151
|
Jeong H, Kim JW, Yang D, Jeong TW, Zhao J, Seo JH, Shin DG, Cha JD, Han KM, Lim CW, Kim B. Orostachys japonicus A. Berger (Crassulaceae) Exerts Antidiabetic Activity by Improving Glucose and Lipid Levels in Type 2 Diabetic Mice. J Med Food 2019; 22:797-809. [DOI: 10.1089/jmf.2018.4391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Hyuneui Jeong
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Chonbuk National University, Iksan, Korea
| | - Jong-Won Kim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Chonbuk National University, Iksan, Korea
| | - Daram Yang
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Chonbuk National University, Iksan, Korea
| | - Tae-Won Jeong
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Chonbuk National University, Iksan, Korea
| | - Jing Zhao
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Chonbuk National University, Iksan, Korea
| | - Jeong Hun Seo
- Research & Development Center of GENERAL BIO Co., Ltd., Namwon, Korea
| | - Dong Gue Shin
- Research & Development Center of GENERAL BIO Co., Ltd., Namwon, Korea
| | - Jeong-Dan Cha
- Research & Development Center of GENERAL BIO Co., Ltd., Namwon, Korea
| | - Kang Min Han
- Department of Pathology, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Chae Woong Lim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Chonbuk National University, Iksan, Korea
| | - Bumseok Kim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Chonbuk National University, Iksan, Korea
| |
Collapse
|
152
|
Durazzo A, Lucarini M, Souto EB, Cicala C, Caiazzo E, Izzo AA, Novellino E, Santini A. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytother Res 2019; 33:2221-2243. [DOI: 10.1002/ptr.6419] [Citation(s) in RCA: 313] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 02/06/2023]
Affiliation(s)
| | | | - Eliana B. Souto
- Faculty of Pharmacy of University of Coimbra Azinhaga de Santa Comba Coimbra Portugal
- CEB‐Centre of Biological EngineeringUniversity of Minho Braga Portugal
| | - Carla Cicala
- Department of PharmacyUniversity of Napoli Federico II Napoli Italy
| | | | - Angelo A. Izzo
- Department of PharmacyUniversity of Napoli Federico II Napoli Italy
| | - Ettore Novellino
- Department of PharmacyUniversity of Napoli Federico II Napoli Italy
| | | |
Collapse
|
153
|
Ghorbani A, Amiri MS, Hosseini A. Pharmacological properties of Rheum turkestanicum Janisch. Heliyon 2019; 5:e01986. [PMID: 31294125 PMCID: PMC6595136 DOI: 10.1016/j.heliyon.2019.e01986] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/14/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023] Open
Abstract
Medicinal herbs have been increasingly used worldwide for diseases prevention and treatment. Rheum turkestanicum Janisch. is a perennial shrub of the Polygonaceae family. Genus Rheum includes more than 60 species growing around the world which are used in foods and traditional medicines. R. turkestanicum is believed to be able to improve different kinds of disorders including diabetes, hypertension, jaundice and cancer. In recent years, this medicinal plant has been a subject of many experimental studies to document its health-beneficial properties. These studies have revealed antidiabetic, anticancer, nephroprotective, cardioprotective, and hepatoprotective properties of R. turkestanicum. The presence of flavonoids (e.g. epicatechin and quercetin) and anthraquinones (e.g. chrysophanol, physcion, and emodin) in R. turkestanicum justifies its health-beneficial effects. Nevertheless, possible therapeutic applications and safety of this plant still need to be elucidated in further clinical studies.
