151
|
Wan R, Srikaram P, Xie S, Chen Q, Hu C, Wan M, Li Y, Gao P. PPARγ Attenuates Cellular Senescence of Alveolar Macrophages in Asthma- COPD Overlap. RESEARCH SQUARE 2024:rs.3.rs-4009724. [PMID: 38496493 PMCID: PMC10942556 DOI: 10.21203/rs.3.rs-4009724/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Asthma-chronic obstructive pulmonary disease (COPD) overlap (ACO) represents a complex condition characterized by shared clinical and pathophysiological features of asthma and COPD in older individuals. However, the pathophysiology of ACO remains unexplored. We aimed to identify the major inflammatory cells in ACO, examine senescence within these cells, and elucidate the genes responsible for regulating senescence. Bioinformatic analyses were performed to investigate major cell types and cellular senescence signatures in a public single-cell RNA sequencing (scRNA-Seq) dataset derived from the lung tissues of patients with ACO. Similar analyses were carried out in an independent cohort study Immune Mechanisms Severe Asthma (IMSA), which included bulk RNA-Seq and CyTOF data from bronchoalveolar lavage fluid (BALF) samples. The analysis of the scRNA-Seq data revealed that monocytes/ macrophages were the predominant cell type in the lung tissues of ACO patients, constituting more than 50% of the cells analyzed. Lung monocytes/macrophages from patients with ACO exhibited a lower prevalence of senescence as defined by lower enrichment scores of SenMayo and expression levels of cellular senescence markers. Intriguingly, analysis of the IMSA dataset showed similar results in patients with severe asthma. They also exhibited a lower prevalence of senescence, particularly in airway CD206 + macrophages, along with increased cytokine expression (e.g., IL-4, IL-13, and IL-22). Further exploration identified alveolar macrophages as a major subtype of monocytes/macrophages driving cellular senescence in ACO. Differentially expressed genes related to oxidation-reduction, cytokines, and growth factors were implicated in regulating senescence in alveolar macrophages. PPARγ (Peroxisome Proliferator-Activated Receptor Gamma) emerged as one of the predominant regulators modulating the senescent signature of alveolar macrophages in ACO. Collectively, the findings suggest that senescence in macrophages, particularly alveolar macrophages, plays a crucial role in the pathophysiology of ACO. Furthermore, PPARγ may represent a potential therapeutic target for interventions aimed at modulating senescence-associated processes in ACO.
Collapse
Affiliation(s)
| | | | | | | | | | - Mei Wan
- Johns Hopkins University School of Medicine
| | | | | |
Collapse
|
152
|
Fan L, Du P, Li Y, Chen X, Liu F, Liu Y, Petrov AM, Li X, Wang Z, Zhao Y. Targeted Liposomes Sensitize Plastic Melanoma to Ferroptosis via Senescence Induction and Coenzyme Depletion. ACS NANO 2024; 18:7011-7023. [PMID: 38390865 DOI: 10.1021/acsnano.3c10142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Ferroptotic cancer therapy has been extensively investigated since the genesis of the ferroptosis concept. However, the therapeutic efficacy of ferroptosis induction in heterogeneous and plastic melanoma has been compromised, because the melanocytic and transitory cell subpopulation is resistant to iron-dependent oxidative stress. Here, we report a phenotype-altering liposomal nanomedicine to enable the ferroptosis-resistant subtypes of melanoma cells vulnerable to lipid peroxidation via senescence induction. The strategy involves the ratiometric coencapsulation of a cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor (palbociclib) and a ferroptosis inducer (auranofin) within cRGD peptide-modified targeted liposomes. The two drugs showed a synergistic anticancer effect in the model B16F10 melanoma cells, as evidenced by the combination index analysis (<1). The liposomes could efficiently deliver both drugs into B16F10 cells in a targeted manner. Afterward, the liposomes potently induced the intracellular redox imbalance and lipid peroxidation. Palbociclib significantly provoked cell cycle arrest at the G0/G1 phase, which sensitized auranofin-caused ferroptosis through senescence induction. Meanwhile, palbociclib depleted intracellular glutathione (GSH) and reduced nicotinamide adenine dinucleotide phosphate (NADPH), further boosting ferroptosis. The proof-of-concept was also demonstrated in the B16F10 tumor-bearing mice model. The current work offers a promising ferroptosis-targeting strategy for effectively treating heterogeneous melanoma by manipulating the cellular plasticity.
Collapse
Affiliation(s)
- Lanlan Fan
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Tianjin University, Tianjin 300072, China
| | - Panyu Du
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Tianjin University, Tianjin 300072, China
| | - Yaru Li
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Tianjin University, Tianjin 300072, China
| | - Xuefei Chen
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Tianjin University, Tianjin 300072, China
| | - Fang Liu
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Tianjin University, Tianjin 300072, China
| | - Yuning Liu
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Tianjin University, Tianjin 300072, China
| | - Alexey M Petrov
- Kazan State Medical University, 49 Butlerova Street, Kazan, RT 420012, Russia
| | - Xin Li
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Tianjin University, Tianjin 300072, China
| | - Zheng Wang
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Tianjin University, Tianjin 300072, China
| | - Yanjun Zhao
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Tianjin University, Tianjin 300072, China
| |
Collapse
|
153
|
Hou T, Zhang J, Wang Y, Zhang G, Li S, Fan W, Li R, Sun Q, Liu C. Early Pulmonary Fibrosis-like Changes in the Setting of Heat Exposure: DNA Damage and Cell Senescence. Int J Mol Sci 2024; 25:2992. [PMID: 38474239 DOI: 10.3390/ijms25052992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
It is well known that extreme heat events happen frequently due to climate change. However, studies examining the direct health impacts of increased temperature and heat waves are lacking. Previous reports revealed that heatstroke induced acute lung injury and pulmonary dysfunction. This study aimed to investigate whether heat exposure induced lung fibrosis and to explore the underlying mechanisms. Male C57BL/6 mice were exposed to an ambient temperature of 39.5 ± 0.5 °C until their core temperature reached the maximum or heat exhaustion state. Lung fibrosis was observed in the lungs of heat-exposed mice, with extensive collagen deposition and the elevated expression of fibrosis molecules, including transforming growth factor-β1 (TGF-β1) and Fibronectin (Fn1) (p < 0.05). Moreover, epithelial-mesenchymal transition (EMT) occurred in response to heat exposure, evidenced by E-cadherin, an epithelial marker, which was downregulated, whereas markers of EMT, such as connective tissue growth factor (CTGF) and the zinc finger transcriptional repressor protein Slug, were upregulated in the heat-exposed lung tissues of mice (p < 0.05). Subsequently, cell senescence examination revealed that the levels of both senescence-associated β-galactosidase (SA-β-gal) staining and the cell cycle protein kinase inhibitor p21 were significantly elevated (p < 0.05). Mechanistically, the cGAS-STING signaling pathway evoked by DNA damage was activated in response to heat exposure (p < 0.05). In summary, we reported a new finding that heat exposure contributed to the development of early pulmonary fibrosis-like changes through the DNA damage-activated cGAS-STING pathway followed by cellular senescence.
Collapse
Affiliation(s)
- Tong Hou
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Jiyang Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Yindan Wang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Guoqing Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Sanduo Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Wenjun Fan
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Ran Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Qinghua Sun
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| | - Cuiqing Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou 310053, China
| |
Collapse
|
154
|
Li K, Deng Z, Lei C, Ding X, Li J, Wang C. The Role of Oxidative Stress in Tumorigenesis and Progression. Cells 2024; 13:441. [PMID: 38474405 DOI: 10.3390/cells13050441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Oxidative stress refers to the imbalance between the production of reactive oxygen species (ROS) and the endogenous antioxidant defense system. Its involvement in cell senescence, apoptosis, and series diseases has been demonstrated. Advances in carcinogenic research have revealed oxidative stress as a pivotal pathophysiological pathway in tumorigenesis and to be involved in lung cancer, glioma, hepatocellular carcinoma, leukemia, and so on. This review combs the effects of oxidative stress on tumorigenesis on each phase and cell fate determination, and three features are discussed. Oxidative stress takes part in the processes ranging from tumorigenesis to tumor death via series pathways and processes like mitochondrial stress, endoplasmic reticulum stress, and ferroptosis. It can affect cell fate by engaging in the complex relationships between senescence, death, and cancer. The influence of oxidative stress on tumorigenesis and progression is a multi-stage interlaced process that includes two aspects of promotion and inhibition, with mitochondria as the core of regulation. A deeper and more comprehensive understanding of the effects of oxidative stress on tumorigenesis is conducive to exploring more tumor therapies.
Collapse
Affiliation(s)
- Kexin Li
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Zhangyuzi Deng
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Chunran Lei
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Xiaoqing Ding
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Jing Li
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Changshan Wang
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| |
Collapse
|
155
|
Chen A, Li J, Shen N, Huang H, Hang Q. Vitamin K: New insights related to senescence and cancer metastasis. Biochim Biophys Acta Rev Cancer 2024; 1879:189057. [PMID: 38158025 DOI: 10.1016/j.bbcan.2023.189057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
Several clinical trials and experimental studies have recently shown that vitamin K (VK) supplementation benefits the human body. Specifically, VK participates in coagulation and is associated with cellular senescence and cancer. VK has a potential anticancer effect in various cancers, such as pancreatic and prostate cancers. Through anti-inflammatory and antioxidant effects, VK can prevent senescence and inhibit cancer metastasis. Therefore, cancer prognosis can be improved by preventing cellular senescence. In addition, VK can inhibit the proliferation, growth, and differentiation of cancer cells through various mechanisms, including induction of c-myc and c-fos genes, regulation of B-cell lymphoma-2 (Bcl-2) and p21 genes, and angiogenesis inhibition. This review aims to discuss the relationship among VK, cellular senescence, and cancer metastasis and thus may improve comprehension of the specific functions of VK in human health. The potential application of VK as an adjuvant therapy for cancer (or in combination with traditional chemotherapy drugs or other vitamins) has also been highlighted.
Collapse
Affiliation(s)
- Anqi Chen
- Medical College, Yangzhou University, Yangzhou 225001, China
| | - Jialu Li
- Medical College, Yangzhou University, Yangzhou 225001, China
| | - Nianxuan Shen
- Medical College, Yangzhou University, Yangzhou 225001, China
| | - Haifeng Huang
- Department of Laboratory Medicine, The First People's Hospital of Yancheng, Yancheng 224006, China; Department of Laboratory Medicine, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng 224006, China.
| | - Qinglei Hang
- Department of Laboratory Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225001, China.
| |
Collapse
|
156
|
Chen Z, Zhou J, Wu Y, Chen F, Li J, Tao L, Tian Y, Wang H, Li J, Li Z, He W, Zhang K, Wang H. METTL3 promotes cellular senescence of colorectal cancer via modulation of CDKN2B transcription and mRNA stability. Oncogene 2024; 43:976-991. [PMID: 38361047 DOI: 10.1038/s41388-024-02956-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/17/2024]
Abstract
Cellular senescence plays a critical role in cancer development, but the underlying mechanisms remain poorly understood. Our recent study uncovered that replicative senescent colorectal cancer (CRC) cells exhibit increased levels of mRNA N6-methyladenosine (m6A) and methyltransferase METTL3. Knockdown of METTL3 can restore the senescence-associated secretory phenotype (SASP) of CRC cells. Our findings, which were confirmed by m6A-sequencing and functional studies, demonstrate that the cyclin-dependent kinase inhibitor 2B (CDKN2B, encoding p15INK4B) is a mediator of METTL3-regulated CRC senescence. Specifically, m6A modification at position A413 in the coding sequence (CDS) of CDKN2B positively regulates its mRNA stability by recruiting IGF2BP3 and preventing binding with the CCR4-NOT complex. Moreover, increased METTL3 methylates and stabilizes the mRNA of E2F1, which binds to the -208 to -198 regions of the CDKN2B promoter to facilitate transcription. Inhibition of METTL3 or specifically targeting CDKN2B methylation can suppress CRC senescence. Finally, the METTL3/CDKN2B axis-induced senescence can facilitate M2 macrophage polarization and is correlated with aging and CRC progression. The involvement of METTL3/CDKN2B in cell senescence provides a new potential therapeutic target for CRC treatment and expands our understanding of mRNA methylation's role in cellular senescence.
