151
|
Davidson CD, Gillis NE, Carr FE. Thyroid Hormone Receptor Beta as Tumor Suppressor: Untapped Potential in Treatment and Diagnostics in Solid Tumors. Cancers (Basel) 2021; 13:4254. [PMID: 34503062 PMCID: PMC8428233 DOI: 10.3390/cancers13174254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 01/07/2023] Open
Abstract
There is compelling evidence that the nuclear receptor TRβ, a member of the thyroid hormone receptor (TR) family, is a tumor suppressor in thyroid, breast, and other solid tumors. Cell-based and animal studies reveal that the liganded TRβ induces apoptosis, reduces an aggressive phenotype, decreases stem cell populations, and slows tumor growth through modulation of a complex interplay of transcriptional networks. TRβ-driven tumor suppressive transcriptomic signatures include repression of known drivers of proliferation such as PI3K/Akt pathway, activation of novel signaling such as JAK1/STAT1, and metabolic reprogramming in both thyroid and breast cancers. The presence of TRβ is also correlated with a positive prognosis and response to therapeutics in BRCA+ and triple-negative breast cancers, respectively. Ligand activation of TRβ enhances sensitivity to chemotherapeutics. TRβ co-regulators and bromodomain-containing chromatin remodeling proteins are emergent therapeutic targets. This review considers TRβ as a potential biomolecular diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Cole D. Davidson
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; (C.D.D.); (N.E.G.)
- University of Vermont Cancer Center, Burlington, VT 05401, USA
| | - Noelle E. Gillis
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; (C.D.D.); (N.E.G.)
- University of Vermont Cancer Center, Burlington, VT 05401, USA
| | - Frances E. Carr
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; (C.D.D.); (N.E.G.)
- University of Vermont Cancer Center, Burlington, VT 05401, USA
| |
Collapse
|
152
|
Zhou J, Gauthier K, Ho JP, Lim A, Zhu XG, Han CR, Sinha RA, Cheng SY, Yen PM. Thyroid Hormone Receptor α Regulates Autophagy, Mitochondrial Biogenesis, and Fatty Acid Use in Skeletal Muscle. Endocrinology 2021; 162:6291921. [PMID: 34086893 PMCID: PMC8427735 DOI: 10.1210/endocr/bqab112] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Indexed: 02/07/2023]
Abstract
Skeletal muscle (SM) weakness occurs in hypothyroidism and resistance to thyroid hormone α (RTHα) syndrome. However, the cell signaling and molecular mechanism(s) underlying muscle weakness under these conditions is not well understood. We thus examined the role of thyroid hormone receptor α (TRα), the predominant TR isoform in SM, on autophagy, mitochondrial biogenesis, and metabolism to demonstrate the molecular mechanism(s) underlying muscle weakness in these two conditions. Two genetic mouse models were used in this study: TRα1PV/+ mice, which express the mutant Thra1PV gene ubiquitously, and SM-TRα1L400R/+ mice, which express TRα1L400R in a muscle-specific manner. Gastrocnemius muscle from TRα1PV/+, SM-TRα1L400R/+, and their control mice was harvested for analyses. We demonstrated that loss of TRα1 signaling in gastrocnemius muscle from both the genetic mouse models led to decreased autophagy as evidenced by accumulation of p62 and decreased expression of lysosomal markers (lysosomal-associated membrane protein [LAMP]-1 and LAMP-2) and lysosomal proteases (cathepsin B and cathepsin D). The expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α), mitochondrial transcription factor A (TFAM), and estrogen-related receptor α (ERRα), key factors contributing to mitochondrial biogenesis as well as mitochondrial proteins, were decreased, suggesting that there was reduced mitochondrial biogenesis due to the expression of mutant TRα1. Transcriptomic and metabolomic analyses of SM suggested that lipid catabolism was impaired and was associated with decreased acylcarnitines and tricarboxylic acid cycle intermediates in the SM from the mouse line expressing SM-specific mutant TRα1. Our results provide new insight into TRα1-mediated cell signaling, molecular, and metabolic changes that occur in SM when TR action is impaired.
Collapse
Affiliation(s)
- Jin Zhou
- Program of Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
- Correspondence: Jin Zhou, PhD, Program of Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore.
| | - Karine Gauthier
- Institut de Genomique Fonctionnelle de Lyon, Universite de Lyon, 69007 Lyon, France
| | - Jia Pei Ho
- Program of Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Andrea Lim
- Program of Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Xu-Guang Zhu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Cho Rong Han
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Paul Michael Yen
- Program of Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
- Duke Molecular Physiology Institute, Durham, North Carolina 27701, USA
- Duke University School of Medicine, Durham, North Carolina 27710, USA
- Correspondence: Paul M. Yen, MD, Program of Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore.
| |
Collapse
|
153
|
Pei Y, Xu S, Yang H, Ren Z, Meng W, Zheng Y, Guo R, Li S, Zhao D, Tang K, Li H, Xu Y. Higher FT4 level within the normal range predicts the outcome of cryoballoon ablation in paroxysmal atrial fibrillation patients without structural heart disease. Ann Noninvasive Electrocardiol 2021; 26:e12874. [PMID: 34250699 PMCID: PMC8588370 DOI: 10.1111/anec.12874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/04/2021] [Accepted: 05/28/2021] [Indexed: 12/01/2022] Open
Abstract
Background Accumulated evidence has indicated that a high‐normal FT4 level is an independent risk factor for the clinical progression of AF. However, the association between elevated FT4 concentration within the normal range and AF recurrence after cryoballoon ablation in China is unknown. Methods This retrospective and observational study included 453 AF patients who underwent cryoballoon ablation from January 2016 to August 2018. Patients were classified into quartiles based on preprocedural serum FT4 concentration. The clinical characteristics of the patients and the long‐term rate of AF recurrence after ablation were assessed. Results After a mean follow‐up period of 17.4 ± 9.0 months, 91 (20.1%) patients suffered from AF recurrence. The AF recurrence rate by FT4 quartile was 17.7%, 19.0%, 21.4%, and 22.3% for participants with FT4 in quartile 1, 2, 3, and 4, respectively (p < .001). On multivariate Cox regression, FT4 concentration (HR: 1.187, 95% CI: 1.093–1.290, p < .001) and left atrial diameter (HR: 1.052, 95% CI: 1.014–1.092, p = .007) were significant predictors of AF recurrence. When stratifying for AF type, the rate of postoperative recurrence was independently increased as FT4 concentration increased in paroxysmal AF, but not in persistent AF (p < .001 in paroxysmal AF and p = .977 in persistent AF). Conclusion Higher FT4 level within the normal range predicted the outcome of cryoballoon ablation in Chinese paroxysmal AF patients without structural heart disease.
Collapse
Affiliation(s)
- Yan Pei
- Nanjing Medical University, Nanjing, China.,Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shaojie Xu
- Nanjing Medical University, Nanjing, China.,Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | | | - Zhongyuan Ren
- Medical Department of Soochow University, Suzhou, China
| | | | | | - Rong Guo
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuang Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dongdong Zhao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kai Tang
- Nanjing Medical University, Nanjing, China.,Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hailing Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yawei Xu
- Nanjing Medical University, Nanjing, China.,Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
154
|
The influences of Tylosine and licorice dietary supplementation in terms of the productive performance, serum parameters, egg yolk lipid profile, antioxidant and immunity status of laying Japanese quail under heat stress condition. J Therm Biol 2021; 99:103015. [DOI: 10.1016/j.jtherbio.2021.103015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/01/2021] [Accepted: 05/30/2021] [Indexed: 01/28/2023]
|
155
|
Correlations between Biochemical Markers in Thyroid Pathology with those in Carbohydrates Metabolism. ARS MEDICA TOMITANA 2021. [DOI: 10.2478/arsm-2020-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Thyroid dysfunction is increasingly found in patients with diabetes. Diabetes can affect thyroid function to a variable extent and unrecognized thyroid dysfunction, not only worsens metabolic control, but also prevents the management of diabetes. The aim of this study was to screen the incidence of thyroid disease in Constanta County, Romania in patients diagnosed with type II diabetes, in order to assess the tendency to associate thyroid hormone dysfunction with the diabetic process by correlating glycemic parameters and thyroid profile in serum. The study included a number of 153 patients who presented within 3 months for blood tests, in compliance with GDPR rules. The following parameters were processed from these patients: FT3 - free triiodothyronine, FT4 - free thyroxine, TSH - thyroid stimulating hormone, Anti-TPO - thyroid peroxidase antibodies (anti-thyroid peroxidase), Serum glucose, Glycosylated haemoglobin - HbA1C. In patients of both sexes studied, the mean TSH was 3.15 IU / ml, males’ TSH mean being 2.82 IU / ml and higher, but not above the maximum limit. Blood glucose ranged from an average of 92.11 mg / dl in the 153 patients, 92.41 mg / dl in male patients and 93.82 mg / dl in female patients. Glycated haemoglobin (%) ranged from 6.79% in female patients to 6.21% in male patients, with a mean of 6.5%.
Pathology derived from disorders of carbohydrate metabolism may be present in patients with thyroid changes.
Collapse
|
156
|
Xue L, Bao L, Roediger J, Su Y, Shi B, Shi YB. Protein arginine methyltransferase 1 regulates cell proliferation and differentiation in adult mouse adult intestine. Cell Biosci 2021; 11:113. [PMID: 34158114 PMCID: PMC8220849 DOI: 10.1186/s13578-021-00627-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/10/2021] [Indexed: 01/03/2023] Open
Abstract
Background Adult stem cells play an essential role in adult organ physiology and tissue repair and regeneration. While much has been learnt about the property and function of various adult stem cells, the mechanisms of their development remain poorly understood in mammals. Earlier studies suggest that the formation of adult mouse intestinal stem cells takes place during the first few weeks after birth, the postembryonic period when plasma thyroid hormone (T3) levels are high. Furthermore, deficiency in T3 signaling leads to defects in adult mouse intestine, including reduced cell proliferation in the intestinal crypts, where stem cells reside. Our earlier studies have shown that protein arginine methyltransferase 1 (PRMT1), a T3 receptor coactivator, is highly expressed during intestinal maturation in mouse. Methods We have analyzed the expression of PRMT1 by immunohistochemistry and studied the effect of tissue-specific knockout of PRMT1 in the intestinal epithelium. Results We show that PRMT1 is expressed highly in the proliferating transit amplifying cells and crypt base stem cells. By using a conditional knockout mouse line, we have demonstrated that the expression of PRMT1 in the intestinal epithelium is critical for the development of the adult mouse intestine. Specific removal of PRMT1 in the intestinal epithelium results in, surprisingly, more elongated adult intestinal crypts with increased cell proliferation. In addition, epithelial cell migration along the crypt-villus axis and cell death on the villus are also increased. Furthermore, there are increased Goblet cells and reduced Paneth cells in the crypt while the number of crypt base stem cells remains unchanged. Conclusions Our finding that PRMT1 knockout increases cell proliferation is surprising considering the role of PRMT1 in T3-signaling and the importance of T3 for intestinal development, and suggests that PRMT1 likely regulates pathways in addition to T3-signaling to affect intestinal development and/or homeostasis, thus affecting cell proliferating and epithelial turn over in the adult. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00627-z.
Collapse
Affiliation(s)
- Lu Xue
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, 182 Minyuan Road, Hongshan District, Wuhan, 430074, China.,Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Lingyu Bao
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, No. 277, Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.,Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Julia Roediger
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging and Advanced Imaging and Microscopy Resource, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, No. 277, Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| |
Collapse
|
157
|
The effect of food groups and nutrients on thyroid hormone levels in healthy individuals. Nutrition 2021; 91-92:111394. [PMID: 34303955 DOI: 10.1016/j.nut.2021.111394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVES The aim of the study was to analyze the association of dietary groups (groups of food items) with thyroid hormone levels in healthy individuals. METHODS This cross-sectional study enrolled 4585 healthy individuals from the Dalmatian region of south Croatia with measurements of plasma free triiodothyronine (fT3), free thyroxine (fT4), and thyroid-stimulating hormone (TSH) levels. Dietary intake was assessed according to data of the completed food frequency questionnaire, containing 58 food items. Principal component analysis was performed to reduce food items into dietary groups, followed by linear regression analyses to test the association between dietary groups and fT3, fT4, and TSH levels. RESULTS Among the 4585 healthy individuals, we observed lower plasma fT3 and fT4 levels and higher TSH levels in women than in men. Smokers were found to have significantly lower TSH levels than non-smokers and ex-smokers, and participants with higher fasting glucose levels had higher fT4 levels. Different dietary groups (factors) showed association with fT3, fT4, and TSH levels. It was observed that dietary factors (with frequent consumption of fruit juices, Cedevita vitamin drink, and non-alcoholic drinks) that negatively affected TSH levels simultaneously had a positive effect on fT4, satisfying the expected pattern of effects. CONCLUSIONS In our study, frequent consumption of foods with a high glycemic index showed a positive association with fT3 and fT4 levels and a negative association with TSH levels, whereas foods rich in saturated fatty acids and with a high protein concentration showed a negative association with fT3 and fT4 levels.
