151
|
Abstract
The shortage of organ donors has contributed to the rapid development of cell-based therapy in which stem cells are transplanted and administered to repair or regenerate damaged tissues or organs. The common sources of stem cells are embryonic, mesenchymal, stromal, and induced pluripotent cells. Despite the popularity of stem cell therapy, evaluation of the therapeutic efficiency of transplanted stem cells and their tracking in vivo remains a major challenge. Current imaging modalities such as magnetic resonance imaging, radionuclide imaging, and positron emission tomography have certain limitations such as toxicity, shorter circulation time, and higher cost. Here, we describe near-infrared imaging methods to track and monitor stem cell recruitment to the site of injury.
Collapse
|
152
|
Idiago-López J, Moreno-Antolín E, de la Fuente JM, Fratila RM. Nanoparticles and bioorthogonal chemistry joining forces for improved biomedical applications. NANOSCALE ADVANCES 2021; 3:1261-1292. [PMID: 36132873 PMCID: PMC9419263 DOI: 10.1039/d0na00873g] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/21/2021] [Indexed: 05/08/2023]
Abstract
Bioorthogonal chemistry comprises chemical reactions that can take place inside complex biological environments, providing outstanding tools for the investigation and elucidation of biological processes. Its use in combination with nanotechnology can lead to further developments in diverse areas of biomedicine, such as molecular bioimaging, targeted delivery, in situ drug activation, study of cell-nanomaterial interactions, biosensing, etc. Here, we summarise the recent efforts to bring together the unique properties of nanoparticles and the remarkable features of bioorthogonal reactions to create a toolbox of new or improved biomedical applications. We show how, by joining forces, bioorthogonal chemistry and nanotechnology can overcome some of the key current limitations in the field of nanomedicine, providing better, faster and more sensitive nanoparticle-based bioimaging and biosensing techniques, as well as therapeutic nanoplatforms with superior efficacy.
Collapse
Affiliation(s)
- Javier Idiago-López
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza 50009 Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Eduardo Moreno-Antolín
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza 50009 Spain
| | - Jesús M de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza 50009 Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Raluca M Fratila
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza 50009 Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| |
Collapse
|
153
|
Soudi A, Yazdanian M, Ranjbar R, Tebyanian H, Yazdanian A, Tahmasebi E, Keshvad A, Seifalian A. Role and application of stem cells in dental regeneration: A comprehensive overview. EXCLI JOURNAL 2021; 20:454-489. [PMID: 33746673 PMCID: PMC7975587 DOI: 10.17179/excli2021-3335] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/09/2021] [Indexed: 12/18/2022]
Abstract
Recently, a growing attention has been observed toward potential advantages of stem cell (SC)-based therapies in regenerative treatments. Mesenchymal stem/stromal cells (MSCs) are now considered excellent candidates for tissue replacement therapies and tissue engineering. Autologous MSCs importantly contribute to the state-of-the-art clinical strategies for SC-based alveolar bone regeneration. The donor cells and immune cells play a prominent role in determining the clinical success of MSCs therapy. In line with the promising future that stem cell therapy has shown for tissue engineering applications, dental stem cells have also attracted the attention of the relevant researchers in recent years. The current literature review aims to survey the variety and extension of SC-application in tissue-regenerative dentistry. In this regard, the relevant English written literature was searched using keywords: "tissue engineering", "stem cells", "dental stem cells", and "dentistry strategies". According to the available database, SCs application has become increasingly widespread because of its accessibility, plasticity, and high proliferative ability. Among the growing recognized niches and tissues containing higher SCs, dental tissues are evidenced to be rich sources of MSCs. According to the literature, dental SCs are mostly present in the dental pulp, periodontal ligament, and dental follicle tissues. In this regard, the present review has described the recent findings on the potential of dental stem cells to be used in tissue regeneration.
Collapse
Affiliation(s)
- Armin Soudi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Ranjbar
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Tebyanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Yazdanian
- Department of Veterinary, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Keshvad
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre (Ltd), The London Bioscience Innovation Centre, London, UK
| |
Collapse
|
154
|
Portillo Esquivel LE, Zhang B. Application of Cell, Tissue, and Biomaterial Delivery in Cardiac Regenerative Therapy. ACS Biomater Sci Eng 2021; 7:1000-1021. [PMID: 33591735 DOI: 10.1021/acsbiomaterials.0c01805] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death around the world, being responsible for 31.8% of all deaths in 2017 (Roth, G. A. et al. The Lancet 2018, 392, 1736-1788). The leading cause of CVD is ischemic heart disease (IHD), which caused 8.1 million deaths in 2013 (Benjamin, E. J. et al. Circulation 2017, 135, e146-e603). IHD occurs when coronary arteries in the heart are narrowed or blocked, preventing the flow of oxygen and blood into the cardiac muscle, which could provoke acute myocardial infarction (AMI) and ultimately lead to heart failure and death. Cardiac regenerative therapy aims to repair and refunctionalize damaged heart tissue through the application of (1) intramyocardial cell delivery, (2) epicardial cardiac patch, and (3) acellular biomaterials. In this review, we aim to examine these current approaches and challenges in the cardiac regenerative therapy field.
Collapse
Affiliation(s)
| | - Boyang Zhang
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada.,School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontaria L8S 4L8, Canada
| |
Collapse
|
155
|
Suchita W, Tilotma S, Saurabh S, Abhishek K, Sagar S, Lokesh K. Molecular Elucidation and Therapeutic Targeting for combating COVID19: Current Scenario and Future Prospective. Curr Mol Med 2021; 22:894-907. [PMID: 33535951 DOI: 10.2174/1566524021666210203113849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 11/22/2022]
Abstract
A corona virus disease 2019 (COVID-19) is a contagious disease which is caused by a novel corona virus. Human corona virus (HCoV) recognized as one of the most rapidly evolving viruses owing to its high genomic nucleotide substitution rates and recombination. Among the severe acute respiratory syndrome (SARS) and Middle-East respiratory syndrome (MERS), COVID-19 has spread more rapidly and increased the level of globalization and adaptation of the virus in every environmental condition due to their high rate of molecular diversity. The whole article highlights the general characteristics of corona virus, their molecular diversity, and molecular protein targeting against COVID-19 with their newer approaches. Through this review, an attempt has made to critically evaluate the recent advances and future aspects helpful to the treatment of COVID-19 based on the present understanding of SARS-CoV-2 infections, which may help offer new insights and potential therapeutic targets for the treatment of the COVID-19.
Collapse
Affiliation(s)
- Wamankar Suchita
- ShriRawatpura Sarkar Institute of Pharmacy, Kumhari, Durg,490042,Chhattisgarh. India
| | - Sahu Tilotma
- ShriRawatpura Sarkar Institute of Pharmacy, Kumhari, Durg,490042,Chhattisgarh. India
| | - Shrivastava Saurabh
- ShriRawatpura Sarkar Institute of Pharmacy, Kumhari, Durg,490042,Chhattisgarh. India
| | - Kumar Abhishek
- Division of Pharmacology,KIET School of Pharmacy,KIET Group ofInstitutions,Delhi-NCR,Ghaziabad,201206,Uttar Pradesh. India
| | - Sahu Sagar
- Columbia Institute of Pharmacy, Tekari, Raipur, 493111, Chhattisgarh. India
| | - Kumar Lokesh
- Siddhi Vinayaka Institute of Technology & Sciences (College of Pharmacy), Bilaspur,495001, Chhattisgarh. India
| |
Collapse
|
156
|
Azari H, Mousavi P, Karimi E, Sadri F, Zarei M, Rafat M, Shekari M. The expanding role of CDR1-AS in the regulation and development of cancer and human diseases. J Cell Physiol 2021; 236:771-790. [PMID: 32697389 DOI: 10.1002/jcp.29950] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/20/2022]
Abstract
CircRNAs are a superabundant and highly conserved group of noncoding RNAs (ncRNAs) that are characterized by their high stability and integrity compared with linear forms of ncRNAs. Recently, their critical role in gene expression regulation has been shown; thus, it is not far-fetched to believe that their abnormal expression can be a cause of different kinds of diseases such as cancer, neurodegenerative, and autoimmune diseases. They can have a function in variety of biological processes such as microRNA (miRNA) sponging, interacting with RNA-binding proteins, or even an ability to translate to proteins. A huge challenge in finding diagnostic biomarkers is finding noninvasive biomarkers that can be detected in human fluids, especially blood samples. CircRNAs are becoming candidate biomarkers for diagnosis and prognosis of these diseases through their ability to transverse from the blood-brain barrier and their broad presence in circulating exosomes. The circRNA for miRNA-7 (ciRS-7) is newly recognized, and acknowledged to being related to human pathology and cancer progression. In this review, we first briefly summarize the latest studies about their characteristics, biogenesis, and their mechanisms of action in the regulation and development of human diseases. Finally, we provide a list of diseases that are linked to one member of this novel class of ncRNAs called ciRS-7.
Collapse
Affiliation(s)
- Hanieh Azari
- Department of Medical Genetics, Faculty of Medicine Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Pegah Mousavi
- Department of Medical Genetics, Faculty of Medicine Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Elham Karimi
- Department of Medical Genetics, Faculty of Medicine Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fatemeh Sadri
- Department of Medical Genetics, Faculty of Medicine Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahboobeh Zarei
- Department of Medical Genetics, Faculty of Medicine Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Milad Rafat
- Department of Medical Genetics, Faculty of Medicine Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mohammad Shekari
- Department of Medical Genetics, Faculty of Medicine Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
157
|
Abstract
Currently, there are no specific and efficient vaccines or drugs for COVID-19, particularly in severe cases. A wide range of variations in the clinical symptoms of different patients attributed to genomic differences. Therefore, personalized treatments seem to play a critical role in improving these symptoms and even similar conditions. Prompted by the uncertainties in the area of COVID-19 therapies, we reviewed the published papers and concepts to gather and provide useful information to clinicians and researchers interested in personalized medicine and cell-based therapy. One novel aspect of this study focuses on the potential application of personalized medicine in treating severe cases of COVID-19. However, it is theoretical, as any real-world examples of the use of genuinely personalized medicine have not existed yet. Nevertheless, we know that stem cells, especially MSCs, have immune-modulatory effects and can be stored for future personalized medicine applications. This theory has been conjugated with some evidence that we review in the present study. Besides, we discuss the importance of personalized medicine and its possible aspects in COVID-19 treatment, then review the cell-based therapy studies for COVID-19 with a particular focus on stem cell-based therapies as a primary personalized tool medicine. However, the idea of cell-based therapy has not been accepted by several scientific communities due to some concerns of lack of satisfactory clinical studies; still, the MSCs and their clinical outcomes have been revealed the safety and potency of this therapeutic approach in several diseases, especially in the immune-mediated inflammatory diseases and some incurable diseases. Promising outcomes have resulted in that clinical studies are going to continue.