Collapse
Affiliation(s)
- Ahmad Ghorbani
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
154
|
Lei D, Chengcheng L, Xuan Q, Yibing C, Lei W, Hao Y, Xizhi L, Yuan L, Xiaoxing Y, Qian L. Quercetin inhibited mesangial cell proliferation of early diabetic nephropathy through the Hippo pathway. Pharmacol Res 2019; 146:104320. [PMID: 31220559 DOI: 10.1016/j.phrs.2019.104320] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/16/2019] [Accepted: 06/16/2019] [Indexed: 12/11/2022]
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular complications of diabetes and the leading cause of end-stage renal disease. The proliferation of glomerular mesangial cells (MCs) is a common and prominent pathological change of DN, which takes place at the early stage. Quercetin, a bioflavonoid compound, possesses therapeutic efficacy in cardiovascular and kidney diseases via anti-tumour, anti-oxidation, anti-virus, and anti-proliferation effects. However, the mechanism of quercetin in the proliferation of glomerular MCs in early DN has not been reported. In the present study, we investigated the effect of quercetin on the proliferation of glomerular MCs in high glucose-induced mouse glomerular MCs and in db/db mice. On this basis, we tried to clarify the specific mechanisms underlying these effects. The in vitro results showed that the proliferation of glomerular MCs was induced by high glucose, and the Hippo pathway was highly inactivated in high glucose-cultured MCs. Decreased phosphorylation of MST1 and Lats1 promoted expression and nuclear translocation of Yes-associated protein (YAP) and subsequently increased the combination of YAP and TEA/ATS domain (TEAD), which promoted the expression of the downstream target gene such as cyclinE. Quercetin effectively inhibited the high glucose-induced MC proliferation and reactivated the Hippo pathway. In vivo, the proliferation of glomerular MCs was increased, renal function was decreased, and blood fasting glucose was elevated in db/db mice. Furthermore, the Hippo pathway was inactivated in the renal cortex of db/db mice. Eight-week treatment of quercetin retarded MC proliferation, alleviated the renal function, and reactivated Hippo pathway in the renal cortex of db/db mice at 16 weeks. Our previous study clarified that the Hippo pathway was involved in MC proliferation of DN. The results revealed that quercetin inhibited MC proliferation in high glucose-treated mouse glomerular MCs and in DN via reactivation of the Hippo pathway.
Collapse
Affiliation(s)
- Du Lei
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, China
| | - Li Chengcheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, China
| | - Qian Xuan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, China
| | - Chen Yibing
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, China
| | - Wang Lei
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, China
| | - Yang Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, China
| | - Li Xizhi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, China
| | - Li Yuan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, China
| | - Yin Xiaoxing
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, China.
| | - Lu Qian
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, China.
| |
Collapse
|
155
|
Santos HO, Howell S, Teixeira FJ. Beyond tribulus (Tribulus terrestris L.): The effects of phytotherapics on testosterone, sperm and prostate parameters. JOURNAL OF ETHNOPHARMACOLOGY 2019; 235:392-405. [PMID: 30790614 DOI: 10.1016/j.jep.2019.02.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/17/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE Phytotherapeutic approaches have been widely proposed to improve male health. Despite the well-touted effects of tribulus (Tribulus terrestris L) on men's health, an optimal phytotherapy remains an elusive challenge. AIM OF THE REVIEW We sought to critically analyze the evidence in the phytotherapic literature beyond the effects of tribulus on testosterone (T) concentration and sperm analysis to also include indications for prostate health. MATERIALS AND METHODS A focused literature search was conducted to include studies published in Cochrane, Pubmed, and Web of Science databases between the years 2002 and 2018. RESULTS The use of tribulus and maca (Lepidium meyenii Walp, Brassicaceae) were not scientifically supported to improve serum T levels in men. Moderate evidence supports the use of long Jack (Eurycoma longifolia Jack, Simaroubaceae), mucuna (Mucuna pruriens (L.) DC., Fabaceae), ashwagandha (Withania somnifera (L.) Dunal, Solanaceae), fenugreek (Trigonella foenum-graceum L., Fabaceae), and black seeds (Nigella sativa L., Ranunculaceae) to increase total T and improve seminal parameters. Data suggests an increase in total T with the use of 5000 mg/d of powdered mucuna seed and ashwagandha root (151 and 143 ng/dL, respectively) over a 12-week period in patients with oligozoospermia. The use of mucuna was supported for patients with oligozoospermia to improve sperm parameters, with an increase of 83.3 million/mL observed after use of 5000 mg/d of powdered mucuna seed over a 12-week period. Evidence supporting the use of saw palmetto (Serenoa repens, (W.Bartram) Small, Arecaceae) to improve prostate health remains equivocal; whereas, evidence supporting the use of Pygeum africanum Hook.f., Rosaceae, Urtica dioica L., Urticaceae, beta-sitosterols, pollen extract, onion, garlic, and tomato, appears favorable and promising. CONCLUSION Scientific evidence supports the use of mucuna and ashwagandha as phytotherapics for improving serum T concentrations and semen parameters. Despite inconclusive evidence for use of tribulus as a T booster, it may provide advantageous effects on sperm parameters in men with idiopathic infertility. Nutraceutical strategies and some phytotherapics may also be effective to promote prostate health. Popular foodstuffs (onion, garlic, and tomato), nutraceutical agents (pollen extract and beta-sitosterols), and herbal medicines (Pygeum africanum and Urtica dioica) are rational approaches.
