151
|
Jeon TI, Zhu B, Larson JL, Osborne TF. SREBP-2 regulates gut peptide secretion through intestinal bitter taste receptor signaling in mice. J Clin Invest 2008; 118:3693-700. [PMID: 18846256 DOI: 10.1172/jci36461] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 08/13/2008] [Indexed: 11/17/2022] Open
Abstract
Bitter taste-sensing G protein-coupled receptors (type 2 taste receptors [T2Rs]) are expressed in taste receptor cells of the tongue, where they play an important role in limiting ingestion of bitter-tasting, potentially toxic compounds. T2Rs are also expressed in gut-derived enteroendocrine cells, where they have also been hypothesized to play a role in limiting toxin absorption. In this study, we have shown that T2R gene expression in both cultured mouse enteroendocrine cells and mouse intestine is regulated by the cholesterol-sensitive SREBP-2. In addition, T2R stimulation of cholecystokinin (CCK) secretion was enhanced directly by SREBP-2 in cultured cells and in mice fed chow supplemented with lovastatin and ezetimibe (L/E) to decrease dietary sterol absorption and increase nuclear activity of SREBP-2. Low-cholesterol diets are naturally composed of high amounts of plant matter that is likely to contain dietary toxins, and CCK is known to improve dietary absorption of fats, slow gastric emptying, and decrease food intake. Thus, these studies suggest that SREBP-2 activation of bitter signaling receptors in the intestine may sensitize the gut to a low-fat diet and to potential accompanying food-borne toxins that make it past the initial aversive response in the mouth.
Collapse
Affiliation(s)
- Tae-Il Jeon
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | | | | | | |
Collapse
|
152
|
Egan JM, Margolskee RF. Taste cells of the gut and gastrointestinal chemosensation. Mol Interv 2008; 8:78-81. [PMID: 18403652 DOI: 10.1124/mi.8.2.5] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Josephine M Egan
- National Institute on Aging/National Institutes of Health, Baltimore, MD 21224, USA
| | | |
Collapse
|
153
|
Bibliography. Current world literature. Growth and development. Curr Opin Endocrinol Diabetes Obes 2008; 15:79-101. [PMID: 18185067 DOI: 10.1097/med.0b013e3282f4f084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
154
|
Sternini C, Anselmi L, Rozengurt E. Enteroendocrine cells: a site of 'taste' in gastrointestinal chemosensing. Curr Opin Endocrinol Diabetes Obes 2008; 15:73-8. [PMID: 18185066 PMCID: PMC2943060 DOI: 10.1097/med.0b013e3282f43a73] [Citation(s) in RCA: 260] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW This review discusses the role of enteroendocrine cells of the gastrointestinal tract as chemoreceptors that sense lumen contents and induce changes in gastrointestinal function and food intake through the release of signaling substances acting on a variety of targets locally or at a distance. RECENT FINDINGS Recent evidence supports the concept that chemosensing in the gut involves G protein-coupled receptors and effectors that are known to mediate gustatory signals in the oral cavity. These include sweet-taste and bitter-taste receptors, and their associated G proteins, which are expressed in the gastrointestinal mucosa, including selected populations of enteroendocrine cells. In addition, taste receptor agonists elicit a secretory response in enteroendocrine cells in vitro and in animals in vivo, and induce neuronal activation. SUMMARY Taste-signaling molecules expressed in the gastrointestinal mucosa might participate in the functional detection of nutrients and harmful substances in the lumen and prepare the gut to absorb them or initiate a protective response. They might also participate in the control of food intake through the activation of gut-brain neural pathways. These findings provide a new dimension to unraveling the regulatory circuits initiated by luminal contents of the gastrointestinal tract.