Collapse
|
158
|
Hou Y, Zhou Z, Liu H, Zhang H, Ding Y, Cui Y, Nie H. Mesenchymal Stem Cell-Conditioned Medium Rescues LPS-Impaired ENaC Activity in Mouse Trachea via WNK4 Pathway. Curr Pharm Des 2021; 26:3601-3607. [PMID: 32003683 DOI: 10.2174/1381612826666200131141732] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/28/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Airway epithelium plays an essential role in maintaining the homeostasis and function of respiratory system as the first line of host defense. Of note, epithelial sodium channel (ENaC) is one of the victims of LPS-induced airway injury. Regarding the great promise held by mesenchymal stem cells (MSCs) for regenerative medicine in the field of airway injury and the limitations of cell-based MSCs therapy, we focused on the therapeutic effect of MSCs conditioned medium (MSCs-CM) on the ENaC activity in mouse tracheal epithelial cells. METHODS Ussing chamber apparatus was applied to record the short-circuit currents in primary cultured mouse tracheal epithelial cells, which reflects the ENaC activity. Expressions of α and γ ENaC were measured at the protein and mRNA levels by western blot and real-time PCR, respectively. The expression of with-no-lysinekinase- 4 (WNK4) and ERK1/2 were measured at protein levels, and the relationship between WNK4 and ERK1/2 was determined by WNK4 knockdown. RESULTS MSCs-CM restored the LPS-impaired ENaC activity, as well as enhanced the mRNA and protein expressions of ENaC in primary cultured mouse tracheal epithelial cells. Meanwhile, WNK4 and ERK1/2, both negative-regulators of ENaC, were suppressed accordingly after the administration of MSCs-CM in LPS-induced airway injury. After WNK4 gene was knocked down by siRNA, the level of ERK1/2 phosphorylation decreased. CONCLUSION In light of the key role of ENaC in fluid reabsorption and the beneficial effects of MSCs-CM in the injury of airway epithelium, our results suggest that MSCs-CM is effective in alleviating LPS-induced ENaC dysfunction through WNK4-ERK1/2 pathway, which will provide a potent direction for the therapy of airway injury.
Collapse
Affiliation(s)
- Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Zhiyu Zhou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Hongfei Liu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Honglei Zhang
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yong Cui
- Department of Anesthesiology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
159
|
Velluto D, Bojadzic D, De Toni T, Buchwald P, Tomei AA. Drug-Integrating Amphiphilic Nanomaterial Assemblies: 1. Spatiotemporal control of cyclosporine delivery and activity using nanomicelles and nanofibrils. J Control Release 2021; 329:955-970. [PMID: 33086102 PMCID: PMC7904645 DOI: 10.1016/j.jconrel.2020.10.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Abstract
Immunomodulatory therapies are limited by unavoidable side effects as well as poor solubility, stability, and pharmacokinetic properties. Nanomaterial-based drug delivery may overcome these limitations by increasing drug solubility, site-targeting, and duration of action. Here, we prepared innovative drug-integrating amphiphilic nanomaterial assemblies (DIANA) with tunable hydrophobicity, size, and morphology, and we evaluated their ability to deliver cyclosporine A (CsA) for immunomodulatory applications. We synthesized amphiphilic block copolymers made of poly(ethylene glycol)-poly(propylene sulfide) (PEG-PPS) and poly(ethylene glycol)-oligo(ethylene sulfide) (PEG-OES) that can self-assemble into solid core nanomicelles (nMIC, with ≈20 nm diameter) and nanofibrils (nFIB, with ≈5 nm diameter and > 500 nm length), respectively. nMIC and nFIB displayed good CsA encapsulation efficiency (up to 4.5 and 2 mg/mL, respectively in aqueous solution), superior to many other solubilization methods, and provided sustained release (>14 and > 7 days for the nMIC and nFIB) without compromising CsA's pharmacological activity. Treatment of insulin-secreting cells with unloaded DIANAs did not impair cell viability and functionality. Both CsA-loaded DIANAs inhibited the proliferation and activation of insulin-reactive cytotoxic T cells in vitro. Subcutaneous injections of CsA-loaded DIANAs in mice provided CsA sustained release, decreasing alloantigen-induced immune responses in the draining lymph node at lower doses and reduced administration frequency than unformulated CsA. While nMIC solubilized higher amounts and provided more sustained release of CsA in vitro, nFIB enhanced cellular uptake and promoted local retention due to slower trafficking in vivo. DIANAs provide a versatile platform for a local immune suppression regimen that can be applied to allogeneic cell transplantation.
Collapse
Affiliation(s)
- Diana Velluto
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Damir Bojadzic
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Teresa De Toni
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Alice A Tomei
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Biomedical Engineering, University of Miami, Miami, FL, USA; Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
160
|
Reidy E, Leonard NA, Treacy O, Ryan AE. A 3D View of Colorectal Cancer Models in Predicting Therapeutic Responses and Resistance. Cancers (Basel) 2021; 13:E227. [PMID: 33435170 PMCID: PMC7827038 DOI: 10.3390/cancers13020227] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Although there have been many advances in recent years for the treatment of colorectal cancer (CRC), it still remains the third most common cause of cancer-related deaths worldwide. Many patients with late stage CRC display resistance to multiple different therapeutics. An important aspect in developing effective therapeutics for CRC patients is understanding the interactions that take place in the tumor microenvironment (TME), as it has been shown to contribute to drug resistance in vivo. Much research over the past 100 years has focused on 2D monolayer cultures or in vivo studies, however, the efficacy in translating these to the clinic is very low. More recent studies are turning towards developing an effective 3D model of CRC that is clinically relevant, that can recapitulate the TME in vitro and bridge the gap between 2D cultures and in vivo studies, with the aim of reducing the use of animal models in the future. This review summarises the advantages and limitations of different 3D CRC models. It emphasizes how different 3D models may be optimised to study cellular and extracellular interactions that take place in the TME of CRC in an effort to allow the development of more translatable effective treatment options for patients.
Collapse
Affiliation(s)
- Eileen Reidy
- Lambe Institute for Translational research, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 V4AY Galway, Ireland; (E.R.); (N.A.L.); (O.T.)
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W5P7 Galway, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, NUI Galway, H91 W2TY Galway, Ireland
| | - Niamh A. Leonard
- Lambe Institute for Translational research, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 V4AY Galway, Ireland; (E.R.); (N.A.L.); (O.T.)
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W5P7 Galway, Ireland
| | - Oliver Treacy
- Lambe Institute for Translational research, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 V4AY Galway, Ireland; (E.R.); (N.A.L.); (O.T.)
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W5P7 Galway, Ireland
| | - Aideen E. Ryan
- Lambe Institute for Translational research, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 V4AY Galway, Ireland; (E.R.); (N.A.L.); (O.T.)
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W5P7 Galway, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, NUI Galway, H91 W2TY Galway, Ireland
| |
Collapse
|
161
|
Gwam C, Mohammed N, Ma X. Stem cell secretome, regeneration, and clinical translation: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:70. [PMID: 33553363 PMCID: PMC7859812 DOI: 10.21037/atm-20-5030] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Regenerative medicine is a field growing in popularity due to high hopes for stimulating in situ tissue restoration. Stem cell therapy remain at the center of regenerative medicine, due to early reports on its pluripotent differentiating capability. However, more recent reports suggest the paracrine activity of stem cells, and not direct differentiation, as the cause of its therapeutic effects. This paracrine activity can be harnessed in the form of conditioned media. Despite these capabilities, the clinical translation of stem cell conditioned media (i.e., secretome) is precluded by a variety of factors. These limitations include standardization of stem cell-conditioned media formulation, characterization of bioactive factors in conditioned media and dosing, optimizing modes of delivery, and uncovering of mechanisms of action of stem cell conditioned media. The purpose of this review is to provide a focused narration on the aforementioned preclusions pertaining to the clinical translation of stem cell conditioned media. Specifically, we will report on commonly use methodologies for the development of stem cell conditioned media, modalities for conditioned media characterization, modes of delivery, and postulated mechanisms of action for stem cell conditioned media in regenerative medicine.
Collapse
Affiliation(s)
- Chukwuweike Gwam
- Department of Orthopedic Surgery, Wake Forest School of Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Nequesha Mohammed
- Department of Orthopedic Surgery, Wake Forest School of Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Xue Ma
- Department of Orthopedic Surgery, Wake Forest School of Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| |
Collapse
|
162
|
Carelli S, Giallongo T, Rey F, Barzaghini B, Zandrini T, Pulcinelli A, Nardomarino R, Cerullo G, Osellame R, Cereda C, Zuccotti GV, Raimondi MT. Neural precursors cells expanded in a 3D micro-engineered niche present enhanced therapeutic efficacy in vivo. Nanotheranostics 2021; 5:8-26. [PMID: 33391972 PMCID: PMC7738947 DOI: 10.7150/ntno.50633] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Rationale: Stem Cells (SCs) show a great potential in therapeutics for restoring and regenerating native tissues. The clinical translation of SCs therapies is currently hindered by the inability to expand SCs in vitro in large therapeutic dosages, while maintaining their safety and potency. The use of biomaterials allows for the generation of active biophysical signals for directing SCs fate through 3D micro-scaffolds, such as the one named “Nichoid”, fabricated with two-photon laser polymerization with a spatial resolution of 100 nm. The aims of this study were: i) to investigate the proliferation, differentiation and stemness properties of neural precursor cells (NPCs) following their cultivation inside the Nichoid micro-scaffold; ii) to assess the therapeutic effect and safety in vivo of NPCs cultivated in the Nichoid in a preclinical experimental model of Parkinson's Disease (PD). Methods: Nichoids were fabricated by two photon laser polymerization onto circular glass coverslips using a home-made SZ2080 photoresist. NPCs were grown inside the Nichoid for 7 days, counted and characterized with RNA-Seq, Real Time PCR analysis, immunofluorescence and Western Blot. Then, NPCs were transplanted in a murine experimental model of PD, in which parkinsonism was induced by the intraperitoneal administration of the neurotoxin MPTP in C57/bl mice. The efficacy of engrafted Nichoid-expanded NPCs was evaluated by means of specific behavioral tests and, after animal sacrifice, with immunohistochemical studies in brain slices. Results: NPCs grown inside the Nichoid show a significantly higher cell viability and proliferation than in standard culture conditions in suspension. Furthermore, we report the mechanical conditioning of NPCs in 3D micro-scaffolds, showing a significant increase in the expression of pluripotency genes. We also report that such mechanical reprogramming of NPCs produces an enhanced therapeutic effect in the in vivo model of PD. Recovery of PD symptoms was significantly increased when animals were treated with Nichoid-grown NPCs, and this is accompanied by the recovery of dopaminergic markers expression in the striatum of PD affected mice. Conclusion: SCs demonstrated an increase in pluripotency potential when expanded inside the Nichoid, without the need of any genetic modification of cells, showing great promise for large-scale production of safe and functional cell therapies to be used in multiple clinical applications.
