151
|
Synthesis of a New Series of Furopyranone‐ and Furocoumarin‐Chromone Conjugates Followed by
In–Vitro
Cytotoxicity Activity Evaluation, and Molecular Docking Study. ChemistrySelect 2019. [DOI: 10.1002/slct.201900009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
152
|
Xia Z, Huang M, Zhu Q, Li Y, Ma Q, Wang Y, Chen X, Li J, Qiu L, Zhang J, Zheng J, Lu B. Cadherin Related Family Member 2 Acts As A Tumor Suppressor By Inactivating AKT In Human Hepatocellular Carcinoma. J Cancer 2019; 10:864-873. [PMID: 30854092 PMCID: PMC6400803 DOI: 10.7150/jca.27663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023] Open
Abstract
Cadherin related family member 2 (CDHR2) belongs to the protocadherin family and is abundant in normal liver, kidney, and colon tissues, but weakly expressed in cancers arising from these tissues. In this study, we demonstrated that CDHR2 was highly expressed in para-cancer tissues of human hepatocellular carcinoma (HCC), but significantly downregulated or silenced in 85.7% (6/7) of HCC cell lines by both semi-quantitative PCR and western blot, and 79.1% (19/24) and 80.2% (89/111) of tumor tissues from patients with HCC by semi-quantitative PCR, and immunohistochemistry, respectively. Interestingly, CpG islands in the promoter of CDHR2 gene were hypermethylated in HCC cell lines and tissues compared with the para-cancer tissues by methylation-specific PCR analysis, leading to transcriptional repression and silencing of CDHR2 in HCC. In addition, CDHR2 overexpression by lentiviral vectors had suppressive effects on HCC cell growth and proliferation, as evidenced by prolonged cell doubling time and reduced colony-forming ability in vitro, as well as by decreased tumorigenicity in vivo. Mechanistically, CDHR2 overexpression resulted in AKT dephosphorylation along with downregulation of cyclooxygenase-2 (COX2), a downstream target of AKT. This effect was reversed by myristoylated AKT, a constitutively active form of AKT, suggesting an involvement of CDHR2-AKT-COX2 axis in the suppression of HCC growth. Taken together, our study identified CDHR2 as a novel tumor suppressor in HCC and provided a new therapeutic target for HCC.
Collapse
Affiliation(s)
- Ziyuan Xia
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Meijin Huang
- Department of Oncology, 920th Hospital of PLA Joint Logistics support Force, Yunnan, China
| | - Qiangqiang Zhu
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yinghua Li
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Qian Ma
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yang Wang
- Department of Pathology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xia Chen
- Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianzhong Li
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Lei Qiu
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Junping Zhang
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jiaoyang Zheng
- Department of Endocrinology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Bin Lu
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
153
|
Legrand N, Dixon DA, Sobolewski C. AU-rich element-binding proteins in colorectal cancer. World J Gastrointest Oncol 2019; 11:71-90. [PMID: 30788036 PMCID: PMC6379757 DOI: 10.4251/wjgo.v11.i2.71] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/11/2018] [Accepted: 01/01/2019] [Indexed: 02/05/2023] Open
Abstract
Trans-acting factors controlling mRNA fate are critical for the post-transcriptional regulation of inflammation-related genes, as well as for oncogene and tumor suppressor expression in human cancers. Among them, a group of RNA-binding proteins called “Adenylate-Uridylate-rich elements binding proteins” (AUBPs) control mRNA stability or translation through their binding to AU-rich elements enriched in the 3’UTRs of inflammation- and cancer-associated mRNA transcripts. AUBPs play a central role in the recruitment of target mRNAs into small cytoplasmic foci called Processing-bodies and stress granules (also known as P-body/SG). Alterations in the expression and activities of AUBPs and P-body/SG assembly have been observed to occur with colorectal cancer (CRC) progression, indicating the significant role AUBP-dependent post-transcriptional regulation plays in controlling gene expression during CRC tumorigenesis. Accordingly, these alterations contribute to the pathological expression of many early-response genes involved in prostaglandin biosynthesis and inflammation, along with key oncogenic pathways. In this review, we summarize the current role of these proteins in CRC development. CRC remains a major cause of cancer mortality worldwide and, therefore, targeting these AUBPs to restore efficient post-transcriptional regulation of gene expression may represent an appealing therapeutic strategy.
Collapse
Affiliation(s)
- Noémie Legrand
- Department of Microbiology, Faculty of Medicine, University of Geneva, Geneva CH-1211, Switzerland
| | - Dan A Dixon
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, and University of Kansas Cancer Center, Kansas City, KS 66045, United States
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva CH-1211, Switzerland
| |
Collapse
|
154
|
Walter KR, Lin X, Jacobi SK, Käser T, Esposito D, Odle J. Dietary arachidonate in milk replacer triggers dual benefits of PGE 2 signaling in LPS-challenged piglet alveolar macrophages. J Anim Sci Biotechnol 2019; 10:13. [PMID: 30815256 PMCID: PMC6376662 DOI: 10.1186/s40104-019-0321-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/09/2019] [Indexed: 12/23/2022] Open
Abstract
Background Respiratory infections challenge the swine industry, despite common medicinal practices. The dual signaling nature of PGE2 (supporting both inflammation and resolution) makes it a potent regulator of immune cell function. Therefore, the use of dietary long chain n-6 PUFA to enhance PGE2 effects merits investigation. Methods Day-old pigs (n = 60) were allotted to one of three dietary groups for 21 d (n = 20/diet), and received either a control diet (CON, arachidonate = 0.5% of total fatty acids), an arachidonate (ARA)-enriched diet (LC n-6, ARA = 2.2%), or an eicosapentaenoic (EPA)-enriched diet (LC n-3, EPA = 3.0%). Alveolar macrophages and lung parenchymal tissue were collected for fatty acid analysis. Isolated alveolar macrophages were stimulated with LPS in situ for 24 h, and mRNA was isolated to assess markers associated with inflammation and eicosanoid production. Culture media were collected to assess PGE2 secretion. Oxidative burst in macrophages was measured by: 1) oxygen consumption and extracellular acidification (via Seahorse), 2) cytoplasmic oxidation and 3) nitric oxide production following 4, 18, and 24 h of LPS stimulation. Results Concentration of ARA (% of fatty acids, w/w) in macrophages from pigs fed LC n-6 was 86% higher than CON and 18% lower in pigs fed LC n-3 (P < 0.01). Following LPS stimulation, abundance of COX-2 and TNF-α mRNA (P < 0.0001), and PGE2 secretion (P < 0. 01) were higher in LC n-6 PAM vs. CON. However, ALOX5 abundance was 1.6-fold lower than CON. Macrophages from CON and LC n-6 groups were 4-fold higher in ALOX12/15 abundance (P < 0.0001) compared to LC n-3. Oxygen consumption and extracellular acidification rates increased over 4 h following LPS stimulation (P < 0.05) regardless of treatment. Similarly, increases in cytoplasmic oxidation (P < 0.001) and nitric oxide production (P < 0.002) were observed after 18 h of LPS stimulation but were unaffected by diet. Conclusions We infer that enriching diets with arachidonic acid may be an effective means to enhance a stronger innate immunologic response to respiratory challenges in neonatal pigs. However, further work is needed to examine long-term safety, clinical efficacy and economic viability. Electronic supplementary material The online version of this article (10.1186/s40104-019-0321-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kathleen R Walter
- 1Department of Animal Science, Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina USA.,2Department of Animal Science, North Carolina State University, Raleigh, North Carolina USA
| | - Xi Lin
- 2Department of Animal Science, North Carolina State University, Raleigh, North Carolina USA
| | - Sheila K Jacobi
- 3Department of Animal Science, Ohio State University, Columbus, Ohio USA
| | - Tobias Käser
- 4Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina USA
| | - Debora Esposito
- 1Department of Animal Science, Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina USA.,2Department of Animal Science, North Carolina State University, Raleigh, North Carolina USA
| | - Jack Odle
- 2Department of Animal Science, North Carolina State University, Raleigh, North Carolina USA
| |
Collapse
|
155
|
Ercolano G, De Cicco P, Frecentese F, Saccone I, Corvino A, Giordano F, Magli E, Fiorino F, Severino B, Calderone V, Citi V, Cirino G, Ianaro A. Anti-metastatic Properties of Naproxen-HBTA in a Murine Model of Cutaneous Melanoma. Front Pharmacol 2019; 10:66. [PMID: 30800067 PMCID: PMC6376415 DOI: 10.3389/fphar.2019.00066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/18/2019] [Indexed: 12/28/2022] Open
Abstract
The beneficial effects of H2S-release and of COXs-inhibition have been exploited in the design of novel anti-inflammatory drugs, the H2S-releasing non-steroidal anti-inflammatory drugs (H2S-NSAIDs), showing promising potential for chemoprevention in cancers. Here, we evaluated the efficacy of a new H2S-releasing derivative of naproxen, named naproxen-4-hydroxybenzodithioate (naproxen-HBTA), in reducing metastatic melanoma features, both in vitro and in vivo. The novel H2S donor has been prepared following a synthetic scheme that provided high yields and purity. In particular, we investigated the effect of naproxen-HBTA in vitro on several metastatic features of human melanoma cells such as proliferation, migration, invasion, and colonies formation and in vivo in a model of cutaneous melanoma. Cell culture studies demonstrated that naproxen-HBTA induced caspase 3-mediated apoptosis and inhibited motility, invasiveness, and focus formation. Finally, daily oral treatment with naproxen-HBTA significantly suppressed melanoma growth and progression in mice. In conclusion, by using this dual approach we propose that the COX-2 and H2S pathways could be regarded as novel therapeutic targets/tools to generate new treatment options based on "combination therapy" for melanoma.
Collapse
Affiliation(s)
- Giuseppe Ercolano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Paola De Cicco
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Irene Saccone
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Angela Corvino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Flavia Giordano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Elisa Magli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Beatrice Severino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | | | - Giuseppe Cirino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Angela Ianaro
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
156
|
Marinelli JP, Lees KA, Tombers NM, Lohse CM, Carlson ML. Impact of Aspirin and Other NSAID Use on Volumetric and Linear Growth in Vestibular Schwannoma. Otolaryngol Head Neck Surg 2019; 160:1081-1086. [DOI: 10.1177/0194599819827812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Objectives Conflicting research exists surrounding the utility of aspirin to prevent tumor growth in the medical management of vestibular schwannoma (VS). Recent studies demonstrated no association between aspirin and VS growth using linear tumor measurements. Given the heightened sensitivity of volumetric analyses to monitor tumor growth, the current study was conceived with the chief objective of assessing the association between aspirin or other nonsteroidal anti-inflammatory drug (NSAID) use and VS growth using volumetric analyses. Study Design Retrospective review. Setting Tertiary referral center. Subjects and Methods A total of 361 patients totaling 1601 volumetrically analyzed magnetic resonance imaging studies who underwent initial observation since January 1, 2003. Results In total, 123 (35%) patients took 81 mg aspirin daily, 23 (7%) took 325 mg aspirin daily, and 41 (11%) reported other NSAID use. Among those taking aspirin, 112 (72%) exhibited volumetric tumor growth during observation compared to 33 (80%) among other NSAID users and 137 (67%) among nonaspirin users. Patients taking aspirin or other NSAIDs were significantly older at time of diagnosis (median, 66 vs 56 years; P < .001). Neither aspirin use (hazard ratio [HR], 0.96; P = .73) nor other NSAID use (HR, 1.39; P = .081) was significantly associated with a reduced risk of volumetric tumor growth. These results were similar following age adjustment ( P = .81 and .087, respectively). When separating aspirin users by 81-mg or 325-mg dosing, neither group exhibited a reduced risk of growth ( P = .95 and .73, respectively). Conclusion Despite promising initial results, the preponderance of existing literature suggests that aspirin and other NSAID use does not prevent tumor growth in VS.
Collapse
Affiliation(s)
- John P. Marinelli
- Mayo Clinic School of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Katherine A. Lees
- Department of Otolaryngology–Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Nicole M. Tombers
- Department of Otolaryngology–Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Christine M. Lohse
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew L. Carlson
- Department of Otolaryngology–Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
157
|
Zhang Y, Kirane A, Huang H, Sorrelle NB, Burrows FJ, Dellinger MT, Brekken RA. Cyclooxygenase-2 Inhibition Potentiates the Efficacy of Vascular Endothelial Growth Factor Blockade and Promotes an Immune Stimulatory Microenvironment in Preclinical Models of Pancreatic Cancer. Mol Cancer Res 2019; 17:348-355. [PMID: 30333153 PMCID: PMC6359969 DOI: 10.1158/1541-7786.mcr-18-0427] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/02/2018] [Accepted: 10/11/2018] [Indexed: 12/19/2022]
Abstract
Resistance to standard therapy remains a major challenge in the treatment of pancreatic ductal adenocarcinoma (PDA). Although anti-VEGF therapy delays PDA progression, therapy-induced hypoxia results in a less differentiated mesenchymal-like tumor cell phenotype, which reinforces the need for effective companion therapies. COX-2 inhibition has been shown to promote tumor cell differentiation and improve standard therapy response in PDA. Here, we evaluate the efficacy of COX-2 inhibition and VEGF blockade in preclinical models of PDA. In vivo, the combination therapy was more effective in limiting tumor growth and metastasis than single-agent therapy. Combination therapy also reversed anti-VEGF-induced epithelial-mesenchymal transition and collagen deposition and altered the immune landscape by increasing tumor-associated CD8+ T cells while reducing FoxP3+ T cells and FasL expression on the tumor endothelium. IMPLICATIONS: Together, these findings demonstrate that COX-2 inhibition enhances the efficacy of anti-VEGF therapy by reducing hypoxia-induced epithelial plasticity and promoting an immune landscape that might facilitate immune activation.Visual Overview: http://mcr.aacrjournals.org/content/molcanres/17/2/348/F1.large.jpg.