Collapse
Affiliation(s)
- Zhuojia Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Jiawang Zhou
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - You Wu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Feng Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jianing Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Lijun Tao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yifan Tian
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Haoran Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jiexin Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zigang Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518067, China
| | - Weiling He
- Department of Gastrointestinal Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China.
| | - Kun Zhang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu Seventh People's Hospital, Affiliated Cancer Hospital of Chengdu Medical College, School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, 610500, China.
| | - Hongsheng Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
157
|
Cao T, Huang M, Huang X, Tang T. Research and experimental verification on the mechanisms of cellular senescence in triple-negative breast cancer. PeerJ 2024; 12:e16935. [PMID: 38435998 PMCID: PMC10909353 DOI: 10.7717/peerj.16935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024] Open
Abstract
Background Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with high heterogeneity, poor prognosis, and a low 10-year survival rate of less than 50%. Although cellular senescence displays extensive effects on cancer, the comprehensions of cellular senescence-related characteristics in TNBC patients remains obscure. Method Single-cell RNA sequencing (scRNA-seq) data were analyzed by Seurat package. Scores for cellular senescence-related pathways were computed by single-sample gene set enrichment analysis (ssGSEA). Subsequently, unsupervised consensus clustering was performed for molecular cluster identification. Immune scores of patients in The Cancer Genome Atlas (TCGA) dataset and associated immune cell scores were calculated using Estimation of STromal and Immune cells in MAlignantTumours using Expression data (ESTIMATE) and Microenvironment Cell Populations-counter (MCP-counter), Tumor Immune Estimation Resource (TIMER) and Estimating the Proportion of Immune and Cancer cells (EPIC) methods, respectively. Immunotherapy scores were assessed using TIDE. Furthermore, feature genes were identified by univariate Cox and Least Absolute Shrinkage and Selection Operator (LASSO) regression analyses; these were used to construct a risk model. Additionally, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and transwell assay were conducted for in vitro validation of hub genes. Result TNBC was classified into three subtypes based on cellular senescence-related pathways as clusters 1, 2, and 3. Specifically, cluster 1 showed the best prognosis, followed by cluster 2 and cluster 3. The levels of gene expression in cluster 2 were the lowest, whereas these were the highest in cluster 3. Moreover, clusters 1 and 3 showed a high degree of immune infiltration. TIDE scores were higher for cluster 3, suggesting that immune escape was more likely in patients with the cluster 3 subtype who were less likely to benefit from immunotherapy. Next, the TNBC risk model was constructed and validated. RT-qPCR revealed that prognostic risk genes (MMP28, ACP5 and KRT6A) were up-regulated while protective genes (CT83) were down-regulated in TNBC cell lines, validating the results of the bioinformatics analysis. Meanwhile, cellular experiments revealed that ACP5 could promote the migration and invasion abilities in two TNBC cell lines. Finally, we evaluated the validity of prognostic models for assessing TME characteristics and TNBC chemotherapy response. Conclusion In conclusion, these findings help to assess the efficacy of targeted therapies in patients with different molecular subtypes, have practical applications for subtype-specific treatment of TNBC patients, and provide information on prognostic factors, as well as guidance for the revelation of the molecular mechanisms by which senescence-associated genes influence TNBC progression.
Collapse
Affiliation(s)
- Tengfei Cao
- Department of Breast Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mengjie Huang
- Department of Breast Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinyue Huang
- Department of Breast Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tian Tang
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
158
|
Haibo Z, Tianyun L, Xiaoman C, Xiaoyan H. Cell Senescence-Related Genes as Biomarkers for Prognosis and Immunotherapeutic Response in Colon Cancer. Biochem Genet 2024:10.1007/s10528-024-10690-z. [PMID: 38411939 DOI: 10.1007/s10528-024-10690-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/05/2024] [Indexed: 02/28/2024]
Abstract
Colon adenocarcinoma (COAD) stands out as the most prevalent malignancy diagnosed within the gastrointestinal tract, bearing substantial incidence and mortality rates. The processes of ageing and senescence intricately intertwine with tumorigenesis and immune regulation, concurrently exerting influence on the remodelling of the tumor microenvironment (TME). This phenomenon, in turn, significantly impacts the efficacy of immunotherapeutic interventions. Despite this awareness, the comprehensive understanding of the intricate interplay between cellular senescence and TME in the context of COAD remains elusive. Further inquiry is imperative to comprehensively gauge the relevance of cellular senescence-related genes (CSGs) in the realms of immune infiltration and the prognostication of COAD. Differentially expressed cell senescence-related genes (DE-CSGs) within COAD tumors and normal specimens were discerned through analysis of the TCGA-COAD dataset. Leveraging univariate, LASSO, and multivariate Cox regression analyses, we formulated a prognostic risk signature. Subsequent validation utilised two independent GEO datasets. Furthermore, a nomogram was devised to gauge the prognostic significance of this signature. Additionally, the immune landscape of the Cell Senescence-related Signature (CSS) was characterised using CIBERSORT and TIMER algorithms. The expression levels of CSGs were quantified through RT-PCR in COAD specimens. Drawing upon mRNA expression profiles of 191 DE-CSGs, we successfully established a 9-gene CSS, demonstrating its autonomy as a prognostic determinant for COAD patients. Those assigned high-risk scores exhibited an immunosuppressive phenotype, marked by elevated proportions of resting CD4+memory T cells and macrophages M0, correlating with diminished overall survival. Subsequent analyses uncovered that the amalgamation of CSS with the expression profiles of immune checkpoint key genes effectively predicted patient prognosis. Furthermore, patients with low-risk scores demonstrated a potential association with more favourable therapeutic outcomes in the context of immunotherapy. This study has culminated in the development of a prognostic risk signature grounded in cell senescence-related genes for COAD. We posit that the CSS plays a regulatory role in immune infiltration, emerging as a robust biomarker for prognosis and a predictive indicator for immunotherapeutic responsiveness within the COAD landscape.
Collapse
Affiliation(s)
- Zhang Haibo
- Central Laboratory, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Lan Tianyun
- Central Laboratory, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Chen Xiaoman
- Central Laboratory, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Han Xiaoyan
- Central Laboratory, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| |
Collapse
|
159
|
Hua R, Ma YS, Yang L, Hao JJ, Hua QY, Shi LY, Yao XQ, Zhi HY, Liu Z. Experimental evidence for cancer resistance in a bat species. Nat Commun 2024; 15:1401. [PMID: 38360878 PMCID: PMC10869793 DOI: 10.1038/s41467-024-45767-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 02/02/2024] [Indexed: 02/17/2024] Open
Abstract
Mammals exhibit different rates of cancer, with long-lived species generally showing greater resistance. Although bats have been suggested to be resistant to cancer due to their longevity, this has yet to be systematically examined. Here, we investigate cancer resistance across seven bat species by activating oncogenic genes in their primary cells. Both in vitro and in vivo experiments suggest that Myotis pilosus (MPI) is particularly resistant to cancer. The transcriptomic and functional analyses reveal that the downregulation of three genes (HIF1A, COPS5, and RPS3) largely contributes to cancer resistance in MPI. Further, we identify the loss of a potential enhancer containing the HIF1A binding site upstream of COPS5 in MPI, resulting in the downregulation of COPS5. These findings not only provide direct experimental evidence for cancer resistance in a bat species but also offer insights into the natural mechanisms of cancer resistance in mammals.
Collapse
Affiliation(s)
- Rong Hua
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan-Shuo Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lu Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Jun Hao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Qin-Yang Hua
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lu-Ye Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xiao-Qing Yao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hao-Yu Zhi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- Yunnan Key Laboratory of Biodiversity Information, Kunming, China.
| |
Collapse
|
160
|
Lelarge V, Capelle R, Oger F, Mathieu T, Le Calvé B. Senolytics: from pharmacological inhibitors to immunotherapies, a promising future for patients' treatment. NPJ AGING 2024; 10:12. [PMID: 38321020 PMCID: PMC10847408 DOI: 10.1038/s41514-024-00138-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/17/2024] [Indexed: 02/08/2024]
Abstract
The involvement of cellular senescence in the initiation and propagation of diseases is clearly characterized, making the elimination of senescent cells essential to treat age-related diseases. The development of senolytic drugs demonstrated that targeting these cells limits the deterioration of patients' condition, by inducing apoptosis. Nevertheless, the first generations of senolytics which has been developed displayed their activities through specific mechanisms and demonstrated several limitations during clinical development. However, the rational to eliminate senescent cells remains evident, with the necessity to develop specific therapies in a context of diseases and tissues. The evolutions in the field of drug discovery open the way to a new generation of senolytic therapies, such as immunological approaches (CAR-T cells, Antibody-Drug Conjugated or vaccines), which require preliminary steps of research to identify markers specifically expressed on senescent cells, demonstrating promising specific effects. Currently, the preclinical development of these strategies appears more challenging to avoid strong side effects, but the expected results are commensurate with patients' hopes for treatments. In this review, we highlight the fact that the classical senolytic approach based on drug repurposing display limited efficacy and probably reached its limits in term of clinical development. The recent development of more complex therapies and the extension of interest in the domain of senescence in different fields of research allow to extend the possibility to discover powerful therapies. The future of age-related diseases treatment is linked to the development of new approaches based on cell therapy or immunotherapy to offer the best treatment for patients.
Collapse
Affiliation(s)
- V Lelarge
- StarkAge Therapeutics, Campus de l'Institut Pasteur de Lille, 1 rue du Professeur Calmette, 59800, Lille, France
| | - R Capelle
- StarkAge Therapeutics, Campus de l'Institut Pasteur de Lille, 1 rue du Professeur Calmette, 59800, Lille, France
| | - F Oger
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, 59000, Lille, France
| | - T Mathieu
- StarkAge Therapeutics, Campus de l'Institut Pasteur de Lille, 1 rue du Professeur Calmette, 59800, Lille, France
- Synlab, 60/62 Rue d'Hauteville, 75010, Paris, France
| | - B Le Calvé
- StarkAge Therapeutics, Campus de l'Institut Pasteur de Lille, 1 rue du Professeur Calmette, 59800, Lille, France.
| |
Collapse
|
161
|
Liang R, Qi X, Cai Q, Niu L, Huang X, Zhang D, Ling J, Wu Y, Chen Y, Yang P, Liu J, Zhang J, Yu P. The role of NLRP3 inflammasome in aging and age-related diseases. Immun Ageing 2024; 21:14. [PMID: 38317229 PMCID: PMC10840156 DOI: 10.1186/s12979-023-00395-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/15/2023] [Indexed: 02/07/2024]
Abstract
The gradual aging of the global population has led to a surge in age-related diseases, which seriously threaten human health. Researchers are dedicated to understanding and coping with the complexities of aging, constantly uncovering the substances and mechanism related to aging like chronic low-grade inflammation. The NOD-like receptor protein 3 (NLRP3), a key regulator of the innate immune response, recognizes molecular patterns associated with pathogens and injury, initiating an intrinsic inflammatory immune response. Dysfunctional NLRP3 is linked to the onset of related diseases, particularly in the context of aging. Therefore, a profound comprehension of the regulatory mechanisms of the NLRP3 inflammasome in aging-related diseases holds the potential to enhance treatment strategies for these conditions. In this article, we review the significance of the NLRP3 inflammasome in the initiation and progression of diverse aging-related diseases. Furthermore, we explore preventive and therapeutic strategies for aging and related diseases by manipulating the NLRP3 inflammasome, along with its upstream and downstream mechanisms.
Collapse
Affiliation(s)
- Ruikai Liang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
| | - Xinrui Qi
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
- Queen Mary School, Nanchang University, Nanchang, China
| | - Qi Cai
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
| | - Liyan Niu
- Huan Kui College of Nanchang University, Nanchang, China
| | - Xi Huang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
| | - Yuting Wu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Pingping Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
| | - Jianping Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China.
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China.
| |
Collapse
|
162
|
Chen J, Zhang H, Yi X, Dou Q, Yang X, He Y, Chen J, Chen K. Cellular senescence of renal tubular epithelial cells in acute kidney injury. Cell Death Discov 2024; 10:62. [PMID: 38316761 PMCID: PMC10844256 DOI: 10.1038/s41420-024-01831-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/14/2024] [Accepted: 01/24/2024] [Indexed: 02/07/2024] Open
Abstract
Cellular senescence represents an irreversible state of cell-cycle arrest during which cells secrete senescence-associated secretory phenotypes, including inflammatory factors and chemokines. Additionally, these cells exhibit an apoptotic resistance phenotype. Cellular senescence serves a pivotal role not only in embryonic development, tissue regeneration, and tumor suppression but also in the pathogenesis of age-related degenerative diseases, malignancies, metabolic diseases, and kidney diseases. The senescence of renal tubular epithelial cells (RTEC) constitutes a critical cellular event in the progression of acute kidney injury (AKI). RTEC senescence inhibits renal regeneration and repair processes and, concurrently, promotes the transition of AKI to chronic kidney disease via the senescence-associated secretory phenotype. The mechanisms underlying cellular senescence are multifaceted and include telomere shortening or damage, DNA damage, mitochondrial autophagy deficiency, cellular metabolic disorders, endoplasmic reticulum stress, and epigenetic regulation. Strategies aimed at inhibiting RTEC senescence, targeting the clearance of senescent RTEC, or promoting the apoptosis of senescent RTEC hold promise for enhancing the renal prognosis of AKI. This review primarily focuses on the characteristics and mechanisms of RTEC senescence, and the impact of intervening RTEC senescence on the prognosis of AKI, aiming to provide a foundation for understanding the pathogenesis and providing potentially effective approaches for AKI treatment.
Collapse
Affiliation(s)
- Juan Chen
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Huhai Zhang
- Department of Nephrology, Southwest Hospital, Army Medical University, 400042, Chongqing, China
| | - Xiangling Yi
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Qian Dou
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Xin Yang
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Yani He
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Jia Chen
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China.
| | - Kehong Chen
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China.