Collapse
Affiliation(s)
- Stephana Carelli
- Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", L. Sacco Department of Biomedical and Clinical Sciences, University of Milano, Milano, 20157, Italy
| | - Toniella Giallongo
- Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", L. Sacco Department of Biomedical and Clinical Sciences, University of Milano, Milano, 20157, Italy
| | - Federica Rey
- Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", L. Sacco Department of Biomedical and Clinical Sciences, University of Milano, Milano, 20157, Italy
| | - Bianca Barzaghini
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, 20133, Italy
| | - Tommaso Zandrini
- Istituto di Fotonica e Nanotecnologie (IFN)-CNR and Department of Physics, Politecnico di Milano, Milano, 20133, Italy
| | - Andrea Pulcinelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, 20133, Italy
| | - Riccardo Nardomarino
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, 20133, Italy
| | - Giulio Cerullo
- Istituto di Fotonica e Nanotecnologie (IFN)-CNR and Department of Physics, Politecnico di Milano, Milano, 20133, Italy
| | - Roberto Osellame
- Istituto di Fotonica e Nanotecnologie (IFN)-CNR and Department of Physics, Politecnico di Milano, Milano, 20133, Italy
| | - Cristina Cereda
- Genomic and Postgenomic Lab, IRCCS Mondino Foundation, Pavia, 27100, Italy
| | - Gian Vincenzo Zuccotti
- Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", L. Sacco Department of Biomedical and Clinical Sciences, University of Milano, Milano, 20157, Italy
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, 20133, Italy
| |
Collapse
|
163
|
Miller H, De Leo N, Badach J, Lin A, Williamson J, Bonawitz S, Ostrovsky O. Role of marijuana components on the regenerative ability of stem cells. Cell Biochem Funct 2020; 39:432-441. [PMID: 33349985 DOI: 10.1002/cbf.3609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/01/2020] [Accepted: 12/13/2020] [Indexed: 12/17/2022]
Abstract
Stem cell therapy promotes tissue regeneration and wound healing. Efforts have been made to prime stem cells to enhance their regenerative abilities. Certain marijuana components, namely the non-psychoactive cannabidiol (CBD) and psychoactive tetrahydrocannabinol (THC), are defined as immunomodulators.9 We test whether two sources of stem cells, primed with CBD or THC, would demonstrate improved regenerative abilities. Human adipose-derived stem cells (ASCs) and bone marrow-derived stem cells (BMDSCs), not obtained from the same individual, were treated with low (300 nM) or high (3 μM) concentration CBD. Porcine ASCs and BMDSCs were isolated from a single pig, and treated with either low or high concentrations of CBD or THC. Transwell migration and MTT proliferation assays were performed on the human ASCs and BMDSCs. Also, transwell migration assay was performed on the porcine ASCs and BMDSCs. Finally, a wound healing scratch assay in porcine primary fibroblasts (PFs) was performed, co-cultured with the cannabinoid-treated ASCs. CBD priming at low concentration induces migration by 180% (P < .01) in porcine ASCs, and by only 93% (P < .02) in porcine BMDSCs. In porcine stem cells, THC priming at low concentration induces migration by 91.6% (P < .01) in ASCs but by only 44.3% (P < .03) in BMDSCs. Compared to PFs co-cultured with untreated ASCs, PFs co-cultured with low CBD-primed ASCs had 75% faster wound closure at 18 hours (P < .01). CBD and THC priming of ASCs and BMDSCs, particularly at lower doses, enhances a number of regenerative parameters, suggesting that these major marijuana components may improve stem cell-based therapies. SIGNIFICANCE OF THE STUDY: Our study demonstrates that cannabinoids can enhance the regenerative capacity of two major sources of stem cells, adipose- and bone marrow-derived, from human and porcine donors. Stem cell isolation and expansion is invasive, costly and time consuming. Stem cells with improved regenerative properties may be effective in the treatment of acute or chronic wounds. This is the first study to compare the priming potential of two sources of stem cells from the same animal, with the same genetic and epigenetic profile, as well as the first to prime with THC.
Collapse
Affiliation(s)
- Henry Miller
- Department of Surgery, Cooper University Hospital, Camden, New Jersey, USA
| | - Nicholas De Leo
- Department of Surgery, Cooper University Hospital, Camden, New Jersey, USA
| | - Jeremy Badach
- Department of Surgery, Cooper University Hospital, Camden, New Jersey, USA
| | - Andrew Lin
- Department of Surgery, Cooper University Hospital, Camden, New Jersey, USA
| | - John Williamson
- Department of Surgery, Cooper University Hospital, Camden, New Jersey, USA
| | - Steven Bonawitz
- Department of Surgery, Cooper University Hospital, Camden, New Jersey, USA
| | - Olga Ostrovsky
- Cooper Research Institute, Cooper University Hospital, Camden, New Jersey, USA
| |
Collapse
|
164
|
Rodrigues SC, Cardoso RMS, Duarte FV. Mitochondrial microRNAs: A Putative Role in Tissue Regeneration. BIOLOGY 2020; 9:biology9120486. [PMID: 33371511 PMCID: PMC7767490 DOI: 10.3390/biology9120486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022]
Abstract
The most famous role of mitochondria is to generate ATP through oxidative phosphorylation, a metabolic pathway that involves a chain of four protein complexes (the electron transport chain, ETC) that generates a proton-motive force that in turn drives the ATP synthesis by the Complex V (ATP synthase). An impressive number of more than 1000 mitochondrial proteins have been discovered. Since mitochondrial proteins have a dual genetic origin, it is predicted that ~99% of these proteins are nuclear-encoded and are synthesized in the cytoplasmatic compartment, being further imported through mitochondrial membrane transporters. The lasting 1% of mitochondrial proteins are encoded by the mitochondrial genome and synthesized by the mitochondrial ribosome (mitoribosome). As a result, an appropriate regulation of mitochondrial protein synthesis is absolutely required to achieve and maintain normal mitochondrial function. Regarding miRNAs in mitochondria, it is well-recognized nowadays that several cellular mechanisms involving mitochondria are regulated by many genetic players that originate from either nuclear- or mitochondrial-encoded small noncoding RNAs (sncRNAs). Growing evidence collected from whole genome and transcriptome sequencing highlight the role of distinct members of this class, from short interfering RNAs (siRNAs) to miRNAs and long noncoding RNAs (lncRNAs). Some of the mechanisms that have been shown to be modulated are the expression of mitochondrial proteins itself, as well as the more complex coordination of mitochondrial structure and dynamics with its function. We devote particular attention to the role of mitochondrial miRNAs and to their role in the modulation of several molecular processes that could ultimately contribute to tissue regeneration accomplishment.
Collapse
Affiliation(s)
- Sílvia C. Rodrigues
- Exogenus Therapeutics, 3060-197 Cantanhede, Portugal;
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-504 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | - Filipe V. Duarte
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
165
|
Mills DK, Luo Y, Elumalai A, Esteve S, Karnik S, Yao S. Creating Structured Hydrogel Microenvironments for Regulating Stem Cell Differentiation. Gels 2020; 6:gels6040047. [PMID: 33276682 PMCID: PMC7768466 DOI: 10.3390/gels6040047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
The development of distinct biomimetic microenvironments for regulating stem cell behavior and bioengineering human tissues and disease models requires a solid understanding of cell-substrate interactions, adhesion, and its role in directing cell behavior, and other physico-chemical cues that drive cell behavior. In the past decade, innovative developments in chemistry, materials science, microfabrication, and associated technologies have given us the ability to manipulate the stem cell microenvironment with greater precision and, further, to monitor effector impacts on stem cells, both spatially and temporally. The influence of biomaterials and the 3D microenvironment's physical and biochemical properties on mesenchymal stem cell proliferation, differentiation, and matrix production are the focus of this review chapter. Mechanisms and materials, principally hydrogel and hydrogel composites for bone and cartilage repair that create "cell-supportive" and "instructive" biomaterials, are emphasized. We begin by providing an overview of stem cells, their unique properties, and their challenges in regenerative medicine. An overview of current fabrication strategies for creating instructive substrates is then reviewed with a focused discussion of selected fabrication methods with an emphasis on bioprinting as a critical tool in creating novel stem cell-based biomaterials. We conclude with a critical assessment of the current state of the field and offer our view on the promises and potential pitfalls of the approaches discussed.
Collapse
Affiliation(s)
- David K. Mills
- School of Biological Sciences, Louisiana Tech University, Ruston, LA 71270, USA;
- Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Ruston, LA 71270, USA;
- Correspondence:
| | - Yangyang Luo
- Molecular Sciences and Nanotechnology, Louisiana Tech University, Ruston, LA 71270, USA;
| | - Anusha Elumalai
- School of Biological Sciences, Louisiana Tech University, Ruston, LA 71270, USA;
- Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Ruston, LA 71270, USA;
| | - Savannah Esteve
- Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Ruston, LA 71270, USA;
| | - Sonali Karnik
- Department of Mechanical and Energy Engineering, IUPUI, Indianapolis, IN 46202, USA;
| | - Shaomian Yao
- Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, LA 70803, USA;
| |
Collapse
|
166
|
Liang W, Chen X, Dong Y, Zhou P, Xu F. Recent advances in biomaterials as instructive scaffolds for stem cells in tissue repair and regeneration. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1848832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, P. R. China
| | - Xuerong Chen
- Department of Orthopaedics, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, P. R. China
| | - Yongqiang Dong
- Department of Orthopaedics, Xinchang People’s Hospital, Shaoxing, P. R. China
| | - Ping Zhou
- Department of Orthopaedics, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, P. R. China
| | - Fangming Xu
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, P. R. China
| |
Collapse
|
167
|
Lobov AA, Yudintceva NM, Mittenberg AG, Shabelnikov SV, Mikhailova NA, Malashicheva AB, Khotin MG. Proteomic Profiling of the Human Fetal Multipotent Mesenchymal Stromal Cells Secretome. Molecules 2020; 25:E5283. [PMID: 33198321 PMCID: PMC7716221 DOI: 10.3390/molecules25225283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 01/08/2023] Open
Abstract
Secretome of multipotent mesenchymal stromal cells (MSCs) is actively used in biomedical applications such as alveolar bone regeneration, treatment of cardiovascular disease, and neurodegenerative disorders. Nevertheless, hMSCs have low proliferative potential and production of the industrial quantity of their secretome might be challenging. Human fetal multipotent mesenchymal stromal cells (FetMSCs) isolated from early human embryo bone marrow are easy to expand and might be a potential source for pharmaceutical substances production based on their secretome. However, the secretome of FetMSCs was not previously analyzed. Here, we describe the secretome of FetMSCs using LC-MALDI shotgun proteomics. We identified 236 proteins. Functional annotation of the identified proteins revealed their involvement in angiogenesis, ossification, regulation of apoptosis, and immune response processes, which made it promising for biomedical applications. The proteins identified in the FetMSCs secretome are involved in the same biological processes as proteins from previously described adult hMSCs secretomes. Nevertheless, many of the common hMSCs secretome components (such as VEGF, FGF, Wnt and TGF-β) have not been identified in the FetMSCs secretome.
Collapse
Affiliation(s)
| | | | | | | | | | - Anna B. Malashicheva
- Institute of Cytology of the Russian Academy of Science, 194064 St. Petersburg, Russia; (A.A.L.); (N.M.Y.); (A.G.M.); (S.V.S.); (N.A.M.); (M.G.K.)
| | | |
Collapse
|
168
|
Neurotrophic effects of dental pulp stem cells on trigeminal neuronal cells. Sci Rep 2020; 10:19694. [PMID: 33184395 PMCID: PMC7665001 DOI: 10.1038/s41598-020-76684-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/30/2020] [Indexed: 02/08/2023] Open
Abstract
Evidence indicates that dental pulp stem cells (DPSC) secrete neurotrophic factors which play an important role in neurogenesis, neural maintenance and repair. In this study we investigated the trophic potential of DPSC-derived conditioned medium (CM) to protect and regenerate isolated primary trigeminal ganglion neuronal cells (TGNC). DPSC and TGNC were harvested by enzymatic digestion from Wister-Hann rats. CM was collected from 72 h serum-free DPSC cultures and neurotrophic factors; nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and glial cell line-derived neurotrophic factor (GDNF) were analysed by specific enzyme-linked immunosorbent assays (ELISAs). Primary co-cultures of DPSC and TGNC were established to evaluate the paracrine effects of DPSC. In comparison, NGF was used to evaluate its neurotrophic and neuritogenic effect on TGNC. Immunocytochemistry was performed to detect the neuronal-markers; neuronal nuclei (NeuN), microtubule-associated protein-2 (MAP-2) and βIII-tubulin. Quantitative real time polymerase chain reaction (qRT-PCR) was used to analyse neuronal-associated gene expression of NeuN, MAP-2, βIII-tubulin in addition to growth-associated protein-43 (GAP-43), Synapsin-I and thermo-sensitive transient receptor potential vanilloid channel-1 (TRPV1). DPSC-CM contained significant levels of NGF, BDNF, NT-3 and GDNF. DPSC and DPSC-CM significantly enhanced TGNC survival with extensive neurite outgrowth and branching as evaluated by immunocytochemistry of neuronal markers. DPSC-CM was more effective in stimulating TGNC survival than co-cultures or NGF treated culture. In comparison to controls, DPSC-CM significantly upregulated gene expression of several neuronal markers as well as TRPV1. This study demonstrated that DPSC-derived factors promoted survival and regeneration of isolated TGNC and may be considered as cell-free therapy for TG nerve repair.