Collapse
Affiliation(s)
- Catia Sternini
- Division of Digestive Diseases and CURE: Digestive Diseases Research Center, and Departments of Medicine, USA.
| | | | | |
Collapse
|
155
|
Hao S, Sternini C, Raybould HE. Role of CCK1 and Y2 receptors in activation of hindbrain neurons induced by intragastric administration of bitter taste receptor ligands. Am J Physiol Regul Integr Comp Physiol 2008; 294:R33-8. [DOI: 10.1152/ajpregu.00675.2007] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
G-protein-coupled receptors signaling bitter taste (T2Rs) in the oral gustatory system and the α-subunit of the taste-specific G-protein gustducin are expressed in the gastrointestinal (GI) tract. α-Subunit of the taste-specific G-protein gustducin colocalizes with markers of enteroendocrine cells in human and mouse GI mucosa, including peptide YY. Activation of T2Rs increases cholecystokinin (CCK) release from the enteroendocrine cell line, STC-1. The aim of this study was to determine whether T2R agonists in the GI tract activate neurons in the nucleus of the solitary tract (NTS) and whether this activation is mediated by CCK and peptide YY acting at CCK1 and Y2 receptors. Immunocytochemistry for the protooncogene c-Fos protein, a marker for neuronal activation, was used to determine activation of neurons in the midregion of the NTS, the region where vagal afferents from the GI tract terminate. Intragastric administration of the T2R agonist denatonium benzoate (DB), or phenylthiocarbamide (PTC), or a combination of T2R agonists significantly increased the number of Fos-positive neurons in the mid-NTS; subdiaphragmatic vagotomy abolished the NTS response to the mixture of T2R agonists. Deletion of CCK1 receptor gene or blockade of CCK1 receptors with devazepide abolishes the activation of NTS neurons in response to DB, but had no effect on the response to PTC. Administration of the Y2 receptor antagonist BIIE0246 blocks the activation of NTS neurons to DB, but not PTC. These findings suggest that activation of neurons in the NTS following administration of T2R agonists to the GI tract involves CCK1 and Y2 receptors located on vagal afferent terminals in the gut wall. T2Rs may regulate GI function via release of regulatory peptides and activation of the vagal reflex pathway.
Collapse
|
156
|
Purhonen AK, Louhivuori LM, Kiehne K, Kerman KEO, Herzig KH. TRPA1 channel activation induces cholecystokinin release via extracellular calcium. FEBS Lett 2007; 582:229-32. [PMID: 18082143 DOI: 10.1016/j.febslet.2007.12.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 11/30/2007] [Accepted: 12/03/2007] [Indexed: 11/18/2022]
Abstract
TRPA1 channels are non-selective cation channels activated by plant derived pungent products including allyl isothiocyanate (AITC) from mustard. Therefore, possible intestinal secretory functions of these channels were investigated. We detected TRPA1 mRNA in mouse and human duodenal mucosa and in intestinal mouse neuroendocrine STC-1 cells. Stimulation of STC-1 cells with AITC increased intracellular calcium ([Ca(2+)](i)) and significantly stimulated cholecystokinin secretion by 6.7-fold. AITC induced cholecystokinin release was completely blocked by TRPA1 antagonist ruthenium red and depletion of extracellular calcium and reduced by 36% by nimodipine and nifedipine. This suggests that spices in our daily food might stimulate digestive functions.
Collapse
Affiliation(s)
- A K Purhonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland
| | | | | | | | | |
Collapse
|
157
|
Feng XH, Liu XM, Zhou LH, Wang J, Liu GD. Expression of glucagon-like peptide-1 in the taste buds of rat circumvallate papillae. Acta Histochem 2007; 110:151-4. [PMID: 18054375 DOI: 10.1016/j.acthis.2007.10.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Revised: 10/02/2007] [Accepted: 10/02/2007] [Indexed: 11/18/2022]
Abstract
Glucagon-like peptide-1 (GLP-1), a 30-amino-acid peptide hormone, is a typical peptide of the brain-gut axis and can affect the metabolism of various tissues and organs. GLP-1 is secreted by intestinal L cells in response to nutrient ingestion. Some studies have shown that taste signaling elements were co-expressed in enteroendocrine cells of the small intestine, and in particular by L-cells. The present study was performed to explore the protein and mRNA expression of GLP-1 in the taste buds of rat circumvallate papillae and to try to determine the significance of its secretion. GLP-1 immunoreactivity was observed in spindle-shaped taste bud cells, with positive cells displaying a characteristic distribution of reaction product that was confined to the cytosol. Reverse transcription polymerase chain reaction (RT-PCR) assay showed that GLP-1 mRNA was expressed in circumvallate papillae. The expression of GLP-1 suggests that it may play an important role in the taste stimulation of nutrients and gut hormone secretion.