Collapse
|
158
|
Stavreva DA, Collins M, McGowan A, Varticovski L, Raziuddin R, Brody DO, Zhao J, Lee J, Kuehn R, Dehareng E, Mazza N, Pegoraro G, Hager GL. Mapping multiple endocrine disrupting activities in Virginia rivers using effect-based assays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145602. [PMID: 33592464 PMCID: PMC8026610 DOI: 10.1016/j.scitotenv.2021.145602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 06/01/2023]
Abstract
Water sources are frequently contaminated with natural and anthropogenic substances having known or suspected endocrine disrupting activities; however, these activities are not routinely measured and monitored. Phenotypic bioassays are a promising new approach for detection and quantitation of endocrine disrupting chemicals (EDCs). We developed cell lines expressing fluorescent chimeric constructs capable of detecting environmental contaminants which interact with multiple nuclear receptors. Using these assays, we tested water samples collected in the summers of 2016, 2017 and 2018 from two major Virginia rivers. Samples were concentrated 200× and screened for contaminants interacting with the androgen (AR), glucocorticoid (GR), aryl hydrocarbon (AhR) and thyroid receptors. Among 45 tested sites, over 70% had AR activity and 60% had AhR activity. Many sites were also positive for GR and TRβ activation (22% and 42%, respectively). Multiple sites were positive for more than one type of contaminants, indicating presence of complex mixtures. These activities may negatively impact river ecosystems and consequently human health.
Collapse
Affiliation(s)
- Diana A Stavreva
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.
| | - Michael Collins
- Center for Natural Capital, PO Box 901, Orange, VA, United States
| | - Andrew McGowan
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Lyuba Varticovski
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Razi Raziuddin
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - David Owen Brody
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States; Walt Whitman High School, 7100 Whittier Blvd, Bethesda, MD 20817, United States
| | - Jerry Zhao
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States; Walt Whitman High School, 7100 Whittier Blvd, Bethesda, MD 20817, United States
| | - Johnna Lee
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States; Walt Whitman High School, 7100 Whittier Blvd, Bethesda, MD 20817, United States
| | - Riley Kuehn
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States; Walt Whitman High School, 7100 Whittier Blvd, Bethesda, MD 20817, United States
| | - Elisabeth Dehareng
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States; Walt Whitman High School, 7100 Whittier Blvd, Bethesda, MD 20817, United States
| | - Nicholas Mazza
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States; Walt Whitman High School, 7100 Whittier Blvd, Bethesda, MD 20817, United States
| | - Gianluca Pegoraro
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
159
|
Handa S, Hassan I, Gilbert M, El-Masri H. Mechanistic Computational Model for Extrapolating In vitro Thyroid Peroxidase (TPO) Inhibition Data to Predict Serum Thyroid Hormone Levels in Rats. Toxicol Sci 2021; 183:36-48. [PMID: 34117770 DOI: 10.1093/toxsci/kfab074] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
High throughput (HTP) in vitro assays are developed to screen chemicals for their potential to inhibit thyroid hormones (THs) synthesis. Some of these experiments, such as the thyroid peroxidase (TPO) inhibition assay, are based on thyroid microsomal extracts. However, the regulation of thyroid disruption chemicals (TDCs) is based on THs in vivo serum levels. This necessitates the estimation of TDCs in vivo tissue levels in the thyroid where THs synthesis inhibition by TPO takes place. The in vivo tissue levels of chemicals are controlled by pharmacokinetic determinants such as absorption, distribution, metabolism and excretion (ADME), and can be described quantitatively in physiologically based pharmacokinetic (PBPK) models. An integrative computational model including chemical specific PBPK and TH kinetics models provides a mechanistic quantitative approach to translate thyroidal HTP in vitro assays to in vivo measures of circulating THs serum levels. This computational framework is developed to quantitatively establish the linkage between applied dose, chemical thyroid tissue levels, thyroid TPO inhibition potential, and in vivo TH serum levels. Once this link is established quantitively, the overall model is used to calibrate the TH kinetics parameters using experimental data for THs levels in thyroid tissue and serum for the two drugs Propylthiouracil (PTU) and Methimazole (MMI). The calibrated quantitative framework is then evaluated against literature data for the environmental chemical ethylenethiourea (ETU). The linkage of PBPK and TH kinetics models illustrates a computational framework that can be extrapolated to humans to screen chemicals based on their exposure levels and potential to disrupt serum THs levels in vivo.
Collapse
Affiliation(s)
- Sakshi Handa
- Center for Computational Toxicology and Exposure, Research Triangle Park, NC
| | - Iman Hassan
- Office of Air Quality Planning and Standards, Research Triangle Park, NC
| | - Mary Gilbert
- Center for Public Health and Environmental Assessment, Research Triangle Park, NC
| | - Hisham El-Masri
- Center for Computational Toxicology and Exposure, Research Triangle Park, NC
| |
Collapse
|
160
|
A Review of the Significance in Measuring Preoperative and Postoperative Carcinoembryonic Antigen (CEA) Values in Patients with Medullary Thyroid Carcinoma (MTC). ACTA ACUST UNITED AC 2021; 57:medicina57060609. [PMID: 34208296 PMCID: PMC8230872 DOI: 10.3390/medicina57060609] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022]
Abstract
Background and Objectives: Medullary thyroid carcinoma (MTC) accounts for 1–2% of all thyroid malignancies, and it originates from parafollicular “C” cells. Carcinoembryonic antigen (CEA) is a tumor marker, mainly for gastrointestinal malignancies. There are references in literature where elevated CEA levels may be the first finding in MTC. The aim of this study is to determine the importance of measuring preoperative and postoperative CEA values in patients with MTC and to define the clinical significance of the correlation between CEA and the origin of C cells. Materials and Methods: The existing and relevant literature was reviewed by searching for articles and specific keywords in the scientific databases of PubMedCentraland Google Scholar (till December 2020). Results: CEA has found its place, especially at the preoperative level, in the diagnostic approach of MTC. Preoperative CEA values >30 ng/mL indicate extra-thyroid disease, while CEA values >100 ng/mL are associated with lymph node involvement and distant metastases. The increase in CEA values preoperatively is associated with larger size of primary tumor, presence of lymph nodes, distant metastases and a poorer prognosis. The clinical significance of CEA values for the surgeon is the optimal planning of surgical treatment. In the recent literature, C cells seem to originate from the endoderm of the primitive anterior gut at the ultimobranchial bodies’ level. Conclusions: Although CEA is not a specific biomarker of the disease in MTC, itsmeasurement is useful in assessing the progression of the disease. The embryonic origin of C cells could explain the increased CEA values in MTC.
Collapse
|
161
|
Roa Dueñas OH, Koolhaas C, Voortman T, Franco OH, Ikram MA, Peeters RP, Chaker L. Thyroid Function and Physical Activity: A Population-Based Cohort Study. Thyroid 2021; 31:870-875. [PMID: 33198599 DOI: 10.1089/thy.2020.0517] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background: Thyroid hormones are important metabolic regulators exerting effects in multiple systemic functions including muscular and cardiorespiratory function. Thyroid hormones may influence physical activity levels. However, there are currently no studies evaluating the association between thyroid function and physical activity levels in the general population. Methods: In a population-based cohort study between 2006 and 2013, we assessed the cross-sectional and longitudinal (with a mean follow-up time of 5 years) association of serum thyrotropin (TSH) and free thyroxine (fT4) with physical activity (metabolic equivalent task [MET] hours per week). Information on physical activity was collected using a validated questionnaire (Longitudinal Aging Study Amsterdam, median 22.50 MET hours per week). The association of TSH and fT4 with physical activity was examined using linear regression models in the cross-sectional and longitudinal analyses, adjusted for age, sex, lifestyle factors, and cardiovascular disease. In sensitivity analyses, we examined the association between thyroid function and physical activity including only participants within the reference range of thyroid function. We additionally examined moderate and vigorous physical activity separately as outcomes. Results: We included 2470 participants for the cross-sectional analysis (mean age 57.3 years, 58% women) and 1907 participants for the longitudinal analysis (mean age 56.9 years). There was no association between TSH (mIU/L) or fT4 (ng/dL) and physical activity (β = 0.65, 95% confidence interval [CI, -1.67 to 2.98] and β = 2.76, [CI -7.15 to 12.66], respectively) on cross-sectional analysis. Similarly, in the longitudinal analyses, we observed no association of TSH (β = 1.16, [CI -1.31 to 3.63]) or fT4 (β = -6.63, [CI -17.06 to 3.80]) with physical activity. Conclusions: We did not observe an association between the endogenous thyroid hormone level and total physical activity. Further studies need to be performed to evaluate whether thyroid hormone replacement therapy is associated with physical activity.
Collapse
Affiliation(s)
| | - Chantal Koolhaas
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Oscar H Franco
- Institute of Social and Preventive Medicine (ISPM) Universitat Bern, Bern, Switzerland
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robin P Peeters
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Academic Center for Thyroid Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Layal Chaker
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Academic Center for Thyroid Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
162
|
Alhowail A. Molecular insights into the benefits of nicotine on memory and cognition (Review). Mol Med Rep 2021; 23:398. [PMID: 33786606 PMCID: PMC8025477 DOI: 10.3892/mmr.2021.12037] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/13/2020] [Indexed: 01/19/2023] Open
Abstract
The health risks of nicotine are well known, but there is some evidence of its beneficial effects on cognitive function. The present review focused on the reported benefits of nicotine in the brain and summarizes the associated underlying mechanisms. Nicotine administration can improve cognitive impairment in Alzheimer's disease (AD), and dyskinesia and memory impairment in Parkinson's disease (PD). In terms of its mechanism of action, nicotine slows the progression of PD by inhibiting Sirtuin 6, a stress‑responsive protein deacetylase, thereby decreasing neuronal apoptosis and improving neuronal survival. In AD, nicotine improves cognitive impairment by enhancing protein kinase B (also referred to as Akt) activity and stimulating phosphoinositide 3‑kinase/Akt signaling, which regulates learning and memory processes. Nicotine may also activate thyroid receptor signaling pathways to improve memory impairment caused by hypothyroidism. In healthy individuals, nicotine improves memory impairment caused by sleep deprivation by enhancing the phosphorylation of calmodulin‑dependent protein kinase II, an essential regulator of cell proliferation and synaptic plasticity. Furthermore, nicotine may improve memory function through its effect on chromatin modification via the inhibition of histone deacetylases, which causes transcriptional changes in memory‑related genes. Finally, nicotine administration has been demonstrated to rescue long‑term potentiation in individuals with sleep deprivation, AD, chronic stress and hypothyroidism, primarily by desensitizing α7 nicotinic acetylcholine receptors. To conclude, nicotine has several cognitive benefits in healthy individuals, as well as in those with cognitive dysfunction associated with various diseases. However, further research is required to shed light on the effect of acute and chronic nicotine treatment on memory function.
Collapse
Affiliation(s)
- Ahmad Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 52571, Qassim, Kingdom of Saudi Arabia
| |
Collapse
|
163
|
Guo H, Lin W, Yang L, Qiu Y, Kuang Y, Yang H, Zhang C, Li L, Li D, Tang R, Zhang X. Sub-chronic exposure to ammonia inhibits the growth of juvenile Wuchang bream (Megalobrama amblycephala) mainly by downregulation of growth hormone/insulin-like growth factor axis. ENVIRONMENTAL TOXICOLOGY 2021; 36:1195-1205. [PMID: 33720504 DOI: 10.1002/tox.23118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
In this study, healthy Wuchang bream (Megalobrama amblycephala) juveniles were exposed to 0, 5, 10, 20 and 30 mg/L total ammonia nitrogen for 30 days to elucidate toxic effects and mechanisms of ammonia on growth performance involved with the regulation of growth hormone/insulin-like growth factor (GH/IGF) and hypothalamic-pituitary-thyroid (HPT) axes. Our results showed that the increasing total ammonia nitrogen concentrations caused dose-depend decreases in the weight gain and specific growth rate but increases in the food conversion ratio and mortality in juvenile bream, indicating growth inhibitory effects induced by ammonia. Concurrently, GH, IGF-1 at protein and mRNA levels were significantly decreased in ammonia exposure groups (p < .05), while serum thyroid stimulating hormone, free thyroxine, free triiodothyronine levels were significantly reduced only in fish exposed to higher concentrations of 20 and 30 mg/L ammonia (p < .05), suggesting that ammonia exposure could perturb both GH/IGF-axis and HPT-axis functions. Furthermore, transcriptional levels of extracellular regulated protein kinases 2 (erk2), phosphatidylinositol 3-kinase (pi3k), protein kinase B (akt), target of rapamycin (tom) and ribosomal protein S6 kinase-polypeptide 1(s6k1) in the dorsal muscle were significantly down-regulated in the fish exposed to ammonia (p < .05). This fact indicated that MAPK/ERK pathway and PI3K/AKT pathway should be responsible for the growth inhibition. Combining the results of spearman correlation coefficient, it should be noted that the GH/IGF axis played a more important role in regulating the growth than the HPT axis in Wuchang bream under persistent ammonia stress.