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China.
| |
Collapse
|
163
|
Zuzarte M, Sousa C, Alves-Silva J, Salgueiro L. Plant Monoterpenes and Essential Oils as Potential Anti-Ageing Agents: Insights from Preclinical Data. Biomedicines 2024; 12:365. [PMID: 38397967 PMCID: PMC10886757 DOI: 10.3390/biomedicines12020365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Ageing is a natural process characterized by a time-dependent decline of physiological integrity that compromises functionality and inevitably leads to death. This decline is also quite relevant in major human pathologies, being a primary risk factor in neurodegenerative diseases, metabolic disorders, cardiovascular diseases and musculoskeletal disorders. Bearing this in mind, it is not surprising that research aiming at improving human health during this process has burst in the last decades. Importantly, major hallmarks of the ageing process and phenotype have been identified, this knowledge being quite relevant for future studies towards the identification of putative pharmaceutical targets, enabling the development of preventive/therapeutic strategies to improve health and longevity. In this context, aromatic plants have emerged as a source of potential bioactive volatile molecules, mainly monoterpenes, with many studies referring to their anti-ageing potential. Nevertheless, an integrated review on the current knowledge is lacking, with several research approaches studying isolated ageing hallmarks or referring to an overall anti-ageing effect, without depicting possible mechanisms of action. Herein, we aim to provide an updated systematization of the bioactive potential of volatile monoterpenes on recently proposed ageing hallmarks, and highlight the main mechanisms of action already identified, as well as possible chemical entity-activity relations. By gathering and categorizing the available scattered information, we also aim to identify important research gaps that could help pave the way for future research in the field.
Collapse
Affiliation(s)
- Mónica Zuzarte
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.A.-S.); (L.S.)
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Cátia Sousa
- iNOVA4HEALTH, NOVA Medical School, Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, 1159-056 Lisboa, Portugal;
- Centro Clínico e Académico de Lisboa, 1156-056 Lisboa, Portugal
| | - Jorge Alves-Silva
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.A.-S.); (L.S.)
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Lígia Salgueiro
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.A.-S.); (L.S.)
- Univ Coimbra, Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| |
Collapse
|
164
|
Zhang K, Feng S, Wang Y, Feng W, Shen Y. Significant Prognostic Factor at Age Cut-off of 73 Years for Advanced Ovarian Serous Cystadenocarcinoma Patients: Insights from Real-World Study. Int J Womens Health 2024; 16:203-218. [PMID: 38332982 PMCID: PMC10849902 DOI: 10.2147/ijwh.s439335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Objective The objective of this research was to determine the age cut-off for worse prognosis and investigate age-related differentially expressed genes (DEGs) in patients with advanced ovarian serous cystadenocarcinoma (AOSC). Methods In this research, we included a cohort of 20,846 patients diagnosed with AOSC, along with RNA-seq data from 374 patients in publicly available databases. Then we used the X-tile software to determine the age cut-off and stratified the patients into young and old groups. We utilized propensity score matching (PSM) to balance baseline between the young and old groups. Furthermore, we conducted an enrichment analysis of DEGs between the two age groups using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and gene ontology (GO) to identify dysregulated pathways. To evaluate the potential prognostic value of the DEGs, we performed survival analysis, such as Kaplan-Meier analysis and Log rank test. Results We stratified the patients into young group (n=16,336) and old group (n=4510) based on the cut-off age of 73 years by X-tile software. Age over 73 years was identified as an independent risk factor for overall survival (OS) and cancer-specific survival (CSS). Next, we identified 436 DEGs and found that the neurotrophin signaling pathway and translation factor activity were associated with prognosis outcomes. Among the top 10 hub genes (RELA, NFKBIA, TRAF6, IRAK2, TAB3, AKT1, TBP, EIF2S2, MAPK10, and SUPT3H), RELA, TAB3, AKT1, TBP, and SUPT3H were found to be significantly associated with poor prognosis in old patients with AOSC. Conclusion Our study determined 73 years as the cutoff value for age in patients with AOSC. RELA, TAB3, AKT1, TBP, and SUPT3H were identified as age-related DEGs that could contribute to the poor prognosis of older patients with AOSC.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Songwei Feng
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Yan Wang
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Wen Feng
- Department of Gynecology, The First People’s Hospital of Lianyungang, Lianyungang, 222000, People’s Republic of China
| | - Yang Shen
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
- Institute of Sports and Health, Nanjing, People’s Republic of China
| |
Collapse
|
165
|
Chen L, Lin J, Wen Y, Lan B, Xiong J, Fu Y, Chen Y, Chen CB. A senescence-related lncRNA signature predicts prognosis and reflects immune landscape in HNSCC. Oral Oncol 2024; 149:106659. [PMID: 38134702 DOI: 10.1016/j.oraloncology.2023.106659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
OBJECTIVE Long noncoding RNAs (lncRNAs) regulate cancer cell senescence in many cancers. However, their specific involvement in head and neck squamous cell carcinoma (HNSCC) remains unclear. We are looking for an ingenious prognostic signature that utilizes senescence-related lncRNAs (SRlncRNAs) to predict prognosis and provide insights into the immune landscape in HNSCC. MATERIALS AND METHODS HNSCC clinical and Cellular senescence genes information were collected from The Cancer Genome Atlas and Human Aging Genomic Resources. Then we performed Cox and Lasso regression to locate SRlncRNAs related to the prognosis of HNSCC and built a predictive signature. Further, prognosis assessment, potential mechanisms, and immune status were assessed by Kaplan-Meier analysis, Gene Set Enrichment Analysis (GSEA), and CIBERSORT, respectively. RESULTS A prognosis prediction model based on sixteen SRlncRNAs was identified and internally validated. Then, patients with high-risk scores suffered an unfavorable overall survival (All p < 0.05). The risk score, age, and stage were independent prognostic parameters (all p < 0.001). Our model has good predictive ability (The AUC (area under the curves) 1-year = 0.707, AUC3-year = 0.748 and AUC5-year = 0.779). Subsequently, GESA revealed SRlncRNAs regulated immune responses. Patients in the high-risk group had higher tumor mutation burden and Tumor Immune Dysfunction and Exclusion but lower levels of 37 immune checkpoint genes, immune scores, and immune cells like CD8 + T cells, follicular helper T cells, and regulatory T cells. CONCLUSIONS A prognostic model based on SRlncRNAs is the potential target for improving immunotherapy outcomes for HNSCC.
Collapse
Affiliation(s)
- Lizhu Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China; Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, China; Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Jing Lin
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China; Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, China; Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yaoming Wen
- Fujian Institute of Microbiology, Fuzhou, Fujian Province, China
| | - Bin Lan
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, China; Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Jiani Xiong
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China; Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, China; Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yajuan Fu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province, China
| | - Yu Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China; Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, China; Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China.
| | - Chuan-Ben Chen
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, China; Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China; Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
| |
Collapse
|
166
|
Wu Q, Chen Q, Xu D, Wang X, Ye H, Li X, Xiong Y, Li J, Zhou S, Miao J, Shen W, Liu Y, Niu H, Tang Y, Zhou L. C-X-C chemokine receptor type 4 promotes tubular cell senescence and renal fibrosis through β-catenin-inhibited fatty acid oxidation. J Cell Mol Med 2024; 28:e18075. [PMID: 38213100 PMCID: PMC10844696 DOI: 10.1111/jcmm.18075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/01/2023] [Accepted: 11/24/2023] [Indexed: 01/13/2024] Open
Abstract
The prevalence of chronic kidney disease (CKD) is highly increasing. Renal fibrosis is a common pathological feature in various CKD. Previous studies showed tubular cell senescence is highly involved in the pathogenesis of renal fibrosis. However, the inducers of tubular senescence and the underlying mechanisms have not been fully investigated. C-X-C motif chemokine receptor 4 (CXCR4), a G-protein-coupled seven-span transmembrane receptor, increases renal fibrosis and plays an important role in tubular cell injury. Whereas, whether CXCR4 could induce tubular cell senescence and the detailed mechanisms have not studied yet. In this study, we adopted adriamycin nephropathy and 5/6 nephrectomy models, and cultured tubular cell line. Overexpression or knockdown of CXCR4 was obtained by injection of related plasmids. We identified CXCR4 increased in injury tubular cells. CXCR4 was expressed predominantly in renal tubular epithelial cells and co-localized with adipose differentiation-related protein (ADRP) as well as the senescence-related protein P16INK4A . Furthermore, we found overexpression of CXCR4 greatly induced the activation of β-catenin, while knockdown of CXCR4 inhibited it. We also found that CXCR4 inhibited fatty acid oxidation and triggered lipid deposition in tubular cells. To inhibit β-catenin by ICG-001, an inhibitor of β-catenin, could significantly block CXCR4-suppressed fatty acid oxidation. Taken together, our results indicate that CXCR4 is a key mediator in tubular cell senescence and renal fibrosis. CXCR4 promotes tubular cell senescence and renal fibrosis by inducing β-catenin and inhibiting fatty acid metabolism. Our findings provide a new theory for tubular cell injury in renal fibrosis.
Collapse
Affiliation(s)
- Qinyu Wu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Department of NephrologyThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | - Qiurong Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Dan Xu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xiaoxu Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Huiyun Ye
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xiaolong Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yabing Xiong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jiemei Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Shan Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jinhua Miao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Weiwei Shen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Hongxin Niu
- Special Medical Service Center, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ying Tang
- Department of NephrologyThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
167
|
Yao J, Liang X, Xu S, Liu Y, Shui L, Li S, Guo H, Xiao Z, Zhao Y, Zheng M. TRAF2 inhibits senescence in hepatocellular carcinoma cells via regulating the ROMO1/ NAD +/SIRT3/SOD2 axis. Free Radic Biol Med 2024; 211:47-62. [PMID: 38043870 DOI: 10.1016/j.freeradbiomed.2023.11.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
The suppression of tumor proliferation via cellular senescence has emerged as a promising approach for anti-tumor therapy. Tumor necrosis factor receptor-associated factor 2 (TRAF2), an adaptor protein involved in the NF-κB signaling pathway and reactive oxygen species (ROS) production, has been implicated in hepatocellular carcinoma (HCC) proliferation. However, little is currently known about whether TRAF2 promotes HCC development by inhibiting cellular senescence. Replicative senescence model and IR-induced mouse model demonstrated that TRAF2 expression was decrease in senescence cells or liver tissues. Depletion of TRAF2 could inhibit proliferation and arrest the cell cycle via activating p53/p21WAF1 and p16INK4a/pRb signaling pathways in HCC cells and eventually lead to cellular senescence. Mechanistically, TRAF2 deficiency increased the expression of mitochondrial protein reactive oxygen species modulator 1 (ROMO1) and subsequently activated the NAD+/SIRT3/SOD2 pathway to promote the production of ROS and cause mitochondrial dysfunction, which eventually contributed to DNA damage response (DDR). Our findings demonstrate that TRAF2 deficiency inhibits the proliferation of HCC by promoting senescence. Therefore, targeting TRAF2 through various approaches holds therapeutic potential for treating HCC.
Collapse
Affiliation(s)
- Jiping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China; Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Xue Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China; Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siduo Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Yanning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Liyan Shui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Shuangshuang Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Huiting Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Zhengyun Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Yongchao Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China; Cancer Center, Zhejiang University, Hangzhou, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China.
| |
Collapse
|
168
|
Fan Z, Tong Y, Yang Z, Wang S, Huang T, Yang D, Ni Q, Zhang M, Li D, Yang M, Fan X. Inhibitor PF-04691502 works as a senolytic to regulate cellular senescence. Exp Gerontol 2024; 186:112359. [PMID: 38184267 DOI: 10.1016/j.exger.2024.112359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Aging is a gradual process of natural change that occurs after reaching sexual maturity. It is also a known risk factor for many chronic diseases. Recent research has shown that senolytics can extend the lifespans and health spans of model organisms, and they have also been demonstrated effective in treating age-related diseases. In this study, we conducted a high-throughput screening of 156 drugs that targeted the PI3K/AKT/mTOR pathway to identify potential senolytic medications. Among these drugs, PF-04691502 was selected for further investigation to understand its molecular mechanism of action. Our findings indicate that PF-04691502, a dual inhibitor of PI3K/AKT and mTOR, specifically eliminates senescent cells. It reduces the expression levels of key markers of cellular senescence, such as SA-β-Gal, senescence-associated secretory phenotypes (SASPs) and p16INK4a. Additionally, PF-04691502 inhibits the phosphorylation of S6K and AKT, leading to the apoptosis of senescent cells. These results suggest that PF-04691502 holds promise as a new senolytic drug. This paper provides important insights into the potential application of PF-04691502 in the study of cell senescence.
