA action in order to decipher whether different mechanisms are at the root of the effect of low dose of BPA on endocrine system.
Collapse
Affiliation(s)
| | | | - Maria Marino
- Department of Science, Roma Tre University, Roma, Italy; INBB-National Laboratory of Gender and Endocrine Disruptors, Roma, Italy
| |
Collapse
|
200
|
Bessa A, Campos FL, Videira RA, Mendes-Oliveira J, Bessa-Neto D, Baltazar G. GPER: A new tool to protect dopaminergic neurons? Biochim Biophys Acta Mol Basis Dis 2015; 1852:2035-41. [DOI: 10.1016/j.bbadis.2015.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 06/24/2015] [Accepted: 07/08/2015] [Indexed: 12/11/2022]
|