Collapse
Affiliation(s)
- Honghui Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Wang Lin
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Liping Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yuming Qiu
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yu Kuang
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Hui Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Ce Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
- National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan, China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
- National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan, China
| | - Rong Tang
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
- National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan, China
| | - Xi Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
- National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan, China
| |
Collapse
|
164
|
Piras C, Pibiri M, Leoni VP, Balsamo A, Tronci L, Arisci N, Mariotti S, Atzori L. Analysis of metabolomics profile in hypothyroid patients before and after thyroid hormone replacement. J Endocrinol Invest 2021; 44:1309-1319. [PMID: 33025552 DOI: 10.1007/s40618-020-01434-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE The serum metabolic changes occurring during the transition from hypothyroidism to euthyroidism are not known. This study aimed to determine the metabolomic profile in hypothyroid patients before (HypoT0) and after (HypoT1) euthyroidism achieved through levothyroxine (L-T4) treatment. METHODS Eighteen patients with overt primary hypothyroidism were recruited for the study. All patients were treated with L-T4 to achieve euthyroidism. Thyrotropin (TSH), free thyroxine (FT4), free triiodothyronine (FT3) and metabolomics profiles were measured before and after 3 months of treatment. The euthyroid control group consisted of 28 healthy volunteers. Metabolomics analysis was performed using Nuclear Magnetic Resonance (NMR) spectroscopy. RESULTS 1H NMR-based metabolomics profiling of patients with newly diagnosed hypothyroidism (HypoT0) showed significantly higher levels of citrate, creatinine, glycerol, myo-inositol and serine, and lower levels of proline and taurine compared to controls. Interestingly, some metabolic changes were persistent three months after pharmacological treatments, despite normal serum TSH and thyroid hormone concentrations (HypoT1). When an Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) model was built to evaluate possible differences in the metabolic profile between HypoT0 and HypoT1, the data obtained were not significantly different. CONCLUSION These results suggest that metabolic changes in the patients with hypothyroidism may persist after normalization of serum levels of FT3, FT4, and TSH, which currently represent the gold standard in laboratory testing for diagnosis and evaluation of thyroid pathology. So, the metabolomics approach may contribute to integrate classical hormone assays and to determine the euthyroid status achievement with greater efficacy.
Collapse
Affiliation(s)
- C Piras
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - M Pibiri
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - V P Leoni
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - A Balsamo
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - L Tronci
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - N Arisci
- Department of Medical Sciences and Public Health, University of Cagliari, 09042, Monserrato, Italy
| | - S Mariotti
- Department of Medical Sciences and Public Health, University of Cagliari, 09042, Monserrato, Italy.
| | - L Atzori
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| |
Collapse
|
165
|
Bao MH, Xu XM, Huo DL, Cao J, Zhao ZJ. The effect of aggression II: Acclimation to a high ambient temperature reduces territorial aggression in male striped hamsters (Cricetulus barabensis). Horm Behav 2021; 132:104993. [PMID: 33991799 DOI: 10.1016/j.yhbeh.2021.104993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/01/2022]
Abstract
Thyroid hormones have a profound influence on development, cellular differentiation and metabolism, and are also suspected of playing a role in aggression. We measured territorial aggression, body temperature (Tb) and serum thyroid hormones levels of male striped hamsters (Cricetulus barabensis) acclimated to either cold (5 °C), cool (21 °C) or hot (34 °C) ambient temperatures. The effects of methimazole on territorial aggression, food intake, metabolic rate and serum thyroid hormone levels, were also examined. Territorial aggression was significantly lower in male hamsters acclimated to the hot temperature compared to those acclimated to the cool or cold temperatures. Tb significantly increased during aggressive territorial interactions with intruders but did not significantly differ among the three temperature treatments. Serum T3, T4 and cortisol levels of hamsters acclimated to 34 °C were significantly lower than those acclimated to 21 °C. In addition to significantly reducing territorial aggression, treatment with methimazole also significantly reduced serum T3 and T4 levels, Tb and metabolic rate. These results suggest that exposure to high temperatures reduces the capacity of hamsters to dissipate heat causing them to lower their metabolic rate, which, in turn, causes them to reduce territorial aggression to prevent hyperthermia. The lower metabolic rate mediated by down-regulated thyroid hormones inhibits territorial aggression and could thereby determine the outcome of territorial conflicts.
Collapse
Affiliation(s)
- Meng-Huan Bao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xiao-Ming Xu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Da-Liang Huo
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jing Cao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhi-Jun Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
166
|
Schiera G, Di Liegro CM, Di Liegro I. Involvement of Thyroid Hormones in Brain Development and Cancer. Cancers (Basel) 2021; 13:2693. [PMID: 34070729 PMCID: PMC8197921 DOI: 10.3390/cancers13112693] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/21/2022] Open
Abstract
The development and maturation of the mammalian brain are regulated by thyroid hormones (THs). Both hypothyroidism and hyperthyroidism cause serious anomalies in the organization and function of the nervous system. Most importantly, brain development is sensitive to TH supply well before the onset of the fetal thyroid function, and thus depends on the trans-placental transfer of maternal THs during pregnancy. Although the mechanism of action of THs mainly involves direct regulation of gene expression (genomic effects), mediated by nuclear receptors (THRs), it is now clear that THs can elicit cell responses also by binding to plasma membrane sites (non-genomic effects). Genomic and non-genomic effects of THs cooperate in modeling chromatin organization and function, thus controlling proliferation, maturation, and metabolism of the nervous system. However, the complex interplay of THs with their targets has also been suggested to impact cancer proliferation as well as metastatic processes. Herein, after discussing the general mechanisms of action of THs and their physiological effects on the nervous system, we will summarize a collection of data showing that thyroid hormone levels might influence cancer proliferation and invasion.
Collapse
Affiliation(s)
- Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.S.); (C.M.D.L.)
| | - Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.S.); (C.M.D.L.)
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata) (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
167
|
Panda S, Kar A, Singh M, Singh RK, Ganeshpurkar A. Syringic acid, a novel thyroid hormone receptor-β agonist, ameliorates propylthiouracil-induced thyroid toxicity in rats. J Biochem Mol Toxicol 2021; 35:e22814. [PMID: 34047416 DOI: 10.1002/jbt.22814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/25/2021] [Accepted: 04/08/2021] [Indexed: 11/06/2022]
Abstract
The aim of this study was to evaluate the potential of syringic acid (SA) against propylthiouracil (PTU)-induced hypothyroidism in rats. SA at a prestandardized dose, 50 mg/kg/day, was orally administered to PTU-induced hypothyroid rats for 30 days, and alterations in the levels of serum triiodothyronine (T3 ), thyroxine (T4 ), thyrotropin (TSH), alanine transaminase (ALT), and aspartate transaminase (AST); tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6); total cholesterol (CHOL) and triglycerides (TG); hepatic lipid peroxidation (LPO) and antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione content), as well as histological changes in liver and thyroid were examined. The molecular interactions of the ligand, SA, with thyroid-related protein targets, such as human thyroid hormone receptor β (hTRβ), and thyroid peroxidase (TPO) protein, were studied using molecular docking. Whereas in hypothyroid animals, T4 , T3 , and antioxidants were decreased, there was an increase in TSH, TNF-α, IL-6, ALT, AST, and hepatic LPO; administration of SA in PTU-induced animals reversed all these indices to near normal levels. SA also improved the histological features of liver and thyroid gland. Our study clearly demonstrates SA as a novel thyroid agonist for augmenting the thyroid functions in rats. Molecular docking analysis reveals that SA possesses good binding affinity toward both the targets, hTRβ and TPO. Through this approach, for the first time we provide the evidence for SA as a novel thyroid agonist and suggest a receptor-mediated mechanism for its thyroid stimulatory potential.
Collapse
Affiliation(s)
- Sunanda Panda
- School of Life Sciences, Devi Ahilya University, Indore, India
| | - Anand Kar
- School of Life Sciences, Devi Ahilya University, Indore, India
| | - Meenakshi Singh
- Department of Medicinal Chemistry, Banaras Hindu University, Varanasi, India
| | | | - Ankit Ganeshpurkar
- Department of Medicinal Chemistry, Banaras Hindu University, Varanasi, India.,Department of Pharmaceutical Engineering and Technology, Banaras Hindu University, Varanasi, India
| |
Collapse
|
168
|
Abstract
The present review traces the road leading to discovery of L-thyroxine, thyroid hormone (3,5,3´-triiodo-L-thyronine, T3) and its cognate nuclear receptors. Thyroid hormone is a pleio-tropic regulator of growth, differentiation, and tissue homeostasis in higher organisms. The major site of the thyroid hormone action is predominantly a cell nucleus. T3 specific binding sites in the cell nuclei have opened a new era in the field of the thyroid hormone receptors (TRs) discovery. T3 actions are mediated by high affinity nuclear TRs, TRalpha and TRbeta, which function as T3-activated transcription factors playing an essential role as transcription-modulating proteins affecting the transcriptional responses in target genes. Discovery and characterization of nuclear retinoid X receptors (RXRs), which form with TRs a heterodimer RXR/TR, positioned RXRs at the epicenter of molecular endocrinology. Transcriptional control via nuclear RXR/TR heterodimer represents a direct action of thyroid hormone. T3 plays a crucial role in the development of brain, it exerts significant effects on the cardiovascular system, skeletal muscle contractile function, bone development and growth, both female and male reproductive systems, and skin. It plays an important role in maintaining the hepatic, kidney and intestine homeostasis and in pancreas, it stimulates the beta-cell proliferation and survival. The TRs cross-talk with other signaling pathways intensifies the T3 action at cellular level. The role of thyroid hormone in human cancers, acting via its cognate nuclear receptors, has not been fully elucidated yet. This review is aimed to describe the history of T3 receptors, starting from discovery of T3 binding sites in the cell nuclei to revelation of T3 receptors as T3-inducible transcription factors in relation to T3 action at cellular level. It also focuses on milestones of investigation, comprising RXR/TR dimerization, cross-talk between T3 receptors, and other regulatory pathways within the cell and mainly on genomic action of T3. This review also focuses on novel directions of investigation on relationships between T3 receptors and cancer. Based on the update of available literature and the author's experimental experience, it is devoted to clinicians and medical students.
Collapse
|
169
|
Sun J, Letcher RJ, Waugh CA, Jaspers VLB, Covaci A, Fernie KJ. Influence of perfluoroalkyl acids and other parameters on circulating thyroid hormones and immune-related microRNA expression in free-ranging nestling peregrine falcons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145346. [PMID: 33736417 DOI: 10.1016/j.scitotenv.2021.145346] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Exposure to certain perfluoroalkyl acids (PFAAs) can have considerable effects on the endocrine and immune systems, although such effects remain largely uncharacterized in wildlife. Using an apex avian predator, we investigated possible relationships of thyroid hormones (THs), specifically free (F) and total (T) thyroxine (FT4; TT4) and triiodothyronine (FT3; TT3), and the expression of an immune-related microRNA biomarker (i.e., miR-155), with the concentrations of 11 PFAAs in nestling peregrine falcons (Falco peregrinus). Nestling peregrines (n = 56; usually two chicks of each sex per nest) were blood sampled when 23 ± 4 days old in urban and rural regions of the Laurentian Great Lakes Basin (Ontario, Canada) in 2016 and 2018. The circulating concentrations of several PFAAs were significantly associated with THs and estimated thyroid gland activity (TT3:TT4; FT3:FT4), including PFHxS (FT3; FT3:FT4), PFDS (TT3; TT3:TT4), PFOA (TT4; FT3:FT4), PFTeDA (TT4; FT3:FT4), PFHxDA (TT4; TT3:TT4) and ΣPFCAs (TT4). Our novel evaluation of miR-155 in peregrine nestlings identified significantly negative relationships of plasma miR-155 counts with PFHxS and PFOA concentrations, indicating potential down-regulation of miR-155 expression and impaired immunity. Several PFAA homologues significantly predicted the variation in THs and miR-155 in conjunction with year (e.g., inter-annual differences in weather, ambient temperature, rainfall), region (urban/rural), nestling age, and/or diet (trophic position; δ15N), which suggests that multiple environmental and biological stressors, including PFAA exposure, influenced thyroid activity and immune function in these nestlings. Further research is warranted to identify the mechanisms and additional impacts of PFAA-related thyroid and immune disruption on the growth, development, and health risks in developing birds.
Collapse
Affiliation(s)
- Jiachen Sun
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, CN-510632 Guangzhou, Guangdong, China
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, K1A 0H3 Ottawa, Ontario, Canada
| | - Courtney A Waugh
- Environmental Toxicology Group, Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway
| | - Veerle L B Jaspers
- Environmental Toxicology Group, Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway
| | - Adrian Covaci
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, BE-2610 Wilrijk, Belgium
| | - Kim J Fernie
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, L7S 1A1 Burlington, Ontario, Canada.
| |
Collapse
|
170
|
Wasyluk W, Wasyluk M, Zwolak A. Sepsis as a Pan-Endocrine Illness-Endocrine Disorders in Septic Patients. J Clin Med 2021; 10:jcm10102075. [PMID: 34066289 PMCID: PMC8152097 DOI: 10.3390/jcm10102075] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022] Open
Abstract
Sepsis is defined as "life-threatening organ dysfunction caused by a dysregulated host response to infection". One of the elements of dysregulated host response is an endocrine system disorder. Changes in its functioning in the course of sepsis affect almost all hormonal axes. In sepsis, a function disturbance of the hypothalamic-pituitary-adrenal axis has been described, in the range of which the most important seems to be hypercortisolemia in the acute phase. Imbalance in the hypothalamic-pituitary-thyroid axis is also described. The most typical manifestation is a triiodothyronine concentration decrease and reverse triiodothyronine concentration increase. In the somatotropic axis, a change in the secretion pattern of growth hormone and peripheral resistance to this hormone has been described. In the hypothalamic-pituitary-gonadal axis, the reduction in testosterone concentration in men and the stress-induced "hypothalamic amenorrhea" in women have been described. Catecholamine and β-adrenergic stimulation disorders have also been reported. Disorders in the endocrine system are part of the "dysregulated host response to infection". They may also affect other components of this dysregulated response, such as metabolism. Hormonal changes occurring in the course of sepsis require further research, not only in order to explore their potential significance in therapy, but also due to their promising prognostic value.