Collapse
Affiliation(s)
- Ziqiang Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yingdong Tong
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Ziyue Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Shuai Wang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Tiantian Huang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Deying Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qingyong Ni
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingwang Zhang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Diyan Li
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 610106 Chengdu, China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China.
| | - Xiaolan Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
169
|
Bao Q, Yu X, Qi X. Integrated analysis of single-cell sequencing and weighted co-expression network identifies a novel signature based on cellular senescence-related genes to predict prognosis in glioblastoma. ENVIRONMENTAL TOXICOLOGY 2024; 39:643-656. [PMID: 37565732 DOI: 10.1002/tox.23921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Glioblastoma (GBM) is a highly aggressive cancer with heavy mortality rates and poor prognosis. Cellular senescence exerts a pivotal influence on the development and progression of various cancers. However, the underlying effect of cellular senescence on the outcomes of patients with GBM remains to be elucidated. METHODS Transcriptome RNA sequencing data with clinical information and single-cell sequencing data of GBM cases were obtained from CGGA, TCGA, and GEO (GSE84465) databases respectively. Single-sample gene set enrichment analysis (ssGSEA) analysis was utilized to calculate the cellular senescence score. WGCNA analysis was employed to ascertain the key gene modules and identify differentially expressed genes (DEGs) associated with the cellular senescence score in GBM. The prognostic senescence-related risk model was developed by least absolute shrinkage and selection operator (LASSO) regression analyses. The immune infiltration level was calculated by microenvironment cell populations counter (MCPcounter), ssGSEA, and xCell algorithms. Potential anti-cancer small molecular compounds of GBM were estimated by "oncoPredict" R package. RESULTS A total of 150 DEGs were selected from the pink module through WGCNA analysis. The risk-scoring model was constructed based on 5 cell senescence-associated genes (CCDC151, DRC1, C2orf73, CCDC13, and WDR63). Patients in low-risk group had a better prognostic value compared to those in high-risk group. The nomogram exhibited excellent predictive performance in assessing the survival outcomes of patients with GBM. Top 30 potential anti-cancer small molecular compounds with higher drug sensitivity scores were predicted. CONCLUSION Cellular senescence-related genes and clusters in GBM have the potential to provide valuable insights in prognosis and guide clinical decisions.
Collapse
Affiliation(s)
- Qingquan Bao
- Department of Neurosurgery, Shaoxing People's Hospital, Shaoxing, China
| | - Xuebin Yu
- Department of Neurosurgery, Shaoxing People's Hospital, Shaoxing, China
| | - Xuchen Qi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
170
|
Punzon-Jimenez P, Machado-Lopez A, Perez-Moraga R, Llera-Oyola J, Grases D, Galvez-Viedma M, Sibai M, Satorres-Perez E, Lopez-Agullo S, Badenes R, Ferrer-Gomez C, Porta-Pardo E, Roson B, Simon C, Mas A. Effect of aging on the human myometrium at single-cell resolution. Nat Commun 2024; 15:945. [PMID: 38296945 PMCID: PMC10830479 DOI: 10.1038/s41467-024-45143-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024] Open
Abstract
Age-associated myometrial dysfunction can prompt complications during pregnancy and labor, which is one of the factors contributing to the 7.8-fold increase in maternal mortality in women over 40. Using single-cell/single-nucleus RNA sequencing and spatial transcriptomics, we have constructed a cellular atlas of the aging myometrium from 186,120 cells across twenty perimenopausal and postmenopausal women. We identify 23 myometrial cell subpopulations, including contractile and venous capillary cells as well as immune-modulated fibroblasts. Myometrial aging leads to fewer contractile capillary cells, a reduced level of ion channel expression in smooth muscle cells, and impaired gene expression in endothelial, smooth muscle, fibroblast, perivascular, and immune cells. We observe altered myometrial cell-to-cell communication as an aging hallmark, which associated with the loss of 25 signaling pathways, including those related to angiogenesis, tissue repair, contractility, immunity, and nervous system regulation. These insights may contribute to a better understanding of the complications faced by older individuals during pregnancy and labor.
Collapse
Affiliation(s)
- Paula Punzon-Jimenez
- Carlos Simon Foundation, Valencia, Spain
- Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
| | - Alba Machado-Lopez
- Carlos Simon Foundation, Valencia, Spain
- Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
| | - Raul Perez-Moraga
- Carlos Simon Foundation, Valencia, Spain
- R&D Department, Igenomix, Valencia, Spain
| | | | - Daniela Grases
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | | | - Mustafa Sibai
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | | | | | - Rafael Badenes
- Department of Surgery, University of Valencia, Valencia, Spain
- Hospital Clinico Universitario, Valencia, Spain
| | | | | | - Beatriz Roson
- Carlos Simon Foundation, Valencia, Spain
- Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
| | - Carlos Simon
- Carlos Simon Foundation, Valencia, Spain.
- Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain.
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain.
- Department of Obstetrics and Gynecology, BIDMC, Harvard University, Boston, MA, USA.
| | - Aymara Mas
- Carlos Simon Foundation, Valencia, Spain.
- Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain.
| |
Collapse
|
171
|
Wang S, Xing Y, Wang R, Jin Z. Jianpi Huayu Decoction suppresses cellular senescence in colorectal cancer via p53-p21-Rb pathway: Network pharmacology and in vivo validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117347. [PMID: 37931831 DOI: 10.1016/j.jep.2023.117347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jianpi Huayu Decoction (JHD) is an herbal prescription in traditional Chinese medicine based on Sijunzi Decoction to treat patients with colorectal cancer (CRC). Its effects on the inhibition of CRC cell proliferation and tumor growth are promising; however, its multicomponent nature makes a complete understanding of its mechanism challenging. AIM OF THE STUDY To explore the therapeutic targets and underlying molecular pathways of JHD in CRC treatment using network pharmacology techniques and in vivo validation. MATERIALS AND METHODS The active ingredients and targets of JHD were identified, compound-target interactions were mapped, and enrichment analyses were conducted. We identified the hub targets of JHD-induced cellular senescence in CRC. The binding affinities between compounds and targets were evaluated through molecular docking. Subsequently, we conducted bioinformatic analyses to compare the expression of hub targets between colorectal tissue and normal tissue. Finally, in vivo experiments were carried out utilizing a xenograft model to assess the effects of JHD on cellular senescence biomarkers. RESULTS Network pharmacology revealed 129 active ingredients in JHD that were associated with 678 targets, leading to the construction of compound-target and target-pathway networks. Enrichment analyses highlighted key pathways including cellular senescence. Based on this, hub targets associated with cellular senescence were determined and validated. Molecular docking indicated favorable interactions between the active components and hub targets. Gene expression and survival analysis in CRC tissue were consistent with the potential roles of hub genes. Animal experiments showed that JHD triggered cellular senescence and suppressed the growth of CRC by regulating the p53-p21-Rb signaling pathway. CONCLUSIONS This research adopted network pharmacology, bioinformatics, and animal experiments to unveil that JHD induces cellular senescence in CRC by influencing the p53-p21-Rb pathway and senescence-associated secretory phenotypes, highlighting its potential as a CRC treatment.
Collapse
Affiliation(s)
- Shiting Wang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Xing
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruiping Wang
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhichao Jin
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
172
|
Leitão L, Campos Y, Louro H, Figueira ACC, Figueiredo T, Pereira A, Conceição A, Marinho DA, Neiva HP. Detraining and Retraining Effects from a Multicomponent Training Program on the Functional Capacity and Health Profile of Physically Active Prehypertensive Older Women. Healthcare (Basel) 2024; 12:271. [PMID: 38275551 PMCID: PMC10815818 DOI: 10.3390/healthcare12020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Resuming a physical exercise program after a period of cessation is common in older women. Monitoring the responses during this detraining (DT) and retraining (RT) may allow us to analyze how the body reacts to an increase and a reduction in physical inactivity. Therefore, we conducted a follow-up training, DT, and RT in prehypertensive older women to analyze the response to these periods. METHODS Twenty-three prehypertensive older women (EG; 68.3 ± 2.8 years; 1.61 ± 0.44 m) performed 36 weeks of the multicomponent training program (MTP) followed by twelve weeks of DT plus eight weeks of RT. Fifteen prehypertensive older women (CG; 66.3 ± 3.2 years; 1.59 ± 0.37 m) maintained their normal routine. Functional capacity (FC), lipid, and hemodynamic profile were assessed before, during 24 and 36 weeks of the MTP, after 4 and 12 weeks of DT, and after 8 weeks of RT. RESULTS After 24 weeks of the MTP, only SBP did not improve. Four weeks of DT did not affect lower body strength (30-CS), TC, or GL. Eight weeks of RT improved BP (SBP: -2.52%; ES: 0.36; p < 0.00; DBP: -1.45%; ES: 0.44; p < 0.02), handgrip strength (3.77%; ES: 0.51; p < 0.00), and 30-CS (3.17%; ES: 0.38; p < 0.04) compared with 36 weeks of the MTP. CONCLUSIONS Eight weeks of RT allowed patients to recover the benefits lost with detraining, which after only four weeks affected them negatively, and the systematic practice of exercise contributed to greater regulation of BP since 24 weeks of the MTP proved not to be enough to promote positive effects of SBP.
Collapse
Affiliation(s)
- Luís Leitão
- Sciences and Technology Department, Superior School of Education of Polytechnic Institute of Setubal, 2910-761 Setúbal, Portugal; (A.C.C.F.); (T.F.); (A.P.)
- Life Quality Research Centre, 2040-413 Rio Maior, Portugal
- Department of Sport Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal; (D.A.M.); (H.P.N.)
| | - Yuri Campos
- Post Graduate Program in Physical Education, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil;
- Study Group and Research in Neuromuscular Responses, Federal University of Lavras, Lavras 37200-900, Brazil
| | - Hugo Louro
- Department of Sport Sciences, Sport Sciences School of Rio Maior, Polytechnic Institute of Santarém, 2040-413 Santarém, Portugal; (H.L.); (A.C.)
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), 6201-001 Covilhã, Portugal
| | - Ana Cristina Corrêa Figueira
- Sciences and Technology Department, Superior School of Education of Polytechnic Institute of Setubal, 2910-761 Setúbal, Portugal; (A.C.C.F.); (T.F.); (A.P.)
- Life Quality Research Centre, 2040-413 Rio Maior, Portugal
| | - Teresa Figueiredo
- Sciences and Technology Department, Superior School of Education of Polytechnic Institute of Setubal, 2910-761 Setúbal, Portugal; (A.C.C.F.); (T.F.); (A.P.)
- Life Quality Research Centre, 2040-413 Rio Maior, Portugal
| | - Ana Pereira
- Sciences and Technology Department, Superior School of Education of Polytechnic Institute of Setubal, 2910-761 Setúbal, Portugal; (A.C.C.F.); (T.F.); (A.P.)
- Life Quality Research Centre, 2040-413 Rio Maior, Portugal
| | - Ana Conceição
- Department of Sport Sciences, Sport Sciences School of Rio Maior, Polytechnic Institute of Santarém, 2040-413 Santarém, Portugal; (H.L.); (A.C.)
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), 6201-001 Covilhã, Portugal
| | - Daniel A. Marinho
- Department of Sport Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal; (D.A.M.); (H.P.N.)
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), 6201-001 Covilhã, Portugal
| | - Henrique P. Neiva
- Department of Sport Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal; (D.A.M.); (H.P.N.)
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), 6201-001 Covilhã, Portugal
| |
Collapse
|
173
|
Luo L, An X, Xiao Y, Sun X, Li S, Wang Y, Sun W, Yu D. Mitochondrial-related microRNAs and their roles in cellular senescence. Front Physiol 2024; 14:1279548. [PMID: 38250662 PMCID: PMC10796628 DOI: 10.3389/fphys.2023.1279548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Aging is a natural aspect of mammalian life. Although cellular mortality is inevitable, various diseases can hasten the aging process, resulting in abnormal or premature senescence. As cells age, they experience distinctive morphological and biochemical shifts, compromising their functions. Research has illuminated that cellular senescence coincides with significant alterations in the microRNA (miRNA) expression profile. Notably, a subset of aging-associated miRNAs, originally encoded by nuclear DNA, relocate to mitochondria, manifesting a mitochondria-specific presence. Additionally, mitochondria themselves house miRNAs encoded by mitochondrial DNA (mtDNA). These mitochondria-residing miRNAs, collectively referred to as mitochondrial miRNAs (mitomiRs), have been shown to influence mtDNA transcription and protein synthesis, thereby impacting mitochondrial functionality and cellular behavior. Recent studies suggest that mitomiRs serve as critical sensors for cellular senescence, exerting control over mitochondrial homeostasis and influencing metabolic reprogramming, redox equilibrium, apoptosis, mitophagy, and calcium homeostasis-all processes intimately connected to senescence. This review synthesizes current findings on mitomiRs, their mitochondrial targets, and functions, while also exploring their involvement in cellular aging. Our goal is to shed light on the potential molecular mechanisms by which mitomiRs contribute to the aging process.