Collapse
Affiliation(s)
- Yuqing Zhang
- Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Amanda Kirane
- Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Surgical Oncology, Department of Surgery, UC Davis Medical Center, Sacramento, California
| | - Huocong Huang
- Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Noah B Sorrelle
- Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Michael T Dellinger
- Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rolf A Brekken
- Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas.
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
158
|
Izuegbuna O, Otunola G, Bradley G. Chemical composition, antioxidant, anti-inflammatory, and cytotoxic activities of Opuntia stricta cladodes. PLoS One 2019; 14:e0209682. [PMID: 30695064 PMCID: PMC6350967 DOI: 10.1371/journal.pone.0209682] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/09/2018] [Indexed: 02/06/2023] Open
Abstract
Background The Opuntia spp. have been used in traditional medicine for many centuries. It is used in the management of diseases that involves oxidative stress, especially diabetes, obesity and cancer. Opuntia stricta (Haw) is one of the relatively unknown species in South Africa where it is regarded more as a weed. Because of this, not much is known about its chemical composition. Aim To determine the chemical composition, antioxidant, anti-inflammatory, and cytotoxic activities of Opuntia stricta cladodes. Methods The phytochemical composition of acetone, aqueous and ethanol extract of cladodes of Opuntia stricta (Haw), as well as the vitamins A, C and E of its dried weight cladodes and the antioxidant activities, were evaluated using standard in vitro methods. The anti-inflammatory and cytotoxic activities were evaluated using cell-based assays. The phytochemical composition and vitamins were determined spectrophotometrically, while the antioxidant activities were determined by DPPH, nitric oxide, hydrogen peroxide scavenging activity and phosphomolybdenum (total) antioxidant activity. Anti-inflammatory activity was determined using RAW 264.7 cells, while cytotoxicity was determined using U937 cells. Results The phytochemical composition showed a significant difference in the various extracts. The total phenolics were higher than other phytochemicals in all the extracts used. All the extracts displayed antioxidant activity, while most of the extracts showed anti-inflammatory activity. Only one extract showed cytotoxicity, and it was mild. Conclusion The results show that the Opuntia stricta is rich in polyphenolic compounds and has good antioxidant activity as well as anti-inflammatory activities.
Collapse
Affiliation(s)
- Ogochukwu Izuegbuna
- Department of Biochemistry, Faculty of Science & Agriculture, University of Fort Hare, Alice, South Africa
| | - Gloria Otunola
- Medicinal Plants and Economic Development (MPED) Research Centre, Department of Botany, Faculty of Science & Agriculture, University of Fort Hare, Alice, South Africa
| | - Graeme Bradley
- Department of Biochemistry, Faculty of Science & Agriculture, University of Fort Hare, Alice, South Africa
- * E-mail:
| |
Collapse
|
159
|
Modulatory effect of a new benzopyran derivative via COX-2 blocking and down regulation of NF-κB against γ-radiation induced- intestinal inflammation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 192:90-96. [PMID: 30710830 DOI: 10.1016/j.jphotobiol.2019.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/31/2018] [Accepted: 01/14/2019] [Indexed: 11/21/2022]
Abstract
Radiotherapy is considered as a primary modality for cancer treatment which accompanied by several side effects. Protection of normal tissues from radiation effects is one of the most significant concerns for researchers. Although many compounds acting as radio protectors, only two compounds were licensed clinically. Cyclooxygenase-2 (COX-2), as an inflammatory mediator is associated with ROS production with a NF-κB gene up regulation dependent manner in normal tissues. To that extend, his study was designed to target COX-2 and NF-κB by a newly synthesized benzopyran-4-one or chromone derivative; (2E)-2-((4-oxo-4H-chromen-3-yl) methylene amino-4- nitrobenzoic acid (Ch). Exposure of mice to IRR significantly induced intestinal inflammation via overexpression of COX-2 and NF-κB which is accompanied by an increase in the levels of MDA and iNOS in tissue homogenate and in the production of TNF-α and IL-6 as inflammatory signs. Moreover, the apoptotic effect of IRR was manifested by obvious elevation in caspase-3. Interapretonial injection of Ch significantly controls the inflammatory response by blocking the COX-2 and decrease the expression NF-κB which subsequently decreases other inflammatory parameters. Thus Ch compound might be a promising nonsteroidal anti-inflammatory drug (NSAID) against radiation-induced inflammation with a specific mode of COX-2 inhibition. Further researches are needed to elucidate its molecular mechanism and its combination with radiotherapy as a protector.
Collapse
|
160
|
Burgos-Aceves MA, Cohen A, Paolella G, Lepretti M, Smith Y, Faggio C, Lionetti L. Modulation of mitochondrial functions by xenobiotic-induced microRNA: From environmental sentinel organisms to mammals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:79-88. [PMID: 30015121 DOI: 10.1016/j.scitotenv.2018.07.109] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
Mitochondria play a crucial role in energetic metabolism, signaling pathways, and overall cell viability. They are in the first line in facing cellular energy requirements in stress conditions, such as in response to xenobiotic exposure. Recently, a novel regulatory key role of microRNAs (miRNAs) in important signaling pathways in mitochondria has been proposed. Consequently, alteration in miRNAs expression by xenobiotics could outcome into mitochondrial dysfunction, reactive oxygen species overexpression, and liberation of apoptosis or necrosis activating proteins. The aim of this review is to show the highlights about mitochondria-associated miRNAs in cellular processes exposed to xenobiotic stress in different cell types involved in detoxification processes or sensitive to environmental hazards in marine sentinel organisms and mammals.
Collapse
Affiliation(s)
- Mario Alberto Burgos-Aceves
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Amit Cohen
- Genomic Data Analysis Unit, The Hebrew University of Jerusalem-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | - Gaetana Paolella
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Marilena Lepretti
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Yoav Smith
- Genomic Data Analysis Unit, The Hebrew University of Jerusalem-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy.
| | - Lillà Lionetti
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| |
Collapse
|
161
|
Martínez-Martínez D, Soto A, Gil-Araujo B, Gallego B, Chiloeches A, Lasa M. Resveratrol promotes apoptosis through the induction of dual specificity phosphatase 1 and sensitizes prostate cancer cells to cisplatin. Food Chem Toxicol 2018; 124:273-279. [PMID: 30552915 DOI: 10.1016/j.fct.2018.12.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 01/29/2023]
Abstract
Resveratrol is a polyphenol with chemopreventive properties against prostate cancer; however, the mechanisms underlying its actions are not completely understood. Previously, we demonstrated that DUSP1 induces apoptosis in prostate cancer cells; therefore in the present study we investigated the role of this phosphatase on resveratrol effects. Moreover, we analysed the efficiency of combined treatment of resveratrol and the chemotherapeutic drug cisplatin on cellular viability and apoptosis and its relation with DUSP1 in prostate cancer cells. We found that resveratrol up-regulates DUSP1 expression in androgen-independent prostate cancer cells, which in turn, is involved in the inhibition of the NF-κB pathway and Cox-2 expression. This phosphatase is required for the induction of apoptosis achieved by resveratrol, but does not regulate the effects of this compound on cell cycle. Furthermore, we show that resveratrol cooperates with cisplatin both in the up-regulation of DUSP1 levels and in the promotion of apoptosis, suggesting that DUSP1 is a major determinant of cisplatin sensitivity to apoptosis. These results reveal a novel molecular mechanism by which resveratrol induces apoptosis in prostate cancer cells, and highlight the importance of DUSP1 in future therapeutic approaches based in the use of this polyphenol and cisplatin.
Collapse
Affiliation(s)
- Desirée Martínez-Martínez
- Departamento de Bioquímica-Instituto de Investigaciones Biomédicas "Alberto Sols", Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Altea Soto
- Departamento de Bioquímica-Instituto de Investigaciones Biomédicas "Alberto Sols", Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Beatriz Gil-Araujo
- Departamento de Bioquímica-Instituto de Investigaciones Biomédicas "Alberto Sols", Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Beatriz Gallego
- Departamento de Biología de Sistemas, Unidad de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Antonio Chiloeches
- Departamento de Biología de Sistemas, Unidad de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Marina Lasa
- Departamento de Bioquímica-Instituto de Investigaciones Biomédicas "Alberto Sols", Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| |
Collapse
|
162
|
Chrestella J, Farhat F, Daulay ER, Asnir RA, Yudhistira A, Nasution IA. Cyclooxygenase-2 Expression and Its Correlation with Primary Tumor Size and Lymph Node Involvement in Nasopharyngeal Carcinoma. Open Access Maced J Med Sci 2018; 6:2001-2005. [PMID: 30559850 PMCID: PMC6290448 DOI: 10.3889/oamjms.2018.356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/04/2018] [Accepted: 11/04/2018] [Indexed: 11/26/2022] Open
Abstract
AIM: This study aimed to observe the cyclooxygenase-2 expression and its correlation with tumour size and lymph node involvement in nasopharyngeal carcinoma. METHODS: This study was cross-sectional, that enrolled 126 samples diagnosed with nasopharyngeal carcinoma in Haji Adam Malik General Hospital, Medan, Indonesia which fulfilled the inclusion criteria. RESULTS: Based on this study, we found that the age peak incidence of nasopharyngeal carcinoma patients about a 41-60-year-old group (57.1%), dominated by men (71.4%). Through histopathological examination, non-keratinizing squamous cell carcinoma is the most predominant type (79.4%). We also found T3 is the most prevalent primary tumour size (32.5%) with prominent lymph node involvement N3 (45.2%), and stage IV (54.8%). Cyclooxygenase-2 overexpression is prevalent among nonkeratinizing squamous cell carcinoma (81.1%), T3 primary tumour size (41.1%), N3 node involvement (60.0%), and IV clinical stage (71.6%). In addition, we found a significant relationship between cyclooxygenase-2 expressions towards tumor size (p < 0.001) and lymph node involvement (p < 0.001) in nasopharyngeal carcinoma. CONCLUSION: It is proved that the overexpression of cyclooxygenase-2 will increase the susceptibility of nasopharyngeal carcinoma patients having advanced primary tumour size and lymph node involvement.
Collapse
Affiliation(s)
- Jessy Chrestella
- Universitas Sumatera Utara, Fakultas Kedokteran, Pathology, Sumatera Utara, Indonesia
| | - Farhat Farhat
- Universitas Sumatera Utara Fakultas Kedokteran, Otorhinolaryngology Head and Neck Surgery Jl. Dr T. Mansyur No. 9, Medan, North Sumatera 20155, Indonesia
| | - Elvita Rahmi Daulay
- Universitas Sumatera Utara Fakultas Kedokteran, Radiology, Medan, Sumatera Utara, Indonesia
| | - Rizalina Arwinati Asnir
- Universitas Sumatera Utara Fakultas Kedokteran, Otorhinolaryngology Head and Neck Surgery Jl. Dr T. Mansyur No. 9, Medan, North Sumatera 20155, Indonesia
| | - Ashri Yudhistira
- Universitas Sumatera Utara Fakultas Kedokteran, Otorhinolaryngology Head and Neck Surgery Jl. Dr T. Mansyur No. 9, Medan, North Sumatera 20155, Indonesia
| | - Indah Afriani Nasution
- Universitas Sumatera Utara Fakultas Kedokteran, Otorhinolaryngology Head and Neck Surgery Jl. Dr T. Mansyur No. 9, Medan, North Sumatera 20155, Indonesia
| |
Collapse
|
163
|
Gao F, Zafar MI, Jüttner S, Höcker M, Wiedenmann B. Expression and Molecular Regulation of the Cox2 Gene in Gastroenteropancreatic Neuroendocrine Tumors and Antiproliferation of Nonsteroidal Anti-Inflammatory Drugs (NSAIDs). Med Sci Monit 2018; 24:8125-8140. [PMID: 30420588 PMCID: PMC6243832 DOI: 10.12659/msm.912419] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) has had a significant increase over the past 4 decades. The pathophysiological role of the cyclooxygenase-2 (cox-2) gene and factors responsible for the expression in GEP-NETs is of clinical value. Current study determined the expression of cox-2 gene in human GEP-NET tissues and corresponding cell lines, investigated the molecular mechanisms underlying the regulation of cox-2 gene expression and assessed the effect of nonsteroidal anti-inflammatory drugs (NSAIDs) on both anchorage-dependent and independent growth of GEP-NET cells. Material/Methods GEP-NET tissues and QGP-1, BON, and LCC-18 GEP-NET cell lines were used. The expression of cox-2 gene was analyzed by immunohistochemistry, western blot, RT-PCR, and enzyme immunoassay. Transient transfection and luciferase assays along with electrophoretic mobility shift assays were conducted to explore the regulation of cox-2 gene expression. The effect of COX-inhibitors on GEP-NET cell growth was determined by proliferation assays and colony growth assessment. Results We found 87.8% of GEP-NET tissues stained positive for COX-2. QGP-1 and LCC-18 cells expressed cox-2 gene. PGE2 (prostaglandin E2) amounts quantified in the supernatants of NET cells matched to cox-2 expression level. The CRE-E-box element (−56 to −48 bp) and binding of USF1, USF2, and CREB transcription factors to this proximal promoter element were essential for cox-2 promoter activity in GEP-NET cells. COX-2-specific inhibitor NS-398 potently and dose-dependently inhibited PGE2 release from QGP-1 cells. Interestingly, both NS-398 and acetylic salicylic acid effectively suppressed proliferation of QGP-1 and BON cells in a dose-dependent manner. Conclusions The majority of GEP-NETs over express cox-2 gene. The binding of CREB and USF-1/-2 transcription factors to a proximal, overlapping CRE-Ebox element is the underlying mechanism for cox-2 gene expression. NSAIDs potently suppressed the proliferations and may offer a novel approach for chemoprevention and therapy of GEP-NETs.