Collapse
Affiliation(s)
- Weronika Wasyluk
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, 20-093 Lublin, Poland;
- Doctoral School, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence:
| | - Martyna Wasyluk
- Student’s Scientific Association at Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Agnieszka Zwolak
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|
171
|
Thibaut R, Gage MC, Pineda-Torra I, Chabrier G, Venteclef N, Alzaid F. Liver macrophages and inflammation in physiology and physiopathology of non-alcoholic fatty liver disease. FEBS J 2021; 289:3024-3057. [PMID: 33860630 PMCID: PMC9290065 DOI: 10.1111/febs.15877] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/05/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022]
Abstract
Non‐alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome, being a common comorbidity of type 2 diabetes and with important links to inflammation and insulin resistance. NAFLD represents a spectrum of liver conditions ranging from steatosis in the form of ectopic lipid storage, to inflammation and fibrosis in nonalcoholic steatohepatitis (NASH). Macrophages that populate the liver play important roles in maintaining liver homeostasis under normal physiology and in promoting inflammation and mediating fibrosis in the progression of NAFLD toward to NASH. Liver macrophages are a heterogenous group of innate immune cells, originating from the yolk sac or from circulating monocytes, that are required to maintain immune tolerance while being exposed portal and pancreatic blood flow rich in nutrients and hormones. Yet, liver macrophages retain a limited capacity to raise the alarm in response to danger signals. We now know that macrophages in the liver play both inflammatory and noninflammatory roles throughout the progression of NAFLD. Macrophage responses are mediated first at the level of cell surface receptors that integrate environmental stimuli, signals are transduced through multiple levels of regulation in the cell, and specific transcriptional programmes dictate effector functions. These effector functions play paramount roles in determining the course of disease in NAFLD and even more so in the progression towards NASH. The current review covers recent reports in the physiological and pathophysiological roles of liver macrophages in NAFLD. We emphasise the responses of liver macrophages to insulin resistance and the transcriptional machinery that dictates liver macrophage function.
Collapse
Affiliation(s)
- Ronan Thibaut
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université, Université de Paris, France
| | - Matthew C Gage
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Inès Pineda-Torra
- Department of Medicine, Centre for Cardiometabolic and Vascular Science, University College London, UK
| | - Gwladys Chabrier
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Nicolas Venteclef
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université, Université de Paris, France
| | - Fawaz Alzaid
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université, Université de Paris, France
| |
Collapse
|
172
|
Candelotti E, De Luca R, Megna R, Maiolo M, De Vito P, Gionfra F, Percario ZA, Borgatti M, Gambari R, Davis PJ, Lin HY, Polticelli F, Persichini T, Colasanti M, Affabris E, Pedersen JZ, Incerpi S. Inhibition by Thyroid Hormones of Cell Migration Activated by IGF-1 and MCP-1 in THP-1 Monocytes: Focus on Signal Transduction Events Proximal to Integrin αvβ3. Front Cell Dev Biol 2021; 9:651492. [PMID: 33898447 PMCID: PMC8060509 DOI: 10.3389/fcell.2021.651492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/04/2021] [Indexed: 02/04/2023] Open
Abstract
Interaction between thyroid hormones and the immune system is reported in the literature. Thyroid hormones, thyroxine, T4, but also T3, act non-genomically through mechanisms that involve a plasma membrane receptor αvβ3 integrin, a co-receptor for insulin-like growth factor-1 (IGF-1). Previous data from our laboratory show a crosstalk between thyroid hormones and IGF-1 because thyroid hormones inhibit the IGF-1-stimulated glucose uptake and cell proliferation in L-6 myoblasts, and the effects are mediated by integrin αvβ3. IGF-1 also behaves as a chemokine, being an important factor for tissue regeneration after damage. In the present study, using THP-1 human leukemic monocytes, expressing αvβ3 integrin in their cell membrane, we focused on the crosstalk between thyroid hormones and either IGF-1 or monocyte chemoattractant protein-1 (MCP-1), studying cell migration and proliferation stimulated by the two chemokines, and the role of αvβ3 integrin, using inhibitors of αvβ3 integrin and downstream pathways. Our results show that IGF-1 is a potent chemoattractant in THP-1 monocytes, stimulating cell migration, and thyroid hormone inhibits the effect through αvβ3 integrin. Thyroid hormone also inhibits IGF-1-stimulated cell proliferation through αvβ3 integrin, an example of a crosstalk between genomic and non-genomic effects. We also studied the effects of thyroid hormone on cell migration and proliferation induced by MCP-1, together with the pathways involved, by a pharmacological approach and docking simulation. Our findings show a different downstream signaling for IGF-1 and MCP-1 in THP-1 monocytes mediated by the plasma membrane receptor of thyroid hormones, integrin αvβ3.
Collapse
Affiliation(s)
| | - Roberto De Luca
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Roberto Megna
- Department of Science, Roma Tre University, Rome, Italy
| | | | - Paolo De Vito
- Department of Biology, Tor Vergata University, Rome, Italy
| | - Fabio Gionfra
- Department of Science, Roma Tre University, Rome, Italy
| | | | - Monica Borgatti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Paul J Davis
- Department of Medicine, Albany Medical College, Albany, NY, United States.,Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, United States
| | - Hung-Yun Lin
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, United States.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
173
|
Tanizaki Y, Bao L, Shi B, Shi YB. A Role of Endogenous Histone Acetyltransferase Steroid Hormone Receptor Coactivator 3 in Thyroid Hormone Signaling During Xenopus Intestinal Metamorphosis. Thyroid 2021; 31:692-702. [PMID: 33076783 PMCID: PMC8195878 DOI: 10.1089/thy.2020.0410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background: Thyroid hormone (triiodothyronine [T3]) plays an important role in regulating vertebrate developmental, cellular, and metabolic processes via T3 receptor (TR). Liganded TR recruit coactivator complexes that include steroid receptor coactivators (SRC1, SRC2 or SRC3), which are histone acetyltransferases, to T3-responsive promoters. The functions of endogenous coactivators during T3-dependent mammalian adult organ development remain largely unclear, in part, due to the difficulty to access and manipulate late-stage embryos and neonates. We use Xenopus metamorphosis as a model for postembryonic development in vertebrates. This process is controlled by T3, involves drastic changes in every organ/tissue, and can be easily manipulated. We have previously found that SRC3 was upregulated in the intestine during amphibian metamorphosis. Methods: To determine the function of endogenous SRC3 during intestinal remodeling, we have generated Xenopus tropicalis animals lacking a functional SRC3 gene and analyzed the resulting phenotype. Results: Although removing SRC3 had no apparent effect on external development and animal gross morphology, the SRC3 (-/-) tadpoles displayed a reduction in the acetylation of histone H4 in the intestine compared with that in wild-type animals. Further, the expression of TR target genes was also reduced in SRC3 (-/-) tadpoles during intestinal remodeling. Importantly, SRC3 (-/-) tadpoles had inhibited/delayed intestinal remodeling during natural and T3-induced metamorphosis, including reduced adult intestinal stem cell proliferation and apoptosis of larval epithelial cells. Conclusion: Our results, thus, demonstrate that SRC3 is a critical component of the TR-signaling pathway in vivo during intestinal remodeling.
Collapse
Affiliation(s)
- Yuta Tanizaki
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Lingyu Bao
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, P.R. China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, P.R. China
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Address correspondence to: Yun-Bo Shi, PhD, Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
174
|
Abstract
Thyroid hormone (T3) is critical not only for organ function and metabolism in the adult but also for animal development. This is particularly true during the neonatal period when T3 levels are high in mammals. Many processes during this postembryonic developmental period resemble those during amphibian metamorphosis. Anuran metamorphosis is perhaps the most dramatic developmental process controlled by T3 and affects essentially all organs/tissues, often in an organ autonomous manner. This offers a unique opportunity to study how T3 regulates vertebrate development. Earlier transgenic studies in the pseudo-tetraploid anuran Xenopus laevis revealed that T3 receptors (TRs) are necessary and sufficient for mediating the effects of T3 during metamorphosis. Recent gene knockout studies with gene-editing technologies in the highly related diploid anuran Xenopus tropicalis showed, surprisingly, that TRs are not required for most metamorphic transformations, although tadpoles lacking TRs are stalled at the climax of metamorphosis and eventually die. Analyses of the changes in different organs suggest that removal of TRs enables premature development of many adult tissues, likely due to de-repression of T3-inducible genes, while preventing the degeneration of tadpole-specific tissues, which is possibly responsible for the eventual lethality. Comparison with findings in TR knockout mice suggests both conservation and divergence in TR functions, with the latter likely due to the greatly reduced need, if any, to remove embryo/prenatal-specific tissues during mammalian postembryonic development.
Collapse
Affiliation(s)
- Yun-Bo Shi
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Correspondence: Yun-Bo Shi, Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, 49 Convent Drive, Building 49, Room 6A82, MSC 4480, Bethesda, MD 20892, USA.
| |
Collapse
|
175
|
Horie Y, Chiba T, Takahashi C, Tatarazako N, Iguchi T. Influence of triphenyltin on morphologic abnormalities and the thyroid hormone system in early-stage zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2021; 242:108948. [PMID: 33285321 DOI: 10.1016/j.cbpc.2020.108948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 10/22/2022]
Abstract
In the present study, we assessed the negative effects of triphenyltin (TPT) on zebrafish (Danio rerio) by exposing embryos and early-stage larvae to various concentrations of TPT from 2 h after fertilization (haf) until 30 days after hatching (dah). Whether test groups were fed or fasted during ecotoxicity studies using fish models has varied historically, and whether this experimental condition influences test results is unknown. Here, we confirmed that the lethal concentration of TPT to embryo and early-stage larvae (i.e., 3 dah or younger) showed in fed (lowest observed effect concentration (LOEC); 6.34 μg/L) and fasted (LOEC; 6.84 μg/L) groups. In addition, 84% and 100% of the larvae in the 2.95 and 6.64 μg/L exposure groups, respectively, had uninflated swim bladders; all affected larvae died within 9 dah. This finding suggests that morphologic abnormalities in early larval zebrafish are useful as endpoints for predicting the lethality of chemical substances after hatching. We then assessed the expression of several genes in the thyroid hormone pathway, which regulates swim bladder development in many fish species, including zebrafish. Larvae exposed to 6.64 μg/L TPT showed significant increases in the mRNA expression levels of thyroid hormone receptor α (trα) and trβ but not of thyroid stimulating hormone β subunit. These findings suggest that TPT disrupts the thyroid system in zebrafish.
Collapse
Affiliation(s)
- Yoshifumi Horie
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi Nakano Simoshinjo, Akita 010-0195, Japan.
| | - Takashi Chiba
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi Nakano Simoshinjo, Akita 010-0195, Japan
| | - Chiho Takahashi
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi Nakano Simoshinjo, Akita 010-0195, Japan
| | - Norihisa Tatarazako
- Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, Tarumi 3-5-7, Matsuyama 790-8566, Japan
| | - Taisen Iguchi
- Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| |
Collapse
|
176
|
Bahtiyar N, Yoldas A, Abbak Y, Dariyerli N, Toplan S. Erythroid microRNA and oxidant status alterations in l-thyroxine-induced hyperthyroid rats: effects of selenium supplementation. Minerva Endocrinol (Torino) 2021; 46:107-115. [PMID: 33779112 DOI: 10.23736/s2724-6507.20.03154-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Hypermetabolic state in hyperthyroidism causes oxidative stress. Erythrocytes are the cells that are involved in oxidant equilibrium in an organism and contain microRNA (miRNA). Selenium, which is an essential element for an organism, has antioxidant properties. The present study was aimed at investigating the effects of selenium supplementation in hyperthyroidism, on pro- and antioxidant enzymes, and miRNA (miR-144 and miR-451) expressions in the erythrocytes. METHODS Forty-eight Sprague-Dawley male rats were divided into 6 groups; control group, group fed with 0.5 mg/kg sodium selenite; group fed with 1 mg/kg sodium selenite; hyperthyroid group; hyperthyroid group fed with 0.5 mg/kg sodium selenite; and hyperthyroid group fed with 1 mg/kg sodium selenite. Malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), miR-144, and miR-451 expression levels were studied in erythrocyte hemolysates. RESULTS MDA levels were increased in the hyperthyroid group compared to the control group, and the group fed with 0.5 mg/kg sodium selenite (P<0.001 and P<0.01, respectively). GSH levels were increased in the hyperthyroid group and the hyperthyroid group fed with 0.5 mg/kg sodium selenite compared to the control group (P<0.001, and P<0.05, respectively). GSH levels of the hyperthyroid group fed with 1 mg/kg sodium selenite were decreased when compared with the hyperthyroid group (P<0.05). SOD levels of the hyperthyroid group were increased when compared with the control group (P<0.05, and P<0.001, respectively). Similarly, SOD levels of the hyperthyroid group fed with 1 mg/kg sodium selenite were lower than the hyperthyroid group (P<0.01). miR-144 values were increased in the hyperthyroid group and the hyperthyroid group fed with 0.5 mg/kg sodium selenite compared to the control group (P<0.001, and P<0.05 respectively). miR-451 expression was increased significantly in the hyperthyroid group compared to the control group (P<0.05). CONCLUSIONS Our findings showed that MDA, SOD and GSH levels increased, and miR-144 and miR-451 expressions changed in hyperthyroidism. Supplementation of 1 mg/kg sodium selenite was more effective than 0.5 mg/kg sodium selenite for normalizing the MDA, GSH, SOD, and miRNA levels in the hyperthyroid group.