Collapse
|
169
|
Nosrati H, Abpeikar Z, Mahmoudian ZG, Zafari M, Majidi J, Alizadeh A, Moradi L, Asadpour S. Corneal epithelium tissue engineering: recent advances in regeneration and replacement of corneal surface. Regen Med 2020; 15:2029-2044. [PMID: 33169642 DOI: 10.2217/rme-2019-0055] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Currently, many corneal diseases are treated by corneal transplantation, artificial corneal implantation or, in severe cases, keratoprosthesis. Owing to the shortage of cornea donors and the risks involved with artificial corneal implants, such as infection transmission, researchers continually seek new approaches for corneal regeneration. Corneal tissue engineering is a promising approach that has attracted much attention from researchers and is focused on regenerative strategies using various biomaterials in combination with different cell types. These constructs should have the ability to mimic the native tissue microenvironment and present suitable optical, mechanical and biological properties. In this article, we review studies that have focused on the current clinical techniques for corneal replacement. We also describe tissue-engineering and cell-based approaches for corneal regeneration.
Collapse
Affiliation(s)
- Hamed Nosrati
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Abpeikar
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Gholami Mahmoudian
- Department of Anatomical Sciences, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahdi Zafari
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Jafar Majidi
- Cellular & Molecular Research Center, Basic Health Science Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Akram Alizadeh
- Department of Tissue Engineering & Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Lida Moradi
- The Ronald O Perelman Department of Dermatology, New York University, School of Medicine, New York, NY 10016, USA.,Department of Cell Biology, New York University, School of Medicine, New York, NY, 10016 USA
| | - Shiva Asadpour
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Cellular & Molecular Research Center, Basic Health Science Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
170
|
New insights into antimetastatic signaling pathways of melatonin in skeletomuscular sarcoma of childhood and adolescence. Cancer Metastasis Rev 2020; 39:303-320. [PMID: 32086631 DOI: 10.1007/s10555-020-09845-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Melatonin is an indole produced by the pineal gland at night under normal light or dark conditions, and its levels, which are higher in children than in adults, begin to decrease prior to the onset of puberty and continue to decline thereafter. Apart from circadian regulatory actions, melatonin has significant apoptotic, angiogenic, oncostatic, and antiproliferative effects on various cancer cells. Particularly, the ability of melatonin to inhibit skeletomuscular sarcoma, which most commonly affects children, teenagers, and young adults, is substantial. In the past few decades, the vast majority of references have focused on the concept of epithelial-mesenchymal transition involvement in invasion and migration to allow carcinoma cells to dissociate from each other and to degrade the extracellular matrix. Recently, researchers have applied this idea to sarcoma cells of mesenchymal origin, e.g., osteosarcoma and Ewing sarcoma, with their ability to initiate the invasion-metastasis cascade. Similarly, interest of the effects of melatonin has shifted from carcinomas to sarcomas. Herein, in this state-of-the-art review, we compiled the knowledge related to the molecular mechanism of antimetastatic actions of melatonin on skeletomuscular sarcoma as in childhood and during adolescence. Utilization of melatonin as an adjuvant with chemotherapeutic drugs for synergy and fortification of the antimetastatic effects for the reinforcement of therapeutic actions are considered.
Collapse
|
171
|
Spinal Reflex Recovery after Dorsal Rhizotomy and Repair with Platelet-Rich Plasma (PRP) Gel Combined with Bioengineered Human Embryonic Stem Cells (hESCs). Stem Cells Int 2020; 2020:8834360. [PMID: 33178285 PMCID: PMC7647752 DOI: 10.1155/2020/8834360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/20/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
Dorsal root rhizotomy (DRZ) is currently considered an untreatable injury, resulting in the loss of sensitive function and usually leading to neuropathic pain. In this context, we recently proposed a new surgical approach to treat DRZ that uses platelet-rich plasma (PRP) gel to restore the spinal reflex. Success was correlated with the reentry of primary afferents into the spinal cord. Here, aiming to enhance previous results, cell therapy with bioengineered human embryonic stem cells (hESCs) to overexpress fibroblast growth factor 2 (FGF2) was combined with PRP. For these experiments, adult female rats were submitted to a unilateral rhizotomy of the lumbar spinal dorsal roots, which was followed by root repair with PRP gel with or without bioengineered hESCs. One week after DRZ, the spinal cords were processed to evaluate changes in the glial response (GFAP and Iba-1) and excitatory synaptic circuits (VGLUT1) by immunofluorescence. Eight weeks postsurgery, the lumbar intumescences were processed for analysis of the repaired microenvironment by transmission electron microscopy. Spinal reflex recovery was evaluated by the electronic Von Frey method for eight weeks. The transcript levels for human FGF2 were over 37-fold higher in the induced hESCs than in the noninduced and the wildtype counterparts. Altogether, the results indicate that the combination of hESCs with PRP gel promoted substantial and prominent axonal regeneration processes after DRZ. Thus, the repair of dorsal roots, if done appropriately, may be considered an approach to regain sensory-motor function after dorsal root axotomy.
Collapse
|
172
|
Rejuvenation of Senescent Endothelial Progenitor Cells by Extracellular Vesicles Derived From Mesenchymal Stromal Cells. JACC Basic Transl Sci 2020; 5:1127-1141. [PMID: 33294742 PMCID: PMC7691285 DOI: 10.1016/j.jacbts.2020.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 02/08/2023]
Abstract
EVs derived from young, but not aged, MSCs rejuvenate senescent EPCs in vitro, recapitulating the effect of MSC transplantation. Aged MSCs can be genetically modified to produce tailored EVs with increased EPC rejuvenation capacity in vitro and increased angiogenesis capacity following ischemic event in vivo. EVs represent a promising platform to develop an acellular therapeutic approach in regenerative medicine for cardiovascular diseases.
Mesenchymal stromal cell (MSC) transplantation is a form of the stem-cell therapy that has shown beneficial effects for many diseases. The use of stem-cell therapy, including MSC transplantation, however, has limitations such as the tumorigenic potential of stem cells and the lack of efficacy of aged autologous cells. An ideal therapeutic approach would keep the beneficial effects of MSC transplantation while circumventing the limitations associated with the use of intact stem cells. This study provides proof-of-concept evidence that MSC-derived extracellular vesicles represent a promising platform to develop an acellular therapeutic approach that would just do that. Extracellular vesicles are membranous vesicles secreted by MSCs and contain bioactive molecules to mediate communication between different cells. Extracellular vesicles can be taken up by recipient cells, and once inside the recipient cells, the bioactive molecules are released to exert the beneficial effects on the recipient cells. This study, for the first time to our knowledge, shows that extracellular vesicles secreted by MSCs recapitulate the beneficial effects of MSCs on vascular repair and promote blood vessel regeneration after ischemic events. Furthermore, MSCs from aged donors can be engineered to produce extracellular vesicles with improved regenerative potential, comparable to MSCs from young donors, thus eliminating the need for allogenic young donors for elderly patients.
Collapse
Key Words
- BM, bone marrow
- CVD, cardiovascular disease
- EC, endothelial cell
- EPC, endothelial progenitor cell
- EV, extracellular vesicle
- FBS, fetal bovine serum
- MEM, minimum essential medium
- MI, myocardial infarction
- MSC, mesenchymal stromal cell
- NTA, nanotracking analysis
- PBS, phosphate-buffered saline
- TEV, tailored extracellular vesicle
- VEGF, vascular endothelial growth factor
- acellular
- angiogenesis
- extracellular vesicles
- lin− BMC, lineage negative bone marrow cell
- miR, microRNA
- qPCR, quantitative transcription polymerase chain reaction
- regeneration
- senescence
Collapse
|
173
|
Kang MH, Park HM. Challenges of stem cell therapies in companion animal practice. J Vet Sci 2020; 21:e42. [PMID: 32476316 PMCID: PMC7263915 DOI: 10.4142/jvs.2020.21.e42] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022] Open
Abstract
Regenerative medicine using stem cells from various sources are emerging treatment modality in several refractory diseases in veterinary medicine. It is well-known that stem cells can differentiate into specific cell types, self-renew, and regenerate. In addition, the unique immunomodulatory effects of stem cells have made stem cell transplantation a promising option for treating a wide range of disease and injuries. Recently, the medical demands for companion animals have been rapidly increasing, and certain disease conditions require alternative treatment options. In this review, we focused on stem cell application research in companion animals including experimental models, case reports and clinical trials in dogs and cats. The clinical studies and therapeutic protocols were categorized, evaluated and summarized according to the organ systems involved. The results indicate that evidence for the effectiveness of cell-based treatment in specific diseases or organ systems is not yet conclusive. Nonetheless, stem cell therapy may be a realistic treatment option in the near future, therefore, considerable efforts are needed to find optimized cell sources, cell numbers and delivery methods in order to standardize treatment methods and evaluation processes.
Collapse
Affiliation(s)
- Min Hee Kang
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Hee Myung Park
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
174
|
Sekuła-Stryjewska M, Noga S, Dźwigońska M, Adamczyk E, Karnas E, Jagiełło J, Szkaradek A, Chytrosz P, Boruczkowski D, Madeja Z, Kotarba A, Lipińska L, Zuba-Surma EK. Graphene-based materials enhance cardiomyogenic and angiogenic differentiation capacity of human mesenchymal stem cells in vitro - Focus on cardiac tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111614. [PMID: 33321657 DOI: 10.1016/j.msec.2020.111614] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/28/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022]
Abstract
Cell-based therapies have recently emerged as promising strategies for the treatment of cardiovascular disease. Mesenchymal stem cells (MSCs) are a promising cell type that represent a class of adult stem cells characterized by multipotency, high proliferative capacity, paracrine activity, and low immunogenicity. To improve the functional and therapeutic efficacy of MSCs, novel biomaterials are considered as scaffolds/surfaces that promote MSCs growth and differentiation. One of them are graphene-based materials, including graphene oxide (GO) and reduced graphene oxide (rGO). Due to the unique physical, chemical, and biological properties of graphene, scaffolds comprising GO/rGO have been examined as novel platforms to improve the differentiation potential of human MSCs in vitro. We verified different i) size of GO flakes, ii) reduction level, and iii) layer thickness to select the most suitable artificial niche for MSCs culture. The results revealed that graphene-based substrates constitute non-toxic substrates for MSCs. Surfaces with large flakes of GO as well as low reduced rGO are the most biocompatible for MSCs propagation and do not affect their proliferation and survival. Interestingly, small GO flakes and highly reduced rGO decreased MSCs proliferation and induced their apoptosis. We also found that GO and rGO substrates did not alter the MSCs phenotype, cell cycle progression and might modulate the adhesive capabilities of these cells. Importantly, we demonstrated that both materials promoted the cardiomyogenic and angiogenic differentiation capacity of MSCs in vitro. Thus, our data indicates that graphene-based surfaces represent promising materials that may influence the therapeutic application of MSCs via supporting their pro-regenerative potential.