Collapse
Affiliation(s)
- Xiao-Hong Feng
- Department of Endocrinology, The First Clinical Hospital of Harbin Medical University, Harbin 150001, China
| | | | | | | | | |
Collapse
|
158
|
Glendinning JI. How do predators cope with chemically defended foods? THE BIOLOGICAL BULLETIN 2007; 213:252-266. [PMID: 18083965 DOI: 10.2307/25066643] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Many prey species (including plants) deter predators with defensive chemicals. These defensive chemicals act by rendering the prey's tissues noxious, toxic, or both. Here, I explore how predators cope with the presence of these chemicals in their diet. First, I describe the chemosensory mechanisms by which predators (including herbivores) detect defensive chemicals. Second, I review the mechanisms by which predators either avoid or tolerate defensive chemicals in prey. Third, I examine how effectively free-ranging predators can overcome the chemical defenses of prey. The available evidence indicates that predators have mixed success overcoming these defenses. This conclusion is based on reports of free-ranging predators rejecting unpalatable but harmless prey, or voluntarily ingesting toxic prey.
Collapse
Affiliation(s)
- John I Glendinning
- Department of Biological Sciences, Barnard College, Columbia University, 3009 Broadway, New York, New York 10027, USA.
| |
Collapse
|
159
|
Glendinning JI, Yiin YM, Ackroff K, Sclafani A. Intragastric infusion of denatonium conditions flavor aversions and delays gastric emptying in rodents. Physiol Behav 2007; 93:757-65. [PMID: 18174110 DOI: 10.1016/j.physbeh.2007.11.029] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 11/10/2007] [Accepted: 11/20/2007] [Indexed: 10/22/2022]
Abstract
Because most naturally occurring toxins taste bitter to humans, any mechanism that reduces the rate at which bitter substances are ingested and digested should be adaptive. Based on the recent discovery of T2R bitter taste receptors in the gastrointestinal tract of rodents, we asked whether intragastric (IG) infusion of denatonium (a ligand for T2R receptors) would condition a flavor aversion and/or delay gastric emptying. Four experiments tested for post-oral responses to denatonium in rodents. First, Sprague-Dawley rats were trained to associate intake of a flavored solution (the CS+) with IG denatonium infusions, and intake of a different-flavored solution (the CS-) with IG water infusions during 30 min/day sessions. The rats acquired an aversion to the CS+ flavor when it was paired with IG infusions of 10 mM (but not 2.5 mM) denatonium. Intragastric infusions of 10 mM denatonium also delayed gastric emptying of food in the same rats. Second, we asked how long it took for rats to suppress their drinking while being infused IG with 10 mM denatonium. Rats drinking a palatable solution paired with IG infusions of 10 mM denatonium suppressed their licking within 6 min, as compared to rats infused IG with water. Third, we trained C57BL/6J (B6) mice 24 h/day to associate a CS+ flavor paired with IG infusions of 12 mM denatonium (diluted to 6 mM by orally consumed CS+). Like rats, the mice acquired a robust aversion to the CS+ flavor when it was paired with IG infusions of denatonium. A final experiment assessed the potential toxicity of denatonium. To this end, we gave B6 mice a 6 mM denatonium solution as their only source of water for 3 weeks. The mice grew normally and did not display any clinical signs of denatonium toxicosis. This study provides the first evidence that rodents respond to the presence of "bitter" substances in their gastrointestinal tract by generating both behavioral and physiological responses.