Collapse
Affiliation(s)
- Nurten Bahtiyar
- Department of Biophysics, University Hospital of Cerrahpasa, Istanbul, Turkey -
| | - Aysun Yoldas
- Department of Biophysics, University Hospital of Cerrahpasa, Istanbul, Turkey
| | - Yavuz Abbak
- Department of Biophysics, University Hospital of Cerrahpasa, Istanbul, Turkey
| | - Nuran Dariyerli
- Department of Physiology, University Hospital of Cerrahpasa, Istanbul, Turkey
| | - Selmin Toplan
- Department of Biophysics, University Hospital of Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
177
|
Xu T, Yang Y, Huang X, Ren J, Xu T, Xie W. Lipidomic Perturbations in Cynomolgus Monkeys are Regulated by Thyroid Stimulating Hormone. Front Mol Biosci 2021; 8:640387. [PMID: 33791338 PMCID: PMC8006939 DOI: 10.3389/fmolb.2021.640387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/26/2021] [Indexed: 11/15/2022] Open
Abstract
Thyroid disease affects an estimated 200 million people worldwide, and is commonly associated with increased blood lipid levels. However, the mechanism by which thyroid-stimulating hormone (TSH) affects lipid profiles is not clear. Twenty-four cynomolgus monkeys were treated with a novel exogenous recombinant human TSH (rhTSH) (SNA001) at 9 μg kg−1, 22 μg kg−1, or 54 μg kg−1, and reference rhTSH (Thyrogen®) at 22 μg kg−1. The primary TSH (SNA001) pharmacokinetic (PK) parameters increased in a dose-dependent manner across the dose range of 9 μg kg−1, 22 μg kg−1, or 54 μg kg−1. Peak triiodothyronine (T3) and thyroxine (T4) levels were reached within 24 h after rhTSH administration, which was delayed by approximately 20 h. In total, 420 lipid species were detected and quantified by ultra-performance liquid chromatography high resolution spectrometry (UPLC-HR-MS)-based lipidomics. Notably, peak levels of lipid accumulation, particularly sphingomyelin (SM) and triglycerides (TG), appeared at 4 and 24 h, which was consistent with the pattern of TSH and T3/T4 levels, respectively. According to weighted correlation network analysis (WGCNA), perturbations of many lipid species were strongly correlated with TSH and T3/T4 levels. TSH and the stimulated T3/T4 levels and lipid profiles following SNA001 administration were comparable to those after administration of the reference rhTSH (Thyrogen®). The plasma lipidome and changes in lipid levels after rhTSH stimulation were associated with TSH and T3/T4 concentrations. T3/T4 and lipid profiles were delayed after TSH stimulation. Such phenomena require further exploration.
Collapse
Affiliation(s)
- Tao Xu
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Sciences and Technology, Southeast University, Nanjing, China.,The Therapeutic Antibody Research Center of SEU-Alphamab, Southeast University, Nanjing, China
| | - Yanling Yang
- School of Pharmacy, Yantai University, Yantai, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianhong Ren
- Suzhou Bionovogene Metabolomics Platform, Jiangsu, China
| | - Ting Xu
- The Therapeutic Antibody Research Center of SEU-Alphamab, Southeast University, Nanjing, China
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Sciences and Technology, Southeast University, Nanjing, China.,The Therapeutic Antibody Research Center of SEU-Alphamab, Southeast University, Nanjing, China
| |
Collapse
|
178
|
Shi YB, Shibata Y, Tanizaki Y, Fu L. The development of adult intestinal stem cells: Insights from studies on thyroid hormone-dependent anuran metamorphosis. VITAMINS AND HORMONES 2021; 116:269-293. [PMID: 33752821 DOI: 10.1016/bs.vh.2021.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vertebrates organ development often takes place in two phases: initial formation and subsequent maturation into the adult form. This is exemplified by the intestine. In mouse, the intestine at birth has villus, where most differentiated epithelial cells are located, but lacks any crypts, where adult intestinal stem cells reside. The crypt is formed during the first 3 weeks after birth when plasma thyroid hormone (T3) levels are high. Similarly, in anurans, the intestine undergoes drastic remodeling into the adult form during metamorphosis in a process completely dependent on T3. Studies on Xenopus metamorphosis have revealed important clues on the formation of the adult intestine during metamorphosis. Here we will review our current understanding on how T3 induces the degeneration of larval epithelium and de novo formation of adult intestinal stem cells. We will also discuss the mechanistic conservations in intestinal development between anurans and mammals.
Collapse
Affiliation(s)
- Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States.
| | - Yuki Shibata
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Yuta Tanizaki
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
179
|
Shibata Y, Tanizaki Y, Zhang H, Lee H, Dasso M, Shi YB. Thyroid Hormone Receptor Is Essential for Larval Epithelial Apoptosis and Adult Epithelial Stem Cell Development but Not Adult Intestinal Morphogenesis during Xenopus tropicalis Metamorphosis. Cells 2021; 10:cells10030536. [PMID: 33802526 PMCID: PMC8000126 DOI: 10.3390/cells10030536] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 12/23/2022] Open
Abstract
Vertebrate postembryonic development is regulated by thyroid hormone (T3). Of particular interest is anuran metamorphosis, which offers several unique advantages for studying the role of T3 and its two nuclear receptor genes, TRα and TRβ, during postembryonic development. We have recently generated TR double knockout (TRDKO) Xenopus tropicalis animals and reported that TR is essential for the completion of metamorphosis. Furthermore, TRDKO tadpoles are stalled at the climax of metamorphosis before eventual death. Here we show that TRDKO intestine lacked larval epithelial cell death and adult stem cell formation/proliferation during natural metamorphosis. Interestingly, TRDKO tadpole intestine had premature formation of adult-like epithelial folds and muscle development. In addition, T3 treatment of premetamorphic TRDKO tadpoles failed to induce any metamorphic changes in the intestine. Furthermore, RNA-seq analysis revealed that TRDKO altered the expression of many genes in biological pathways such as Wnt signaling and the cell cycle that likely underlay the inhibition of larval epithelial cell death and adult stem cell development caused by removing both TR genes. Our data suggest that liganded TR is required for larval epithelial cell degeneration and adult stem cell formation, whereas unliganded TR prevents precocious adult tissue morphogenesis such as smooth-muscle development and epithelial folding.
Collapse
Affiliation(s)
- Yuki Shibata
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (Y.S.); (Y.T.)
| | - Yuta Tanizaki
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (Y.S.); (Y.T.)
| | - Hongen Zhang
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA;
| | - Hangnoh Lee
- Section on Cell Cycle Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (H.L.); (M.D.)
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mary Dasso
- Section on Cell Cycle Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (H.L.); (M.D.)
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (Y.S.); (Y.T.)
- Correspondence: ; Tel.: +1-301-402-1004; Fax: +1-301-402-1323
| |
Collapse
|
180
|
Jonklaas J, Bianco AC, Cappola AR, Celi FS, Fliers E, Heuer H, McAninch EA, Moeller LC, Nygaard B, Sawka AM, Watt T, Dayan CM. Evidence-Based Use of Levothyroxine/Liothyronine Combinations in Treating Hypothyroidism: A Consensus Document. Eur Thyroid J 2021; 10:10-38. [PMID: 33777817 PMCID: PMC7983670 DOI: 10.1159/000512970] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Fourteen clinical trials have not shown a consistent benefit of combination therapy with levothyroxine (LT4) and liothyronine (LT3). Despite the publication of these trials, combination therapy is widely used and patients reporting benefit continue to generate patient and physician interest in this area. Recent scientific developments may provide insight into this inconsistency and guide future studies. METHODS The American Thyroid Association (ATA), British Thyroid Association (BTA), and European Thyroid Association (ETA) held a joint conference on November 3, 2019 (live-streamed between Chicago and London) to review new basic science and clinical evidence regarding combination therapy with presentations and input from 12 content experts. After the presentations, the material was synthesized and used to develop Summary Statements of the current state of knowledge. After review and revision of the material and Summary Statements, there was agreement that there was equipoise for a new clinical trial of combination therapy. Consensus Statements encapsulating the implications of the material discussed with respect to the design of future clinical trials of LT4/LT3 combination therapy were generated. Authors voted upon the Consensus Statements. Iterative changes were made in several rounds of voting and after comments from ATA/BTA/ETA members. RESULTS Of 34 Consensus Statements available for voting, 28 received at least 75% agreement, with 13 receiving 100% agreement. Those with 100% agreement included studies being powered to study the effect of deiodinase and thyroid hormone transporter polymorphisms on study outcomes, inclusion of patients dissatisfied with their current therapy and requiring at least 1.2 µg/kg of LT4 daily, use of twice daily LT3 or preferably a slow-release preparation if available, use of patient-reported outcomes as a primary outcome (measured by a tool with both relevant content validity and responsiveness) and patient preference as a secondary outcome, and utilization of a randomized placebo-controlled adequately powered double-blinded parallel design. The remaining statements are presented as potential additional considerations. DISCUSSION This article summarizes the areas discussed and presents Consensus Statements to guide development of future clinical trials of LT4/LT3 combination therapy. The results of such redesigned trials are expected to be of benefit to patients and of value to inform future thyroid hormone replacement clinical practice guidelines treatment recommendations.
Collapse
Affiliation(s)
- Jacqueline Jonklaas
- Division of Endocrinology, Georgetown University, Washington, District of Columbia, USA
- *Jacqueline Jonklaas, Division of Endocrinology, Georgetown University, 4000 Reservoir Road, NW, Washington, DC 20007 (USA),
| | - Antonio C. Bianco
- Section of Adult and Pediatric Endocrinology and Metabolism, University of Chicago, Chicago, Illinois, USA
| | - Anne R. Cappola
- Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Francesco S. Celi
- Division of Endocrinology, Diabetes and Metabolism, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University Duisburg-Essen, Essen, Germany
| | | | - Lars C. Moeller
- Department of Endocrinology, Diabetes and Metabolism, University Duisburg-Essen, Essen, Germany
| | - Birte Nygaard
- Center for Endocrinology and Metabolism, Department of Internal Medicine, Herlev and Gentofte Hospitals, Herlev, Denmark
| | - Anna M. Sawka
- Division of Endocrinology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Torquil Watt
- Department of Endocrinology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Colin M. Dayan
- Thyroid Research Group, School of Medicine, Cardiff University, Cardiff, United Kingdom
- **Colin M. Dayan, Thyroid Research Group, School of Medicine, Cardiff University, C2 Link, Heath Park, Cardiff CF14 4XN (UK),
| |
Collapse
|
181
|
Al Shidhani A, Ullah I, AlSaffar H, Al Kindi A, Al Nabhani H, Al Yaarubi S. Thyroid Hormone Resistance due to a Novel De Novo Mutation in Thyroid Hormone Receptor Alpha: First Case Report from the Middle East and North Africa. Oman Med J 2021; 36:e226. [PMID: 33628462 PMCID: PMC7897355 DOI: 10.5001/omj.2021.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/02/2020] [Indexed: 11/24/2022] Open
Abstract
The physiological actions of thyroid hormone (TH) are mediated through TH alpha and TH beta receptors. Resistance to TH (RTH) is characterized by a lack of peripheral tissues’ response to the active form of TH. TH receptor beta has been extensively studied. Mutations in this receptor were considered the main reason for TH resistance for some time up until the discovery of mutations in TH receptor alpha (TRα) that has attained more focus and interest in recent years. A 13-year-old child with classic hypothyroidism features (coarse facies, growth and developmental delay, skeletal dysplasia, generalized muscular hypertrophy, and severe constipation) associated with near-normal thyroid hormone levels, which did not support the diagnosis of hypothyroidism biochemically. Therefore, progressing with whole-exome sequencing had revealed a de novo heterozygous mutation in a gene encoding TRα that establishes a diagnosis of RTHα. This case report demonstrates a rare form of TH resistance due to mutation of TRα. It also emphasizes that THs act through distinctive receptor subtypes in different target tissues. Moreover, this report aims to raise awareness about this genetic mutation, which is thought to be more common than expected. However, due to its subtle features and insidious presentation, many cases remain undiagnosed; hence, the disorder’s exact incidence is unknown.
Collapse
Affiliation(s)
- Azza Al Shidhani
- Child Health Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Irfan Ullah
- Child Health Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Hussain AlSaffar
- Child Health Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Adila Al Kindi
- Genetic Department, Sultan Qaboos University Hospital, Muscat, Oman
| | | | - Saif Al Yaarubi
- Child Health Department, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
182
|
Qiao K, Hu T, Jiang Y, Huang J, Hu J, Gui W, Ye Q, Li S, Zhu G. Crosstalk of cholinergic pathway on thyroid disrupting effects of the insecticide chlorpyrifos in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143769. [PMID: 33221011 DOI: 10.1016/j.scitotenv.2020.143769] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
Chlorpyrifos is a widely used organophosphate insecticide and ubiquitously detected in the environment. However, little attention has been paid to its endocrine disrupting effect to non-target organisms. In the present study, zebrafish was exposed to 13 and 65 μg/L of chlorpyrifos for 7 and 10 days to determine the induced neurotoxicity and the alteration of thyroid metabolism. The 120 h LC50 and LC10 of chlorpyrifos was estimated as 1.35 mg/L and 0.62 mg/L based on the acute embryo toxicity assay, respectively. The acetylcholinesterase (AChE) inhibitory was detected by 13 μg/L chlorpyrifos and could be reversed by the co-exposure of 100 and 1000 μg/L anticholinergic agent atropine. For thyroid hormone level, 13 and 65 μg/L of chlorpyrifos induced increased free T3 levels in 10 dpf (days post-fertilization). The expression of thyroid related genes in 7 and 10 dpf exposed zebrafish were measured by the quantitative Real-Time PCR (qRT-PCR) assay. The mRNA expression of tshba, thrb, crhb, ttr, tpo, ugt1ab and slc5a5 had significant change. However, the alterations of thyroid hormone and mRNA expression could be partly rescued by the addition of atropine. The molecular docking of chlorpyrifos and T3 to the thyroid receptor β in zebrafish using homology modelling and CDOCKER procedures shown weaker binding ability of chlorpyrifos compared to T3. Therefore, we concluded that the disturbance of thyroid signaling in zebrafish might arise from the developmental neurotoxicity induced by chlorpyrifos.