Collapse
Affiliation(s)
- Ling Luo
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xingna An
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yinghui Xiao
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiguang Sun
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Sijie Li
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yingzhao Wang
- Department of Neurology, Qianwei Hospital of Jilin Province, Changchun, Jilin, China
| | - Weixia Sun
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dehai Yu
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
174
|
He L, Li M, Wang X, Wu X, Yue G, Wang T, Zhou Y, Lei B, Zhou G. Morphology-based deep learning enables accurate detection of senescence in mesenchymal stem cell cultures. BMC Biol 2024; 22:1. [PMID: 38167069 PMCID: PMC10762950 DOI: 10.1186/s12915-023-01780-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Cell senescence is a sign of aging and plays a significant role in the pathogenesis of age-related disorders. For cell therapy, senescence may compromise the quality and efficacy of cells, posing potential safety risks. Mesenchymal stem cells (MSCs) are currently undergoing extensive research for cell therapy, thus necessitating the development of effective methods to evaluate senescence. Senescent MSCs exhibit distinctive morphology that can be used for detection. However, morphological assessment during MSC production is often subjective and uncertain. New tools are required for the reliable evaluation of senescent single cells on a large scale in live imaging of MSCs. RESULTS We have developed a successful morphology-based Cascade region-based convolution neural network (Cascade R-CNN) system for detecting senescent MSCs, which can automatically locate single cells of different sizes and shapes in multicellular images and assess their senescence state. Additionally, we tested the applicability of the Cascade R-CNN system for MSC senescence and examined the correlation between morphological changes with other senescence indicators. CONCLUSIONS This deep learning has been applied for the first time to detect senescent MSCs, showing promising performance in both chronic and acute MSC senescence. The system can be a labor-saving and cost-effective option for screening MSC culture conditions and anti-aging drugs, as well as providing a powerful tool for non-invasive and real-time morphological image analysis integrated into cell production.
Collapse
Affiliation(s)
- Liangge He
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, 1066 Xueyuan Avenue, Shenzhen, 518060, China
- Department of Medical Cell Biology and Genetics, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic Diseases, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Mingzhu Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, 1066 Xueyuan Avenue, Shenzhen, 518060, China
| | - Xinglie Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, 1066 Xueyuan Avenue, Shenzhen, 518060, China
| | - Xiaoyan Wu
- Department of Dermatology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Guanghui Yue
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, 1066 Xueyuan Avenue, Shenzhen, 518060, China
| | - Tianfu Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, 1066 Xueyuan Avenue, Shenzhen, 518060, China
| | - Yan Zhou
- Department of Medical Cell Biology and Genetics, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic Diseases, Shenzhen University Medical School, Shenzhen, 518060, China
- Lungene Biotech Ltd., Shenzhen, 18000, China
| | - Baiying Lei
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, 1066 Xueyuan Avenue, Shenzhen, 518060, China.
| | - Guangqian Zhou
- Department of Medical Cell Biology and Genetics, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopedic Diseases, Shenzhen University Medical School, Shenzhen, 518060, China.
| |
Collapse
|
175
|
Kureel SK, Blair B, Sheetz MP. Recent Advancement in Elimination Strategies and Potential Rejuvenation Targets of Senescence. Adv Biol (Weinh) 2024; 8:e2300461. [PMID: 37857532 DOI: 10.1002/adbi.202300461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Indexed: 10/21/2023]
Abstract
Cellular senescence is a state of exiting the cell cycle, resisting apoptosis, and changing phenotype. Senescent cells (SCs) can be identified by large, distorted morphology and irreversible inability to replicate. In early development, senescence has beneficial roles like tissue patterning and wound healing, where SCs are cleared by the immune system. However, there is a steep rise in SC number as organisms age. The issue with SC accumulation stems from the loss of cellular function, alterations of the microenvironment, and secretions of pro-inflammatory molecules, consisting of cytokines, chemokines, matrix metalloproteinases (MMPs), interleukins, and extracellular matrix (ECM)-associated molecules. This secreted cocktail is referred to as the senescence-associated secretory phenotype (SASP), a hallmark of cellular senescence. The SASP promotes inflammation and displays a bystander effect where paracrine signaling turns proliferating cells into senescent states. To alleviate age-associated diseases, researchers have developed novel methods and techniques to selectively eliminate SCs in aged individuals. Although studies demonstrated that selectively killing SCs improves age-related disorders, there are drawbacks to SC removal. Considering favorable aspects of senescence in the body, this paper reviews recent advancements in elimination strategies and potential rejuvenation targets of senescence to bring researchers in the field up to date.
Collapse
Affiliation(s)
- Sanjay Kumar Kureel
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Brandon Blair
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Michael P Sheetz
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| |
Collapse
|
176
|
Barbero Mazzucca C, Cappellano G, Chiocchetti A. Nutrition, Immunity and Aging: Current Scenario and Future Perspectives in Neurodegenerative Diseases. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:573-587. [PMID: 37138438 DOI: 10.2174/1871527322666230502123255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/17/2023] [Accepted: 02/14/2023] [Indexed: 05/05/2023]
Abstract
Aging is a gradual decline of physiological function and tissue homeostasis and, in many instances, is related to increased (neuro)-degeneration, together with inflammation, becoming one of the most important risks for developing neurodegenerative diseases. Certain individual nutrients or foods in combination may counteract aging and associated neurodegenerative diseases by promoting a balance between the pro- and anti-inflammatory responses. Thus, nutrition could represent a powerful modulator of this fine balance, other than a modifiable risk factor to contrast inflammaging. This narrative review explores from a broad perspective the impact of nutrition on the hallmarks of aging and inflammation in Alzheimer's disease (AD), Parkinson's disease (PD) and Amyotrophic Lateral Sclerosis Syndrome (ALS), starting from nutrients up to single foods and complex dietary patterns.
Collapse
Affiliation(s)
- Camilla Barbero Mazzucca
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, Novara, Italy
| | - Giuseppe Cappellano
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, Novara, Italy
| | - Annalisa Chiocchetti
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
177
|
Gonzalez-Meljem JM, Martinez-Barbera JP. Implications of cellular senescence in paediatric pituitary tumours. EBioMedicine 2024; 99:104905. [PMID: 38043401 PMCID: PMC10730348 DOI: 10.1016/j.ebiom.2023.104905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023] Open
Abstract
The long-standing view of senescent cells as passive and dysfunctional biological remnants has recently shifted into a new paradigm where they are main players in the development of many diseases, including cancer. The senescence programme represents a first line of defence that prevents tumour cell growth but also leads to the secretion of multiple pro-inflammatory and pro-tumourigenic factors that fuel tumour initiation, growth, and progression. Here, we review the main molecular features and biological functions of senescent cells in cancer, including the outcomes of inducing or targeting senescence. We discuss evidence on the role of cellular senescence in pituitary tumours, with an emphasis on adamantinomatous craniopharyngioma (ACP) and pituitary adenomas. Although senescence has been proposed to be a tumour-preventing mechanism in pituitary adenomas, research in ACP has shown that senescent cells are tumour-promoting in both murine models and human tumours. Future studies characterizing the impact of targeting senescent cells may result in novel therapies against pituitary tumours.
Collapse
Affiliation(s)
| | - Juan Pedro Martinez-Barbera
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Institute of Child Health, London, UK.
| |
Collapse
|
178
|
Chen X, Walton K, Brodaty H, Chalton K. Polyphenols and Diets as Current and Potential Nutrition Senotherapeutics in Alzheimer's Disease: Findings from Clinical Trials. J Alzheimers Dis 2024; 101:S479-S501. [PMID: 38875032 DOI: 10.3233/jad-231222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Cellular senescence, a hallmark of aging, plays an important role in age-related conditions among older adults. Targeting senescent cells and its phenotype may provide a promising strategy to delay the onset or progression of Alzheimer's disease (AD). In this review article, we investigated efficacy and safety of nutrition senotherapy in AD, with a focus on the role of polyphenols as current and potential nutrition senotherapeutic agents, as well as relevant dietary patterns. Promising results with neuroprotective effects of senotherapeutic agents such as quercetin, resveratrol, Epigallocatechin-gallate, curcumin and fisetin were reported from preclinical studies. However, in-human trials remain limited, and findings were inconclusive. In future, nutrition senotherapeutic agents should be studied both individually and within dietary patterns, through the perspective of cellular senescence and AD. Further studies are warranted to investigate bioavailability, dosing regimen, long term effects of nutrition senotherapy and provide better understanding of the underlying mechanisms. Collaboration between researchers needs to be established, and methodological limitations of current studies should be addressed.
Collapse
Affiliation(s)
- Xi Chen
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Kensington, NSW, Australia
| | - Karen Walton
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Henry Brodaty
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Kensington, NSW, Australia
| | - Karen Chalton
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
179
|
Rasouli M, Naeimzadeh Y, Hashemi N, Hosseinzadeh S. Age-Related Alterations in Mesenchymal Stem Cell Function: Understanding Mechanisms and Seeking Opportunities to Bypass the Cellular Aging. Curr Stem Cell Res Ther 2024; 19:15-32. [PMID: 36642876 DOI: 10.2174/1574888x18666230113144016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/28/2022] [Accepted: 11/23/2022] [Indexed: 01/17/2023]
Abstract
Undoubtedly, mesenchymal stem cells (MSCs) are the most common cell therapy candidates in clinical research and therapy. They not only exert considerable therapeutic effects to alleviate inflammation and promote regeneration, but also show low-immunogenicity properties, which ensure their safety following allogeneic transplantation. Thanks to the necessity of providing a sufficient number of MSCs to achieve clinically efficient outcomes, prolonged in vitro cultivation is indisputable. However, either following long-term in vitro expansion or aging in elderly individuals, MSCs face cellular senescence. Senescent MSCs undergo an impairment in their function and therapeutic capacities and secrete degenerative factors which negatively affect young MSCs. To this end, designing novel investigations to further elucidate cellular senescence and to pave the way toward finding new strategies to reverse senescence is highly demanded. In this review, we will concisely discuss current progress on the detailed mechanisms of MSC senescence and various inflicted changes following aging in MSC. We will also shed light on the examined strategies underlying monitoring and reversing senescence in MSCs to bypass the comprised therapeutic efficacy of the senescent MSCs.
Collapse
Affiliation(s)
- Mehdi Rasouli
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Hashemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
180
|
Sun F, Sutovsky P, Patterson AL, Balboula AZ. Mechanisms of DNA Damage Response in Mammalian Oocytes. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 238:47-68. [PMID: 39030354 DOI: 10.1007/978-3-031-55163-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
DNA damage poses a significant challenge to all eukaryotic cells, leading to mutagenesis, genome instability and senescence. In somatic cells, the failure to repair damaged DNA can lead to cancer development, whereas, in oocytes, it can lead to ovarian dysfunction and infertility. The response of the cell to DNA damage entails a series of sequential and orchestrated events including sensing the DNA damage, activating DNA damage checkpoint, chromatin-related conformational changes, activating the DNA damage repair machinery and/or initiating the apoptotic cascade. This chapter focuses on how somatic cells and mammalian oocytes respond to DNA damage. Specifically, we will discuss how and why fully grown mammalian oocytes differ drastically from somatic cells and growing oocytes in their response to DNA damage.
Collapse
Affiliation(s)
- Fei Sun
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Amanda L Patterson
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Ahmed Z Balboula
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
181
|
Wang M, Zhang L, Hao H, Yan M, Zhu Z. Applications of Engineered Skin Tissue for Cosmetic Component and Toxicology Detection. Cell Transplant 2024; 33:9636897241235464. [PMID: 38491929 PMCID: PMC10944590 DOI: 10.1177/09636897241235464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/30/2024] [Accepted: 02/10/2024] [Indexed: 03/18/2024] Open
Abstract
The scale of the cosmetic market is increasing every day. There are many safety risks to cosmetics, but they benefit people at the same time. The skin can become red, swollen, itchy, chronically toxic, and senescent due to the misuse of cosmetics, triggering skin injuries, with contact dermatitis being the most common. Therefore, there is an urgent need for a system that can scientifically and rationally detect the composition and perform a toxicological assessment of cosmetic products. Traditional detection methods rely on instrumentation and method selection, which are less sensitive and more complex to perform. Engineered skin tissue has emerged with the advent of tissue engineering technology as an emerging bioengineering technology. The ideal engineered skin tissue is the basis for building good in vitro structures and physiological functions in this field. This review introduces the existing cosmetic testing and toxicological evaluation methods, the current development status, and the types and characteristics of engineered skin tissue. The application of engineered skin tissue in the field of cosmetic composition detection and toxicological evaluation, as well as the different types of tissue engineering scaffold materials and three-dimensional (3D) organoid preparation approaches, is highlighted in this review to provide methods and ideas for constructing the next engineered skin tissue for cosmetic raw material component analysis and toxicological evaluation.
Collapse
Affiliation(s)
- Min Wang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Linfeng Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Haojie Hao
- The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Muyang Yan
- The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Ziying Zhu
- The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| |
Collapse
|
182
|
Peng Q, Wang L, Zuo L, Gao S, Jiang X, Han Y, Lin J, Peng M, Wu N, Tang Y, Tian H, Zhou Y, Liao Q. HPV E6/E7: insights into their regulatory role and mechanism in signaling pathways in HPV-associated tumor. Cancer Gene Ther 2024; 31:9-17. [PMID: 38102462 DOI: 10.1038/s41417-023-00682-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/09/2023] [Accepted: 10/24/2023] [Indexed: 12/17/2023]
Abstract
Human papillomavirus (HPV) is a class of envelope-free double-stranded DNA virus. HPV infection has been strongly associated with the development of many malignancies, such as cervical, anal and oral cancers. The viral oncoproteins E6 and E7 perform central roles on HPV-induced carcinogenic processes. During tumor development, it usually goes along with the activation of abnormal signaling pathways. E6 and E7 induces changes in cell cycle, proliferation, invasion, metastasis and other biological behaviors by affecting downstream tumor-related signaling pathways, thus promoting malignant transformation of cells and ultimately leading to tumorigenesis and progression. Here, we summarized that E6 and E7 proteins promote HPV-associated tumorigenesis and development by regulating the activation of various tumor-related signaling pathways, for example, the Wnt/β-catenin, PI3K/Akt, and NF-kB signaling pathway. We also discussed the importance of HPV-encoded E6 and E7 and their regulated tumor-related signaling pathways for the diagnosis and effective treatment of HPV-associated tumors.