Collapse
Affiliation(s)
- Feng Gao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (mainland)
| | - Mohammad Ishraq Zafar
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (mainland)
| | - Stefan Jüttner
- Medical Department, Division of Hepatology and Gastroenterology (including Metabolic Diseases), Charité, Campus Mitte (CCM) and Campus Virchow-Klinikum (CVK), Berlin, Germany.,Department of Pathology, Pathologie Ansbach, Ansbach, Germany
| | - Michael Höcker
- Medical Department, Division of Hepatology and Gastroenterology (including Metabolic Diseases), Charité, Campus Mitte (CCM) and Campus Virchow-Klinikum (CVK), Berlin, Germany.,HMNC Holding, München, Germany
| | - Bertram Wiedenmann
- Medical Department, Division of Hepatology and Gastroenterology (including Metabolic Diseases), Charité, Campus Mitte (CCM) and Campus Virchow-Klinikum (CVK), Berlin, Germany
| |
Collapse
|
164
|
Abnormal activation of the Akt signaling pathway in adenoid cystic carcinoma. Eur Arch Otorhinolaryngol 2018; 275:3039-3047. [PMID: 30367261 DOI: 10.1007/s00405-018-5182-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 10/22/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE Adenoid cystic carcinoma (ACC) is an intriguing lesion because it shows a slow growth in the beginning, but a late poor prognosis due to perineural invasion, metastasis and recurrence. This study aimed to investigate whether Akt signaling would be deregulated in adenoid cystic carcinoma and its consequence in the expression of associated proteins. METHODS The expression of the Akt, p-Akt, NFκB, β-catenin, cyclin D1 and COX-2 was assessed by immunohistochemistry in 10 cases of ACC, 17 cases of pleomorphic adenoma (PA), and 7 cases of normal salivary gland (NSG). RESULTS p-Akt was overexpressed in ACC when compared to NSG. NFκB, β-catenin, and COX-2 were overexpressed in ACC and PA when compared to NSG. Most proteins were slightly higher expressed in ACC than in PA, but they never reached significance. p-Akt expression positively correlated with NFκB, β-catenin, cyclin D1 and COX-2 in ACC and PA, while this correlation trended to be negative in for these proteins (except for NFκB) in NSG using Person's correlation analysis, but without reaching significance. CONCLUSIONS Our results indicate an abnormal activation of Akt signaling pathway, which can be an important regulator of tumor biology in ACC. Activated Akt correlated with the expression of NFκB, β-catenin and COX-2, which can potentially influence cell survival in ACC.
Collapse
|
165
|
Kim N, Lannan KL, Thatcher TH, Pollock SJ, Woeller CF, Phipps RP. Lipoxin B 4 Enhances Human Memory B Cell Antibody Production via Upregulating Cyclooxygenase-2 Expression. THE JOURNAL OF IMMUNOLOGY 2018; 201:3343-3351. [PMID: 30348736 DOI: 10.4049/jimmunol.1700503] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/21/2018] [Indexed: 11/19/2022]
Abstract
Vaccination has been the most effective way to prevent or reduce infectious diseases; examples include the eradication of smallpox and attenuation of tetanus and measles. However, there is a large segment of the population that responds poorly to vaccines, in part because they are immunocompromised because of disease, age, or pharmacologic therapy and are unable to generate long-term protection. Specialized proresolving mediators are endogenously produced lipids that have potent proresolving and anti-inflammatory activities. Lipoxin B4 (LXB4) is a member of the lipoxin family, with its proresolving effects shown in allergic airway inflammation. However, its effects on the adaptive immune system, especially on human B cells, are not known. In this study, we investigated the effects of LXB4 on human B cells using cells from healthy donors and donors vaccinated against influenza virus in vitro. LXB4 promoted IgG Ab production in memory B cells and also increased the number of IgG-secreting B cells. LXB4 enhanced expression of two key transcription factors involved in plasma cell differentiation, BLIMP1 and XBP1. Interestingly, LXB4 increased expression of cyclooxygenase-2 (COX2), an enzyme that is required for efficient B cell Ab production. The effects of LXB4 are at least partially COX2-dependent as COX2 inhibitors attenuated LXB4-stimulated BLIMP1 and Xpb-1 expression as well as IgG production. Thus, our study reveals for the first time, to our knowledge, that LXB4 boosts memory B cell activation through COX2 and suggests that LXB4 can serve as a new vaccine adjuvant.
Collapse
Affiliation(s)
- Nina Kim
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642
| | - Katie L Lannan
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642.,Department of Environmental Medicine, University of Rochester, Rochester, NY 14642; and
| | - Thomas H Thatcher
- Division of Pulmonary and Critical Care Medicine, University of Rochester, Rochester, NY 14642
| | - Stephen J Pollock
- Department of Environmental Medicine, University of Rochester, Rochester, NY 14642; and
| | - Collynn F Woeller
- Department of Environmental Medicine, University of Rochester, Rochester, NY 14642; and
| | - Richard P Phipps
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642; .,Department of Environmental Medicine, University of Rochester, Rochester, NY 14642; and
| |
Collapse
|
166
|
Prajitha N, Athira SS, Mohanan PV. Pyrogens, a polypeptide produces fever by metabolic changes in hypothalamus: Mechanisms and detections. Immunol Lett 2018; 204:38-46. [PMID: 30336182 DOI: 10.1016/j.imlet.2018.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/20/2018] [Accepted: 10/13/2018] [Indexed: 12/11/2022]
Abstract
Fever is one of the cardinal symptoms of onset of an infection or inflammation and is the common clinical indicator for medical consultation in mammalian host worldwide. Simply, fever manifested with elevation of body temperature from normal physiological range represents adaptive response of immune system on challenge with an infectious and non-infectious circumstance. Fever usually initiated in the periphery as a result of interaction of immune cells with exogenous or endogenous pyrogens. Peripheral pyrogenic signals gain access to the central nervous system via humoral and neural route. Humoral pathway was initiated with production of pyrogenic cytokines and prostaglandins from immune cells of blood as well as liver, transmitted directly to pre-optic area of hypothalamus through the circumventricular organ of brain. On the other hand an alternative pathway was initiated by the same cytokines indirectly via stimulating the vagal sensory neurons result in pyrogenic fever; so-called neuronal pathway. If the magnitude of pyrogens associated fever is very high, it will lead to severe illness ranging from septic shock to death. So it is necessary to evaluate the presence of pyrogens in implants, medical devices, drugs and biological materials to ensure safety in biomedical applications and therapeutics. Classification, route of administration, mechanism of action and detection of pyrogens and associated products are the major subject of this review.
Collapse
Affiliation(s)
- N Prajitha
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum 695 012, Kerala, India
| | - S S Athira
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum 695 012, Kerala, India
| | - P V Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum 695 012, Kerala, India.
| |
Collapse
|
167
|
Targeting the mitochondrial apoptosis pathway by a newly synthesized COX-2 inhibitor in pediatric ALL lymphocytes. Future Med Chem 2018; 10:2277-2289. [PMID: 30304948 DOI: 10.4155/fmc-2018-0032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AIM Acute lymphoblastic leukemia (ALL) is known as a barely curable malignancy. Particular mutations involved in apoptosis may have a main role in the onset of ALL in the pediatric patients. It has been proven that cycloxygenase-2 is capable of impairing the apoptosis pathway through mitochondria in tumor cells. METHODOLOGY In this study, we investigated selective toxicity of a newly synthesized chalconeferrocenyl derivative as a selective cycloxygenase-2 inhibitor in ALL and healthy B-lymphocytes, and also isolated mitochondria obtained from them. For this purpose, we evaluated the cellar parameters like viability, apoptosis/necrosis, caspase-3 activation and ATP content, and also mitochondrial parameters like mitochondrial membrane potential decline, reactive oxygen species formation, cytochrome C release and mitochondrial swelling. CONCLUSION Our results implied that this compound can selectively induce cellular and mitochondrial toxicity in cancerous ALL B-lymphocytes and obtained mitochondria from them without any detrimental effects on healthy subjects.
Collapse
|
168
|
How Supraphysiological Oxygen Levels in Standard Cell Culture Affect Oxygen-Consuming Reactions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8238459. [PMID: 30363917 PMCID: PMC6186316 DOI: 10.1155/2018/8238459] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/01/2018] [Indexed: 12/31/2022]
Abstract
Most mammalian tissue cells experience oxygen partial pressures in vivo equivalent to 1–6% O2 (i.e., physioxia). In standard cell culture, however, headspace O2 levels are usually not actively regulated and under these conditions are ~18%. This drives hyperoxia in cell culture media that can affect a wide variety of cellular activities and may compromise the ability of in vitro models to reproduce in vivo biology. Here, we review and discuss some specific O2-consuming organelles and enzymes, including mitochondria, NADPH oxidases, the transplasma membrane redox system, nitric oxide synthases, xanthine oxidase, and monoamine oxidase with respect to their sensitivities to O2 levels. Many of these produce reactive oxygen and/or nitrogen species (ROS/RNS) as either primary end products or byproducts and are acutely sensitive to O2 levels in the range from 1% to 18%. Interestingly, many of them are also transcriptional targets of hypoxia-inducible factors (HIFs) and chronic cell growth at physioxia versus 18% O2 may alter their expression. Aquaporins, which facilitate hydrogen peroxide diffusion into and out of cells, are also regulated by HIFs, indicating that O2 levels may affect intercellular communication via hydrogen peroxide. The O2 sensitivities of these important activities emphasize the importance of maintaining physioxia in culture.
Collapse
|
169
|
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related death in the USA. It is of practical importance to identify novel therapeutic targets of CRC to develop new anti-cancer drugs and to discover novel biomarkers of CRC to develop new detection methods. Eicosanoids, which are metabolites of polyunsaturated fatty acids produced by cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) enzymes, are important lipid-signaling molecules involved in the regulation of inflammation and tumorigenesis. Substantial studies have shown that the profiles of eicosanoids are deregulated in CRC, and the enzymes, metabolites, and receptors in the eicosanoid signaling cascade play critical roles in regulating colonic inflammation and colon tumorigenesis. In this review, we discuss the roles of the COX, LOX, and CYP pathways in the carcinogenesis of CRC.
Collapse
Affiliation(s)
- Yuxin Wang
- College of Life Science, Northwest University, Xi'an, Shaanxi, China
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Weicang Wang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Katherine Z Sanidad
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Pei-An Shih
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Xinfeng Zhao
- College of Life Science, Northwest University, Xi'an, Shaanxi, China
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA.
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
170
|
Pyrrolizine-5-carboxamides: Exploring the impact of various substituents on anti-inflammatory and anticancer activities. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2018; 68:251-273. [PMID: 31259695 DOI: 10.2478/acph-2018-0026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/18/2018] [Indexed: 01/05/2023]
Abstract
Towards optimization of the pyrrolizine-5-carboxamide scaffold, a novel series of six derivatives (4a-c and 5a-c) was prepared and evaluated for their anti-inflammatory, analgesic and anticancer activities. The (EZ)-7-cyano-6-((4-hydroxybenzylidene)amino)-N-(p-tolyl)-2,3-dihydro-1H-pyrrolizine-5-carboxamide (4b) and (EZ)-6-((4-chlorobenzylidene)-amino)-7-cyano-N-(p-tolyl)-2,3-dihydro-1H-pyrrolizine-5-carboxamide (5b) bearing the electron donating methyl group showed the highest anti-inflammatory activity while (EZ)-6-((4-chlorobenzylidene)amino)-7-cyano-N-phenyl-2,3-dihydro-1H-pyrrolizine-5-carboxamide (5a) was the most active analgesic agent. Cytotoxicity of the new compounds was evaluated against the MCF-7, A2780 and HT29 cancer cell lines using the MTT assay. Compounds 4b and 5b displayed high anticancer activity with IC50 in the range of 0.30-0.92 μmol L-1 against the three cell lines, while compound (EZ)-N-(4-chlorophenyl)-7-cyano-6-((4-hydroxybenzylidene)-amino)-2,3-dihydro-1H-pyrrolizine-5-carboxamide (4c) was the most active against MCF-7 cells (IC50 = 0.08 μmol L-1). Both the anti-inflammatory and anticancer activities of the new compounds were dependent on the type of substituent on the phenyl rings. Substituents with opposite electronic effects on the two phenyl rings are preferable for high cytotoxicity against the MCF-7 and A2780 cells. COX inhibition was suggested as the molecular mechanism of the anti-inflammatory activity of the new compounds while no clear relationship could be observed between COX inhibition and anticancer activity. Compound 5b, the most active against the three cell lines, induced dose-dependent early apoptosis with 0.1-0.2 % necrosis in MCF-7 cells. New compounds showed promising drug-likeness scores while the docking study revealed high binding affinity to COX-2. Taken together, this study highlighted the significant impact of the substituents on the anti-inflammatory and anticancer activity of pyrrolizine-5-carboxamides, which could help in further optimization to discover good leads for the treatment of cancer and inflammation.