Collapse
Affiliation(s)
- Kun Qiao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China; Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Tiantian Hu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Yao Jiang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Jianping Huang
- Zhejiang Haotian Testing Technology Service Co., Ltd., Zhejiang, Hangzhou 311121, PR China
| | - Jingjin Hu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Wenjun Gui
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Qingfu Ye
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Shuying Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China.
| | - Guonian Zhu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
183
|
Sentis SC, Oelkrug R, Mittag J. Thyroid hormones in the regulation of brown adipose tissue thermogenesis. Endocr Connect 2021; 10:R106-R115. [PMID: 33491659 PMCID: PMC7983518 DOI: 10.1530/ec-20-0562] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/20/2021] [Indexed: 12/15/2022]
Abstract
A normal thyroid status is crucial for body temperature homeostasis, as thyroid hormone regulates both heat loss and conservation as well as heat production in the thermogenic tissues. Brown adipose tissue (BAT) is the major site of non-shivering thermogenesis and an important target of thyroid hormone action. Thyroid hormone not only regulates the tissue's sensitivity to sympathetic stimulation by norepinephrine but also the expression of uncoupling protein 1, the key driver of BAT thermogenesis. Vice versa, sympathetic stimulation of BAT triggers the expression of deiodinase type II, an enzyme that enhances local thyroid hormone availability and signaling. This review summarizes the current knowledge on how thyroid hormone controls BAT thermogenesis, aiming to dissect the direct actions of the hormone in BAT and its indirect actions via the CNS, browning of white adipose tissue or heat loss over body surfaces. Of particular relevance is the apparent dose dependency of the observed effects, as we find that minor or moderate changes in thyroid hormone levels often have different effects as compared to high pharmacological doses. Moreover, we conclude that the more recent findings require a reevaluation of older studies, as key aspects such as heat loss or central BAT activation may not have received the necessary attention during the interpretation of these early findings. Finally, we provide a list of what we believe are the most relevant questions in the field that to date are still enigmatic and require further studies.
Collapse
Affiliation(s)
- Sarah Christine Sentis
- Institute for Endocrinology and Diabetes, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Rebecca Oelkrug
- Institute for Endocrinology and Diabetes, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Jens Mittag
- Institute for Endocrinology and Diabetes, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- Correspondence should be addressed to J Mittag:
| |
Collapse
|
184
|
Jonklaas J, Bianco AC, Cappola AR, Celi FS, Fliers E, Heuer H, McAninch EA, Moeller LC, Nygaard B, Sawka AM, Watt T, Dayan CM. Evidence-Based Use of Levothyroxine/Liothyronine Combinations in Treating Hypothyroidism: A Consensus Document. Thyroid 2021; 31:156-182. [PMID: 33276704 PMCID: PMC8035928 DOI: 10.1089/thy.2020.0720] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: Fourteen clinical trials have not shown a consistent benefit of combination therapy with levothyroxine (LT4) and liothyronine (LT3). Despite the publication of these trials, combination therapy is widely used and patients reporting benefit continue to generate patient and physician interest in this area. Recent scientific developments may provide insight into this inconsistency and guide future studies. Methods: The American Thyroid Association (ATA), British Thyroid Association (BTA), and European Thyroid Association (ETA) held a joint conference on November 3, 2019 (live-streamed between Chicago and London) to review new basic science and clinical evidence regarding combination therapy with presentations and input from 12 content experts. After the presentations, the material was synthesized and used to develop Summary Statements of the current state of knowledge. After review and revision of the material and Summary Statements, there was agreement that there was equipoise for a new clinical trial of combination therapy. Consensus Statements encapsulating the implications of the material discussed with respect to the design of future clinical trials of LT4/LT3 combination therapy were generated. Authors voted upon the Consensus Statements. Iterative changes were made in several rounds of voting and after comments from ATA/BTA/ETA members. Results: Of 34 Consensus Statements available for voting, 28 received at least 75% agreement, with 13 receiving 100% agreement. Those with 100% agreement included studies being powered to study the effect of deiodinase and thyroid hormone transporter polymorphisms on study outcomes, inclusion of patients dissatisfied with their current therapy and requiring at least 1.2 μg/kg of LT4 daily, use of twice daily LT3 or preferably a slow-release preparation if available, use of patient-reported outcomes as a primary outcome (measured by a tool with both relevant content validity and responsiveness) and patient preference as a secondary outcome, and utilization of a randomized placebo-controlled adequately powered double-blinded parallel design. The remaining statements are presented as potential additional considerations. Discussion: This article summarizes the areas discussed and presents Consensus Statements to guide development of future clinical trials of LT4/LT3 combination therapy. The results of such redesigned trials are expected to be of benefit to patients and of value to inform future thyroid hormone replacement clinical practice guidelines treatment recommendations.
Collapse
Affiliation(s)
- Jacqueline Jonklaas
- Division of Endocrinology, Georgetown University, Washington, District of Columbia, USA
- Address correspondence to: Jacqueline Jonklaas, MD, PhD, Division of Endocrinology, Georgetown University, 4000 Reservoir Road, NW, Washington, DC 20007, USA
| | - Antonio C. Bianco
- Section of Adult and Pediatric Endocrinology and Metabolism, University of Chicago, Chicago, Illinois, USA
| | - Anne R. Cappola
- Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Francesco S. Celi
- Division of Endocrinology, Diabetes and Metabolism, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center, Netherlands
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University Duisburg-Essen, Essen, Germany
| | | | - Lars C. Moeller
- Department of Endocrinology, Diabetes and Metabolism, University Duisburg-Essen, Essen, Germany
| | - Birte Nygaard
- Center for Endocrinology and Metabolism, Department Internal Medicine, Herlev and Gentofte Hospitals, Herlev, Denmark
| | - Anna M. Sawka
- Division of Endocrinology, University Health Network and University of Toronto, Toronto, Canada
| | - Torquil Watt
- Department of Endocrinology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Colin M. Dayan
- Thyroid Research Group, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Address correspondence to: Colin M. Dayan, MD, PhD, Thyroid Research Group, School of Medicine, Cardiff University, C2 Link, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
185
|
Barisón MJ, Pereira IT, Waloski Robert A, Dallagiovanna B. Reorganization of Metabolism during Cardiomyogenesis Implies Time-Specific Signaling Pathway Regulation. Int J Mol Sci 2021; 22:1330. [PMID: 33572750 PMCID: PMC7869011 DOI: 10.3390/ijms22031330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding the cell differentiation process involves the characterization of signaling and regulatory pathways. The coordinated action involved in multilevel regulation determines the commitment of stem cells and their differentiation into a specific cell lineage. Cellular metabolism plays a relevant role in modulating the expression of genes, which act as sensors of the extra-and intracellular environment. In this work, we analyzed mRNAs associated with polysomes by focusing on the expression profile of metabolism-related genes during the cardiac differentiation of human embryonic stem cells (hESCs). We compared different time points during cardiac differentiation (pluripotency, embryoid body aggregation, cardiac mesoderm, cardiac progenitor and cardiomyocyte) and showed the immature cell profile of energy metabolism. Highly regulated canonical pathways are thoroughly discussed, such as those involved in metabolic signaling and lipid homeostasis. We reveal the critical relevance of retinoic X receptor (RXR) heterodimers in upstream retinoic acid metabolism and their relationship with thyroid hormone signaling. Additionally, we highlight the importance of lipid homeostasis and extracellular matrix component biosynthesis during cardiomyogenesis, providing new insights into how hESCs reorganize their metabolism during in vitro cardiac differentiation.
Collapse
Affiliation(s)
| | | | | | - Bruno Dallagiovanna
- Basic Stem Cell Biology Laboratory, Instituto Carlos Chagas-FIOCRUZ-PR, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR 81350-010, Brazil; (M.J.B.); (I.T.P.); (A.W.R.)
| |
Collapse
|
186
|
Ferrara SJ, Chaudhary P, DeBell MJ, Marracci G, Miller H, Calkins E, Pocius E, Napier BA, Emery B, Bourdette D, Scanlan TS. TREM2 is thyroid hormone regulated making the TREM2 pathway druggable with ligands for thyroid hormone receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33532772 DOI: 10.1101/2021.01.25.428149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Triggering receptor expressed on myeloid cells-2 (TREM2) is a cell surface receptor on macrophages and microglia that senses and responds to disease associated signals to regulate the phenotype of these innate immune cells. The TREM2 signaling pathway has been implicated in a variety of diseases ranging from neurodegeneration in the central nervous system to metabolic disease in the periphery. We report here that TREM2 is a thyroid hormone regulated gene and its expression in macrophages and microglia is stimulated by thyroid hormone. Both endogenous thyroid hormone and sobetirome, a synthetic thyroid hormone agonist drug, suppress pro-inflammatory cytokine production from myeloid cells including macrophages that have been treated with the SARS-CoV-2 spike protein which produces a strong, pro-inflammatory phenotype. Thyroid hormone agonism was also found to induce phagocytic behavior in microglia, a phenotype consistent with activation of the TREM2 pathway. The thyroid hormone antagonist NH-3 blocks the anti-inflammatory effects of thyroid hormone agonists and suppresses microglia phagocytosis. Finally, in a murine experimental autoimmune encephalomyelitis (EAE) multiple sclerosis model, treatment with Sob-AM2, a CNS-penetrating sobetirome prodrug, results in increased Trem2 expression in disease lesion resident myeloid cells which correlates with therapeutic benefit in the EAE clinical score and reduced damage to myelin. Our findings represent the first report of endocrine regulation of TREM2 and provide a unique opportunity to drug the TREM2 signaling pathway with orally active small molecule therapeutic agents.
Collapse
|
187
|
Chen L, Zhang M, Xiang S, Jiang X, Gu H, Sha Q, Qu M, Xu T. Association Between Thyroid Function and Body Composition in Type 2 Diabetes Mellitus (T2DM) Patients: Does Sex Have a Role? Med Sci Monit 2021; 27:e927440. [PMID: 33387440 PMCID: PMC7786834 DOI: 10.12659/msm.927440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The relationship between thyroid hormones and body anthropometric measures in type 2 diabetes mellitus (T2DM) patients with normal thyroid function is unclear. The purpose of this study was to evaluate the association between thyroid hormones and body composition in euthyroid T2DM patients in men and women. MATERIAL AND METHODS This was a cross-sectional study that included 561 euthyroid T2DM patients. Fasting venous blood was collected to test laboratory indexes. Bioelectric impedance analysis (BIA) was used to measure body composition. Propensity score matching (PSM) was used to enroll patients with similar baseline characteristics. The least absolute shrinkage and selection operator (LASSO) algorithm was used to establish a linear regression model of thyroid hormone and body composition. PSM was performed to match 159 men and 159 women. RESULTS The LASSO regression analysis suggested that thyroid-stimulating hormone (TSH) level was not correlated with body composition parameters in females. In females, free triiodothyronine (FT3) level was positively correlated with body mass index (BMI), fat-free mass index (FFMI), and skeletal muscle index (SMI), and was negatively correlated with extracellular water fraction (EWF). In males, FT3 level was positively correlated with waist circumference (WC) and SMI and negatively correlated with EWF. Free thyroxine (FT4) level in both women and men was positively correlated with body fat mass (BFM) and left lower-limb muscle mass (LLLMM). Moreover, in males, FT4 level was correlated with more body composition parameters. In euthyroid T2DM patients, FT3 level was positively correlated with SMI and negatively correlated with EWF, while FT4 level was positively correlated with BFM and LLLMM. CONCLUSIONS Thyroid function can affect body composition in euthyroid T2DM patients. Thyroid function is more likely to affect the fat and muscle distribution of males than females.
Collapse
Affiliation(s)
- Lu Chen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China (mainland).,Department of Clinical Nutrition, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China (mainland)
| | - Min Zhang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China (mainland)
| | - Shoukui Xiang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China (mainland)
| | - Xiaohong Jiang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China (mainland)
| | - Hongliu Gu
- Department of Clinical Nutrition, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China (mainland)
| | - Qi Sha
- Department of Clinical Nutrition, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China (mainland)
| | - Meidi Qu
- Department of Clinical Nutrition, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China (mainland)
| | - Ting Xu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China (mainland)
| |
Collapse
|
188
|
Green ME, Bernet V, Cheung J. Thyroid Dysfunction and Sleep Disorders. Front Endocrinol (Lausanne) 2021; 12:725829. [PMID: 34504473 PMCID: PMC8423342 DOI: 10.3389/fendo.2021.725829] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Thyroid disorders and sleep disorders are common problems in the general population that can affect people of all ages, backgrounds, and sexes, but little is known about their clinical associations. We reviewed the literature assessing the associations between thyroid disease and sleep disorders and noted that hyperthyroidism and hypothyroidism have clinical overlap with sleep conditions such as insomnia, restless legs syndrome, and obstructive sleep apnea. These findings highlight the importance of identifying and managing thyroid dysfunction for patients with these common sleep disorders. Additional research is needed to further understand how thyroid dysfunction affects sleep physiology.