Collapse
Affiliation(s)
- John I Glendinning
- Department of Biological Sciences, Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, USA.
| | | | | | | |
Collapse
|
160
|
Rozengurt E, Sternini C. Taste receptor signaling in the mammalian gut. Curr Opin Pharmacol 2007; 7:557-62. [PMID: 18024184 DOI: 10.1016/j.coph.2007.10.002] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 10/01/2007] [Accepted: 10/05/2007] [Indexed: 12/12/2022]
Abstract
Molecular sensing by gastrointestinal (GI) cells plays a crucial role in the control of multiple fundamental functions including digestion, regulation of caloric intake, pancreatic insulin secretion, and metabolism, as well as protection from ingested harmful drugs and toxins. These processes are likely to be mediated by the initiation of humoral and/or neural pathways through the activation of endocrine cells. However, the initial recognition events and mechanism(s) involved are still largely unknown. This article reviews the current evidence that the chemosensory machinery discovered in specialized neuroepithelial taste receptor cells of the lingual epithelium is operational in enteroendocrine open GI cells that sense the chemical composition of the luminal contents of the gut.
Collapse
Affiliation(s)
- Enrique Rozengurt
- Division of Digestive Diseases and CURE, Digestive Diseases Research Center, David Geffen School of Medicine, University of California at Los Angeles, 900 Veteran Avenue, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
161
|
Mace OJ, Affleck J, Patel N, Kellett GL. Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2. J Physiol 2007; 582:379-92. [PMID: 17495045 PMCID: PMC2075289 DOI: 10.1113/jphysiol.2007.130906] [Citation(s) in RCA: 326] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Natural sugars and artificial sweeteners are sensed by receptors in taste buds. T2R bitter and T1R sweet taste receptors are coupled through G-proteins, alpha-gustducin and transducin, to activate phospholipase C beta2 and increase intracellular calcium concentration. Intestinal brush cells or solitary chemosensory cells (SCCs) have a structure similar to lingual taste cells and strongly express alpha-gustducin. It has therefore been suggested over the last decade that brush cells may participate in sugar sensing by a mechanism analogous to that in taste buds. We provide here functional evidence for an intestinal sensing system based on lingual taste receptors. Western blotting and immunocytochemistry revealed that all T1R members are expressed in rat jejunum at strategic locations including Paneth cells, SCCs or the apical membrane of enterocytes; T1Rs are colocalized with each other and with alpha-gustducin, transducin or phospholipase C beta2 to different extents. Intestinal glucose absorption consists of two components: one is classical active Na+-glucose cotransport, the other is the diffusive apical GLUT2 pathway. Artificial sweeteners increase glucose absorption in the order acesulfame potassium approximately sucralose > saccharin, in parallel with their ability to increase intracellular calcium concentration. Stimulation occurs within minutes by an increase in apical GLUT2, which correlates with reciprocal regulation of T1R2, T1R3 and alpha-gustducin versus T1R1, transducin and phospholipase C beta2. Our observation that artificial sweeteners are nutritionally active, because they can signal to a functional taste reception system to increase sugar absorption during a meal, has wide implications for nutrient sensing and nutrition in the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Oliver J Mace
- Department of Biology (Area 3), University of York, York YO10 5YW, UK
| | | | | | | |
Collapse
|
162
|
Choi S, Lee M, Shiu AL, Yo SJ, Halldén G, Aponte GW. GPR93 activation by protein hydrolysate induces CCK transcription and secretion in STC-1 cells. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1366-75. [PMID: 17290006 DOI: 10.1152/ajpgi.00516.2006] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the intestinal lumen, protein hydrolysate increases the transcription and release of cholecystokinin (CCK) from enteroendocrine cells of the duodenal-jejunal mucosa. Our recent discovery that a G protein-coupled receptor, GPR93, is activated by dietary protein hydrolysate causing induced intracellular calcium-mediated signaling events in intestinal epithelial cells raises a possibility that GPR93 might be involved in the protein hydrolysate induction of CCK expression and/or secretion. Using the enteroendocrine STC-1 cells as a model, the present study demonstrates that increasing expression of GPR93 amplifies the peptone induction of endogenous CCK mRNA levels. A similar increase in CCK transcription, indicated by the luciferase reporter activity driven by an 820-bp CCK promoter, is also observed in response to peptone at a dose as little as 6.25 mg/ml, but not to lysophosphatidic acid (LPA), an agonist of GPR93. We discovered that the upregulation of CCK transcription involves ERK1/2, PKA, and calmodulin-dependent protein kinase-mediated pathways. Additionally, GPR93 activation by peptone induces a response in CCK release at 15 min, which continues over a 2-h period. The cAMP level in STC-1 cells overexpressing GPR93 is induced at a greater extent by peptone than by LPA, suggesting a possible explanation of the different effects of peptone and LPA on CCK transcription and secretion. Our data indicate that GPR93 can contribute to the observed induction of CCK expression and secretion by peptone and provide evidence that G protein-coupled receptors can transduce dietary luminal signals.