Collapse
Affiliation(s)
- Heitor O Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil.
| | - Scott Howell
- Research Director, Tier 1 Center for Research, Chattanooga, TN, United States
| | - Filipe J Teixeira
- Laboratory of Physiology and Biochemistry of Exercise, Faculty of Human Kinetics, Universidade de Lisboa, Cruz Quebrada, Portugal
| |
Collapse
|
156
|
Metabolic and Epigenetic Action Mechanisms of Antidiabetic Medicinal Plants. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3583067. [PMID: 31191707 PMCID: PMC6525884 DOI: 10.1155/2019/3583067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022]
Abstract
Diabetes is a predominant metabolic disease nowadays due to the off-beam lifestyle of diet and reduced physical activity. Complications of the illness include the gene-environment interactions and the downstream genetic and epigenetic consequences, e.g., cardiovascular diseases, tumor progression, retinopathy, nephropathy, neuropathy, polydipsia, polyphagia, polyuria, and weight loss. This review sheds the light on the mechanistic insights of antidiabetic medicinal plants in targeting key organs and tissues involved in regulating blood glucose homeostasis including the pancreas, liver, muscles, adipose tissues, and glucose absorption in the intestine. Diabetes is also involved in modulating major epigenetic pathways such as DNA methylation and histone modification. In this respect, we will discuss the phytochemicals as current and future epigenetic drugs in the treatment of diabetes. In addition, several proteins are common targets for the treatment of diabetes. Some phytochemicals are expected to directly interact with these targets. We lastly uncover modeling studies that predict such plausible interactions. In conclusion, this review article presents the mechanistic insight of phytochemicals in the treatment of diabetes by combining both the cellular systems biology and molecular modeling.
Collapse
|
157
|
Burton-Freeman B, Brzeziński M, Park E, Sandhu A, Xiao D, Edirisinghe I. A Selective Role of Dietary Anthocyanins and Flavan-3-ols in Reducing the Risk of Type 2 Diabetes Mellitus: A Review of Recent Evidence. Nutrients 2019; 11:E841. [PMID: 31013914 PMCID: PMC6520947 DOI: 10.3390/nu11040841] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/29/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is the most common form of DM and its prevalence is increasing worldwide. Because it is a progressive disease, prevention, early detection and disease course modification are possible. Diet plays a critical role in reducing T2DM risk. Therapeutic dietary approaches routinely recommend diets high in plant foods (i.e., vegetables, fruits, whole-grains). In addition to essential micronutrients and fiber, plant-based diets contain a wide-variety of polyphenols, specifically flavonoid compounds. Evidence suggests that flavonoids may confer specific benefits for T2DM risk reduction through pathways influencing glucose absorption and insulin sensitivity and/or secretion. The present review assesses the relationship between dietary flavonoids and diabetes risk reduction reviewing current epidemiology and clinical research. Collectively, the research indicates that certain flavonoids, explicitly anthocyanins and flavan-3-ols and foods rich in these compounds, may have an important role in dietary algorithms aimed to address diabetes risk factors and the development of T2DM.
Collapse
Affiliation(s)
- Britt Burton-Freeman
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA.
| | - Michał Brzeziński
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA.
- Department of Public Health and Social Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland.
| | - Eunyoung Park
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA.
| | - Amandeep Sandhu
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA.
| | - Di Xiao
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA.
| | - Indika Edirisinghe
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA.