Collapse
Affiliation(s)
- Max E. Green
- Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States
| | - Victor Bernet
- Division of Endocrinology, Mayo Clinic, Jacksonville, FL, United States
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL, United States
| | - Joseph Cheung
- Division of Pulmonary, Allergy and Sleep Medicine, Mayo Clinic, Jacksonville, FL, United States
- *Correspondence: Joseph Cheung,
| |
Collapse
|
189
|
Cathey AL, Watkins DJ, Rosario ZY, Vega CMV, Mukherjee B, O’Neill MS, Loch-Caruso R, Alshawabkeh AN, Cordero JF, Meeker JD. Gestational Hormone Concentrations Are Associated With Timing of Delivery in a Fetal Sex-Dependent Manner. Front Endocrinol (Lausanne) 2021; 12:742145. [PMID: 34603214 PMCID: PMC8479114 DOI: 10.3389/fendo.2021.742145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/25/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Early delivery remains a significant public health problem that has long-lasting impacts on mother and child. Understanding biological mechanisms underlying timing of labor, including endocrine disruption, can inform prevention efforts. METHODS Gestational hormones were measured among 976 women in PROTECT, a longitudinal birth cohort in Puerto Rico. We evaluated associations between hormone concentrations at 18 and 26 weeks gestation and gestational age at birth, while assessing effect modification by fetal sex. Exploratory analyses assessed binary outcomes of overall preterm birth (PTB, <37 weeks gestation) and the spontaneous PTB subtype, defined as preterm premature rupture of membranes, spontaneous preterm labor, or both. Multivariable logistic and linear regressions were fit using visit-specific hormone concentrations, and fetal sex-specific effects were estimated using interaction terms. Main outcome models were adjusted for maternal age, education, marital status, alcohol consumption, environmental tobacco smoke exposure, and pre-pregnancy body mass index (BMI). Exploratory models adjusted for maternal age and education. RESULTS We observed reduced gestational age at birth with higher circulating CRH (β: -2.73 days, 95% CI: -4.97, -0.42), progesterone (β: -4.90 days, 95% CI: -7.07, -2.73), and fT4 concentrations (β: -2.73 days, 95% CI: -4.76, -0.70) at 18 weeks specifically among male fetuses. Greater odds of overall and spontaneous PTB were observed among males with higher CRH, estriol, progesterone, total triiodothyronine (T3), and free thyroxine (fT4) concentrations. Greater odds of PTB among females was observed with higher testosterone concentrations. CONCLUSIONS Various associations between hormones and timing of delivery were modified by fetal sex and timing of hormone measurement. Future studies are needed to understand differential mechanisms involved with timing of labor between fetal sexes.
Collapse
Affiliation(s)
- Amber L. Cathey
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Deborah J. Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Zaira Y. Rosario
- Graduate School of Public Health, University of Puerto Rico, San Juan, PR, United States
| | - Carmen M. Vélez Vega
- Graduate School of Public Health, University of Puerto Rico, San Juan, PR, United States
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Marie S. O’Neill
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | | | - José F. Cordero
- College of Public Health, University of Georgia, Athens, GA, United States
| | - John D. Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
- *Correspondence: John D. Meeker,
| |
Collapse
|
190
|
Tanizaki Y, Shibata Y, Zhang H, Shi YB. Analysis of Thyroid Hormone Receptor α-Knockout Tadpoles Reveals That the Activation of Cell Cycle Program Is Involved in Thyroid Hormone-Induced Larval Epithelial Cell Death and Adult Intestinal Stem Cell Development During Xenopus tropicalis Metamorphosis. Thyroid 2021; 31:128-142. [PMID: 32515287 PMCID: PMC7840310 DOI: 10.1089/thy.2020.0022] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: There are two highly conserved thyroid hormone (triiodothyronine [T3]) receptor (TR) genes, TRα and TRβ, in all vertebrates, and the expression of TRα but not TRβ is activated earlier than T3 synthesis during development. In human, high levels of T3 are present during the several months around birth, and T3 deficiency during this period causes severe developmental abnormalities including skeletal and intestinal defects. It is, however, difficult to study this period in mammals as the embryos and neonates depend on maternal supply of nutrients for survival. However, Xenopus tropicalis undergoes a T3-dependent metamorphosis, which drastically changes essentially every organ in a tadpole. Of interest is intestinal remodeling, which involves near complete degeneration of the larval epithelium through apoptosis. Concurrently, adult intestinal stem cells are formed de novo and subsequently give rise to the self-renewing adult epithelial system, resembling intestinal maturation around birth in mammals. We have previously demonstrated that T3 signaling is essential for the formation of adult intestinal stem cells during metamorphosis. Methods: We studied the function of endogenous TRα in the tadpole intestine by using knockout animals and RNA-seq analysis. Results: We observed that removing endogenous TRα caused defects in intestinal remodeling, including drastically reduced larval epithelial cell death and adult intestinal stem cell proliferation. Using RNA-seq on intestinal RNA from premetamorphic wild-type and TRα-knockout tadpoles treated with or without T3 for one day, before any detectable T3-induced cell death and stem cell formation in the tadpole intestine, we identified more than 1500 genes, which were regulated by T3 treatment of the wild-type but not TRα-knockout tadpoles. Gene Ontology and biological pathway analyses revealed that surprisingly, these TRα-regulated genes were highly enriched with cell cycle-related genes, in addition to genes related to stem cells and apoptosis. Conclusions: Our findings suggest that TRα-mediated T3 activation of the cell cycle program is involved in larval epithelial cell death and adult epithelial stem cell development during intestinal remodeling.
Collapse
Affiliation(s)
- Yuta Tanizaki
- Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, and Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Yuki Shibata
- Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, and Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Hongen Zhang
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, and Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Address correspondence to: Yun-Bo Shi, PhD, Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Building 49 Room 6A82, Bethesda, MD 20814, USA
| |
Collapse
|
191
|
Frare C, Williams CT, Drew KL. Thermoregulation in hibernating mammals: The role of the "thyroid hormones system". Mol Cell Endocrinol 2021; 519:111054. [PMID: 33035626 PMCID: PMC8091518 DOI: 10.1016/j.mce.2020.111054] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 07/15/2020] [Accepted: 10/04/2020] [Indexed: 12/19/2022]
Abstract
Hibernation is a unique evolutionary adaptation to conserve energy. During the pre-hibernation (i.e. fall) season, a progressive decline in core body temperature and further decrease in metabolism underlie a seasonal modulation in thermoregulation. The onset of hibernation requires marked changes in thermoregulatory attributes including adjustment in body temperature and tissue specific increases in thermogenic capacity. The hibernation season is characterized by a regulated suppression in thermogenesis allowing the onset of torpor interrupted by periodic activation of thermogenesis to sustain interbout arousals. Thyroid hormones are known to regulate both body temperature and metabolism, and for this reason, the hypothalamic-pituitary-thyroid axis and thyroid hormones have been investigated as modulators of thermogenesis in the phenomenon of hibernation, but the mechanisms remain poorly understood. In this review, we present an overview of what is known about the thermogenic roles of thyroid hormones in hibernating species across seasons and within the hibernating season (torpor-interbout arousal cycle). Overall, the hypothalamic-pituitary-thyroid axis and thyroid hormones play a role in the pre-hibernation season to enhance thermogenic capacity. During hibernation, thermogenesis is attenuated at the level of sympathetic premotor neurons within the raphe pallidus and by deiodinase expression in the hypothalamus. Further, as recent work highlights the direct effect of thyroid hormones within the central nervous system in activating thermogenesis, we speculate how similar mechanisms may occur in hibernating species to modulate thermogenesis across seasons and to sustain interbout arousals. However, further experiments are needed to elucidate the role of thyroid hormones in hibernation, moving towards the understanding that thyroid hormones metabolism, transport and availability within tissues may be the most telling indicator of thyroid status.
Collapse
Affiliation(s)
- C Frare
- Department of Chemistry and Biochemistry University of Alaska Fairbanks, Fairbanks, AK, 99775, USA; Institute of Arctic Biology, Center for Transformative Research in Metabolism, University of Alaska Fairbanks 2140 Koyukuk Drive, Fairbanks, AK, 99775, USA
| | - Cory T Williams
- Institute of Arctic Biology, Center for Transformative Research in Metabolism, University of Alaska Fairbanks 2140 Koyukuk Drive, Fairbanks, AK, 99775, USA; Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Kelly L Drew
- Department of Chemistry and Biochemistry University of Alaska Fairbanks, Fairbanks, AK, 99775, USA; Institute of Arctic Biology, Center for Transformative Research in Metabolism, University of Alaska Fairbanks 2140 Koyukuk Drive, Fairbanks, AK, 99775, USA.
| |
Collapse
|
192
|
Yousefzadeh N, Jeddi S, Ghasemi A. Impaired Cardiovascular Function in Male Rats with Hypo- and Hyperthyroidism: Involvement of Imbalanced Nitric Oxide Synthase Levels. Endocr Metab Immune Disord Drug Targets 2021; 21:526-533. [PMID: 32384042 DOI: 10.2174/1871530320666200508115543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE All three isoforms of nitric oxide (NO) synthase (NOS) are targets for thyroid hormones in the cardiovascular system. The aim of this study was to assess the effects of hypo- and hyperthyroidism on inducible (iNOS), endothelial (eNOS), and neural (nNOS) NOS levels in aorta and heart tissues of male rats. METHODS Rats were divided into control, hypothyroid, and hyperthyroid groups; hypo- and hyperthyroidism were induced by adding propylthiouracil (500 mg/L) and L-thyroxine (12 mg/L) to drinking water for a period of 21 days. On day 21, systolic blood pressure, heart rate, left ventricular developed pressure (LVDP), peak rate of positive and negative (±dp/dt) changes in left ventricular pressure as well as NO metabolites (NOx) and iNOS, eNOS, and nNOS protein levels in aorta and heart, were all measured. RESULTS Compared to controls, LVDP and ±dp/dt were lower in both hypo- and hyperthyroid rats. Compared to controls, heart rate and systolic blood pressure were lower in hypothyroid and higher in hyperthyroid rats. NOx levels in the heart of hypothyroid rats were lower (53%), whereas that in hyperthyroid rats were higher (56% and 40%) than controls. Compared to controls, hypothyroid rats had lower levels of eNOS, iNOS, and nNOS in the aorta (16%, 34%, and 15%, respectively) and lower iNOS and higher nNOS in heart tissue (27% and 46%). In hyperthyroid rats, eNOS levels were lower (54% and 30%) and iNOS were higher (63%, and 35%) in the aorta and heart while nNOS was lower in the aorta (18%). CONCLUSION Hypothyroidism increased while hyperthyroidism decreased the ratio of eNOS/iNOS in aorta and heart; these changes of NOS levels were associated with impaired cardiovascular function.
Collapse
Affiliation(s)
- Nasibeh Yousefzadeh
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
193
|
van Geest FS, Gunhanlar N, Groeneweg S, Visser WE. Monocarboxylate Transporter 8 Deficiency: From Pathophysiological Understanding to Therapy Development. Front Endocrinol (Lausanne) 2021; 12:723750. [PMID: 34539576 PMCID: PMC8440930 DOI: 10.3389/fendo.2021.723750] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/13/2021] [Indexed: 01/18/2023] Open
Abstract
Genetic defects in the thyroid hormone transporter monocarboxylate transporter 8 (MCT8) result in MCT8 deficiency. This disorder is characterized by a combination of severe intellectual and motor disability, caused by decreased cerebral thyroid hormone signalling, and a chronic thyrotoxic state in peripheral tissues, caused by exposure to elevated serum T3 concentrations. In particular, MCT8 plays a crucial role in the transport of thyroid hormone across the blood-brain-barrier. The life expectancy of patients with MCT8 deficiency is strongly impaired. Absence of head control and being underweight at a young age, which are considered proxies of the severity of the neurocognitive and peripheral phenotype, respectively, are associated with higher mortality rate. The thyroid hormone analogue triiodothyroacetic acid is able to effectively and safely ameliorate the peripheral thyrotoxicosis; its effect on the neurocognitive phenotype is currently under investigation. Other possible therapies are at a pre-clinical stage. This review provides an overview of the current understanding of the physiological role of MCT8 and the pathophysiology, key clinical characteristics and developing treatment options for MCT8 deficiency.
Collapse
|
194
|
Massaro C, Safadeh E, Sgueglia G, Stunnenberg HG, Altucci L, Dell’Aversana C. MicroRNA-Assisted Hormone Cell Signaling in Colorectal Cancer Resistance. Cells 2020; 10:cells10010039. [PMID: 33396628 PMCID: PMC7823834 DOI: 10.3390/cells10010039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 12/17/2022] Open
Abstract
Despite substantial progress in cancer therapy, colorectal cancer (CRC) is still the third leading cause of cancer death worldwide, mainly due to the acquisition of resistance and disease recurrence in patients. Growing evidence indicates that deregulation of hormone signaling pathways and their cross-talk with other signaling cascades inside CRC cells may have an impact on therapy resistance. MicroRNAs (miRNAs) are small conserved non-coding RNAs thatfunction as negative regulators in many gene expression processes. Key studies have identified miRNA alterations in cancer progression and drug resistance. In this review, we provide a comprehensive overview and assessment of miRNAs role in hormone signaling pathways in CRC drug resistance and their potential as future targets for overcoming resistance to treatment.