Collapse
Affiliation(s)
- Małgorzata Sekuła-Stryjewska
- Laboratory of Stem Cell Biotechnology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sylwia Noga
- Laboratory of Stem Cell Biotechnology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Monika Dźwigońska
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Edyta Adamczyk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Elżbieta Karnas
- Laboratory of Stem Cell Biotechnology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Joanna Jagiełło
- Department of Chemical Synthesis and Flake Graphene, Łukasiewicz Research Network - Institute of Electronic Materials Technology, Warsaw, Poland
| | - Agnieszka Szkaradek
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Andrzej Kotarba
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Ludwika Lipińska
- Department of Chemical Synthesis and Flake Graphene, Łukasiewicz Research Network - Institute of Electronic Materials Technology, Warsaw, Poland
| | - Ewa K Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
175
|
Zhu B, You S, Rong Y, Yu Q, Lv S, Song F, Liu H, Wang H, Zhao J, Li D, Liu W, Xin S. A novel stem cell therapy for hepatitis B virus-related acute-on-chronic liver failure. ACTA ACUST UNITED AC 2020; 53:e9728. [PMID: 33053116 PMCID: PMC7552894 DOI: 10.1590/1414-431x20209728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Abstract
The aim of this study was to propose a stem cell therapy for hepatitis B virus (HBV)-related acute-on-chronic liver failure (ACLF) based on plasma exchange (PE) for peripheral blood stem cell (PBSC) collection and examine its safety and efficacy. Sixty patients (n=20 in each group) were randomized to PE (PE alone), granulocyte colony-stimulating factor (G-CSF) (PE after G-CSF treatment), and PBSC transplantation (PBSCT) (G-CSF, PE, PBSC collection and hepatic artery injection) groups. Patients were followed-up for 24 weeks. Liver function and adverse events were recorded. Survival analysis was performed. PBSCT improved blood ammonia levels at 1 week (P<0.05). The level of total bilirubin, international normalized ratio, and creatinine showed significant differences in the 4th week of treatment (P<0.05). The survival rates of the PE, G-CSF, and PBSCT groups were 50, 65, and 85% at 90 days (P=0.034). There was a significant difference in 90-day survival between the PE and PBSCT groups (P=0.021). The preliminary results suggested that PBSCT was safe, with a possibility of improved 90-day survival in patients with HBV-ACLF.
Collapse
Affiliation(s)
- Bing Zhu
- Medical School of Chinese PLA, Beijing, China.,Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shaoli You
- Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yihui Rong
- Department of Infection and Liver Diseases, Peking University International Hospital, Beijing, China
| | - Qiang Yu
- Department of Interventional Therapy, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Sa Lv
- Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fangjiao Song
- Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hongling Liu
- Liver Transplantation Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Huaming Wang
- Department of Interventional Therapy, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jun Zhao
- Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Dongze Li
- Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wanshu Liu
- Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shaojie Xin
- Medical School of Chinese PLA, Beijing, China.,Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
176
|
McElhinney JMWR, Hasan A, Sajini AA. The epitranscriptome landscape of small noncoding RNAs in stem cells. Stem Cells 2020; 38:1216-1228. [PMID: 32598085 PMCID: PMC7586957 DOI: 10.1002/stem.3233] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022]
Abstract
Stem cells (SCs) are unique cells that have an inherent ability to self‐renew or differentiate. Both fate decisions are strongly regulated at the molecular level via intricate signaling pathways. The regulation of signaling networks promoting self‐renewal or differentiation was thought to be largely governed by the action of transcription factors. However, small noncoding RNAs (ncRNAs), such as vault RNAs, and their post‐transcriptional modifications (the epitranscriptome) have emerged as additional regulatory layers with essential roles in SC fate decisions. RNA post‐transcriptional modifications often modulate RNA stability, splicing, processing, recognition, and translation. Furthermore, modifications on small ncRNAs allow for dual regulation of RNA activity, at both the level of biogenesis and RNA‐mediated actions. RNA post‐transcriptional modifications act through structural alterations and specialized RNA‐binding proteins (RBPs) called writers, readers, and erasers. It is through SC‐context RBPs that the epitranscriptome coordinates specific functional roles. Small ncRNA post‐transcriptional modifications are today exploited by different mechanisms to facilitate SC translational studies. One mechanism readily being studied is identifying how SC‐specific RBPs of small ncRNAs regulate fate decisions. Another common practice of using the epitranscriptome for regenerative applications is using naturally occurring post‐transcriptional modifications on synthetic RNA to generate induced pluripotent SCs. Here, we review exciting insights into how small ncRNA post‐transcriptional modifications control SC fate decisions in development and disease. We hope, by illustrating how essential the epitranscriptome and their associated proteome are in SCs, they would be considered as novel tools to propagate SCs for regenerative medicine.
Collapse
Affiliation(s)
- James M W R McElhinney
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ayesha Hasan
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Abdulrahim A Sajini
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
177
|
Wang LK, Wu TJ, Hong JH, Chen FH, Yu J, Wang CC. Radiation Induces Pulmonary Fibrosis by Promoting the Fibrogenic Differentiation of Alveolar Stem Cells. Stem Cells Int 2020; 2020:6312053. [PMID: 33061990 PMCID: PMC7542528 DOI: 10.1155/2020/6312053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/11/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022] Open
Abstract
The lung is a radiosensitive organ, which imposes limits on the therapeutic dose in thoracic radiotherapy. Irradiated alveolar epithelial cells promote radiation-related pneumonitis and fibrosis. However, the role of lung stem cells (LSCs) in the development of radiation-induced lung injury is still unclear. In this study, we found that both LSCs and LSC-derived type II alveolar epithelial cells (AECII) can repair radiation-induced DNA double-strand breaks, but the irradiated LSCs underwent growth arrest and cell differentiation faster than the irradiated AECII cells. Moreover, radiation drove LSCs to fibrosis as shown with the elevated levels of markers for epithelial-mesenchymal transition and myofibroblast (α-smooth muscle actin (α-SMA)) differentiation in in vitro and ex vivo studies. Increased gene expressions of connective tissue growth factor and α-SMA were found in both irradiated LSCs and alveolar cells, suggesting that radiation could induce the fibrogenic differentiation of LSCs. Irradiated LSCs showed an increase in the expression of surfactant protein C (SP-C), the AECII cell marker, and α-SMA, and irradiated AECII cells expressed SP-C and α-SMA. These results indicated that radiation induced LSCs to differentiate into myofibroblasts and AECII cells; then, AECII cells differentiated further into either myofibroblasts or type I alveolar epithelial cells (AECI). In conclusion, our results revealed that LSCs are sensitive to radiation-induced cell damage and may be involved in radiation-induced lung fibrosis.
Collapse
Affiliation(s)
- Lu-Kai Wang
- Radiation Biology Core Laboratory, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Tsai-Jung Wu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Ji-Hong Hong
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Linkou, Taoyuan, Taiwan
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Fang-Hsin Chen
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Linkou, Taoyuan, Taiwan
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Chun-Chieh Wang
- Radiation Biology Core Laboratory, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Linkou, Taoyuan, Taiwan
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| |
Collapse
|
178
|
Chemla Y, Avraham ES, Markus A, Teblum E, Slotky A, Kostikov Y, Farah N, Telkhozhayeva M, Shoval I, Nessim GD, Mandel Y. Carbon nanostructures as a scaffold for human embryonic stem cell differentiation toward photoreceptor precursors. NANOSCALE 2020; 12:18918-18930. [PMID: 32910131 DOI: 10.1039/d0nr02256j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carbon nanomaterials have been introduced as a scaffold for various biological applications due to their unique physical and electrical properties. Here we studied carbon nanotubes (CNTs) and carbon nanofibers (CNFs) as scaffold materials for the differentiation of human embryonic stem cells (hESCs) towards photoreceptor precursor cells (PRPs). We report on their cytoxicity, their effect on cell morphology, cell-surface interface and the differentiation process. To this end, hESCs were differentiated into PRPs on carbon nanofibers (CNFs), long horizontal CNTs (LHCNTs), vertically aligned CNTs (VACNTs) or glass (control) surfaces. The differentiated cells were investigated by immunohistochemistry, fluorescence imaging and electron microscopy. Our results revealed that the investigated nanomaterials were not cytotoxic to the cells during the differentiation process. The surface interface effect on the cells was apparent, affecting cell directionality, migration and morphology. Interestingly, cell fate was not dependent on the substrate type, as inferred from the similar dynamics of the loss of pluripotency and the comparable expression levels of the photoreceptor marker Crx for all investigated substrates. These results are important for better understanding the effect of nanomaterial surface interaction with differentiating neural cells in general, and for future use of these materials as scaffolds for differentiating photoreceptors for vision restoration in particular.
Collapse
Affiliation(s)
- Yoav Chemla
- Faculty of Life Sciences, School of Optometry and Vision Science, Bar Ilan University, Ramat Gan, 5290002, Israel.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Granz CL, Gorji A. Dental stem cells: The role of biomaterials and scaffolds in developing novel therapeutic strategies. World J Stem Cells 2020; 12:897-921. [PMID: 33033554 PMCID: PMC7524692 DOI: 10.4252/wjsc.v12.i9.897] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/05/2020] [Accepted: 08/16/2020] [Indexed: 02/06/2023] Open
Abstract
Dental stem cells (DSCs) are self-renewable cells that can be obtained easily from dental tissues, and are a desirable source of autologous stem cells. The use of DSCs for stem cell transplantation therapeutic approaches is attractive due to their simple isolation, high plasticity, immunomodulatory properties, and multipotential abilities. Using appropriate scaffolds loaded with favorable biomolecules, such as growth factors, and cytokines, can improve the proliferation, differentiation, migration, and functional capacity of DSCs and can optimize the cellular morphology to build tissue constructs for specific purposes. An enormous variety of scaffolds have been used for tissue engineering with DSCs. Of these, the scaffolds that particularly mimic tissue-specific micromilieu and loaded with biomolecules favorably regulate angiogenesis, cell-matrix interactions, degradation of extracellular matrix, organized matrix formation, and the mineralization abilities of DSCs in both in vitro and in vivo conditions. DSCs represent a promising cell source for tissue engineering, especially for tooth, bone, and neural tissue restoration. The purpose of the present review is to summarize the current developments in the major scaffolding approaches as crucial guidelines for tissue engineering using DSCs and compare their effects in tissue and organ regeneration.
Collapse
Affiliation(s)
- Cornelia Larissa Granz
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Münster 48149, Germany
| | - Ali Gorji
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Münster 48149, Germany
| |
Collapse
|
180
|
ATP-Dependent Chromatin Remodeling Complex in the Lineage Specification of Mesenchymal Stem Cells. Stem Cells Int 2020; 2020:8839703. [PMID: 32963551 PMCID: PMC7499328 DOI: 10.1155/2020/8839703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) present in multiple tissues can self-renew and differentiate into multiple lineages including the bone, cartilage, muscle, cardiac tissue, and connective tissue. Key events, including cell proliferation, lineage commitment, and MSC differentiation, are ensured by precise gene expression regulation. ATP-dependent chromatin alteration is one form of epigenetic modifications that can regulate the transcriptional level of specific genes by utilizing the energy from ATP hydrolysis to reorganize chromatin structure. ATP-dependent chromatin remodeling complexes consist of a variety of subunits that together perform multiple functions in self-renewal and lineage specification. This review highlights the important role of ATP-dependent chromatin remodeling complexes and their different subunits in modulating MSC fate determination and discusses the proposed mechanisms by which ATP-dependent chromatin remodelers function.