| |
Collapse
|
158
|
Nettore IC, Rocca C, Mancino G, Albano L, Amelio D, Grande F, Puoci F, Pasqua T, Desiderio S, Mazza R, Terracciano D, Colao A, Bèguinot F, Russo GL, Dentice M, Macchia PE, Sinicropi MS, Angelone T, Ungaro P. Quercetin and its derivative Q2 modulate chromatin dynamics in adipogenesis and Q2 prevents obesity and metabolic disorders in rats. J Nutr Biochem 2019; 69:151-162. [PMID: 31096072 DOI: 10.1016/j.jnutbio.2019.03.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/28/2019] [Accepted: 03/25/2019] [Indexed: 12/18/2022]
Abstract
Recently the attention of the scientific community has focused on the ability of polyphenols to counteract adverse epigenetic regulation involved in the development of complex conditions such as obesity. The aim of this study was to investigate the epigenetic mechanisms underlying the anti-adiposity effect of Quercetin (3,3',4',5,7-pentahydroxyflavone) and of one of its derivatives, Q2 in which the OH groups have been replaced by acetyl groups. In 3 T3-L1 preadipocytes, Quercetin and Q2 treatment induce chromatin remodeling and histone modifications at the 5' regulatory region of the two main adipogenic genes, c/EBPα and PPARγ. Chromatin immunoprecipitation assays revealed a concomitant increase of histone H3 di-methylation at Lys9, a typical mark of repressed gene promoters, and a decrease of histone H3 di-methylation at Lys 4, a mark of active transcription. At the same time, both compounds inhibited histone demethylase LSD1 recruitment to the 5' region of c/EBPα and PPARγ genes, a necessary step for adipogenesis. The final effect is a significant reduction in c/EBPα and PPARγ gene expression and attenuated adipogenesis. Q2 supplementation in rats reduced the gain in body weight and in white adipose tissue, as well as the increase in adipocyte size determined by high fat diet. Moreover, Q2 improved dyslipidemia, glucose tolerance and decreased the hepatic lipid accumulation by activating the expression of beta-oxidation related genes. Our data suggest that Q2, as well as Quercetin, has the potential to revert the unfavorable epigenomic profiles associated with obesity onset. This opens the possibility to use these compounds in targeted prevention strategies against obesity.
Collapse
Affiliation(s)
- Immacolata Cristina Nettore
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli, "Federico II", Napoli, Italy
| | - Carmine Rocca
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Arcavacata di Rende, (CS), Italy
| | - Giuseppina Mancino
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli, "Federico II", Napoli, Italy
| | - Luigi Albano
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli, "Federico II, Napoli, Italy; Istituto per l'Endocrinologia e l'Oncologia Sperimentale, "G.Salvatore", Consiglio Nazionale delle Ricerche, Napoli, Italy
| | - Daniela Amelio
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Arcavacata di Rende, (CS), Italy
| | - Fedora Grande
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, (CS), Italy
| | - Francesco Puoci
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, (CS), Italy
| | - Teresa Pasqua
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Arcavacata di Rende, (CS), Italy
| | - Silvio Desiderio
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli, "Federico II", Napoli, Italy
| | - Rosa Mazza
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Arcavacata di Rende, (CS), Italy
| | - Daniela Terracciano
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli, "Federico II, Napoli, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli, "Federico II", Napoli, Italy
| | - Francesco Bèguinot
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli, "Federico II, Napoli, Italy; Istituto per l'Endocrinologia e l'Oncologia Sperimentale, "G.Salvatore", Consiglio Nazionale delle Ricerche, Napoli, Italy
| | - Gian Luigi Russo
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche, Avellino, Italy
| | - Monica Dentice
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli, "Federico II", Napoli, Italy
| | - Paolo Emidio Macchia
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli, "Federico II", Napoli, Italy
| | - Maria Stefania Sinicropi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, (CS), Italy
| | - Tommaso Angelone
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Arcavacata di Rende, (CS), Italy; Istituto Nazionale Ricerche Cardiovascolari (INRC), Bologna, Italy
| | - Paola Ungaro
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, "G.Salvatore", Consiglio Nazionale delle Ricerche, Napoli, Italy.
| |
Collapse
|
159
|
Ostadmohammadi V, Milajerdi A, Ayati E, Kolahdooz F, Asemi Z. Effects of quercetin supplementation on glycemic control among patients with metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized controlled trials. Phytother Res 2019; 33:1330-1340. [PMID: 30848564 DOI: 10.1002/ptr.6334] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/04/2019] [Accepted: 02/09/2019] [Indexed: 12/17/2022]
Abstract
This systematic review and meta-analysis of randomized controlled trials was performed to determine the effect of quercetin supplementation on glycemic control among patients with metabolic syndrome and related disorders. Databases including PubMed, MEDLINE, EMBASE, Web of Science, and Cochrane Central Register of Controlled Trials were searched until August 30, 2018. Nine studies with 10 effect sizes out of 357 selected reports were identified eligible to be included in current meta-analysis. The pooled findings indicated that quercetin supplementation did not affect fasting plasma glucose (FPG), homeostasis model of assessment-estimated insulin resistance, and hemoglobin A1c levels. In subgroup analysis, quercetin supplementation significantly reduced FPG in studies with a duration of ≥8 weeks (weighted mean difference [WMD]: -0.94; 95% confidence interval [CI; -1.81, -0.07]) and used quercetin in dosages of ≥500 mg/day (WMD: -1.08; 95% CI [-2.08, -0.07]). In addition, subgroup analysis revealed a significant reduction in insulin concentrations following supplementation with quercetin in studies that enrolled individuals aged <45 years (WMD: -1.36; 95% CI [-1.76, -0.97]) and that used quercetin in dosages of ≥500 mg/day (WMD: -1.57; 95% CI [-1.98, -1.16]). In summary, subgroup analysis based on duration of ≥8 weeks and used quercetin in dosages of ≥500 mg/day significantly reduced FPG levels.