Collapse
Affiliation(s)
- Crescenzo Massaro
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy; (C.M.); (E.S.); (G.S.)
| | - Elham Safadeh
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy; (C.M.); (E.S.); (G.S.)
| | - Giulia Sgueglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy; (C.M.); (E.S.); (G.S.)
| | | | - Lucia Altucci
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy; (C.M.); (E.S.); (G.S.)
- Correspondence: (L.A.); (C.D.); Tel.: +39-081-566-7564 (L.A.); +39-081-566-7566 (C.D.)
| | - Carmela Dell’Aversana
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy; (C.M.); (E.S.); (G.S.)
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS)-National Research Council (CNR), Via Sergio Pansini 5, 80131 Naples, Italy
- Correspondence: (L.A.); (C.D.); Tel.: +39-081-566-7564 (L.A.); +39-081-566-7566 (C.D.)
| |
Collapse
|
195
|
Hassan I, El-Masri H, Ford J, Brennan A, Handa S, Paul Friedman K, Gilbert ME. Extrapolating In Vitro Screening Assay Data for Thyroperoxidase Inhibition to Predict Serum Thyroid Hormones in the Rat. Toxicol Sci 2020; 173:280-292. [PMID: 31697382 DOI: 10.1093/toxsci/kfz227] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Thyroperoxidase (TPO) is an enzyme essential for thyroid hormone (TH) synthesis and a target site for a number of xenobiotics that disrupt TH homeostasis. An in vitro high-throughput screening assay for TPO inhibition, the Amplex UltraRed-TPO (AUR-TPO), has been used to screen the ToxCast chemical libraries for this action. Output from this assay would be most useful if it could be readily translated into an in vivo response, namely a reduction of TH in serum. To this end, the relationship between TPO inhibition in vitro and serum TH decreases was examined in rats exposed to 2 classic TPO inhibitors, propylthiouracil (PTU) and methimazole (MMI). Serum and gland PTU, MMI, and TH levels were quantified using tandem liquid chromatography mass spectrometry. Thyroperoxidase activity was determined in thyroid gland microsomes treated with PTU or MMI in vitro and ex vivo from thyroid gland microsomes prepared from exposed animals. A quantitative model was constructed by contrasting in vitro and ex vivo AUR-TPO results and the in vivo time-course and dose-response analysis. In vitro:ex vivo correlations of AUR-TPO outputs indicated that less than 30% inhibition of TPO in vitro was sufficient to reduce serum T4 by 20%, a degree of regulatory significance. Although further testing of model estimates using other TPO inhibitors is essential for verification of these initial findings, the results of this study provide a means to translate in vitro screening assay results into predictions of in vivo serum T4 changes to inform risk assessment.
Collapse
Affiliation(s)
- Iman Hassan
- Toxicity Assessment Division.,National Health and Environmental Effects Research Laboratory
| | - Hisham El-Masri
- National Health and Environmental Effects Research Laboratory.,Integrated Systems Toxicology Division
| | - Jermaine Ford
- National Health and Environmental Effects Research Laboratory.,Analytical Chemistry Research Core/Research Cores Unit, US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Amanda Brennan
- National Health and Environmental Effects Research Laboratory.,Analytical Chemistry Research Core/Research Cores Unit, US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Sakshi Handa
- National Health and Environmental Effects Research Laboratory.,Integrated Systems Toxicology Division.,Oak Ridge Institute for Science Education, Oak Ridge, Tennessee
| | - Katie Paul Friedman
- National Center for Computational Toxicology, US Environmental Protection Agency, Research Triangle Park, North Carolina, 27711
| | - Mary E Gilbert
- Toxicity Assessment Division.,National Health and Environmental Effects Research Laboratory
| |
Collapse
|
196
|
Liang C, Han Y, Ma L, Wu X, Huang K, Yan S, Li Z, Xia X, Pan W, Sheng J, Wang Q, Tong S, Cao Y, Tao F. Low levels of arsenic exposure during pregnancy and maternal and neonatal thyroid hormone parameters: The determinants for these associations. ENVIRONMENT INTERNATIONAL 2020; 145:106114. [PMID: 33035893 DOI: 10.1016/j.envint.2020.106114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/31/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The potential maternal and neonatal thyrotoxicity associated with exposure to arsenic during pregnancy is very limited and unclear. OBJECTIVES This study aimed to examine the associations between arsenic exposure levels in maternal and cord serum and maternal and neonatal thyroid hormone parameters in a prospective birth cohort study. METHODS The study including 2089 mother-neonate pairs was based upon Ma'an Shan birth cohort study in China. The exposure variables including maternal serum arsenic levels in the first, second and third trimester and average arsenic exposure level during pregnancy and cord serum arsenic level. Maternal serum TSH and FT4 levels in the first, second and third trimester and cord serum TSH and FT4 levels were determined using the electrochemiluminescence immunoassay with Cobas Elecsys 411. Linear mixed models were used to examine associations between arsenic exposure variables during pregnancy and maternal thyroid hormone parameters, and multiple linear regression analyses were used to examine associations between arsenic exposure during pregnancy and neonatal thyroid hormone parameters. Bayesian kernal machine regression (BKMR) analyses based on a kernel function were also used to examine the effects of exposure to metal mixtures (arsenic, mercury, cadmium and selenium). RESULTS The geometric means of arsenic exposure levels across 3 trimesters were 1.74 μg/L, 1.81 μg/L and 1.99 μg/L, respectively, and 1.90 μg/L in cord serum; the geometric means of maternal FT4 levels across 3 trimesters were 16.91 pmol/L, 11.91 pmol/L and 13.16 pmol/L, respectively, and 16.10 pmol/L in cord serum; the geometric means of maternal TSH levels across 3 trimesters were 1.27 μIU/mL, 2.32 μIU/mL and 2.08 μIU/mL, respectively, and 8.47 μIU/mL in cord serum. Maternal serum arsenic levels in the first, seond, third trimester and average arsenic exposure level during pregnancy were all not associated with maternal thyroid hormone parameters after adjustment for all the covariates, the adjusted β (95% CI) were -0.002 (-0.10 to 0.09), 0.05 (-0.05 to 0.16), -0.09 (-0.17 to 0.003) and -0.05 (-0.22 to 0.11) for maternal FT4, respectively; and -0.005 (-0.04 to 0.03), -0.003 (-0.04 to 0.03), -0.004 (-0.03 to 0.02) and -0.01 (-0.06 to 0.04) for maternal lnTSH, respectively. Maternal serum arsenic levels in the first, second trimester and average arsenic exposure level during pregnancy were all inversely associated with neonatal FT4 level after adjustment for all the confounders, the adjusted β (95% CI) were -0.19 (-0.31 to -0.07), -0.14 (-0.26 to -0.01), -0.22 (-0.42 to -0.02), respectively; and cord serum arsenic level was positively related with neonatal TSH level, the adjusted β (95% CI) were 0.04 (0.001 to 0.08). The adverse joint toxic effect of the four metals in maternal serum in the first trimester and in cord serum on neonatal thyroid hormone parameters were also found. CONCLUSIONS In this study, exposure to low levels of arsenic during pregnancy could directly affect neonatal thyroid hormone parameters without being mediated by maternal effect of exposure, and maternal serum arsenic levels in the first, second trimester and average arsenic exposure level during pregnancy and cord serum arsenic level may be risk factors affecting neonatal thyroid hormones. These findings indicate that neonates are more sensitive to the thyrotoxicity of arsenic exposure even at low levels. In addition, the adverse joint toxic effect of metal mixtures is also worthy of attention.
Collapse
Affiliation(s)
- Chunmei Liang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yan Han
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Liya Ma
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xiaoyan Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Shuangqin Yan
- Ma'anshan Maternal and Child Healthcare (MCH) Center, Ma'anshan 243011, China
| | - Zhijuan Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xun Xia
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Weijun Pan
- Ma'anshan Maternal and Child Healthcare (MCH) Center, Ma'anshan 243011, China
| | - Jie Sheng
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Qunan Wang
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Shilu Tong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China; School of Public Health and Social Work and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
| | - Yunxia Cao
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
197
|
Na W, Fu L, Luu N, Shi YB. Thyroid hormone directly activates mitochondrial fission process 1 (Mtfp1) gene transcription during adult intestinal stem cell development and proliferation in Xenopus tropicalis. Gen Comp Endocrinol 2020; 299:113590. [PMID: 32827515 DOI: 10.1016/j.ygcen.2020.113590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 12/24/2022]
Abstract
Thyroid hormone (T3) regulates vertebrate development via T3 receptors (TRs). T3 level peaks during postembryonic development, a period around birth in mammals or metamorphosis in anurans. Anuran metamorphosis offers many advantages for studying T3 and TR function in vivo largely because of its total dependent on T3 and the dramatic changes affecting essentially all organs/tissues that can be easily manipulated. Earlier studies have shown that TRs are both necessary and sufficient for mediating the metamorphic effects of T3. Many candidate TR target genes have been identified during Xenopus tropicalis intestinal metamorphosis, a process that involves apoptotic degeneration of most of the larval epithelial cells and de novo development of adult epithelial stem cells. Among these putative TR target genes is mitochondrial fission process 1 (Mtfp1), a nuclear-encoded mitochondrial gene. Here, we report that Mtfp1gene expression peaks in the intestine during both natural and T3-induced metamorphosis when adult epithelial stem cell development and proliferation take place. Furthermore, we show that Mtfp1 contains a T3-response element within the first intron that is bound by TR to mediate T3-induced local histone H3K79 methylation and RNA polymerase recruitment in the intestine during metamorphosis. Additionally, we demonstrate that the Mtfp1 promoter can be activated by T3 in a reconstituted frog oocyte system in vivo and that this activation is dependent on the intronic TRE. These findings suggest that T3 activates Mtfp1 gene directly via the intronic TRE and that Mtfp1 in turn facilitate adult intestinal stem cell development/proliferation by affecting mitochondrial fission process.
Collapse
Affiliation(s)
- Wonho Na
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liezhen Fu
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nga Luu
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
198
|
Cuenca-Micó O, Aceves C. Micronutrients and Breast Cancer Progression: A Systematic Review. Nutrients 2020; 12:nu12123613. [PMID: 33255538 PMCID: PMC7759972 DOI: 10.3390/nu12123613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Epidemiological studies on micronutrient consumption have reported protective associations in the incidence and/or progression of various cancer types. Supplementation with some of these micronutrients has been analyzed, showing chemoprotection, low toxicity, antiproliferation, and the ability to modify epigenetic signatures in various cancer models. This review investigates the reported effects of micronutrient intake or supplementation in breast cancer progression. A PubMed search was conducted with the keywords "micronutrients breast cancer progression", and the results were analyzed. The selected micronutrients were vitamins (C, D, and E), folic acid, metals (Cu, Fe, Se, and Zn), fatty acids, polyphenols, and iodine. The majority of in vitro models showed antiproliferative, cell-cycle arrest, and antimetastatic effects for almost all the micronutrients analyzed, but these effects do not reflect animal or human studies. Only one clinical trial with vitamin D and one pilot study with molecular iodine showed favorable overall survival and disease-free interval.
Collapse
|
199
|
Xiao Y, Kim M, Lazar MA. Nuclear receptors and transcriptional regulation in non-alcoholic fatty liver disease. Mol Metab 2020; 50:101119. [PMID: 33220489 PMCID: PMC8324695 DOI: 10.1016/j.molmet.2020.101119] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND As a result of a sedentary lifestyle and excess food consumption in modern society, non-alcoholic fatty liver disease (NAFLD) characterized by fat accumulation in the liver is becoming a major disease burden. Non-alcoholic steatohepatitis (NASH) is an advanced form of NAFLD characterized by inflammation and fibrosis that can lead to hepatocellular carcinoma and liver failure. Nuclear receptors (NRs) are a family of ligand-regulated transcription factors that closely control multiple aspects of metabolism. Their transcriptional activity is modulated by various ligands, including hormones and lipids. NRs serve as potential pharmacological targets for NAFLD/NASH and other metabolic diseases. SCOPE OF REVIEW In this review, we provide a comprehensive overview of NRs that have been studied in the context of NAFLD/NASH with a focus on their transcriptional regulation, function in preclinical models, and studies of their clinical utility. MAJOR CONCLUSIONS The transcriptional regulation of NRs is context-dependent. During the dynamic progression of NAFLD/NASH, NRs play diverse roles in multiple organs and different cell types in the liver, which highlights the necessity of targeting NRs in a stage-specific and cell-type-specific manner to enhance the efficacy and safety of treatment methods.
Collapse
Affiliation(s)
- Yang Xiao
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mindy Kim
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
200
|
Park SY, Kim J, Yim G, Jang H, Lee Y, Kim SM, Park C, Lee MH, Lee T. Fabrication of electrochemical biosensor composed of multi-functional DNA/rhodium nanoplate heterolayer for thyroxine detection in clinical sample. Colloids Surf B Biointerfaces 2020; 195:111240. [DOI: 10.1016/j.colsurfb.2020.111240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 01/09/2023]
|