Collapse
Affiliation(s)
- Sungwon Choi
- Dept. of Nutritional Sciences and Toxicology, Univ. of California, 119 Morgan Hall, Berkeley, CA 94720-3104, USA
| | | | | | | | | | | |
Collapse
|
163
|
Abstract
Despite substantial fluctuations in daily food intake, animals maintain a remarkably stable body weight, because overall caloric ingestion and expenditure are exquisitely matched over long periods of time, through the process of energy homeostasis. The brain receives hormonal, neural, and metabolic signals pertaining to body-energy status and, in response to these inputs, coordinates adaptive alterations of energy intake and expenditure. To regulate food consumption, the brain must modulate appetite, and the core of appetite regulation lies in the gut-brain axis. This Review summarizes current knowledge regarding the neuroendocrine regulation of food intake by the gastrointestinal system, focusing on gastric distention, intestinal and pancreatic satiation peptides, and the orexigenic gastric hormone ghrelin. We highlight mechanisms governing nutrient sensing and peptide secretion by enteroendocrine cells, including novel taste-like pathways. The increasingly nuanced understanding of the mechanisms mediating gut-peptide regulation and action provides promising targets for new strategies to combat obesity and diabetes.
Collapse
Affiliation(s)
- David E Cummings
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Veterans Affairs Puget Sound Health Care System, Seattle, Washington 98108, USA.
| | | |
Collapse
|
164
|
Sternini C. Taste receptors in the gastrointestinal tract. IV. Functional implications of bitter taste receptors in gastrointestinal chemosensing. Am J Physiol Gastrointest Liver Physiol 2007; 292:G457-61. [PMID: 17095755 DOI: 10.1152/ajpgi.00411.2006] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Changes in the luminal contents of the gastrointestinal tract modulate gastrointestinal functions, including absorption of nutrients, food intake, and protection against harmful substances. The current notion is that mucosal enteroendocrine cells act as primary chemoreceptors by releasing signaling molecules in response to changes in the luminal environment, which in turn activate nerve terminals. The recent discovery that taste receptors and G protein subunits alpha-gustducin and alpha-transducin, involved in gustatory signal transduction, are expressed in the gastrointestinal mucosa supports the concept of a chemosensory machinery in the gastrointestinal tract. An understanding of luminal sensing processes responsible for the generation of the appropriate functional response to specific nutrients and nonnutrients is of clinical importance since aberrant or unsteady responses to changes in luminal contents might result in disease states ranging from intoxication to feeding disorders and inflammation. The purpose of this theme article is to discuss the functional implications of bitter taste signaling molecules in the gastrointestinal tract deduced by their localization in selected populations of epithelial cells and their relationship with neural pathways responsible for the generation of specific responses to luminal contents.
Collapse
Affiliation(s)
- Catia Sternini
- CURE Digestive Diseases Research Center, VAGLAHS, Los Angeles, CA 90073, USA.
| |
Collapse
|
165
|
Crockett SL, Schühly W, Bauer R. [Contents, molecular action mechanism and clinical evidence. Plant derived antiemetics]. PHARMAZIE IN UNSERER ZEIT 2007; 36:381-8. [PMID: 17722145 DOI: 10.1002/pauz.200700235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Affiliation(s)
- Sara L Crockett
- Bereich Pharmakognosie, Institut für Pharmazeutische Wissenschaften, Universitätsplatz 4/1, Karl-Franzens-Universität Graz, A-8010 Graz, Osterreich.
| | | | | |
Collapse
|