Collapse
Affiliation(s)
- Vahidreza Ostadmohammadi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Milajerdi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Elnaz Ayati
- Reproductive Health Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Fariba Kolahdooz
- Indigenous and Global Health Research, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
160
|
Madeo F, Carmona-Gutierrez D, Hofer SJ, Kroemer G. Caloric Restriction Mimetics against Age-Associated Disease: Targets, Mechanisms, and Therapeutic Potential. Cell Metab 2019; 29:592-610. [PMID: 30840912 DOI: 10.1016/j.cmet.2019.01.018] [Citation(s) in RCA: 356] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The increase in life expectancy has boosted the incidence of age-related pathologies beyond social and economic sustainability. Consequently, there is an urgent need for interventions that revert or at least prevent the pathogenic age-associated deterioration. The permanent or periodic reduction of calorie intake without malnutrition (caloric restriction and fasting) is the only strategy that reliably extends healthspan in mammals including non-human primates. However, the strict and life-long compliance with these regimens is difficult, which has promoted the emergence of caloric restriction mimetics (CRMs). We define CRMs as compounds that ignite the protective pathways of caloric restriction by promoting autophagy, a cytoplasmic recycling mechanism, via a reduction in protein acetylation. Here, we describe the current knowledge on molecular, cellular, and organismal effects of known and putative CRMs in mice and humans. We anticipate that CRMs will become part of the pharmacological armamentarium against aging and age-related cardiovascular, neurodegenerative, and malignant diseases.
Collapse
Affiliation(s)
- Frank Madeo
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria.
| | | | - Sebastian J Hofer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Guido Kroemer
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, INSERM U 1138, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, France; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden; Center of Systems Medicine, Chinese Academy of Science, Suzhou, China.
| |
Collapse
|
161
|
Faustino MV, Faustino MAF, Pinto DCGA. Halophytic Grasses, a New Source of Nutraceuticals? A Review on Their Secondary Metabolites and Biological Activities. Int J Mol Sci 2019; 20:E1067. [PMID: 30823674 PMCID: PMC6429475 DOI: 10.3390/ijms20051067] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/24/2019] [Accepted: 02/25/2019] [Indexed: 12/02/2022] Open
Abstract
The Poaceae family, known as grasses, is distributed worldwide and is considered the most important group of monocotyledonous crops. Salt stress is multifactorial, therefore to survive, halophytes evolved a variety of adaptations, which include the biosynthesis of different primary and secondary metabolites. This trait enhances the accumulation of important families of compounds crucial to the prevention of a variety of chronic diseases. Besides, if proven edible, these species could cope with the increased soil salinity responsible for the decline of arable land due to their high nutritional/nutraceutical value. Herein, the phytochemical investigations performed in halophytes from the Poaceae family as well as their biological properties were explored. Among the 65 genera and 148 species of known halophytic grasses, only 14% of the taxa were studied phytochemically and 10% were subjected to biological evaluation. Notably, in the studied species, a variety of compound families, as well as bioactivities, were demonstrated, highlighting the potential of halophytic grasses.