Collapse
|
171
|
Martinez-Marti A, Navarro A, Felip E. COX-2 inhibitors in NSCLC: never-ending story or misplaced? Transl Lung Cancer Res 2018; 7:S191-S194. [PMID: 30393598 DOI: 10.21037/tlcr.2018.04.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alex Martinez-Marti
- Medical Oncology Department, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Alejandro Navarro
- Medical Oncology Department, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Enriqueta Felip
- Medical Oncology Department, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
172
|
Histopathologic characteristics of background parenchymal enhancement (BPE) on breast MRI. Breast Cancer Res Treat 2018; 172:487-496. [PMID: 30140962 DOI: 10.1007/s10549-018-4916-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/03/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE Breast fibroglandular tissue (FGT), as visualized on a mammogram (mammographic density, MD), is one of the strongest known risk factors for breast cancer. FGT is also visible on breast MRI, and increased background parenchymal enhancement (BPE) in the FGT has been identified as potentially a major breast cancer risk factor. The aim of this exploratory study was to examine the biologic basis of BPE. METHODS We examined the unaffected contra-lateral breast of 80 breast cancer patients undergoing a prophylactic mastectomy before any treatment other than surgery of their breast cancer. BPE was classified on the BI-RADS scale (minimal/mild/moderate/marked). Slides were stained for microvessel density (MVD), CD34 (another measure of endothelial density), glandular tissue within the FGT and VEGF. Spearman correlations were used to evaluate the associations between BPE and these pathologic variables. RESULTS In pre-menopausal patients, BPE was highly correlated with MVD, CD34 and glandular concentration within the FGT, and the pathologic variables were themselves highly correlated. The expression of VEGF was effectively confined to terminal duct lobular unit (TDLU) epithelium. The same relationships of the four pathologic variables with BPE were seen in post-menopausal patients, but the relationships were much weaker and not statistically significant. CONCLUSION The strong correlation of BPE and MVD together with the high correlation of MVD with glandular concentration seen in pre-menopausal patients indicates that increased breast cancer risk associated with BPE in pre-menopausal women is likely to result from its association with increased concentration of glandular tissue in the FGT. The effective confinement of VEGF expression to the TDLUs shows that the signal for MVD growth arises directly from the glandular tissue. Further studies are needed to understand the basis of BPE in post-menopausal women.
Collapse
|
173
|
Abstract
In vivo molecular imaging is a powerful tool to analyze the human body. Precision medicine is receiving high attention these days, and molecular imaging plays an important role as companion diagnostics in precision medicine. Nuclear imaging with PET or SPECT and optical imaging technologies are used for in vivo molecular imaging. Nuclear imaging is superior for quantitative imaging, and whole-body analysis is possible even for humans. Optical imaging is superior due to its ease of use, and highly targeted specific imaging is possible with activatable agents. However, with optical imaging using fluorescence, it is difficult to obtain a signal from deep tissue and quantitation is difficult due to the attenuation and scattering of the fluorescent signal. Recently, to overcome these issues, optoacoustic imaging has been used in in vivo imaging. In this article, we review in vivo molecular imaging with nuclear and optical imaging and discuss their utility for precision medicine.
Collapse
Affiliation(s)
- Mikako Ogawa
- Laboratory for Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University.,JST, PRESTO
| | - Hideo Takakura
- Laboratory for Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University
| |
Collapse
|
174
|
Uram Ł, Filipowicz A, Misiorek M, Pieńkowska N, Markowicz J, Wałajtys-Rode E, Wołowiec S. Biotinylated PAMAM G3 dendrimer conjugated with celecoxib and/or Fmoc-l-Leucine and its cytotoxicity for normal and cancer human cell lines. Eur J Pharm Sci 2018; 124:1-9. [PMID: 30118847 DOI: 10.1016/j.ejps.2018.08.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/19/2018] [Accepted: 08/13/2018] [Indexed: 11/17/2022]
Abstract
Tumors still remain one of the main causes of mortality due to the lack of effective anti-cancer therapy. Recently it has been shown, that overexpression of inducible cyclooxygenase-2 (COX-2) and decrease of peroxisome proliferator-activated receptor γ (PPARγ) expression accompany many malignances, therefore, it has been proposed, that COX-2 inhibitors and PPARγ agonists are potential candidates for anticancer therapy and their synergistic, antineoplastic action has been described. In the present study a COX-2 inhibitor (celecoxib) and/or PPARγ agonist (Fmoc-l-Leucine) were conjugated with the biotinylated G3 PAMAM dendrimer to form a three different constructs targeted to cells with increased biotin uptake. All conjugates were characterized by the NMR spectroscopy. Investigation of three types of human cells: normal skin fibroblasts (BJ), immortalized keratinocytes (HaCaT) and cancer lines: glioblastoma (U-118 MG) and squamous cell carcinoma (SCC-15) revealed similar biotin labeled ATTO590 accumulation (after 24 h), except for SCC-15 with significantly lower loading. Constitutive expression of COX-2 protein was confirmed in all tested cells with significantly higher levels (2-2.5 times) in both cancer lines. Comparison of cytotoxicity of the new synthetized dendrimers clearly documented the highest cytotoxicity of the G31B16C15L dendrimer conjugated with both drugs (1: 1) as compared with drugs alone and single conjugates. Additive effects of construct with both compounds were shown for fibroblasts and both cancer cell lines in the order BJ > U-118 MG > SCC-15 with IC50 in the range: 0.69, 1.44 and 2.22 μM, respectively and lowest cytotoxicity in HaCaT cells (IC50 = 2.88). Our results showed, that biotinylated G3 PAMAM dendrimers substituted with COX-2 inhibitor, celecoxib, and PPARγ agonist, Fmoc-l-Leucine (1:1) may be a good candidate for local therapy of glioblastoma but not a skin cancer. Since the effect of PPARγ agonists on COX-2 expression vary depending upon the cell type, specificity of used agonist and the presence of other environmental factors, it is necessary to carefully evaluate the response of chosen drugs on the target cells.
Collapse
Affiliation(s)
- Łukasz Uram
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave, 35-959 Rzeszów, Poland.
| | - Aleksandra Filipowicz
- Faculty of Medical Sciences, Rzeszów University of Information Technology and Management, 2 Sucharskiego Str, 35-225 Rzeszów, Poland
| | - Maria Misiorek
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave, 35-959 Rzeszów, Poland
| | - Natalia Pieńkowska
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave, 35-959 Rzeszów, Poland
| | - Joanna Markowicz
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave, 35-959 Rzeszów, Poland
| | - Elżbieta Wałajtys-Rode
- Department of Drug Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology,75 Koszykowa Str, 00-664 Warsaw, Poland
| | - Stanisław Wołowiec
- Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszów, Warzywna 1a, 35-310 Rzeszów, Poland
| |
Collapse
|
175
|
Wang YP, Wang QY, Li CH, Li XW. COX-2 inhibition by celecoxib in epithelial ovarian cancer attenuates E-cadherin suppression through reduced Snail nuclear translocation. Chem Biol Interact 2018; 292:24-29. [DOI: 10.1016/j.cbi.2018.06.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/11/2018] [Accepted: 06/19/2018] [Indexed: 11/16/2022]
|
176
|
Albasri AM, Elkablawy MA, Hussainy AS, Yousif HM, Alhujaily AS. Impact of cyclooxygenase-2 over-expression on the prognosis of colorectal cancer patients. An experience from Western Saudi Arabia. Saudi Med J 2018; 39:773-780. [PMID: 30106414 PMCID: PMC6194979 DOI: 10.15537/smj.2018.8.22837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 07/13/2018] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES To evaluate cyclooxygenase-2 (COX-2) over-expression in colorectal cancer (CRC) and its role in carcinogenesis and prognosis. METHODS It was a retrospective study. Archival samples were obtained from Pathology Department at King Fahad Hospital, Madinah, Saudi Arabia, over 11 years' period (January 2006 to December 2017). Samples were analyzed using immunohistochemistry for COX-2 and Ki67 over-expression in 324 CRC patients, 40 cases of colorectal adenomas and 20 cases of normal colonic mucosa. RESULTS Cyclooxygenase-2 over-expression was observed in 40% of normal colonic mucosa, 65% of colorectal adenoma and 84.6% of CRC cases. There were no significant correlations between COX-2 over-expression and age, gender, tumor site, or tumor size. However, COX-2 over-expression revealed highly significant correlations with tumor differentiation, lymph node metastasis, lympho-vascular invasion, distant metastasis, advanced stages, and high Ki67 expression. Univariate Kaplan-Meir survival analysis showed that patients with high COX-2 expression had significantly shorter periods of survival. Multivariate analysis by means of the COX-2 regression model revealed that high COX-2 over-expression, AJCC, and Ki67 expression were the only significant independent prognostic indicators. CONCLUSION Cyclooxygenase-2 over-expression increases during normal-adenoma-carcinoma sequence, moreover COX-2 over-expression is associated with advanced tumor stage and Ki67 over-expression. These findings suggest a significant role of COX-2 in the carcinogenesis and prognosis of CRC in our study population.
Collapse
Affiliation(s)
- Abdulkader M Albasri
- Faculty of Medicine, Taibah University, Almadinah Almonawarah, Kingdom of Saudi Arabia. E-mail.
| | | | | | | | | |
Collapse
|
177
|
Ghareeb AE, Moawed FSM, Ghareeb DA, Kandil EI. Potential Prophylactic Effect of Berberine against Rat Colon Carcinoma Induce by 1,2-Dimethyl Hydrazine. Asian Pac J Cancer Prev 2018; 19:1685-1690. [PMID: 29938466 PMCID: PMC6103593 DOI: 10.22034/apjcp.2018.19.6.1685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 05/24/2018] [Indexed: 01/03/2023] Open
Abstract
Introduction: Colon Cancer remains one of the major worldwide causes of cancer related morbidity and mortality in both genders. Berberine (BBR), a major component of alkaloids that possess a variety of pharmacological properties. Objective: This study shows the ameliorating roles of berberine on 1,2 Di methyl hydrazine (DMH) induced colon cancer in male Swiss albino rats. Methods: The rats were segregated into four groups: group 1, control rats; group 2, rats were orally received berberine (75 mg/kg b.wt./day) daily for ten weeks; group 3,rats were subcutaneously injected with DMH (20 mg/kg b.wt) once a week for 8 weeks ,group 4, rats were treated firstly with berberine for two weeks before DMH intoxication and concurrently with DMH over 8 weeks. Result: DMH injection decreased the antioxidants levels (GSH and SOD) and increased inflammatory markers (MPO, MAPK and COX-2). Moreover, it downregulated apoptotic markers (Caspase-3 and P53) expression that confirmed by colon cell proliferation. The prophylactic effect of berberine was noticed as its pre-and co-administration increased antioxidants status and apoptotic markers expression that associated with inflammatory markers down-regulation with absence of proliferated colon cells. Conclusion: Therefore, the overall findings proved that the anti-proliferative effect of berberine return to its antioxidants and anti-inflammatory properties that activated the programmed cell death process.
Collapse
Affiliation(s)
- Ahmed E Ghareeb
- Biochemistry Department, Faculty of Science, Ain Shams University, Egypt
| | | | | | | |
Collapse
|
178
|
Cho JY, Gupta S, Cho HS, Park MS, Mok SJ, Han I, Kim HS. Role of Nonsteroidal Anti-inflammatory Drug in Treatment of Extra-abdominal Desmoid Tumors. Clin Orthop Surg 2018; 10:225-233. [PMID: 29854347 PMCID: PMC5964272 DOI: 10.4055/cios.2018.10.2.225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/19/2018] [Indexed: 11/22/2022] Open
Abstract
Background We retrospectively reviewed the outcomes of patients who had been treated with meloxicam for the extra-abdominal desmoid tumors and evaluated the correlation between clinical outcome and clinic pathological variables. Methods Twenty patients treated with meloxicam were followed up every 3 to 6 months. Meloxicam administration was planned at 15 mg/day orally for 6 months. Results Of the 20 patients evaluated, according to Response Evaluation Criteria in Solid Tumors criteria, there were five patients with partial response (25.0%), eight with stable disease (40.0%), and seven with tumor progression (35.0%). The cumulative probability of dropping out from our nonsurgical strategy using meloxicam was 35.0% at 1 year and 35.0% at 5 years. Conclusions The present study suggests that conservative treatment would be a primary treatment option for this perplexing disease even though we were not able to determine that the use of a cyclooxygenase-2 inhibitor would have an additional influence on the natural course of a desmoid tumor.