Collapse
|
181
|
Chen T, Ali Al-Radhawi M, Sontag ED. A mathematical model exhibiting the effect of DNA methylation on the stability boundary in cell-fate networks. Epigenetics 2020; 16:436-457. [PMID: 32842865 DOI: 10.1080/15592294.2020.1805686] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cell-fate networks are traditionally studied within the framework of gene regulatory networks. This paradigm considers only interactions of genes through expressed transcription factors and does not incorporate chromatin modification processes. This paper introduces a mathematical model that seamlessly combines gene regulatory networks and DNA methylation (DNAm), with the goal of quantitatively characterizing the contribution of epigenetic regulation to gene silencing. The 'Basin of Attraction percentage' is introduced as a metric to quantify gene silencing abilities. As a case study, a computational and theoretical analysis is carried out for a model of the pluripotent stem cell circuit as well as a simplified self-activating gene model. The results confirm that the methodology quantitatively captures the key role that DNAm plays in enhancing the stability of the silenced gene state.
Collapse
Affiliation(s)
- Tianchi Chen
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - M Ali Al-Radhawi
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA
| | - Eduardo D Sontag
- Department of Bioengineering, Northeastern University, Boston, MA, USA.,Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA.,Laboratory of Systems Pharmacology, Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
182
|
Bisserier M, Pradhan N, Hadri L. Current and emerging therapeutic approaches to pulmonary hypertension. Rev Cardiovasc Med 2020; 21:163-179. [PMID: 32706206 PMCID: PMC7389678 DOI: 10.31083/j.rcm.2020.02.597] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/25/2020] [Indexed: 12/15/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and fatal lung disease of multifactorial etiology. Most of the available drugs and FDA-approved therapies for treating pulmonary hypertension attempt to overcome the imbalance between vasoactive and vasodilator mediators, and restore the endothelial cell function. Traditional medications for treating PAH include the prostacyclin analogs and receptor agonists, phosphodiesterase 5 inhibitors, endothelin-receptor antagonists, and cGMP activators. While the current FDA-approved drugs showed improvements in quality of life and hemodynamic parameters, they have shown only very limited beneficial effects on survival and disease progression. None of them offers a cure against PAH, and the median survival rate remains less than three years from diagnosis. Extensive research efforts have led to the emergence of innovative therapeutic approaches in the area of PAH. In this review, we provide an overview of the current FDA-approved therapies in PAH and discuss the associated clinical trials and reported-side effects. As recent studies have led to the emergence of innovative therapeutic approaches in the area of PAH, we also focus on the latest promising therapies in preclinical studies such as stem cell-based therapies, gene transfer, and epigenetic therapies.
Collapse
Affiliation(s)
- Malik Bisserier
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Natasha Pradhan
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lahouaria Hadri
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
183
|
Deinsberger J, Reisinger D, Weber B. Global trends in clinical trials involving pluripotent stem cells: a systematic multi-database analysis. NPJ Regen Med 2020; 5:15. [PMID: 32983575 PMCID: PMC7486930 DOI: 10.1038/s41536-020-00100-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
Pluripotent stem cells (PSCs) hold great potential for novel therapeutic approaches to regenerate or replace functionally impaired tissues. Since the introduction of the induced pluripotent stem cell technology in 2006, the number of scientific publications on this topic has constantly been increasing. However, so far no therapy based on PSCs has found its way into routine clinical use. In this study, we examined research trends related to clinical trials involving PSCs based on data obtained from ClinicalTrials.gov, the ICTRP database from the World Health Organization, as well as from a search of all individual databases that are included in the ICTRP using a multistep search algorithm. Following a stringent inclusion/exclusion procedure 131 studies remained that could be classified as clinical trials involving PSCs. The magnitude of these studies (77.1%) was observational, which implies that no cells were transplanted into patients, and only a minority of studies (22.9%) were of an interventional study type. The number of clinical trials involving induced pluripotent stem cells (iPSCs, 74.8%) was substantially higher than the one involving embryonic stem cells (ESCs, 25.2%). However, the picture changes completely when focusing on interventional studies, where in the majority (73.3%) of cases ESCs were used. Interestingly, also the study duration was significantly shorter for interventional versus observational trials (p = 0.002). When focusing on the geographical study regions, it became obvious that the greatest part of all observational trials was performed in the USA (41.6%) and in France (16.8%), while the magnitude of interventional studies was performed in Asian countries (China 36.7%, Japan 13.3%, South Korea 10.0%) and in the field of ophthalmology. In summary, these results indicate that only a limited number of trials were focusing on the actual transplantation of PSCs into patients in a rather narrow field of diagnoses. The future will tell us, if the iPSC technology will ultimately overcome the current challenges and will finally make its way into routine clinical use.
Collapse
Affiliation(s)
- Julia Deinsberger
- Disease Modeling and Organoid Technology (DMOT) Research Group, Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Skin and Endothelium Research Division (SERD), Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - David Reisinger
- Disease Modeling and Organoid Technology (DMOT) Research Group, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Benedikt Weber
- Disease Modeling and Organoid Technology (DMOT) Research Group, Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Skin and Endothelium Research Division (SERD), Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
184
|
Peng T, Zhai Y, Atlasi Y, Ter Huurne M, Marks H, Stunnenberg HG, Megchelenbrink W. STARR-seq identifies active, chromatin-masked, and dormant enhancers in pluripotent mouse embryonic stem cells. Genome Biol 2020; 21:243. [PMID: 32912294 PMCID: PMC7488044 DOI: 10.1186/s13059-020-02156-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 08/26/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Enhancers are distal regulators of gene expression that shape cell identity and control cell fate transitions. In mouse embryonic stem cells (mESCs), the pluripotency network is maintained by the function of a complex network of enhancers, that are drastically altered upon differentiation. Genome-wide chromatin accessibility and histone modification assays are commonly used as a proxy for identifying putative enhancers and for describing their activity levels and dynamics. RESULTS Here, we applied STARR-seq, a genome-wide plasmid-based assay, as a read-out for the enhancer landscape in "ground-state" (2i+LIF; 2iL) and "metastable" (serum+LIF; SL) mESCs. This analysis reveals that active STARR-seq loci show modest overlap with enhancer locations derived from peak calling of ChIP-seq libraries for common enhancer marks. We unveil ZIC3-bound loci with significant STARR-seq activity in SL-ESCs. Knock-out of Zic3 removes STARR-seq activity only in SL-ESCs and increases their propensity to differentiate towards the endodermal fate. STARR-seq also reveals enhancers that are not accessible, masked by a repressive chromatin signature. We describe a class of dormant, p53 bound enhancers that gain H3K27ac under specific conditions, such as after treatment with Nocodazol, or transiently during reprogramming from fibroblasts to pluripotency. CONCLUSIONS In conclusion, loci identified as active by STARR-seq often overlap with those identified by chromatin accessibility and active epigenetic marking, yet a significant fraction is epigenetically repressed or display condition-specific enhancer activity.
Collapse
Affiliation(s)
- Tianran Peng
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Yanan Zhai
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138, Naples, Italy
| | - Yaser Atlasi
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Menno Ter Huurne
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Hendrik Marks
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands.
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
| | - Wout Megchelenbrink
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands.
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138, Naples, Italy.
| |
Collapse
|
185
|
Cuende N, Álvarez-Márquez AJ, Díaz-Aunión C, Castro P, Huet J, Pérez-Villares JM. Promoting the ethical use of safe and effective cell-based products: the Andalusian plan on regenerative medicine. Cytotherapy 2020; 22:712-717. [PMID: 32878735 PMCID: PMC7456586 DOI: 10.1016/j.jcyt.2020.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/04/2020] [Accepted: 07/15/2020] [Indexed: 10/25/2022]
Abstract
With regard to regenerative medicine, the expectations generated over the last two decades and the time involved in developing this type of therapies, together with the availability of devices that allow point-of-care treatments through the rapid isolation of cellular or plasma products from patients in the operating theater, represent the perfect breeding ground for the offering of unproven or unregulated therapies on a global scale. A multidisciplinary approach-one based on the collaboration of institutions that, from the perspective of their area of competence, can contribute to reversing this worrying situation-to this problem is essential. It is a priority for local health authorities to take measures that are adapted to the particular situation and regulatory framework of their respective territory. In this article, the authors present the regenerative medicine action plan promoted by the Andalusian Transplant Coordination (i.e., the action plan for the largest region in Spain), highlighting the aspects the authors believe are fundamental to its success. The authors describe, in summary form, the methodology, phases of the plan, actions designed, key collaborators, important milestones achieved and main lessons they have drawn from their experience so that this can serve as an example for other institutions interested in promoting the ethical use of this type of therapy.
Collapse
Affiliation(s)
- Natividad Cuende
- Coordinación Autonómica de Trasplantes de Andalucía, Servicio Andaluz de Salud, Sevilla, Spain.
| | | | - Concepción Díaz-Aunión
- Coordinación Autonómica de Trasplantes de Andalucía, Servicio Andaluz de Salud, Sevilla, Spain
| | - Pablo Castro
- Coordinación Autonómica de Trasplantes de Andalucía, Servicio Andaluz de Salud, Sevilla, Spain
| | - Jesús Huet
- Coordinación Autonómica de Trasplantes de Andalucía, Servicio Andaluz de Salud, Sevilla, Spain
| | | |
Collapse
|
186
|
Preparing polycaprolactone scaffolds using electrospinning technique for construction of artificial periodontal ligament tissue. J Taibah Univ Med Sci 2020; 15:363-373. [PMID: 33132808 PMCID: PMC7565014 DOI: 10.1016/j.jtumed.2020.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 11/28/2022] Open
Abstract
Objectives The strategies of tissue-engineering led to the development of living cell-based therapies to repair lost or damaged tissues, including periodontal ligament and to construct biohybrid implant. This work aimed to isolate human periodontal ligament stem cells (hPDLSCs) and implant them on fabricated polycaprolactone (PCL) for the regeneration of natural periodontal ligament (PDL) tissues. Methods hPDLSCs were harvested from extracted human premolars, cultured, and expanded to obtain PDL cells. A PDL-specific marker (periostin) was detected using an immunofluorescent assay. Electrospinning was applied to fabricate PCL at three concentrations (13%, 16%, and 20% weight/volume) in two forms, which were examined through field emission scanning electron microscopy (FESEM). The isolated hPDLSCs were implanted on the fabricated PCL. After 21 days, FESEM was conducted to evaluate the implanted scaffolds, and an MTT assay was performed to characterize the biological response of the PCL scaffold at different cell exposure durations (24, 48, and 72 h). Results Periostin was expressed in the expanded PDL cells, and this result revealed that 20% weight/volume PCL scaffold with a pore size of more than 10 μm was the best. The growth rates of PDLSCs were high. Cytotoxicity test of fabricated PCL scaffold demonstrated no significant change in the cell viability when compared with the negative control and no deteriorating or inhibitory effect on growth after different durations. Conclusions A cell sheet was successfully formed by using PCL as a scaffold to cover dental implants and promote PDL cell attachment, proliferation, and growth for biohybrid implant construction.