Collapse
Affiliation(s)
- Maria V Faustino
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Maria A F Faustino
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Diana C G A Pinto
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
162
|
Eseberri I, Miranda J, Lasa A, Mosqueda-Solís A, González-Manzano S, Santos-Buelga C, Portillo MP. Effects of Quercetin Metabolites on Triglyceride Metabolism of 3T3-L1 Preadipocytes and Mature Adipocytes. Int J Mol Sci 2019; 20:ijms20020264. [PMID: 30641871 PMCID: PMC6359054 DOI: 10.3390/ijms20020264] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/02/2019] [Accepted: 01/09/2019] [Indexed: 12/20/2022] Open
Abstract
Quercetin (Q) has rapid metabolism, which may make it worthwhile to focus on the potential activity of its metabolites. Our aim was to evaluate the triglyceride-lowering effects of Q metabolites in mature and pre-adipocytes, and to compare them to those induced by Q. 3T3-L1 mature and pre-adipocytes were treated with 0.1, 1 and 10 µM of Q, tamarixetin (TAM), isorhamnetin (ISO), quercetin-3-O-glucuronide (3G), quercetin-3-O-sulfate (3S), as well as with 3S and quercetin-4-O-sulfate (4S) mixture (3S+4S). Triglyceride (TG) content in both cell types, as well as free fatty acid (FFA) and glycerol in the incubation medium of mature adipocytes were measured spectrophotometrically. Gene expression was assessed by RT-PCR. In mature adipocytes, Q decreased TG at 1 and 10 µM, 3S metabolite at 1 and 10 µM, and 3S+4S mixture at 10 µM. 3S treatment modified the glucose uptake, and TG assembling, but not lipolysis or apoptosis. During differentiation, only 10 µM of ISO reduced TG content, as did Q at physiological doses. In conclusion, 3S metabolite but not ISO, 3G, 4S and TAM metabolites can contribute to the in vivo delipidating effect of Q.
Collapse
Affiliation(s)
- Itziar Eseberri
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain.
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain.
| | - Jonatan Miranda
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain.
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain.
| | - Arrate Lasa
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain.
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain.
| | - Andrea Mosqueda-Solís
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain.
| | - Susana González-Manzano
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain.
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain.
| | - Maria P Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain.
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain.
| |
Collapse
|
163
|
Huang H, Liao D, Dong Y, Pu R. Clinical effectiveness of quercetin supplementation in the management of weight loss: a pooled analysis of randomized controlled trials. Diabetes Metab Syndr Obes 2019; 12:553-563. [PMID: 31114281 PMCID: PMC6497115 DOI: 10.2147/dmso.s199830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 02/28/2019] [Indexed: 01/08/2023] Open
Abstract
Purpose: The previous investigations which considered the possible effect of the quercetin supplementation for overweight and obesity have led to inconsistent results. Here, we aimed to evaluate the effects of quercetin on weight loss using a meta-analysis of randomized controlled clinical trials (RCTs). Methods: Relevant studies were systematically searched from the MEDLINE, EMBASE, Google Scholar, and Scopus databases. RCTs that investigated the effects of quercetin on weight loss in humans were included for quality assessment, meta-analyses, sensitivity analysis, subgroup analyses, and publication bias assessment. Effect size was expressed as weighted mean difference (WMD) and 95% CI by using a random-effects model. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology was used to rate the level of evidence. Results: Nine RCTs (11 treatment arms) with 525 participants were finally included for data pooling. Our meta-analysis revealed that daily quercetin supplementation did not significantly affect the body weight (WMD: -0.35 kg, 95% CI: -2.03, 1.33; P=0.68), body mass index (WMD: -0.04 kg/m2, 95% CI: -0.54, 0.45; P=0.87), waist circumference (WMD: -0.37 cm, 95% CI: -1.81, 1.06; P=0.61), and waist to hip ratio (WMD: -0.01, 95% CI: -0.03, 0.01; P=0.48). Subgroup analysis could not identify factors significantly influencing these parameters. These results were robust in sensitivity analysis, and no significant publication bias was found. Conclusion: The current evidence suggests that quercetin intake did not show a notably favorable effect on weight loss. Future well-designed and long-term clinical trials are required to confirm these results.