Collapse
Affiliation(s)
- Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| | - Lujuan Wang
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Liang Zuo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Shuichao Gao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yaqian Han
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Hao Tian
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- University of South China, Hengyang, 421001, Hunan, China.
- Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- University of South China, Hengyang, 421001, Hunan, China.
- Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
183
|
Guo G, Zhou Z, Chen S, Cheng J, Wang Y, Lan T, Ye Y. Characterization of the Prognosis and Tumor Microenvironment of Cellular Senescence-related Genes through scRNA-seq and Bulk RNA-seq Analysis in GC. Recent Pat Anticancer Drug Discov 2024; 19:530-542. [PMID: 37807645 DOI: 10.2174/0115748928255417230924191157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/09/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Cellular senescence (CS) is thought to be the primary cause of cancer development and progression. This study aimed to investigate the prognostic role and molecular subtypes of CS-associated genes in gastric cancer (GC). MATERIALS AND METHODS The CellAge database was utilized to acquire CS-related genes. Expression data and clinical information of GC patients were obtained from The Cancer Genome Atlas (TCGA) database. Patients were then grouped into distinct subtypes using the "Consesus- ClusterPlus" R package based on CS-related genes. An in-depth analysis was conducted to assess the gene expression, molecular function, prognosis, gene mutation, immune infiltration, and drug resistance of each subtype. In addition, a CS-associated risk model was developed based on Cox regression analysis. The nomogram, constructed on the basis of the risk score and clinical factors, was formulated to improve the clinical application of GC patients. Finally, several candidate drugs were screened based on the Cancer Therapeutics Response Portal (CTRP) and PRISM Repurposing dataset. RESULTS According to the cluster result, patients were categorized into two molecular subtypes (C1 and C2). The two subtypes revealed distinct expression levels, overall survival (OS) and clinical presentations, mutation profiles, tumor microenvironment (TME), and drug resistance. A risk model was developed by selecting eight genes from the differential expression genes (DEGs) between two molecular subtypes. Patients with GC were categorized into two risk groups, with the high-risk group exhibiting a poor prognosis, a higher TME level, and increased expression of immune checkpoints. Function enrichment results suggested that genes were enriched in DNA repaired pathway in the low-risk group. Moreover, the Tumor Immune Dysfunction and Exclusion (TIDE) analysis indicated that immunotherapy is likely to be more beneficial for patients in the low-risk group. Drug analysis results revealed that several drugs, including ML210, ML162, dasatinib, idronoxil, and temsirolimus, may contribute to the treatment of GC patients in the high-risk group. Moreover, the risk model genes presented a distinct expression in single-cell levels in the GSE150290 dataset. CONCLUSION The two molecular subtypes, with their own individual OS rate, expression patterns, and immune infiltration, lay the foundation for further exploration into the GC molecular mechanism. The eight gene signatures could effectively predict the GC prognosis and can serve as reliable markers for GC patients.
Collapse
Affiliation(s)
- Guoxiang Guo
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian province, China
| | - Zhifeng Zhou
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian province, China
- Laboratory of Immuno- oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian province, China
| | - Shuping Chen
- Laboratory of Immuno- Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian province, China
| | - Jiaqing Cheng
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yang Wang
- Laboratory of Immuno- oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian province, China
| | - Tianshu Lan
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Fujian Province, China
| | - Yunbin Ye
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
- Laboratory of Immuno- oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian province, China
| |
Collapse
|
184
|
Hou J, Zheng Y, Gao C. Regulation of cellular senescence by innate immunity. BIOPHYSICS REPORTS 2023; 9:338-351. [PMID: 38524701 PMCID: PMC10960571 DOI: 10.52601/bpr.2023.230032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/12/2024] [Indexed: 03/26/2024] Open
Abstract
During the COVID-19 pandemic, the interplay between the processes of immunity and senescence is drawing more and more intensive attention. SARS-CoV-2 infection induces senescence in lung cells, failure to clear infected cells and increased presence of inflammatory factors could lead to a cytokine storm and acute respiratory disease syndrome (ARDS), which together with aging and age-associated disease lead to 70% of COVID-19-related deaths. Studies on how senescence initiates upon viral infection and how to restrict excessive accumulation of senescent cells to avoid harmful inflammation are crucially important. Senescence can induce innate immune signaling, and innate immunity can engage cell senescence. Here, we mainly review the innate immune pathways, such as cGAS-STING, TLRs, NF-κB, and NLRP3 inflammasome, participating in the senescence process. In these pathways, IFN-I and inflammatory factors play key roles. At the end of the review, we propose the strategies by which we can improve the immune function and reduce inflammation based on these findings.
Collapse
Affiliation(s)
- Jinxiu Hou
- Key Laboratory of Infection and Immunity, Shandong Province & Key Laboratory for Experimental Teratology, Ministry of Education, Shandong University, Jinan 250012, China
- Department of Immunology, the School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Yi Zheng
- Key Laboratory of Infection and Immunity, Shandong Province & Key Laboratory for Experimental Teratology, Ministry of Education, Shandong University, Jinan 250012, China
- Department of Immunology, the School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity, Shandong Province & Key Laboratory for Experimental Teratology, Ministry of Education, Shandong University, Jinan 250012, China
- Department of Immunology, the School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
185
|
Lee YC, Nam Y, Kim M, Kim SI, Lee JW, Eun YG, Kim D. Prognostic significance of senescence-related tumor microenvironment genes in head and neck squamous cell carcinoma. Aging (Albany NY) 2023; 16:985-1001. [PMID: 38154113 PMCID: PMC10866405 DOI: 10.18632/aging.205346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/06/2023] [Indexed: 12/30/2023]
Abstract
The impact of the senescence related microenvironment on cancer prognosis and therapeutic response remains poorly understood. In this study, we investigated the prognostic significance of senescence related tumor microenvironment genes (PSTGs) and their potential implications for immunotherapy response. Using the Cancer Genome Atlas- head and neck squamous cell carcinoma (HNSC) data, we identified two subtypes based on the expression of PSTGs, acquired from tumor-associated senescence genes, tumor microenvironment (TME)-related genes, and immune-related genes, using consensus clustering. Using the LASSO, we constructed a risk model consisting of senescence related TME core genes (STCGs). The two subtypes exhibited significant differences in prognosis, genetic alterations, methylation patterns, and enriched pathways, and immune infiltration. Our risk model stratified patients into high-risk and low-risk groups and validated in independent cohorts. The high-risk group showed poorer prognosis and immune inactivation, suggesting reduced responsiveness to immunotherapy. Additionally, we observed a significant enrichment of STCGs in stromal cells using single-cell RNA transcriptome data. Our findings highlight the importance of the senescence related TME in HNSC prognosis and response to immunotherapy. This study contributes to a deeper understanding of the complex interplay between senescence and the TME, with potential implications for precision medicine and personalized treatment approaches in HNSC.
Collapse
Affiliation(s)
- Young Chan Lee
- Department of Otolaryngology-Head and Neck Surgery, Kyung Hee University School of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
- Department of Medicine (AgeTech-Service Convergence Major) College of Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Biostatistics, Epidemiology and Informatics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yonghyun Nam
- Department of Biostatistics, Epidemiology and Informatics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Minjeong Kim
- Department of Medicine (AgeTech-Service Convergence Major) College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Su Il Kim
- Department of Otolaryngology-Head and Neck Surgery, Kyung Hee University School of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Jung-Woo Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Young-Gyu Eun
- Department of Otolaryngology-Head and Neck Surgery, Kyung Hee University School of Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Dokyoon Kim
- Department of Biostatistics, Epidemiology and Informatics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
186
|
Wang Q, Shen K, Fei B, Luo H, Li R, Wang Z, Wei M, Xie Z. A predictive model for early death in elderly colorectal cancer patients: a population-based study. Front Oncol 2023; 13:1278137. [PMID: 38173840 PMCID: PMC10764026 DOI: 10.3389/fonc.2023.1278137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Purpose The purpose of this study is to determine what variables contribute to the early death of elderly colorectal cancer patients (ECRC) and to generate predictive nomograms for this population. Methods This retrospective cohort analysis included elderly individuals (≥75 years old) diagnosed with colorectal cancer (CRC) from 2010-2015 in the Surveillance, Epidemiology, and End Result databases (SEER) databases. The external validation was conducted using a sample of the Chinese population obtained from the China-Japan Union Hospital of Jilin University. Logistic regression analyses were used to ascertain variables associated with early death and to develop nomograms. The nomograms were internally and externally validated with the help of the receiver operating characteristic curve (ROC), calibration curve, and decision curve analysis (DCA). Results The SEER cohort consisted of 28,111 individuals, while the Chinese cohort contained 315 cases. Logistic regression analyses shown that race, marital status, tumor size, Grade, T stage, N stage, M stage, brain metastasis, liver metastasis, bone metastasis, surgery, chemotherapy, and radiotherapy were independent prognostic factors for all-cause and cancer-specific early death in ECRC patients; The variable of sex was only related to an increased risk of all-cause early death, whereas the factor of insurance status was solely associated with an increased risk of cancer-specific early death. Subsequently, two nomograms were devised to estimate the likelihood of all-cause and cancer-specific early death among individuals with ECRC. The nomograms exhibited robust predictive accuracy for predicting early death of ECRC patients, as evidenced by both internal and external validation. Conclusion We developed two easy-to-use nomograms to predicting the likelihood of early death in ECRC patients, which would contribute significantly to the improvement of clinical decision-making and the formulation of personalized treatment approaches for this particular population.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhongshi Xie
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
187
|
Yan S, Lin S, Qiu H, Wang X, He Y, Wang C, Huang Y. Regulation of telomerase towards tumor therapy. Cell Biosci 2023; 13:228. [PMID: 38111043 PMCID: PMC10726632 DOI: 10.1186/s13578-023-01181-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/02/2023] [Indexed: 12/20/2023] Open
Abstract
Cancer is an aging-related disease, while aging plays an important role in the development process of tumor, thus the two are inextricably associated. Telomere attrition is one of the recognized hallmark events of senescence. Hence, targeting telomerase which could extends telomere sequences to treat tumors is widely favored. Cancer cells rely on high activity of telomerase to maintain a strong proliferative potential. By inhibiting the expression or protein function of telomerase, the growth of cancer cells can be significantly suppressed. In addition, the human immune system itself has a defense system against malignant tumors. However, excessive cell division results in dramatic shortening on telomeres and decline in the function of immune organs that facilitates cancer cell evasion. It has been shown that increasing telomerase activity or telomere length of these immune cells can attenuate senescence, improve cellular viability, and enhance the immunosuppressive microenvironment of tumor. In this paper, we review the telomerase-targeting progress using different anti-tumor strategies from the perspectives of cancer cells and immune cells, respectively, as well as tracking the preclinical and clinical studies of some representative drugs for the prevention or treatment of tumors.
Collapse
Affiliation(s)
- Siyu Yan
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Lumiere Therapeutics Co., Ltd., Suzhou, 215000, China
| | - Song Lin
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hongxin Qiu
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xining Wang
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yijun He
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chuanle Wang
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yan Huang
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
188
|
Maruyama N, Fukunaga I, Kogo T, Endo T, Fujii W, Kanai-Azuma M, Naito K, Sugiura K. Accumulation of senescent cells in the stroma of aged mouse ovary. J Reprod Dev 2023; 69:328-336. [PMID: 37926520 PMCID: PMC10721854 DOI: 10.1262/jrd.2023-021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Senescent cells play a detrimental role in age-associated pathogenesis by producing factors involved in senescence-associated secretory phenotype (SASP). The present study was conducted to examine the possibility that senescent cells are present in aged ovaries and, if so, to determine the tissue region where senescent cells accumulate using a mouse model. Female mice at 2-4 and 8-10 months were used as reproductively young and aged models, respectively; the latter included mice with and without reproductive experience. Cells positive for senescence-associated β-galactosidase (SA-β-Gal) staining, one of the markers of cellular senescence, were detected in the stromal region of aged, but not young, ovaries regardless of reproductive experience. Likewise, the localization of cells expressing CDKN2A (cyclin dependent kinase inhibitor 2A), another senescence marker, in the stromal region of aged ovaries was detected with immunohistochemistry. CDKN2A expression detected by western blotting was significantly higher in the ovaries of aged mice with reproductive experience than in those without the experience. Moreover, cells positive for both γH2AX (a senescence marker) and fluorescent SA-β-Gal staining were present in those isolated from aged ovaries. In addition, the transcript levels of several SASP factors were significantly increased in aged ovaries. These results suggest that senescent cells accumulate in the ovarian stroma and may affect ovarian function in aged mice. Additionally, reproductive experience may promote accumulation.