Collapse
|
187
|
Sex-Specific Transcriptome Differences in Human Adipose Mesenchymal Stem Cells. Genes (Basel) 2020; 11:genes11080909. [PMID: 32784482 PMCID: PMC7464371 DOI: 10.3390/genes11080909] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022] Open
Abstract
In humans, sexual dimorphism can manifest in many ways and it is widely studied in several knowledge fields. It is increasing the evidence that also cells differ according to sex, a correlation still little studied and poorly considered when cells are used in scientific research. Specifically, our interest is on the sex-related dimorphism on the human mesenchymal stem cells (hMSCs) transcriptome. A systematic meta-analysis of hMSC microarrays was performed by using the Transcriptome Mapper (TRAM) software. This bioinformatic tool was used to integrate and normalize datasets from multiple sources and allowed us to highlight chromosomal segments and genes differently expressed in hMSCs derived from adipose tissue (hADSCs) of male and female donors. Chromosomal segments and differentially expressed genes in male and female hADSCs resulted to be related to several processes as inflammation, adipogenic and neurogenic differentiation and cell communication. Obtained results lead us to hypothesize that the donor sex of hADSCs is a variable influencing a wide range of stem cell biologic processes. We believe that it should be considered in biologic research and stem cell therapy.
Collapse
|
188
|
Lee D, Kim YH, Kim JH. The Role of Lysophosphatidic Acid in Adult Stem Cells. Int J Stem Cells 2020; 13:182-191. [PMID: 32587135 PMCID: PMC7378901 DOI: 10.15283/ijsc20035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/24/2020] [Accepted: 05/21/2020] [Indexed: 01/06/2023] Open
Abstract
Stem cells are undifferentiated multipotent precursor cells that are capable both of perpetuating themselves as stem cells (self-renewal) and of undergoing differentiation into one or more specialized types of cells. And these stem cells have been reported to reside within distinct anatomic locations termed “niches”. The long-term goals of stem cell biology range from an understanding of cell-lineage determination and tissue organization to cellular therapeutics for degenerative diseases. Stem cells maintain tissue function throughout an organism’s lifespan by replacing differentiated cells. To perform this function, stem cells provide a unique combination of multilineage developmental potential and the capacity to undergo self-renewing divisions. The loss of self-renewal capacity in stem cells underlies certain degenerative diseases and the aging process. This self-renewal regulation must balance the regenerative needs of tissues that persist throughout life. Recent evidence suggests lysophosphatidic acid (LPA) signaling pathway plays an important role in the regulation of a variety of stem cells. In this review, we summarize the evidence linking between LPA and stem cell regulation. The LPA-induced signaling pathway regulates the proliferation and survival of stem cells and progenitors, and thus are likely to play a role in the maintenance of stem cell population in the body. This lipid mediator regulatory system can be a novel potential therapeutics for stem cell maintenance.
Collapse
Affiliation(s)
- Dongjun Lee
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, Korea
| | - Yun Hak Kim
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Korea.,Department of Biomedical Informatics, Pusan National University School of Medicine, Yangsan, Korea
| | - Jae Ho Kim
- Department of Physiology, Pusan National University School of Medicine, Yangsan, Korea
| |
Collapse
|
189
|
K N, Ca V, Joseph J, U A, John A, Abraham A. Mesenchymal Stem Cells Seeded Decellularized Tendon Scaffold for Tissue Engineering. Curr Stem Cell Res Ther 2020; 16:155-164. [PMID: 32707028 DOI: 10.2174/1574888x15666200723123901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 11/22/2022]
Abstract
Tendon is a collagenous tissue to connect bone and muscle. Healing of damaged/injured tendon is the primary clinical challenge in musculoskeletal regeneration because they often react poorly to treatment. Tissue engineering (a triad strategy of scaffolds, cells and growth factors) may have the potential to improve the quality of tendon tissue healing under such impaired situations. Tendon tissue engineering aims to synthesize graft alternatives to repair the injured tendon. Biological scaffolds derived from decellularized tissue may be a better option as their biomechanical properties are similar to the native tissue. This review is designed to provide background information on the current challenges in curing torn/worn out the tendon and the clinical relevance of decellularized scaffolds for such applications.
Collapse
Affiliation(s)
- Niveditha K
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala 695581, India
| | - Vineeth Ca
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala 695581, India
| | - Josna Joseph
- Advanced Centre for Tissue Engineering, Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala 695581, India
| | - Arun U
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala 695581, India
| | - Annie John
- Advanced Centre for Tissue Engineering, Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala 695581, India
| | - Annie Abraham
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala 695581, India
| |
Collapse
|
190
|
Colazo JM, Evans BC, Farinas AF, Al-Kassis S, Duvall CL, Thayer WP. Applied Bioengineering in Tissue Reconstruction, Replacement, and Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2020; 25:259-290. [PMID: 30896342 DOI: 10.1089/ten.teb.2018.0325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPACT STATEMENT The use of autologous tissue in the reconstruction of tissue defects has been the gold standard. However, current standards still face many limitations and complications. Improving patient outcomes and quality of life by addressing these barriers remain imperative. This article provides historical perspective, covers the major limitations of current standards of care, and reviews recent advances and future prospects in applied bioengineering in the context of tissue reconstruction, replacement, and regeneration.
Collapse
Affiliation(s)
- Juan M Colazo
- 1Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,2Medical Scientist Training Program, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Brian C Evans
- 3Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Angel F Farinas
- 4Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Salam Al-Kassis
- 4Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Craig L Duvall
- 3Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Wesley P Thayer
- 3Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee.,4Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
191
|
Burns in the Elderly: Potential Role of Stem Cells. Int J Mol Sci 2020; 21:ijms21134604. [PMID: 32610474 PMCID: PMC7369885 DOI: 10.3390/ijms21134604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Burns in the elderly continue to be a challenge despite advances in burn wound care management. Elderly burn patients continue to have poor outcomes compared to the younger population. This is secondary to changes in the quality of the aged skin, leading to impaired wound healing, aggravated immunologic and inflammatory responses, and age-related comorbidities. Considering the fast-growing elderly population, it is imperative to understand the anatomic, physiologic, and molecular changes of the aging skin and the mechanisms involved in their wound healing process to prevent complications associated with burn wounds. Various studies have shown that stem cell-based therapies improve the rate and quality of wound healing and skin regeneration; however, the focus is on the younger population. In this paper, we start with an anatomical, physiological and molecular dissection of the elderly skin to understand why wound healing is delayed. We then review the potential use of stem cells in elderly burn wounds, as well as the mechanisms by which mesenchymal stem cell (MSCs)-based therapies may impact burn wound healing in the elderly. MSCs improve burn wound healing by stimulating and augmenting growth factor secretion and cell proliferation, and by modulating the impaired elderly immune response. MSCs can be used to expedite healing in superficial partial thickness burns and donor site wounds, improve graft take and prevent graft breakdown.
Collapse
|
192
|
Son J, Tae JY, Min SK, Ko Y, Park JB. Fibroblast growth factor-4 maintains cellular viability while enhancing osteogenic differentiation of stem cell spheroids in part by regulating RUNX2 and BGLAP expression. Exp Ther Med 2020; 20:2013-2020. [PMID: 32782511 PMCID: PMC7401302 DOI: 10.3892/etm.2020.8951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/29/2020] [Indexed: 12/14/2022] Open
Abstract
Fibroblast growth factors (FGFs) are growth factors that were initially identified as proteins that stimulate fibroblast proliferation. The aim of the present study was to examine the effects of FGF-4 on the morphology, cellular viability and osteogenic differentiation of stem cell spheroids. Stem cell spheroids were generated using concave microwells in the presence of FGF-4 at concentrations of 0, 50, 100 and 200 ng/ml. Cellular viability was qualitatively assessed by a fluorometric live/dead assay using a microscope and quantitatively determined by using Cell Counting Kit-8. Furthermore, alkaline phosphatase activity and calcium deposition were determined to assess osteogenic differentiation. Reverse transcription-quantitative PCR (RT-qPCR) was performed to evaluate the mRNA expression levels of Runt-related transcription factor 2 (RUNX2) and bone γ-carboxyglutamate protein (BGLAP). Spheroidal shapes were achieved in the microwells on day 1 and a significant increase in the spheroid diameter was observed in the 200 ng/ml FGF-4 group compared with the control group on day 1 (P<0.05). The results regarding viability using Cell Counting Kit-8 in the presence of FGF-4 at 50, 100 and 200 ng/ml at day 1 were 98.0±2.5, 106.2±17.6 and 99.5±6.0%, respectively, when normalized to the control group (P>0.05). Furthermore, the alkaline phosphatase activity was significantly elevated in the 200 ng/ml group, when compared with the control group. The RT-qPCR results demonstrated that the mRNA expression levels of RUNX2 and BGLAP were significantly increased at 200 ng/ml. Therefore, the present results suggested that the application of FGF-4 maintained cellular viability while enhancing the osteogenic differentiation of stem cell spheroids, at least partially by regulating RUNX2 and BGLAP expression levels.
Collapse
Affiliation(s)
- Juwan Son
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jae-Yong Tae
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sae Kyung Min
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Youngkyung Ko
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
193
|
Rostom DM, Attia N, Khalifa HM, Abou Nazel MW, El Sabaawy EA. The Therapeutic Potential of Extracellular Vesicles Versus Mesenchymal Stem Cells in Liver Damage. Tissue Eng Regen Med 2020; 17:537-552. [PMID: 32506351 DOI: 10.1007/s13770-020-00267-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/05/2020] [Accepted: 04/15/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The extracellular vesicles (EVs) secreted by bone marrow-derived mesenchymal stem cells (MSCs) hold significant potential as a novel alternative to whole-cell therapy. We herein compare the therapeutic potential of BM-MSCs versus their EVs (MSC-EVs) in an experimental Carbon tetrachloride (CCl4)-induced liver damage rat model. METHODS Rats with liver damage received a single IV injection of MSC-EVs, 1 million MSCs, or 3 million MSCs. The therapeutic efficacy of each treatment was assessed using liver histopathology, liver function tests and immunohistochemistry for liver fibrosis and hepatocellular injury. RESULTS Animals that received an injection of either MSCs-EVs or 3 million MSCs depicted significant regression of collagen deposition in the liver tissue and marked attenuation of hepatocellular damage, both structurally and functionally. CONCLUSION Similar to high doses of MSC-based therapy (3 million MSCs), MSC-EVs mitigated the fibrogenesis and hepatocellular injury in a rat model of CCl4-induced liver fibrosis. The anti-fibrinogenic effect was induced by attenuating hepatic stellate cell activation. Therefore, the administration of MSC-EVs could be considered as a candidate cell-free therapeutic strategy for liver fibrosis and hepatocellular damage.