Collapse
Affiliation(s)
- Ja Young Cho
- Department of Surgery, Lin Women's Hospital, Seoul, Korea
| | - Sanjay Gupta
- Division of Orthopaedic Surgery, Glasgow Royal Infirmary, Glasgow, UK
| | - Hwan Seong Cho
- Department of Orthopedic Surgery, Seoul National University College of Medicine, Seoul, Korea.,Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Min Suk Park
- Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Su Jung Mok
- Department of Orthopedic Surgery, Seoul National University Hospital, Seoul, Korea
| | - Ilkyu Han
- Department of Orthopedic Surgery, Seoul National University College of Medicine, Seoul, Korea.,Department of Orthopedic Surgery, Seoul National University Hospital, Seoul, Korea
| | - Han-Soo Kim
- Department of Orthopedic Surgery, Seoul National University College of Medicine, Seoul, Korea.,Department of Orthopedic Surgery, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
179
|
Zheng BY, Gao WY, Huang XY, Lin LY, Fang XF, Chen ZX, Wang XZ. HBx promotes the proliferative ability of HL‑7702 cells via the COX‑2/Wnt/β‑catenin pathway. Mol Med Rep 2018; 17:8432-8438. [PMID: 29693167 DOI: 10.3892/mmr.2018.8906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/13/2018] [Indexed: 11/06/2022] Open
Abstract
Hepatitis B virus X protein (HBx) has been termed a viral oncoprotein, and is involved in the initiation and progression of hepatocellular carcinoma (HCC). Cyclooxygenase‑2 (COX‑2) and β‑catenin have been attributed to the oncogenic activity of HBx in HBV‑associated HCC. The present study aimed to determine whether there is crosstalk between COX‑2 and the Wnt/β‑catenin signaling pathway during HL‑7702‑HBx cell proliferation, and to investigate the associated underlying molecular mechanism. In the present study, cell proliferation assay, colony formation assay and flow cytometric analysis were used to detect the proliferative ability of cells. Reverse transcription‑quantitative polymerase chain reaction and western blotting were performed to examine the mRNA and protein expression of COX‑2, β‑catenin, cyclin‑D1 and c‑myc. The results demonstrated that HL‑7702‑HBx exhibited increased cell proliferation, higher colony formation efficiency and a shortened G1 period of the cell cycle. In addition, the mRNA and protein expression levels of COX‑2 were increased, and this was associated with HL‑7702‑HBx cell growth. Furthermore, the expression of β‑catenin and its target genes, cyclin‑D1 and c‑myc proto‑oncogene protein, was upregulated by HBx via COX‑2. Finally, HBx promoted HL‑7702 cell proliferation through the Wnt/β‑catenin signaling pathway. In conclusion, the primary finding of the present study was that HBx may promote HL‑7702 cell proliferation via the COX‑2/Wnt/β‑catenin pathway. Thus, it may be helpful to further investigate the molecular mechanism of HBV‑associated hepatocellular carcinoma.
Collapse
Affiliation(s)
- Bi-Yun Zheng
- Department of Gastroenterology, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Wen-Yu Gao
- Department of Gastroenterology, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Xiao-Yun Huang
- Department of Gastroenterology, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Li-Ying Lin
- Department of Gastroenterology, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Xue-Fen Fang
- Department of Gastroenterology, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Zhi-Xin Chen
- Department of Gastroenterology, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Xiao-Zhong Wang
- Department of Gastroenterology, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
180
|
Vallée A, Lecarpentier Y. Crosstalk Between Peroxisome Proliferator-Activated Receptor Gamma and the Canonical WNT/β-Catenin Pathway in Chronic Inflammation and Oxidative Stress During Carcinogenesis. Front Immunol 2018; 9:745. [PMID: 29706964 PMCID: PMC5908886 DOI: 10.3389/fimmu.2018.00745] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/26/2018] [Indexed: 12/19/2022] Open
Abstract
Inflammation and oxidative stress are common and co-substantial pathological processes accompanying, promoting, and even initiating numerous cancers. The canonical WNT/β-catenin pathway and peroxisome proliferator-activated receptor gamma (PPARγ) generally work in opposition. If one of them is upregulated, the other one is downregulated and vice versa. WNT/β-catenin signaling is upregulated in inflammatory processes and oxidative stress and in many cancers, although there are some exceptions for cancers. The opposite is observed with PPARγ, which is generally downregulated during inflammation and oxidative stress and in many cancers. This helps to explain in part the opposite and unidirectional profile of the canonical WNT/β-catenin signaling and PPARγ in these three frequent and morbid processes that potentiate each other and create a vicious circle. Many intracellular pathways commonly involved downstream will help maintain and amplify inflammation, oxidative stress, and cancer. Thus, many WNT/β-catenin target genes such as c-Myc, cyclin D1, and HIF-1α are involved in the development of cancers. Nuclear factor-kappaB (NFκB) can activate many inflammatory factors such as TNF-α, TGF-β, interleukin-6 (IL-6), IL-8, MMP, vascular endothelial growth factor, COX2, Bcl2, and inducible nitric oxide synthase. These factors are often associated with cancerous processes and may even promote them. Reactive oxygen species (ROS), generated by cellular alterations, stimulate the production of inflammatory factors such as NFκB, signal transducer and activator transcription, activator protein-1, and HIF-α. NFκB inhibits glycogen synthase kinase-3β (GSK-3β) and therefore activates the canonical WNT pathway. ROS activates the phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) signaling in many cancers. PI3K/Akt also inhibits GSK-3β. Many gene mutations of the canonical WNT/β-catenin pathway giving rise to cancers have been reported (CTNNB1, AXIN, APC). Conversely, a significant reduction in the expression of PPARγ has been observed in many cancers. Moreover, PPARγ agonists promote cell cycle arrest, cell differentiation, and apoptosis and reduce inflammation, angiogenesis, oxidative stress, cell proliferation, invasion, and cell migration. All these complex and opposing interactions between the canonical WNT/β-catenin pathway and PPARγ appear to be fairly common in inflammation, oxidative stress, and cancers.
Collapse
Affiliation(s)
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| |
Collapse
|
181
|
Widiyana AP, Putra GS, Muchlashi LA, Sulistyowaty MI, Budiati T. Design and Molecular Docking Studies of Quinazoline Derivatives as Antiproliferation. ACTA ACUST UNITED AC 2018. [DOI: 10.20473/jfiki.v3i22016.44-48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background: Nowadays, a lot of new active substances as anticancer agents have been developed. One of the protein targets of anticancer is selective cyclooxygenase-2 (COX-2). Selective COX-2 is the regulator of cell proliferation. Objective: In this research, quinazoline derivatives were used to design the anticancer agent through a selective COX-2 inhibition. The potential activity of quinazoline derivatives could be increased by substitution in position 2 and 3 of quinazolinone. Molecular docking of selective COX-2 inhibition was required to predict their antiproliferation activity. Methods: The molecular docking of quinazoline derivatives was carried out using Molegro Virtual Docker (MVD) Ver.5.5. Twenty-one of quinazoline derivatives were docked into selective COX-2 with PDB code 3LN1. The interaction was evaluated based on the re-ranked score comparison between quinazoline derivatives with co-crystallized ligand CEL_682. Celecoxib was used as the reference to this research. Results: The result indicated that 18 of 21 quinazoline derivatives showed the approximately re-ranked score -131.508 to -108.418 kcal/mol. Eight of these 18 new quinazoline derivatives have re-ranked score better than Celecoxib. Conclusions: In conclusion, 8 of the new quinazoline derivatives are feasible to be synthesize and performed their in vitro evaluation.
Collapse
|
182
|
Suh J, Kim DH, Kim EH, Park SA, Park JM, Jang JH, Kim SJ, Na HK, Kim ND, Kim NJ, Suh YG, Surh YJ. 15-Deoxy-Δ 12,14-prostaglandin J 2 activates PI3K-Akt signaling in human breast cancer cells through covalent modification of the tumor suppressor PTEN at cysteine 136. Cancer Lett 2018; 424:30-45. [PMID: 29550515 DOI: 10.1016/j.canlet.2018.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 12/11/2022]
Abstract
15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), one of the terminal products of cyclooxygenase-2-catalized arachidonic acid metabolism, has been shown to stimulate breast cancer cell proliferation and migration through Akt activation, but the underlying mechanisms remain poorly understood. In the present study, we investigated the effects of 15d-PGJ2 on the activity of PTEN, the inhibitor of the phosphoinositide 3-kinase (PI3K)-Akt axis, in human breast cancer (MCF-7) cells. Since the α,β-unsaturated carbonyl moiety in the cyclopentenone ring of 15d-PGJ2 is electrophilic, we hypothesized that 15d-PGJ2-induced Akt phosphorylation might result from the covalent modification and subsequent inactivation of PTEN that has several critical cysteine residues. When treated to MCF-7 cells, 15d-PGJ2 bound to PTEN, and this was abolished in the presence of the thiol-reducing agent dithiothreitol. A mass spectrometric analysis by using recombinant and endogenous PTEN protein revealed that the cysteine 136 residue (Cys136) of PTEN is covalently modified upon treatment with 15d-PGJ2. Notably, the ability of 15d-PGJ2 to covalently bind to PTEN as well as to induce Akt phosphorylation was abolished in the cells expressing a mutant form of PTEN in which Cys136 was replaced by serine (C136S-PTEN). The present study demonstrates for the first time that electrophilic 15d-PGJ2 directly binds to cysteine 136 of PTEN and provides new insight into PTEN loss in cancer progression associated with chronic inflammation. These observations suggest that 15d-PGJ2 can undergo nucleophilic addition to PTEN, presumably at Cys136, thereby inactivating this tumor suppressor protein with concomitant Akt activation.
Collapse
Affiliation(s)
- Jinyoung Suh
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, South Korea
| | - Do-Hee Kim
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, South Korea
| | - Eun-Hee Kim
- College of Pharmacy, CHA University, Pocheon-si 11160, Gyeonggi-do, South Korea
| | - Sin-Aye Park
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jong-Min Park
- College of Pharmacy, CHA University, Pocheon-si 11160, Gyeonggi-do, South Korea
| | - Jeong-Hoon Jang
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, South Korea
| | - Su-Jung Kim
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, South Korea
| | - Hye-Kyung Na
- Department of Food Science and Biotechnology, College of Knowedge-Based Services Engineering, Sungshin Women's University, Seoul 02844, South Korea
| | - Nam-Doo Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Nam-Jung Kim
- Department of Pharmacy, Kyung Hee University, Seoul 02453, South Korea
| | - Young Ger Suh
- College of Pharmacy, CHA University, Pocheon-si 11160, Gyeonggi-do, South Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
183
|
Roseweir AK, Powell AGMT, Bennett L, Van Wyk HC, Park J, McMillan DC, Horgan PG, Edwards J. Relationship between tumour PTEN/Akt/COX-2 expression, inflammatory response and survival in patients with colorectal cancer. Oncotarget 2018; 7:70601-70612. [PMID: 27661110 PMCID: PMC5342577 DOI: 10.18632/oncotarget.12134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/04/2016] [Indexed: 12/23/2022] Open
Abstract
In patients with colorectal cancer (CRC), local and systemic inflammatory responses have been extensively reported to associate with cancer survival. However, the specific signalling pathways responsible for inflammatory responses are not clear. The PTEN/Akt pathway is a plausible candidate as it may play a role in mediating inflammation via COX-2, and has been associated with cancer progression. This study therefore examined the relationship between tumour PTEN/Akt/COX-2 expression, inflammatory responses and survival in CRC patients using a tissue microarray. In 201 CRC patients, activation of tumour-specific PTEN/Akt significantly associated with poorer CSS (12.0yrs v 7.3yrs, P=0.032), poorer differentiation (P=0.032), venous invasion (P=0.008) and peritoneal involvement (P=0.004). Patients were stratified for peri-nuclear expression of COX-2 to examine associations with inflammatory responses. In patients with absent peri-nuclear COX-2 expression, activation of tumour-specific PTEN/Akt significantly associated with poorer CSS (11.9yrs v 5.4yrs, P=0.001), poorer differentiation (P=0.018), venous invasion (P=0.003) and peritoneal involvement (P=0.001). However, no associations were seen with either the local or systemic inflammatory responses. In CRC patients, tumour-specific PTEN/Akt pathway activation was significantly associated with poorer CSS, particularly when peri-nuclear COX-2 expression was absent. However, activation of the PTEN/Akt pathway appears not to be responsible for the regulation of inflammatory responses.