Collapse
Affiliation(s)
- Natsumi Maruyama
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Isuzu Fukunaga
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomoaki Kogo
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tsutomu Endo
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Experimental Animal Model for Human Disease, Center for Experimental Animals, Tokyo Medical and Dental University, Tokyo, Japan
| | - Wataru Fujii
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Present address: Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masami Kanai-Azuma
- Department of Experimental Animal Model for Human Disease, Center for Experimental Animals, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kunihiko Naito
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Sugiura
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
189
|
Maiti S, Bhattacharya K, Wider D, Hany D, Panasenko O, Bernasconi L, Hulo N, Picard D. Hsf1 and the molecular chaperone Hsp90 support a 'rewiring stress response' leading to an adaptive cell size increase in chronic stress. eLife 2023; 12:RP88658. [PMID: 38059913 DOI: 10.7554/elife.88658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Cells are exposed to a wide variety of internal and external stresses. Although many studies have focused on cellular responses to acute and severe stresses, little is known about how cellular systems adapt to sublethal chronic stresses. Using mammalian cells in culture, we discovered that they adapt to chronic mild stresses of up to two weeks, notably proteotoxic stresses such as heat, by increasing their size and translation, thereby scaling the amount of total protein. These adaptations render them more resilient to persistent and subsequent stresses. We demonstrate that Hsf1, well known for its role in acute stress responses, is required for the cell size increase, and that the molecular chaperone Hsp90 is essential for coupling the cell size increase to augmented translation. We term this translational reprogramming the 'rewiring stress response', and propose that this protective process of chronic stress adaptation contributes to the increase in size as cells get older, and that its failure promotes aging.
Collapse
Affiliation(s)
- Samarpan Maiti
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Genève, Switzerland
| | - Kaushik Bhattacharya
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Genève, Switzerland
| | - Diana Wider
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Genève, Switzerland
| | - Dina Hany
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Genève, Switzerland
- On leave from: Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Olesya Panasenko
- BioCode: RNA to Proteins Core Facility, Département de Microbiologie et Médecine Moléculaire, Faculté de Médecine, Université de Genève, Genève, Switzerland
| | - Lilia Bernasconi
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Genève, Switzerland
| | - Nicolas Hulo
- Institute of Genetics and Genomics of Geneva, Université de Genève, Genève, Switzerland
| | - Didier Picard
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Genève, Switzerland
| |
Collapse
|
190
|
Afshar K, Sanaei MJ, Ravari MS, Pourbagheri-Sigaroodi A, Bashash D. An overview of extracellular matrix and its remodeling in the development of cancer and metastasis with a glance at therapeutic approaches. Cell Biochem Funct 2023; 41:930-952. [PMID: 37665068 DOI: 10.1002/cbf.3846] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
The extracellular matrix (ECM) is an inevitable part of tissues able to provide structural support for cells depending on the purpose of tissues and organs. The dynamic characteristics of ECM let this system fluently interact with the extrinsic triggers and get stiffed, remodeled, and/or degraded ending in maintaining tissue homeostasis. ECM could serve as the platform for cancer progression. The dysregulation of biochemical and biomechanical ECM features might take participate in some pathological conditions such as aging, tissue destruction, fibrosis, and particularly cancer. Tumors can reprogram how ECM remodels by producing factors able to induce protein synthesis, matrix proteinase expression, degradation of the basement membrane, growth signals and proliferation, angiogenesis, and metastasis. Therefore, targeting the ECM components, their secretion, and their interactions with other cells or tumors could be a promising strategy in cancer therapies. The present study initially introduces the physiological functions of ECM and then discusses how tumor-dependent dysregulation of ECM could facilitate cancer progression and ends with reviewing the novel therapeutic strategies regarding ECM.
Collapse
Affiliation(s)
- Kimiya Afshar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Sadat Ravari
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
191
|
Shao H, Li X, Wu P, Chen Z, Zhang C, Gu H. A Cellular Senescence-Related Signature Predicts Cervical Cancer Patient Outcome and Immunotherapy Sensitivity. Reprod Sci 2023; 30:3661-3676. [PMID: 37580647 PMCID: PMC10691978 DOI: 10.1007/s43032-023-01305-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/22/2023] [Indexed: 08/16/2023]
Abstract
Cervical cancer (CC) is one of the most prevalent gynecological malignancies. The rate of mortality and morbidity among patients with CC is high. Cellular senescence is involved in tumorigenesis as well as in the cancer progression. However, the involvement of cellular senescence in CC development is still unclear and requires further investigation. In this study, we retrieved data on cellular senescence-related genes (CSRGs) from the "CellAge" Database. We used the TCGA-CESC and CGCI-HTMCP-CC datasets as the training and validation sets, respectively. Finally, a signature was constructed using "univariate" and "Least Absolute Shrinkage and Selection Operator" (LASSO) Cox regression analysis, which contains eight CSRGs. Using this signature, we calculated the risk scores of all patients in the training and validation cohorts and categorized them into the low-risk group (LR-G) and the high-risk group (HR-G). Results showed that, compared to patients in the HR-G, those in the LR-G demonstrated a more positive clinical prognosis, more abundant immune cell infiltrations, and a more active immune response. The signature could also modulate the expression of SASP factors. In vitro studies showed an increased expression of SERPINE1 and IL-1α genes included in the signature in CC cells and tissues. Our findings help to deepen our insights into the etiology of CC, which could be beneficial for prognostic prediction and immunotherapy in clinical practice.
Collapse
Affiliation(s)
- Huijing Shao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Xia Li
- Department of Obstetrics and Gynecology, Huai'an Maternal and Child Health Care Center, Huaian, 223000, Jiangsu, China
| | - Pengfei Wu
- Department of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, 200080, China
| | - Zixi Chen
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People's Republic of China
| | - Caihong Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| | - Hang Gu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
192
|
Abou Khouzam R, Janji B, Thiery J, Zaarour RF, Chamseddine AN, Mayr H, Savagner P, Kieda C, Gad S, Buart S, Lehn JM, Limani P, Chouaib S. Hypoxia as a potential inducer of immune tolerance, tumor plasticity and a driver of tumor mutational burden: Impact on cancer immunotherapy. Semin Cancer Biol 2023; 97:104-123. [PMID: 38029865 DOI: 10.1016/j.semcancer.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
In cancer patients, immune cells are often functionally compromised due to the immunosuppressive features of the tumor microenvironment (TME) which contribute to the failures in cancer therapies. Clinical and experimental evidence indicates that developing tumors adapt to the immunological environment and create a local microenvironment that impairs immune function by inducing immune tolerance and invasion. In this context, microenvironmental hypoxia, which is an established hallmark of solid tumors, significantly contributes to tumor aggressiveness and therapy resistance through the induction of tumor plasticity/heterogeneity and, more importantly, through the differentiation and expansion of immune-suppressive stromal cells. We and others have provided evidence indicating that hypoxia also drives genomic instability in cancer cells and interferes with DNA damage response and repair suggesting that hypoxia could be a potential driver of tumor mutational burden. Here, we reviewed the current knowledge on how hypoxic stress in the TME impacts tumor angiogenesis, heterogeneity, plasticity, and immune resistance, with a special interest in tumor immunogenicity and hypoxia targeting. An integrated understanding of the complexity of the effect of hypoxia on the immune and microenvironmental components could lead to the identification of better adapted and more effective combinational strategies in cancer immunotherapy. Clearly, the discovery and validation of therapeutic targets derived from the hypoxic tumor microenvironment is of major importance and the identification of critical hypoxia-associated pathways could generate targets that are undeniably attractive for combined cancer immunotherapy approaches.
Collapse
Affiliation(s)
- Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Bassam Janji
- Department of Cancer Research, Luxembourg Institute of Health, Tumor Immunotherapy and Microenvironment (TIME) Group, 6A, rue Nicolas-Ernest Barblé, L-1210 Luxembourg city, Luxembourg.
| | - Jerome Thiery
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France.
| | - Rania Faouzi Zaarour
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Ali N Chamseddine
- Gastroenterology Department, Cochin University Hospital, Université de Paris, APHP, Paris, France; Ambroise Paré - Hartmann Private Hospital Group, Oncology Unit, Neuilly-sur-Seine, France.
| | - Hemma Mayr
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland; Department of Surgery & Transplantation, University and University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland.
| | - Pierre Savagner
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France.
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine-National Research Institute, 04-141 Warsaw, Poland; Centre for Molecular Biophysics, UPR 4301 CNRS, 45071 Orleans, France; Centre of Postgraduate Medical Education, 01-004 Warsaw, Poland.
| | - Sophie Gad
- Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences Lettres University (PSL), 75014 Paris, France; UMR CNRS 9019, Genome Integrity and Cancers, Gustave Roussy, Paris-Saclay University, 94800 Villejuif, France.
| | - Stéphanie Buart
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France.
| | - Jean-Marie Lehn
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg, France.
| | - Perparim Limani
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland; Department of Surgery & Transplantation, University and University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland.
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France.
| |
Collapse
|
193
|
Wang T, Qin Y, Qiao J, Liu Y, Wang L, Zhang X. Overexpression of SIRT6 regulates NRF2/HO-1 and NF-κB signaling pathways to alleviate UVA-induced photoaging in skin fibroblasts. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 249:112801. [PMID: 37897855 DOI: 10.1016/j.jphotobiol.2023.112801] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/02/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023]
Abstract
Skin photoaging, resulting from prolonged exposure to sunlight, especially UVA rays, has been identified as a key contributor to age-related skin degeneration. However, the mechanism by which UVA radiation induces skin cell senescence has not been fully elucidated. In this investigation, bioinformatics technology was employed to identify SIRT6 as the core hub gene involved in the progression of skin photoaging. The study evinced that prolonged exposure of cutaneous fibroblasts to UVA radiation results in a marked reduction in the expression of SIRT6, both in vivo and in vitro. Knockdown of SIRT6 in skin fibroblasts resulted in the upregulation of genes associated with cellular aging, thereby exacerbating the effects of UVA radiation-induced photoaging. Conversely, overexpression of SIRT6 decreased the expression of cell aging-related genes, indicating that SIRT6 plays a role in the regulation of senescence in skin fibroblasts induced by UVA radiation. We proffer substantiation that overexpression of SIRT6 protects skin fibroblasts from UVA-induced oxidative stress by activating the NRF2/HO-1 signaling cascade. Moreover, SIRT6 overexpression also reduced UVA-induced type I collagen degradation by inhibiting NF-κB signaling cascade. In summary, our findings showed that overexpression of SIRT6 inhibits UVA-induced senescence phenotype and type I collagen degradation in skin fibroblasts by modulating the NRF2/HO-1 and NF-κB signaling pathways. And the regulation of these signaling pathways by SIRT6 may be achieved through its deacetylase activity. Therefore, SIRT6 is a novel and promising therapeutic target for skin aging related to age and UV.
Collapse
Affiliation(s)
- Tao Wang
- Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou City 730000, Gansu Province, China
| | - Yonghong Qin
- Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou City 730000, Gansu Province, China
| | - Jianxiong Qiao
- Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou City 730000, Gansu Province, China
| | - Yang Liu
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610000, China
| | - Lerong Wang
- Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou City 730000, Gansu Province, China
| | - Xuanfen Zhang
- Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou City 730000, Gansu Province, China.
| |
Collapse
|
194
|
Li Y, Zhao Q, Yao J, Lv C, Gao Y, Sun D, Yang Y. MiR-96-5p Suppresses Progression of Arsenite-Induced Human Keratinocyte Proliferation and Malignant Transformation by Targeting Denticleless E3 Ubiquitin Protein Ligase Homolog. TOXICS 2023; 11:978. [PMID: 38133379 PMCID: PMC10747408 DOI: 10.3390/toxics11120978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Long-term exposure to arsenic has been linked to a variety of cancers, among which skin cancer is the most prevalent form. However, the mechanism underlying arsenic carcinogenesis is unclear, and there is still limited information on the role of miRNAs in arsenic-induced skin cancer. This study aims to explore the role of miR-96-5p in the arsenite-induced proliferation and malignant transformation of human HaCaT keratinocytes. The GEO database (accession numbers GSE97303, GSE97305, and GSE97306) was used to extract mRNA and miRNA expression profiles of HaCaT cells treated with or without 0.1 μmol/L sodium arsenite for 3 and 7 weeks. In this paper, according to the CCK8 assay result, HaCaT cells exposed to 0.1 μmol/L sodium arsenite for 48 h were finalized. CCK8, MTT, EdU incorporation, and colony formation assays were used to determine the viability and proliferation of HaCaT cells and transformed HaCaT (T-HaCaT) cells. The subcellular localization and relative expression levels of DTL, as well as miR-96-5p in HaCaT cells induced by arsenite, were determined via immunofluorescence, RT-qPCR, and Western blot. Dual-luciferase reporter assay was performed to identify miR-96-5p bound directly to DTL. Transfection of miR-96-5p mimics or DTL siRNA was conducted to verify the arsenite-induced viability of HaCaT cells and T-HaCaT cells. T-HaCaT cells and nude mice were used to construct arsenite-induced malignant transformation and an in vivo xenograft model to demonstrate the over-expressed effect of miR-96-5p. The results showed that DTL was the target gene of miR-96-5p. Meanwhile, we also found that 0.1 μmol/L sodium arsenite upregulated DTL by decreasing the miR-96-5p level, leading to the proliferation and malignant transformation of HaCaT cells. MiR-96-5p agomir treatment slowed the growth of transplanted HaCaT cells transformed by arsenite in a manner associated with DTL downregulation in the nude mice xenograft model. Taken together, we confirmed that miR-96-5p, as a potent regulator of DTL, suppressed arsenite-induced HaCaT cell proliferation and malignant transformation, which might provide a novel therapeutic target for the treatment of arsenic-induced skin cancer.