Collapse
Affiliation(s)
- Dina M Rostom
- Department of Medical Histology and Cell Biology, Faculty of Medicine, University of Alexandria, Dr. Fahmi Abdelmeguid St., Mowassah Campus, Alexandria, 21561, Egypt
| | - Noha Attia
- Department of Medical Histology and Cell Biology, Faculty of Medicine, University of Alexandria, Dr. Fahmi Abdelmeguid St., Mowassah Campus, Alexandria, 21561, Egypt. .,Department of Basic Sciences, The American University of Antigua - College of Medicine, University Park, Jabberwock Beach Road, P.O. Box 1451, Coolidge, Antigua and Barbuda.
| | - Hoda M Khalifa
- Department of Medical Histology and Cell Biology, Faculty of Medicine, University of Alexandria, Dr. Fahmi Abdelmeguid St., Mowassah Campus, Alexandria, 21561, Egypt
| | - Maha W Abou Nazel
- Department of Medical Histology and Cell Biology, Faculty of Medicine, University of Alexandria, Dr. Fahmi Abdelmeguid St., Mowassah Campus, Alexandria, 21561, Egypt
| | - Eshrak A El Sabaawy
- Department of Medical Histology and Cell Biology, Faculty of Medicine, University of Alexandria, Dr. Fahmi Abdelmeguid St., Mowassah Campus, Alexandria, 21561, Egypt
| |
Collapse
|
194
|
Zhou X, Hong Y, Zhang H, Li X. Mesenchymal Stem Cell Senescence and Rejuvenation: Current Status and Challenges. Front Cell Dev Biol 2020; 8:364. [PMID: 32582691 PMCID: PMC7283395 DOI: 10.3389/fcell.2020.00364] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
Over the past decades, mesenchymal stem cell (MSC)-based therapy has been intensively investigated and shown promising results in the treatment of various diseases due to their easy isolation, multiple lineage differentiation potential and immunomodulatory effects. To date, hundreds of phase I and II clinical trials using MSCs have been completed and many are ongoing. Accumulating evidence has shown that transplanted allogeneic MSCs lose their beneficial effects due to immunorejection. Nevertheless, the function of autologous MSCs is adversely affected by age, a process termed senescence, thus limiting their therapeutic potential. Despite great advances in knowledge, the potential mechanisms underlying MSC senescence are not entirely clear. Understanding the molecular mechanisms that contribute to MSC senescence is crucial when exploring novel strategies to rejuvenate senescent MSCs. In this review, we aim to provide an overview of the biological features of senescent MSCs and the recent progress made regarding the underlying mechanisms including epigenetic changes, autophagy, mitochondrial dysfunction and telomere shortening. We also summarize the current approaches to rejuvenate senescent MSCs including gene modification and pretreatment strategies. Collectively, rejuvenation of senescent MSCs is a promising strategy to enhance the efficacy of autologous MSC-based therapy, especially in elderly patients.
Collapse
Affiliation(s)
- Xueke Zhou
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Yimei Hong
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hao Zhang
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Xin Li
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
195
|
Ntege EH, Sunami H, Shimizu Y. Advances in regenerative therapy: A review of the literature and future directions. Regen Ther 2020; 14:136-153. [PMID: 32110683 PMCID: PMC7033303 DOI: 10.1016/j.reth.2020.01.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/14/2020] [Accepted: 01/26/2020] [Indexed: 12/14/2022] Open
Abstract
There is enormous global anticipation for stem cell-based therapies that are safe and effective. Numerous pre-clinical studies present encouraging results on the therapeutic potential of different cell types including tissue derived stem cells. Emerging evidences in different fields of research suggest several cell types are safe, whereas their therapeutic application and effectiveness remain challenged. Multiple factors that influence treatment outcomes are proposed including immunocompatibility and potency, owing to variations in tissue origin, ex-vivo methodologies for preparation and handling of the cells. This communication gives an overview of literature data on the different types of cells that are potentially promising for regenerative therapy. As a case in point, the recent trends in research and development of the mesenchymal stem cells (MSCs) for cell therapy are considered in detail. MSCs can be isolated from a variety of tissues and organs in the human body including bone marrow, adipose, synovium, and perinatal tissues. However, MSC products from the different tissue sources exhibit unique or varied levels of regenerative abilities. The review finally focuses on adipose tissue-derived MSCs (ASCs), with the unique properties such as easier accessibility and abundance, excellent proliferation and differentiation capacities, low immunogenicity, immunomodulatory and many other trophic properties. The suitability and application of the ASCs, and strategies to improve the innate regenerative capacities of stem cells in general are highlighted among others.
Collapse
Affiliation(s)
- Edward H. Ntege
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Japan
- Research Center for Regenerative Medicine, School of Medicine, University of the Ryukyus, Japan
| | - Hiroshi Sunami
- Research Center for Regenerative Medicine, School of Medicine, University of the Ryukyus, Japan
| | - Yusuke Shimizu
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Japan
| |
Collapse
|
196
|
Chrzanowski W, Kim SY, McClements L. Can Stem Cells Beat COVID-19: Advancing Stem Cells and Extracellular Vesicles Toward Mainstream Medicine for Lung Injuries Associated With SARS-CoV-2 Infections. Front Bioeng Biotechnol 2020; 8:554. [PMID: 32574317 PMCID: PMC7264098 DOI: 10.3389/fbioe.2020.00554] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
A number of medicines are currently under investigation for the treatment of COVID-19 disease including anti-viral, anti-malarial, and anti-inflammatory agents. While these treatments can improve patient's recovery and survival, these therapeutic strategies do not lead to unequivocal restoration of the lung damage inflicted by this disease. Stem cell therapies and, more recently, their secreted extracellular vesicles (EVs), are emerging as new promising treatments, which could attenuate inflammation but also regenerate the lung damage caused by COVID-19. Stem cells exert their immunomodulatory, anti-oxidant, and reparative therapeutic effects likely through their EVs, and therefore, could be beneficial, alone or in combination with other therapeutic agents, in people with COVID-19. In this review article, we outline the mechanisms of cytokine storm and lung damage caused by SARS-CoV-2 virus leading to COVID-19 disease and how mesenchymal stem cells (MSCs) and their secreted EVs can be utilized to tackle this damage by harnessing their regenerative properties, which gives them potential enhanced clinical utility compared to other investigated pharmacological treatments. There are currently 17 clinical trials evaluating the therapeutic potential of MSCs for the treatment of COVID-19, the majority of which are administered intravenously with only one clinical trial testing MSC-derived exosomes via inhalation route. While we wait for the outcomes from these trials to be reported, here we emphasize opportunities and risks associated with these therapies, as well as delineate the major roadblocks to progressing these promising curative therapies toward mainstream treatment for COVID-19.
Collapse
Affiliation(s)
- Wojciech Chrzanowski
- Faculty of Medicine and Health, Sydney School of Pharmacy, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Sally Yunsun Kim
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Lana McClements
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
197
|
Glotzbach K, Stamm N, Weberskirch R, Faissner A. Hydrogels Derivatized With Cationic Moieties or Functional Peptides as Efficient Supports for Neural Stem Cells. Front Neurosci 2020; 14:475. [PMID: 32508574 PMCID: PMC7251306 DOI: 10.3389/fnins.2020.00475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
The increasing incidence of neurodegenerative diseases such as Alzheimer's or Parkinson's disease represents a significant burden for patients and national health systems. The conditions are primarily caused by the death of neurons and other neural cell types. One important aim of current stem cell research is to find a way to replace the lost cells. In this perspective, neural stem cells (NSCs) have been considered as a promising tool in the field of regenerative medicine. The behavior of NSCs is modulated by environmental influences, for example hormones, growth factors, cytokines, and extracellular matrix molecules or biomechanics. These factors can be studied by using well-defined hydrogels, which are polymeric networks of synthetic or natural origin with the ability to swell in water. These gels can be modified with a variety of molecules and optimized with regard to their mechanical properties to mimic the natural extracellular environment. In particular modifications applying distinct units such as functional domains and peptides can modulate the development of NSCs with regard to proliferation, differentiation and migration. One well-known peptide sequence that affects the behavior of NSCs is the integrin recognition sequence RGD that has originally been derived from fibronectin. In the present review we provide an overview concerning the applications of modified hydrogels with an emphasis on synthetic hydrogels based on poly(acrylamides), as modified with either cationic moieties or the peptide sequence RGD. This knowledge might be used in tissue engineering and regenerative medicine for the therapy of spinal cord injuries, neurodegenerative diseases and traumata.
Collapse
Affiliation(s)
- Kristin Glotzbach
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Nils Stamm
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Ralf Weberskirch
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
198
|
Sun G, Teng Y, Zhao Z, Cheow LF, Yu H, Chen CH. Functional Stem Cell Sorting via Integrative Droplet Synchronization. Anal Chem 2020; 92:7915-7923. [DOI: 10.1021/acs.analchem.0c01312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Guoyun Sun
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, 04-08, Singapore
| | - Yao Teng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, MD9, Singapore
| | - Zixuan Zhao
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 04-08 Singapore
| | - Lih Feng Cheow
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, 04-08, Singapore
| | - Hanry Yu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, MD9, Singapore
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 04-08 Singapore
- Institute of Bioengineering and Nanotechnology, A*STAR, 31 Biopolis Way, The Nanos 07-01, Singapore
- CAMP, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, 04-01, Singapore
| | - Chia-Hung Chen
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR China
| |
Collapse
|
199
|
Huang SS. Future Vision 2020 and Beyond-5 Critical Trends in Eye Research. Asia Pac J Ophthalmol (Phila) 2020; 9:180-185. [PMID: 32501897 PMCID: PMC7299218 DOI: 10.1097/apo.0000000000000299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/01/2020] [Indexed: 12/14/2022] Open
Abstract
Ophthalmology has been at the forefront of many innovations in basic science and clinical research. The randomized prospective multicenter clinical trial, comparative clinical trials, the bench to beside development of diagnostic and therapeutic devices, the powerful combination of biostatistics and epidemiology, gene therapy, cell-based therapy, stem cell therapy, regenerative medicine, artificial intelligence, and the development of personalized molecular medicine continue to propel us forward. This article summarizes several critical trends in eye research.Innovative translational research continues to bring new solutions to blinding retinal diseases. The discovery of the genetic code presaged a day when the development of molecular tools and understanding of the basis of disease would lead not only to disease management but potentially lifelong cure. After decades of investigation, gene therapy is now a reality for a single autosomal recessive bi-allelic disease, Lebers Congenital Amaurosis. Its success has paved the way for a myriad of conditions once thought to be untreatable. In parallel, the progress to utilize pluripotential stem cells, immunomodulation, computational biology, and continued investigation into the fundamental mechanisms of cell and molecular biology is breathtaking in its rapidity. The next decade is likely to be the most exciting in the history of medicine. It will be essential that research progresses in a meticulously thoughtful, ethical, and collaborative process that safeguards the trust of our work and that of the society we serve.Presented as the International Award Lecture, Asia-Pacific Vitreoretinal Society meeting, November 2019, Shanghai China.
Collapse
Affiliation(s)
- Suber S. Huang
- Retina Center of Ohio, Cleveland, OH
- National Eye Health Education Program Steering Committee, National Eye Institute, National Institutes of Health, USA
- Bascom Palmer Eye Institute, University of Miami, Miami, FL
| |
Collapse
|
200
|
André A, Zerah M. Commentary: First Human Trial of Stem Cell Transplantation in Complex Arrays for Stroke Patients Using the Intracerebral Microinjection Instrument. Oper Neurosurg (Hagerstown) 2020; 18:E151-E152. [PMID: 31625578 DOI: 10.1093/ons/opz267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 06/23/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Arthur André
- Department of Neurosurgery, Pitié-Salpétriêre University Hospital, AP-HP Paris, France.,Ramsay Générale de Santé, Clinique Geoffroy Saint-Hilaire, Paris, France.,NeuroGenCell, Institut du cerveau et de la moelle épinière, IHU Pitié-Salpétrière, Paris, France
| | - Michel Zerah
- NeuroGenCell, Institut du cerveau et de la moelle épinière, IHU Pitié-Salpétrière, Paris, France.,Department of Pediatric Neurosurgery, IHU-Necker Enfants Malades University Hospital, AP-HP Paris, France
| |
Collapse
|