Collapse
Affiliation(s)
- Antonia K Roseweir
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Glasgow, United Kingdom.,Unit of Experimental Therapeutics, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, United Kingdom
| | - Arfon G M T Powell
- Unit of Experimental Therapeutics, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, United Kingdom.,Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff, United Kingdom
| | - Lindsay Bennett
- Unit of Experimental Therapeutics, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, United Kingdom
| | - Hester C Van Wyk
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Glasgow, United Kingdom
| | - James Park
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Glasgow, United Kingdom
| | - Donald C McMillan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Glasgow, United Kingdom
| | - Paul G Horgan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Glasgow, United Kingdom
| | - Joanne Edwards
- Unit of Experimental Therapeutics, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, United Kingdom
| |
Collapse
|
184
|
Aghvami M, Ebrahimi F, Zarei MH, Salimi A, Jaktaji RP, Pourahmad J. Matrine Induction of ROS Mediated Apoptosis in Human ALL B-lymphocytes Via Mitochondrial Targeting. Asian Pac J Cancer Prev 2018; 19:555-560. [PMID: 29481011 PMCID: PMC5980949 DOI: 10.22034/apjcp.2018.19.2.555] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2017] [Indexed: 12/25/2022] Open
Abstract
Background: Acute lymphoblastic leukemia (ALL) is one of the most common malignancies among children, characterized by mass production of leukemic blasts. Chemotherapy is the first step in routine treatment, although it may evoke considerable side effects. Matrine, an alkaloid extracted from a Chinese herb, Sophora alopecuroides flavescens Ait, may be protective. Several investigations have indicated pro-apoptotic and anti-proliferative effects in a diverse range of cancer cells. Methods: Matrine’s anti-cancer effects and associated mechanisms were assessed in human ALL B-lymphocytes, focusing on parameters of inflammatory change and apoptosis. Results: Treatment of ALL B-lymphocytes with matrine augmented ROS generation, and caused mitochondrial swelling and a decline in mitochondrial membrane potential. Significant up-regulation of the pro-apoptotic protein Bax and down-regulation of the anti-apoptotic Bcl-2 were also noted. Conclusion: Our results suggest that matrine may be a potential anticancer agent. However, additional studies are needed to clarify involved mechanisms.
Collapse
Affiliation(s)
- Marjan Aghvami
- Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran
| | - Fatemeh Ebrahimi
- Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran
| | | | - Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Science, Ardabil
| | | | - Jalal Pourahmad
- Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran
| |
Collapse
|
185
|
Characterization and evaluation of nanoencapsulated diethylcarbamazine in model of acute hepatic inflammation. Int Immunopharmacol 2018; 50:330-337. [PMID: 28743082 DOI: 10.1016/j.intimp.2017.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 12/17/2022]
Abstract
Previous studies from our laboratory have demonstrated that Diethylcarbamazine (DEC) is a potent anti-inflammatory drug. The aim of the present study was to characterize the nanoencapsulation of DEC and to evaluate its effectiveness in a model of inflammation for the first time. C57BL/6 mice were divided into six groups: 1) Control; 2) Carbon tetrachloride (CCl4); 3) DEC 25mg/kg+CCl4; 4) DEC 50mg/kg+CCl4; 5) DEC-NANO 05mg/kg+CCl4 and 6) DEC-NANO 12.5mg/kg+CCl4. Liver fragments were stained with hematoxylin-eosin, and processed for Western blot, ELISA and immunohistochemistry. Serum was also collected for biochemical measurements. Carbon tetrachloride induced hepatic injury, observed through increased inflammatory markers (TNF-α, IL-1β, PGE2, COX-2 and iNOS), changes in liver morphology, and increased serum levels of total cholesterol, triglycerides, TGO and TGP, LDL, as well as reduced HDL levels. Nanoparticles containing DEC were characterized by diameter, polydispersity index and zeta potential. Treatment with 12.5 nanoencapsulated DEC exhibited a superior anti-inflammatory action to the DEC traditional dose (50mg/kg) used in murine assays, restoring liver morphology, improving serological parameters and reducing the expression of inflammatory markers. The present formulation of nanoencapsulated DEC is therefore a potential therapeutic tool for the treatment of inflammatory hepatic disorders, permitting the use of smaller doses and reducing treatment time, while maintaining high efficacy.
Collapse
|
186
|
Grabosch SM, Shariff OM, Helm CW. Non-steroidal anti-inflammatory agents to induce regression and prevent the progression of cervical intraepithelial neoplasia. Cochrane Database Syst Rev 2018; 2:CD004121. [PMID: 29431861 PMCID: PMC6483561 DOI: 10.1002/14651858.cd004121.pub4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND This is an updated version of the original Cochrane review published in 2014, Issue 4. Cervical intraepithelial neoplasia (CIN) precedes the development of invasive carcinoma of the cervix. Current treatment of CIN is quite effective, but there is morbidity for the patient related to pain, bleeding, infection, cervical stenosis and premature birth in a subsequent pregnancy. Effective treatment with medications, rather than surgery, would be beneficial. OBJECTIVES To evaluate the effectiveness and safety of non-steroidal anti-inflammatory agents (NSAIDs), including cyclooxygenase-2 (COX-2) inhibitors, to induce regression and prevent the progression of CIN. SEARCH METHODS Previously, we searched the Cochrane Gynaecological Cancer Group Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL) (2013, Issue 11), MEDLINE (November, 2013) and Embase (November week 48, 2013). An updated search was performed in August 2017 for CENTRAL (2017, Issue 8), MEDLINE (July, week 3, 2017) and Embase (July week 31, 2017). Trial registries and journals were also searched as part of the update. SELECTION CRITERIA Randomised controlled trials (RCTs) or controlled trials of NSAIDs in the treatment of CIN. DATA COLLECTION AND ANALYSIS Three review authors independently abstracted data and assessed risks of bias in accordance with Cochrane methodology. Outcome data were pooled using fixed-effect meta-analyses. MAIN RESULTS In three RCTs, 171 women over the age of 18 years were randomised to receive celecoxib 400 mg daily for 14 to 18 weeks versus placebo (one study, 130 participants), celecoxib 200 mg twice daily by mouth for six months versus placebo (one study, 25 participants), or rofecoxib 25 mg once daily by mouth for three months versus placebo (one study, 16 participants). The study with rofecoxib was discontinued when the medicine was withdrawn from the market in 2004. The trials ran from June 2005 to April 2012, June 2002 to October 2003, and May to October 2004, respectively. We have chosen to include the data from the rofecoxib study as outcomes may be similar when other such NSAIDs are utilised.Partial or complete regression of CIN 2 or CIN 3 occurred in 31 out of 70 (44%) in the treatment arms and 19 of 62 (31%) in the placebo arms (risk ratio (RR) 1.45, 95% confidence interval (CI) 0.93 to 2.27; P value 0.10), three studies, 132 participants; moderate-certainty evidence). Complete regression of CIN 2 or CIN 3 occurred in 15 of 62 (24%) of those receiving celecoxib versus 10 of 54 (19%) of those receiving placebo (RR 1.31, 95% CI 0.65 to 2.67; P value 0.45, two studies, 116 participants; moderate-certainty evidence). Partial regression of CIN 2 or CIN 3 occurred in 14 of 62 (23%) of those receiving celecoxib versus 8 of 54 (15%) of those receiving placebo (RR 1.56, 95% CI 0.72 to 3.4; P value 0.26), two studies, 116 participants; moderate-certainty evidence).Progression to a higher grade of CIN, but not to invasive cancer, occurred in one of 12 (8%) of those receiving celecoxib and two of 13 (15%) receiving placebo (RR 0.54, 95% CI 0.05 to 5.24; P value 0.60, one study, 25 participants; very low-certainty evidence). Two studies reported no cases of progression to invasive cancer within the timeframe of the study. No toxicity was reported in the two original articles. The trial added in this update had one Grade 3 gastrointestinal adverse effect in the treatment arm, but otherwise had similar Grade 1 to 2 side effects between treatment and placebo groups. Although the studies were well-conducted and randomised, some risk of bias was detected in all studies. Furthermore, the duration of the studies was short, which may mask identifying progression to cancer.The addition of the trial in this update quadrupled the number of patients in the original review and was a well-designed multicentre trial thus, increasing the overall certainty of evidence from very low to moderate for this review. AUTHORS' CONCLUSIONS There are currently no convincing data to support a benefit for NSAIDs in the treatment of CIN. With the addition of this new, larger randomised trial we would rate this as overall moderate-certainty evidence by the GRADE criteria.
Collapse
Affiliation(s)
- Shannon M Grabosch
- Magee‐Womens Hospital of UPMCDepartment of Obstetrics, Gynecology, and Reproductive Sciences300 Halket StPittsburghPennsylvaniaUSA15213
| | - Osman M Shariff
- University of Louisville School of Medicine3646 Warner AveLouisvilleKentuckyUSA40207
| | - C. William Helm
- Princess Alexandra Wing, Royal Cornwall HospitalGynaecological OncologyTuroCornwallUKTR1 3LJ
| | | |
Collapse
|
187
|
Ma J, Li Y, Duan H, Sivakumar R, Li X. Chronic exposure of nanomolar MC-LR caused oxidative stress and inflammatory responses in HepG2 cells. CHEMOSPHERE 2018; 192:305-317. [PMID: 29117589 DOI: 10.1016/j.chemosphere.2017.10.158] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
Low dose but long-term exposure of microcystin-LR (MC-LR) could induce human hepatitis and promote liver cancer according to epidemiological investigation results, but the exact mechanism has not been completely elucidated. In the present study, a chronic toxicity test of MC-LR exposure on HepG2 cells at 0.1-30 nM for 83 d was conducted under laboratory conditions. The western blot assay result revealed that MC-LR entered HepG2 cells, even at the concentration of 0.1 nM, after 83 d of exposure, but no cytotoxicity was observed in the HepG2 cells, as determined by the CCK-8 and LDH tests. However, the results of the DCF fluorescence assay showed that the intracellular ROS level in the 30 nM MC-LR-treated cells was significantly higher than that of the control cells, and 5 and 10 nM of MC-LR exposure totally increased the activity of SOD in HepG2 cells. These results indicate that MC-LR exposure at low concentration also induced excessive ROS in HepG2 cells. Additionally, long-term exposure of MC-LR at low concentration remarkably promoted the expression of NF-κB p65, COX-2, iNOS, TNF-α, IL-1β, and IL-6 in the cells, suggesting that long-term MC-LR exposure at low concentration can induce inflammatory reaction to HepG2 cells, which might account for MC-induced human hepatitis. Thus, we hypothesized that the pathogenesis of human hepatitis and hepatocarcinoma caused by MCs might be closely associated with oxidative stress and inflammation.
Collapse
Affiliation(s)
- Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuanyuan Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hongying Duan
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | | | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
188
|
Yahyapour R, Motevaseli E, Rezaeyan A, Abdollahi H, Farhood B, Cheki M, Rezapoor S, Shabeeb D, Musa AE, Najafi M, Villa V. Reduction–oxidation (redox) system in radiation-induced normal tissue injury: molecular mechanisms and implications in radiation therapeutics. Clin Transl Oncol 2018; 20:975-988. [DOI: 10.1007/s12094-017-1828-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023]
|
189
|
Strohkamp S, Gemoll T, Humborg S, Hartwig S, Lehr S, Freitag-Wolf S, Becker S, Franzén B, Pries R, Wollenberg B, Roblick UJ, Bruch HP, Keck T, Auer G, Habermann JK. Protein levels of clusterin and glutathione synthetase in platelets allow for early detection of colorectal cancer. Cell Mol Life Sci 2018; 75:323-334. [PMID: 28849249 PMCID: PMC11105233 DOI: 10.1007/s00018-017-2631-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/21/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is one of the most frequent malignancies in the Western world. Early tumor detection and intervention are important determinants on CRC patient survival. During early tumor proliferation, dissemination and angiogenesis, platelets store and segregate proteins actively and selectively. Hence, the platelet proteome is a potential source of biomarkers denoting early malignancy. By comparing protein profiles of platelets between healthy volunteers (n = 12) and patients with early- (n = 7) and late-stage (n = 5) CRCs using multiplex fluorescence two-dimensional gel electrophoresis (2D-DIGE), we aimed at identifying differentially regulated proteins within platelets. By inter-group comparisons, 94 differentially expressed protein spots were detected (p < 0.05) between healthy controls and patients with early- and late-stage CRCs and revealed distinct separations between all three groups in principal component analyses. 54 proteins of interest were identified by mass spectrometry and resulted in high-ranked Ingenuity Pathway Analysis networks associated with Cellular function and maintenance, Cellular assembly and organization, Developmental disorder and Organismal injury and abnormalities (p < 0.0001 to p = 0.0495). Target proteins were validated by multiplex fluorescence-based Western blot analyses using an additional, independent cohort of platelet protein samples [healthy controls (n = 15), early-stage CRCs (n = 15), late-stage CRCs (n = 15)]. Two proteins-clusterin and glutathione synthetase (GSH-S)-featured high impact and were subsequently validated in this independent clinical cohort distinguishing healthy controls from patients with early- and late-stage CRCs. Thus, the potential of clusterin and GSH-S as platelet biomarkers for early detection of CRC could improve existing screening modalities in clinical application and should be confirmed in a prospective multicenter trial.