Collapse
Affiliation(s)
- Yan Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| | - Qiaoshi Zhao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| | - Jinyin Yao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| | - Chunpeng Lv
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
- Institution of Environmentally Related Diseases, Harbin Medical University, Harbin 150081, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
195
|
Liu C, Zhu S, Zhang J, Wu P, Wang X, Du S, Wang E, Kang Y, Song K, Yu J. Global, regional, and national burden of liver cancer due to non-alcoholic steatohepatitis, 1990-2019: a decomposition and age-period-cohort analysis. J Gastroenterol 2023; 58:1222-1236. [PMID: 37665532 DOI: 10.1007/s00535-023-02040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/27/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Identifying past temporal trends in non-alcoholic steatohepatitis (NASH)-associated liver cancer (NALC) can increase public awareness of the disease and facilitate future policy development. METHODS Annual deaths and age-standardized death rates (ASDR) for NALC from 1990 to 2019 were collected from the Global Burden of Disease (GBD) 2019 study. The long-term trend and the critical inflection of mortality of NALC were detected by Joinpoint analysis. Age-period-cohort analysis was employed to evaluate the effects of age, period, and cohort. Last, decomposition analysis was used to reveal the aging and population growth effects for NALC burden. RESULTS Between 1990 and 2019, the ASDR of NALC witnessed an overall declining trend on a global scale, with a decrease in females and a stable trend in males. However, the global ASDR demonstrated a significant upward trend from 2010 to 2019. Southern sub-Saharan Africa and Southeast Asia have the highest NALC burdens, while high socio-demographic index (SDI) region experienced the fastest escalation of NALC burdens over 30 years. The decomposition analysis revealed that population growth and aging were the primary catalysts behind the increase in global NALC deaths. Age-period-cohort analyses showed that NALC mortality declined the fastest among females aged 40-45 years in high SDI region, accompanied by a deteriorating period effect trend during the period of 2010-2019. CONCLUSION The global absolute deaths and ASDR of NALC have witnessed a rise in the past decade, with populations exhibiting considerable disparities based on sex, age, and region. Population growth, aging, and metabolism-related factors were the main factors behind the increase in global NALC deaths.
Collapse
Affiliation(s)
- Chunlong Liu
- Department of Hepatobiliary and Pancreatic Surgery, Fuyang People's Hospital, Anhui Medical University, Fuyang, 236000, China
| | - Shijie Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Jian Zhang
- Department of Neurosurgery, the Seventh Clinical College of China Medical University, Fushun, 113001, China
| | - Panpan Wu
- Department of Hepatobiliary and Pancreatic Surgery, Fuyang People's Hospital, Anhui Medical University, Fuyang, 236000, China
| | - Xuan Wang
- Department of Hepatobiliary and Pancreatic Surgery, Fuyang People's Hospital, Anhui Medical University, Fuyang, 236000, China
| | - Sen Du
- Department of Hepatobiliary and Pancreatic Surgery, Fuyang People's Hospital, Bengbu Medical College, Fuyang, 236000, China
| | - Enzhao Wang
- Graduate School, Wannan Medical College, Wuhu, 241000, Anhui, China
| | - Yunkang Kang
- Department of Orthopedics, Fuyang People's Hospital, Anhui Medical University, Anhui Medical University, Fuyang, 236000, China
| | - Kun Song
- Department of Hepatobiliary and Pancreatic Surgery, Fuyang People's Hospital, Anhui Medical University, Fuyang, 236000, China.
- Graduate School, Wannan Medical College, Wuhu, 241000, Anhui, China.
| | - Jiangtao Yu
- Department of Hepatobiliary and Pancreatic Surgery, Fuyang People's Hospital, Anhui Medical University, Fuyang, 236000, China.
- Department of Hepatobiliary and Pancreatic Surgery, Fuyang People's Hospital, Bengbu Medical College, Fuyang, 236000, China.
| |
Collapse
|
196
|
Reis RD, da Rosa R, Pessa LR, Ruch Werneck Guimarães C. Nonclinical evaluation of a Vitis vinifera extract towards a novel antiaging cosmetic ingredient. J Cosmet Dermatol 2023; 22:3445-3458. [PMID: 37464908 DOI: 10.1111/jocd.15852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/28/2023] [Accepted: 05/22/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Skin aging is regulated by multiple physiological processes, such as oxidative stress. Natural products have been considered as a promising source of antioxidant compounds. As a result, few innovative products on the market based on natural products tackle additional underlying mechanisms of skin aging. AIMS The present work reports the nonclinical evaluation of a novel extract from the skin of V. vinifera fruits (codified as ACH37 extract), with the aim of supporting its use as an antiaging cosmetic ingredient candidate in clinical trials. METHODS We employed enzymatic, phenotypic, and gene expression assays, both in vitro and ex vivo, to investigate the action of the ACH37 extract in different biological processes that could be related to skin aging mechanisms. RESULTS The ACH37 extract was able to scavenge reactive oxygen species (DPPH, O2 - ), prevent inflammation (LPS- and UV-induced COX-2, IL-1β, and IL-8 expression), modulate extracellular matrix remodeling (inhibiting elastase, MMP-1, MMP-3, and MMP-12, as well as associated expression), increase telomere length, telomerase activity, and reverse the UV-induced suppression of genes involved in skin protection. In addition, the ACH37 extract permeated human skin explants and presented antioxidant efficacy ex vivo. CONCLUSION The results indicated that the ACH37 extract acts on multiple targets commonly related to skin aging, being a promising antiaging active ingredient candidate to be further investigated in clinical trials.
Collapse
|
197
|
Sienkiewicz M, Zielińska M, Jacenik D, Machelak W, Owczarek K, Fichna J. Lactoferrin improves symptoms of dextran sulfate sodium-induced colitis in mice through modulation of cellular senescence. Nutr Res 2023; 120:58-71. [PMID: 37931351 DOI: 10.1016/j.nutres.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023]
Abstract
The multifaceted effects of lactoferrin (LF) on the digestive and immune systems make it an attractive therapeutic option in inflammatory bowel diseases. In this study, we aimed to explore the anti-inflammatory effects of LF in colitis, particularly in relation to cellular senescence. We hypothesize that LF has the potential to modulate the senescence process. The effects of LF on senescence were tested in vitro using HCT116 and SW480 cell lines, and in vivo, the dextran sulfate sodium-induced mouse model of colitis. LF (500 mg/kg) alleviated symptoms of colitis in mice with a significant decrease in colon damage (P < .0001 vs. control) and microscopic (P < .05 vs. control) scores. Cellular senescence markers p16 and p21 were significantly upregulated in the mouse colon during inflammation (both P < .01 vs. control), and LF at 500 mg/kg decreased these markers (both P < .05 vs. dextran sulfate sodium-treated mice). In vitro, LF significantly affected the expression of p16 and p21 (P < .05-P < .0001 vs. control), senescence associated secretory phenotype (P < .01-P < .0001 vs. control), and telomere-specific proteins: telomeric repeat binding factor 1 and 2 (P < .05-P < .0001 vs. control) in a concentration-dependent manner. LF modulates the expression of cellular senescence markers and shows hallmarks of senolytic and pro-senescent activity, depending on dose. Further studies are needed to fully understand the anti-inflammatory effect of LF in the context of senescence and safe utilization in patients with inflammatory bowel diseases.
Collapse
Affiliation(s)
- Michał Sienkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Marta Zielińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Damian Jacenik
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Weronika Machelak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Katarzyna Owczarek
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland.
| |
Collapse
|
198
|
Owesny P, Grune T. The link between obesity and aging - insights into cardiac energy metabolism. Mech Ageing Dev 2023; 216:111870. [PMID: 37689316 DOI: 10.1016/j.mad.2023.111870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Obesity and aging are well-established risk factors for a range of diseases, including cardiovascular diseases and type 2 diabetes. Given the escalating prevalence of obesity, the aging population, and the subsequent increase in cardiovascular diseases, it is crucial to investigate the underlying mechanisms involved. Both aging and obesity have profound effects on the energy metabolism through various mechanisms, including metabolic inflexibility, altered substrate utilization for energy production, deregulated nutrient sensing, and mitochondrial dysfunction. In this review, we aim to present and discuss the hypothesis that obesity, due to its similarity in changes observed in the aging heart, may accelerate the process of cardiac aging and exacerbate the clinical outcomes of elderly individuals with obesity.
Collapse
Affiliation(s)
- Patricia Owesny
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
199
|
Zhou X, Tan B, Gui W, Zhou C, Zhao H, Lin X, Li H. IGF2 deficiency promotes liver aging through mitochondrial dysfunction and upregulated CEBPB signaling in D-galactose-induced aging mice. Mol Med 2023; 29:161. [PMID: 38017373 PMCID: PMC10685569 DOI: 10.1186/s10020-023-00752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Liver aging, marked by cellular senescence and low-grade inflammation, heightens susceptibility to chronic liver disease and worsens its prognosis. Insulin-like growth factor 2 (IGF2) has been implicated in numerous aging-related diseases. Nevertheless, its role and underlying molecular mechanisms in liver aging remain largely unexplored. METHODS The expression of IGF2 was examined in the liver of young (2-4 months), middle-aged (9-12 months), and old (24-26 months) C57BL/6 mice. In vivo, we used transgenic IGF2f/f; Alb-Cre mice and D-galactose-induced aging model to explore the role of IGF2 in liver aging. In vitro, we used specific short hairpin RNA against IGF2 to knock down IGF2 in AML12 cells. D-galactose and hydrogen peroxide treatment were used to induce AML12 cell senescence. RESULTS We observed a significant reduction of IGF2 levels in the livers of aged mice. Subsequently, we demonstrated that IGF2 deficiency promoted senescence phenotypes and senescence-associated secretory phenotypes (SASPs), both in vitro and in vivo aging models. Moreover, IGF2 deficiency impaired mitochondrial function, reducing mitochondrial respiratory capacity, mitochondrial membrane potential, and nicotinamide adenine dinucleotide (NAD)+/NADH ratio, increasing intracellular and mitochondrial reactive oxygen species levels, and disrupting mitochondrial membrane structure. Additionally, IGF2 deficiency markedly upregulated CCAAT/enhancer-binding protein beta (CEBPB). Notably, inhibiting CEBPB reversed the senescence phenotypes and reduced SASPs induced by IGF2 deficiency. CONCLUSIONS In summary, our findings strongly suggest that IGF2 deficiency promotes liver aging through mitochondrial dysfunction and upregulated CEBPB signaling. These results provide compelling evidence for considering IGF2 as a potential target for interventions aimed at slowing down the process of liver aging.
Collapse
Affiliation(s)
- Xiaohai Zhou
- Department of Endocrinology, the Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bowen Tan
- Department of Endocrinology, the Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiwei Gui
- Department of Endocrinology, the Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Caiping Zhou
- Department of Endocrinology, the Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hanxin Zhao
- Department of Endocrinology, the Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xihua Lin
- Department of Endocrinology, the Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Hong Li
- Department of Endocrinology, the Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
200
|
Sabogal RC. Exploring the Applicability of Pre-Anesthetic Cardiac POCUS in Unexpected Conditions: Could it be Helpful? POCUS JOURNAL 2023; 8:237-242. [PMID: 38099178 PMCID: PMC10721308 DOI: 10.24908/pocus.v8i2.16519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Formal preoperative echocardiography has traditionally been recommended when there is substantial cardiovascular disease without recent follow up, unexplained dyspnea, a functional class less than 4 METS or a Duke Activity Status Index less than 34. However, it is important to note that certain patients may present with a variety of cardiac abnormalities due to their preexisting condition or multiple treatments, and these individuals warrant consideration. The objective of pre-anesthetic cardiac POCUS is to provide clinical information in a timely manner. Although it does not aim to replace conventional echocardiography, cardiac POCUS can undoubtedly assist anesthesia practitioners in identifying asymptomatic and potentially hazardous conditions, allowing for more accurate risk allocation and individualized patient care.
Collapse
Affiliation(s)
- Rodolfo C Sabogal
- Department of Anesthesiology and Critical Care, Universidad de Cartagena, Universidad de AntioquiaCartagenaColombia
| |
Collapse
|