Collapse
Affiliation(s)
- Sarah Strohkamp
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Timo Gemoll
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
| | - Sina Humborg
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Sonja Hartwig
- Institute of Clinical Biochemistry and Pathobiochemistry, Leibniz Center for Diabetes Research, German Diabetes Center at the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Stefan Lehr
- Institute of Clinical Biochemistry and Pathobiochemistry, Leibniz Center for Diabetes Research, German Diabetes Center at the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Sandra Freitag-Wolf
- Institute of Medical Informatics and Statistics, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Susanne Becker
- Karolinska Biomics Center, Karolinska Institutet, Stockholm, Sweden
| | - Bo Franzén
- Karolinska Biomics Center, Karolinska Institutet, Stockholm, Sweden
| | - Ralph Pries
- Clinic for Otorhinolaryngology, Head and Neck Surgery, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Barbara Wollenberg
- Clinic for Otorhinolaryngology, Head and Neck Surgery, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Uwe J Roblick
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Hans-Peter Bruch
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Tobias Keck
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Gert Auer
- Karolinska Biomics Center, Karolinska Institutet, Stockholm, Sweden
| | - Jens K Habermann
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
- Interdisciplinary Center for Biobanking-Lübeck (ICB-L), University of Lübeck, Lübeck, Germany.
| |
Collapse
|
190
|
Li H, Jin F, Jiang K, Ji S, Wang L, Ni Z, Chen X, Hu Z, Zhang H, Liu Y, Qin Y, Zha X. mTORC1-mediated downregulation of COX2 restrains tumor growth caused by TSC2 deficiency. Oncotarget 2017; 7:28435-47. [PMID: 27078846 PMCID: PMC5053737 DOI: 10.18632/oncotarget.8633] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 03/28/2016] [Indexed: 12/30/2022] Open
Abstract
Tuberous sclerosis complex (TSC), caused by loss-of-function mutations in the TSC1 or TSC2 gene, is characterized by benign tumor formation in multiple organs. Hyperactivation of mammalian target of rapamycin complex 1 (mTORC1) is the primary alteration underlying TSC tumors. By analyzing Tsc2-null mouse embryonic fibroblasts (MEFs) and rat uterine leiomyoma-derived Tsc2-null ELT3 cells, we detected evidence for the involvement of cyclooxygenase 2 (COX2) as a downstream target of mTORC1 in the development of TSC tumors. We showed that loss of TSC2 led to decreased COX2 expression through activation of an mTORC1/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Overexpression of COX2 promoted proliferation and tumoral growth of Tsc2-null cells. COX2 knockdown inhibited the proliferation of the control cells. COX2 enhanced Tsc2-null cell growth through upregulation of interleukin-6 (IL-6). In addition, rapamycin in combination with celecoxib, a COX2 inhibitor, strongly inhibited Tsc2-deficient cell growth. We conclude that downregulation of COX2 exerts a protective effect against hyperactivated mTORC1-mediated tumorigenesis caused by the loss of TSC2, and the combination of rapamycin and celecoxib may be an effective new approach to treating TSC.
Collapse
Affiliation(s)
- Hongwu Li
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Otorhinolaryngology, Head & Neck Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fuquan Jin
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China.,School of Pharmacy, Anhui Medical University, Hefei, China
| | - Keguo Jiang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China.,Department of Nephrology, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shuang Ji
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Li Wang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Zhaofei Ni
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Xianguo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hongbing Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology & Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yehai Liu
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yide Qin
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Xiaojun Zha
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China.,State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology, Hefei, China
| |
Collapse
|
191
|
Wei Y, Yang P, Cao S, Zhao L. The combination of curcumin and 5-fluorouracil in cancer therapy. Arch Pharm Res 2017; 41:1-13. [PMID: 29230689 DOI: 10.1007/s12272-017-0979-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 10/26/2017] [Indexed: 12/29/2022]
Abstract
5-Fluorouracil (5-FU) alone or in combination with other therapeutic drugs has been widely used for clinical treatment of various cancers. However, 5-FU-based chemotherapy has limited anticancer efficacy in clinic due to multidrug resistance and dose-limiting cytotoxicity. Some molecules and genes in cancer cells, such as nuclear factor kappa B, insulin-like growth factor-1 receptor, epidermal growth factor receptor, cyclooxygenase-2, signal transducer and activator of transcription 3, phosphatase and tensin homolog deleted on chromosome ten and Bcl-2 etc. are related to the chemoresistance and sensitivity of cancer cells to 5-FU. The activation of these molecules and genes expressions in cancer cells will be increased or decreased with long-term exposure of 5-FU. Curcumin has been found to be able to negatively regulate these processes. In order to overcome the problems of 5-FU, curcumin has been used to combine with 5-FU in cancer therapy.
Collapse
Affiliation(s)
- Yumeng Wei
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No.3-5, Zhongshan Road, Jiangyang District, Luzhou, Sichuan, 646000, China
| | - Panjing Yang
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646099, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, 3-319 Zhongshan Road, Luzhou, Sichuan, 646000, China.
| | - Ling Zhao
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No.3-5, Zhongshan Road, Jiangyang District, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
192
|
Regulski M, Piotrowska-Kempisty H, Prukała W, Dutkiewicz Z, Regulska K, Stanisz B, Murias M. Synthesis, in vitro and in silico evaluation of novel trans-stilbene analogues as potential COX-2 inhibitors. Bioorg Med Chem 2017; 26:141-151. [PMID: 29191502 DOI: 10.1016/j.bmc.2017.11.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 01/04/2023]
Abstract
25 new trans-stilbene and trans-stilbazole derivatives were investigated using in vitro and in silico techniques. The selectivity and potency of the compounds were assessed using commercial ELISA test. The obtained results were incorporated into 2D QSAR assay. The most promising compound 4-nitro-3',4',5'-trihydroxy-trans-stilbene (N1) was synthetized and its potency and selectivity were confirmed. N1 was classified as preferential COX-2 inhibitor. Its ability to inhibit COX-2 in MCF-7 cell line was established and its cytotoxicity by MTT test was assessed. The compound was more cytotoxic than celecoxib within studied concentration range. Finally, the investigated trans-stilbene was docked into COX-1 and COX-2 active sites using "CDOCKER" protocol.
Collapse
Affiliation(s)
- Miłosz Regulski
- Poznan University of Medical Sciences, Department of Toxicology, 30 Dojazd Street, 60-631 Poznań, Poland.
| | - Hanna Piotrowska-Kempisty
- Poznan University of Medical Sciences, Department of Toxicology, 30 Dojazd Street, 60-631 Poznań, Poland
| | - Wiesław Prukała
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Nucleosides and Nucleotides Chemistry, 89b Umultowska Street, 61-614 Poznań, Poland
| | - Zbigniew Dutkiewicz
- Poznan University of Medical Sciences, Department of Chemical Technology of Drugs, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Katarzyna Regulska
- Greater Poland Oncology Center, Clinical Pharmacy, 15 Garbary Street, 61-866 Poznań, Poland
| | - Beata Stanisz
- Poznan University of Medical Sciences, Department of Pharmaceutical Chemistry, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Marek Murias
- Poznan University of Medical Sciences, Department of Toxicology, 30 Dojazd Street, 60-631 Poznań, Poland.
| |
Collapse
|
193
|
Novilla A, Djamhuri DS, Nurhayati B, Rihibiha DD, Afifah E, Widowati W. Anti-inflammatory properties of oolong tea ( Camellia sinensis ) ethanol extract and epigallocatechin gallate in LPS-induced RAW 264.7 cells. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.10.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
194
|
Richardson JSM, Aminudin N, Abd Malek SN. Chalepin: A Compound from Ruta angustifolia L. Pers Exhibits Cell Cycle Arrest at S phase, Suppresses Nuclear Factor-Kappa B (NF-κB) Pathway, Signal Transducer and Activation of Transcription 3 (STAT3) Phosphorylation and Extrinsic Apoptotic Pathway in Non-small Cell Lung Cancer Carcinoma (A549). Pharmacogn Mag 2017; 13:S489-S498. [PMID: 29142404 PMCID: PMC5669087 DOI: 10.4103/pm.pm_13_17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/22/2017] [Indexed: 12/24/2022] Open
Abstract
Background Plants have been a major source of inspiration in developing novel drug compounds in the treatment of various diseases that afflict human beings worldwide. Ruta angustifolia L. Pers known locally as Garuda has been conventionally used for various medicinal purposes such as in the treatment of cancer. Objective A dihydrofuranocoumarin named chalepin, which was isolated from the chloroform extract of the plant, was tested on its ability to inhibit molecular pathways of human lung carcinoma (A549) cells. Materials and Methods Cell cycle analysis and caspase 8 activation were conducted using a flow cytometer, and protein expressions in molecular pathways were determined using Western blot technique. Results Cell cycle analysis showed that cell cycle was arrested at the S phase. Further studies using Western blotting technique showed that cell cycle-related proteins such as cyclins, cyclin-dependent kinases (CDKs), and inhibitors of CDKs correspond to a cell cycle arrest at the S phase. Chalepin also showed inhibition in the expression of inhibitors of apoptosis proteins. Nuclear factor-kappa B (NF-κB) pathway, signal transducer and activation of transcription 3 (STAT-3), cyclooxygenase-2, and c-myc were also downregulated upon treatment with chalepin. Chalepin was found to induce extrinsic apoptotic pathway. Death receptors 4 and 5 showed a dramatic upregulation at 24 h. Analysis of activation of caspase 8 with the flow cytometer showed an increase in activity in a dose- and time-dependent manner. Activation of caspase 8 induced cleavage of BH3-interacting domain death agonist, which initiated a mitochondrial-dependent or -independent apoptosis. Conclusion Chalepin causes S phase cell cycle arrest, NF-κB pathway inhibition, and STAT-3 inhibition, induces extrinsic apoptotic pathway, and could be an excellent chemotherapeutic agent. SUMMARY This study reports the capacity of an isolated bioactive compound known as chalepin to suppress the nuclear factor kappa-light-chain-enhancer of activated B cells pathway, signal transducer and activation of transcription 3, and extrinsic apoptotic pathway and also its ability to arrest cell cycle in S phase. This compound was from the leaves of Ruta angustifolia L. Pers. It provides new insight on the ability of this plant in suppressing certain cancers, especially the nonsmall cell lung carcinoma according to this study. Abbreviations used: °C: Degree Celsius, ANOVA: Analysis of variance, ATCC: American Type Culture Collection, BCL-2: B-Cell CLL/Lymphoma 2, Bcl-xL: B-cell lymphoma extra-large, BH3: Bcl-2 homology 3, BID: BH3-interacting domain death agonist, BIR: Baculovirus inhibitor of apoptosis protein repeat, Caspases: Cysteinyl aspartate-specific proteases, CDK: Cyclin-dependent kinase, CO2: Carbon dioxide, CST: Cell signaling technologies, DISC: Death-inducing signaling complex, DMSO: Dimethyl sulfoxide, DNA: Deoxyribonucleic acid, DR4: Death receptor 4, DR5: Death receptor 5, E1a: Adenovirus early region 1A, ECL: Enhanced chemiluminescence, EDTA: Ethylenediaminetetraacetic acid, ELISA: Enzyme-linked immunosorbent assay, etc.: Etcetera, FADD: Fas-associated protein with death domain, FBS: Fetal bovine serum, FITC: Fluorescein isothiocyanate, G1: Gap 1, G2: Gap 2, HPLC: High-performance liquid chromatography, HRP: Horseradish peroxidase, IAPs: Inhibitor of apoptosis proteins, IC50: Inhibitory concentration at half maximal inhibitory, IKK-α: Inhibitor of nuclear factor kappa-B kinase subunit alpha, IKK-β: Inhibitor of nuclear factor kappa-B kinase subunit beta, IKK-γ: Inhibitor of nuclear factor kappa-B kinase subunit gamma, IKK: IκB kinase, IkBα: Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha, m: Meter, M: Mitotic, mm: Millimeter, mRNA: Messenger ribonucleic acid, NaCl: Sodium chloride, NaVO4: Sodium orthovanadate, NEMO: NF-Kappa-B essential modulator, NF-κB: Nuclear factor kappa-light chain-enhancer of activated B cells, NSCLC: Nonsmall cell lung carcinoma, PBS: Phosphate buffered saline, PGE2: Prostaglandin E2, PI: Propidium iodide, PMSF: Phenylmethylsulfonyl fluoride, pRB: Phosphorylated retinoblastoma, R. angustifolia: Ruta angustifolia L. Pers, Rb: Retinoblastoma, rpm: Rotation per minute, RPMI: Roswell Park Memorial Institute, S phase: Synthesis phase, SD: Standard deviation, SDS-PAGE: Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Smac: Second mitochondria-derived activator of caspase, SPSS: Statistical Package for the Social Sciences, STAT3: Signal transducer and activation of transcription 3, tBID: Truncated BID, TNF: Tumor necrosis factor, TRADD: Tumor necrosis factor receptor type-1 associated death domain, TRAIL: TNF-related apoptosis- inducing ligand, USA: United States of America, v/v: Volume over volume.
Collapse
Affiliation(s)
| | - Norhaniza Aminudin
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Sri Nurestri Abd Malek
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
195
|
Handayani S, Susidarti RA, Jenie RI, Meiyanto E. Two Active Compounds from Caesalpinia sappan L. in Combination with Cisplatin Synergistically Induce Apoptosis and Cell Cycle Arrest on WiDr Cells. Adv Pharm Bull 2017; 7:375-380. [PMID: 29071219 PMCID: PMC5651058 DOI: 10.15171/apb.2017.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 12/25/2022] Open
Abstract
Purpose: The aim of this study is to observe the synergistic effect of two active compounds of secang, brazilin and brazilein, combined with cisplatin on WiDr colon cancer cells. Methods: Cytotoxic activities of brazilin (Bi) and brazilein (Be) in single and in combination with cisplatin (Cisp) were examined by MTT assay. Synergistic effect was analyzed by combination index (CI) parameter. Apoptosis and cell cycle profiles were observed by using flow cytometry. Results: The result of MTT assay showed that IC50 value of brazilin and brazilein on WiDr cancer cells were 41 µM and 52 µM respectively. The combination of ½ IC50 of Bi-Cisp reduced cells viability up to 64% and showed synergistic effect with CI value less than 1 (CI = 0.8). The combinations of ½ IC50 of Be-Cisp also reduced cells viability up to 78% and showed synergistic effect (CI=0.65). Combination of Bi-Cisp and Be-Cisp induced apoptosis higher than the single treatments. Further analysis on the cell cycle progression showed that single treatment of ½ IC50 of Be and Bi induced S-phase and G2/M-phase accumulation, while combination of Be-Cisp and Bi-Cisp enhanced S-phase accumulation. Conclusion: Both combination of Bi-Cisp and Be-Cisp showed synergistic effect on WiDr cells through induction of apoptosis and halted the cell cycle progression, thus, WiDr cells growth were significantly reduced.
Collapse
Affiliation(s)
- Sri Handayani
- Research Center for Chemistry, Indonesian Institute of Sciences (LIPI), Serpong, Indonesia.,Cancer Chemoprevention Research Center, Faculty of Pharmacy,Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ratna Asmah Susidarti
- Cancer Chemoprevention Research Center, Faculty of Pharmacy,Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Riris Istighfari Jenie
- Cancer Chemoprevention Research Center, Faculty of Pharmacy,Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Edy Meiyanto
- Cancer Chemoprevention Research Center, Faculty of Pharmacy,Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
196
|
Yang Y, He Q, Wang H, Hu X, Luo Y, Liang G, Kuang S, Mai S, Ma J, Tian X, Chen Q, Yang J. The protection of meloxicam against chronic aluminium overload-induced liver injury in rats. Oncotarget 2017; 8:23448-23458. [PMID: 28423583 PMCID: PMC5410317 DOI: 10.18632/oncotarget.15588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/13/2017] [Indexed: 12/13/2022] Open
Abstract
The present study was designed to observe the protective effect and mechanisms of meloxicam on liver injury caused by chronic aluminium exposure in rats. The histopathology was detected by hematoxylin-eosin staining. The levels of prostaglandin E2, cyclic adenosine monophosphate and inflammatory cytokines were detected by enzyme linked immunosorbent assay. The expressions of cyclooxygenases-2, prostaglandin E2 receptors and protein kinase A were measured by western blotting and immunohistochemistry. Our experimental results showed that aluminium overload significantly damaged the liver. Aluminium also significantly increased the expressions of cyclooxygenases-2, prostaglandin E2, cyclic adenosine monophosphate, protein kinase A and the prostaglandin E2 receptors (EP1,2,4) and the levels of inflammation and oxidative stress, while significantly decreased the EP3 expression in liver. The administration of meloxicam significantly improved the impairment of liver. The contents of prostaglandin E2 and cyclic adenosine monophosphate were significantly decreased by administration of meloxicam. The administration of meloxicam also significantly decreased the expressions of cyclooxygenases-2 and protein kinase A and the levels of inflammation and oxidative stress, while significantly increased the EP1,2,3,4 expressions in rat liver. Our results suggested that the imbalance of cyclooxygenases-2 and downstream prostaglandin E2 signaling pathway is involved in the injury of chronic aluminium-overload rat liver. The protective mechanism of meloxicam on aluminium-overload liver injury is attributed to reconstruct the balance of cyclooxygenases-2 and downstream prostaglandin E2 signaling pathway.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Qin He
- Department of Hepatobiliary Surgery, 1st Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Hong Wang
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Xinyue Hu
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Ying Luo
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Guojuan Liang
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Shengnan Kuang
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Shaoshan Mai
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Jie Ma
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Xiaoyan Tian
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Qi Chen
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Junqing Yang
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| |
Collapse
|
197
|
Park E, Lee MY, Seo CS, Jeon WY, Shin HK. Yongdamsagan-tang, a traditional herbal formula, inhibits cell growth through the suppression of proliferation and inflammation in benign prostatic hyperplasia epithelial-1 cells. JOURNAL OF ETHNOPHARMACOLOGY 2017; 209:230-235. [PMID: 28782621 DOI: 10.1016/j.jep.2017.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Benign prostatic hyperplasia (BPH), also called benign enlargement of the prostate, is a progressive disease that is observed in most elderly men. Yongdamsagan-tang, a traditional herbal formula, is used commonly for the treatment of inflammation-related diseases. Although the therapeutic efficacy of Yongdamsagan-tang against BPH in vivo was reported previously, its underlying mechanisms are not clearly understood. AIM OF THE STUDY In this study, we investigated the effect of Yongdamsagan-tang water extract (YSTE) and its mechanism on the growth of human BPH epithelial BPH-1 cells. MATERIALS AND METHODS YSTE was extracted from 11 herbaceous plants and its chemical composition was analyzed by High-performance liquid chromatography (HPLC). YSTE was treated in the epithelial BPH-1 cell line and then cell lysates or supernant were used to evaluate cell viability, cell cycle, proliferation and cytokine production. RESULTS HPLC revealed that Baicalin and gentiopicroside were involved as the major compounds of YSTE. YSTE treatment in BPH-1 cells repressed cell viability in a dose-dependent manner. Regarding the inhibitory mechanisms of YSTE on cell growth, YSTE inhibited cell proliferation via a decrease in endogenous cyclin D1 protein levels and arrest at the S phase during cell-cycle progression. Furthermore, YSTE treatment in BPH-1 cells suppressed prostaglandin E2 production and cyclooxygenase-2 (COX-2) protein levels. The secretion of the proinflammatory cytokines, interleukin-8 and interleukin-6, was also reduced by YSTE treatment. CONCLUSIONS YSTE in BPH-1 cells showed antiproliferative and anti-inflammatory activities via cell-cycle arrest and downregulation of COX-2 expression, respectively. Taken together, the results of the present study will enhance our understanding of the mechanisms underlying the effect of YSTE in BPH.
Collapse
Affiliation(s)
- Eunsook Park
- K-herb Research Center, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea.
| | - Mee-Young Lee
- K-herb Research Center, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Chang-Seob Seo
- K-herb Research Center, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Woo-Young Jeon
- K-herb Research Center, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Hyeun-Kyoo Shin
- K-herb Research Center, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea.
| |
Collapse
|
198
|
Pandey MK, Gupta SC, Nabavizadeh A, Aggarwal BB. Regulation of cell signaling pathways by dietary agents for cancer prevention and treatment. Semin Cancer Biol 2017; 46:158-181. [PMID: 28823533 DOI: 10.1016/j.semcancer.2017.07.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/05/2017] [Accepted: 07/12/2017] [Indexed: 12/17/2022]
Abstract
Although it is widely accepted that better food habits do play important role in cancer prevention and treatment, how dietary agents mediate their effects remains poorly understood. More than thousand different polyphenols have been identified from dietary plants. In this review, we discuss the underlying mechanism by which dietary agents can modulate a variety of cell-signaling pathways linked to cancer, including transcription factors, nuclear factor κB (NF-κB), signal transducer and activator of transcription 3 (STAT3), activator protein-1 (AP-1), β-catenin/Wnt, peroxisome proliferator activator receptor- gamma (PPAR-γ), Sonic Hedgehog, and nuclear factor erythroid 2 (Nrf2); growth factors receptors (EGFR, VEGFR, IGF1-R); protein Kinases (Ras/Raf, mTOR, PI3K, Bcr-abl and AMPK); and pro-inflammatory mediators (TNF-α, interleukins, COX-2, 5-LOX). In addition, modulation of proteasome and epigenetic changes by the dietary agents also play a major role in their ability to control cancer. Both in vitro and animal based studies support the role of dietary agents in cancer. The efficacy of dietary agents by clinical trials has also been reported. Importantly, natural agents are already in clinical trials against different kinds of cancer. Overall both in vitro and in vivo studies performed with dietary agents strongly support their role in cancer prevention. Thus, the famous quote "Let food be thy medicine and medicine be thy food" made by Hippocrates 25 centuries ago still holds good.
Collapse
Affiliation(s)
- Manoj K Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA.
| | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ali Nabavizadeh
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | | |
Collapse
|
199
|
Khoo HE, Azlan A, Tang ST, Lim SM. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res 2017; 61:1361779. [PMID: 28970777 PMCID: PMC5613902 DOI: 10.1080/16546628.2017.1361779] [Citation(s) in RCA: 1124] [Impact Index Per Article: 160.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/23/2017] [Indexed: 02/07/2023] Open
Abstract
Anthocyanins are colored water-soluble pigments belonging to the phenolic group. The pigments are in glycosylated forms. Anthocyanins responsible for the colors, red, purple, and blue, are in fruits and vegetables. Berries, currants, grapes, and some tropical fruits have high anthocyanins content. Red to purplish blue-colored leafy vegetables, grains, roots, and tubers are the edible vegetables that contain a high level of anthocyanins. Among the anthocyanin pigments, cyanidin-3-glucoside is the major anthocyanin found in most of the plants. The colored anthocyanin pigments have been traditionally used as a natural food colorant. The color and stability of these pigments are influenced by pH, light, temperature, and structure. In acidic condition, anthocyanins appear as red but turn blue when the pH increases. Chromatography has been largely applied in extraction, separation, and quantification of anthocyanins. Besides the use of anthocyanidins and anthocyanins as natural dyes, these colored pigments are potential pharmaceutical ingredients that give various beneficial health effects. Scientific studies, such as cell culture studies, animal models, and human clinical trials, show that anthocyanidins and anthocyanins possess antioxidative and antimicrobial activities, improve visual and neurological health, and protect against various non-communicable diseases. These studies confer the health effects of anthocyanidins and anthocyanins, which are due to their potent antioxidant properties. Different mechanisms and pathways are involved in the protective effects, including free-radical scavenging pathway, cyclooxygenase pathway, mitogen-activated protein kinase pathway, and inflammatory cytokines signaling. Therefore, this review focuses on the role of anthocyanidins and anthocyanins as natural food colorants and their nutraceutical properties for health. Abbreviations: CVD: Cardiovascular disease VEGF: Vascular endothelial growth factor.
Collapse
Affiliation(s)
- Hock Eng Khoo
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor Darul Ehsan, Malaysia
- Research Centre of Excellence for Nutrition and Non-communicable Diseases, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor Darul Ehsan, Malaysia
| | - Azrina Azlan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor Darul Ehsan, Malaysia
- Research Centre of Excellence for Nutrition and Non-communicable Diseases, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor Darul Ehsan, Malaysia
| | - Sou Teng Tang
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor Darul Ehsan, Malaysia
| | - See Meng Lim
- Nutritional Sciences Program, School of Healthcare Science, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
200
|
Bijak M, Saluk-Bijak J. Flavonolignans inhibit the arachidonic acid pathway in blood platelets. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:396. [PMID: 28797264 PMCID: PMC5553656 DOI: 10.1186/s12906-017-1897-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Arachidonic acid metabolism by cyclooxygenase (COX) is a major pathway for blood platelets' activation, which is associated with pro-thrombotic platelet activity and the production of pro-inflammatory mediators. Inhibition of COX activity is one of the major means of anti-platelet pharmacotherapy preventing arterial thrombosis and reducing the incidence of cardiovascular events. Recent studies have presented that a silymarin (standardized extract of Milk thistle (Silybum marianum)) can inhibit the COX pathway. Accordingly, the aim of our study was to determine the effects of three major flavonolignans (silybin, silychristin and silydianin) on COX pathway activity in blood platelets. METHODS We determined the effect of flavonolignans on arachidonic acid induced blood platelet aggregation, COX pathway metabolites formation, as well as COX activity in platelets. Additionally, we analysed the potential mechanism of this interaction using the bioinformatic ligand docking method. RESULTS We observed that tested compounds decrease the platelet aggregation level, both thromboxane A2 and malondialdehyde formation, as well as inhibit the COX activity. The strongest effect was observed for silychristin and silybin. In our in silico study we showed that silychristin and silybin have conformations which interact with the active COX site as competitive inhibitors, blocking the possibility of substrate binding. CONCLUSIONS The results obtained from this study clearly present the potential of flavonolignans as novel antiplatelet and anti-inflammatory agents.
Collapse
Affiliation(s)
- Michal Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|