Collapse
Affiliation(s)
- Haohai Huang
- Department of Clinical Pharmacy, Dongguan Third People’s Hospital, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, Dongguan, Guangdong, People’s Republic of China
- Correspondence: Haohai HuangDepartment of Clinical Pharmacy, Dongguan Third People’s Hospital, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, No.1, Huangzhou Xianglong Road of Shilong Town, Dongguan, Guangdong523326, People’s Republic of ChinaTel +86 769 8136 8831Fax +86 769 8136 8802Email
| | - Dan Liao
- Department of Gynaecology, Dongguan Third People’s Hospital, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, Dongguan, Guangdong, People’s Republic of China
| | - Yong Dong
- Department of Cancer Center, Dongguan Third People‘s Hospital, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, Dongguan, Guangdong, People’s Republic of China
| | - Rong Pu
- Department of Clinical Laboratory, Dongguan Third People’s Hospital, Affiliated Dongguan Shilong People‘s Hospital of Southern Medical University, Dongguan, Guangdong, People’s Republic of China
| |
Collapse
|
164
|
Khan A, Ali T, Rehman SU, Khan MS, Alam SI, Ikram M, Muhammad T, Saeed K, Badshah H, Kim MO. Neuroprotective Effect of Quercetin Against the Detrimental Effects of LPS in the Adult Mouse Brain. Front Pharmacol 2018; 9:1383. [PMID: 30618732 PMCID: PMC6297180 DOI: 10.3389/fphar.2018.01383] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/09/2018] [Indexed: 12/19/2022] Open
Abstract
Chronic neuroinflammation is responsible for multiple neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. Lipopolysaccharide (LPS) is an essential component of the gram-negative bacterial cell wall and acts as a potent stimulator of neuroinflammation that mediates neurodegeneration. Quercetin is a natural flavonoid that is abundantly found in fruits and vegetables and has been shown to possess multiple forms of desirable biological activity including anti-inflammatory and antioxidant properties. This study aimed to evaluate the neuroprotective effect of quercetin against the detrimental effects of LPS, such as neuroinflammation-mediated neurodegeneration and synaptic/memory dysfunction, in adult mice. LPS [0.25 mg/kg/day, intraperitoneally (I.P.) injections for 1 week]-induced glial activation causes the secretion of cytokines/chemokines and other inflammatory mediators, which further activate the mitochondrial apoptotic pathway and neuronal degeneration. Compared to LPS alone, quercetin (30 mg/kg/day, I.P.) for 2 weeks (1 week prior to the LPS and 1 week cotreated with LPS) significantly reduced activated gliosis and various inflammatory markers and prevented neuroinflammation in the cortex and hippocampus of adult mice. Furthermore, quercetin rescued the mitochondrial apoptotic pathway and neuronal degeneration by regulating Bax/Bcl2, and decreasing activated cytochrome c, caspase-3 activity and cleaving PARP-1 in the cortical and hippocampal regions of the mouse brain. The quercetin treatment significantly reversed the LPS-induced synaptic loss in the cortex and hippocampus of the adult mouse brain and improved the memory performance of the LPS-treated mice. In summary, our results demonstrate that natural flavonoids such as quercetin can be beneficial against LPS-induced neurotoxicity in adult mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Myeong Ok Kim
- Division of Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
165
|
Effect of Quercetin Monoglycosides on Oxidative Stress and Gut Microbiota Diversity in Mice with Dextran Sodium Sulphate-Induced Colitis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8343052. [PMID: 30539022 PMCID: PMC6260418 DOI: 10.1155/2018/8343052] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022]
Abstract
The pathogenesis of inflammatory bowel disease (IBD) is linked to an intricate association of environmental, microbial, and host-related factors. This study examined the potential effects of dietary addition of two preparations from onion, one comprising quercetin aglycone alone (Q: 0.15% polyphenols, quercetin aglycone:quercetin monoglycosides, 98:2) and another comprising quercetin aglycone with monoglycosides (Q+MQ: 0.15% total polyphenols, quercetin aglycone:quercetin monoglycosides, 69:31), on dextran sodium sulphate- (DSS-) induced colitis in mice. The results revealed a significant decrease in the body weight gain of the mice with DSS-induced colitis, which was counteracted by the dietary Q or Q+MQ supplementation. Meanwhile, the oxidative stress indicated by myeloperoxidase (MPO), reduced glutathione (GSH), malondialdehyde (MDA), and serum nitrate (NO) concentrations was higher in mice with DSS-induced colitis than in the control group mice, but dietary Q or Q+MQ supplementation counteracted this trend. The colitis mice demonstrated reduced Chao1, angiotensin-converting enzyme (ACE), and Shannon indices and an increased Simpson index, but the colitis mice receiving dietary Q or Q+MQ exhibited higher Chao1, ACE, and Shannon indices and a reduced Simpson index. In conclusion, this research showed that even at a low dose, dietary Q or Q+MQ supplementation counteracts DSS-induced colitis in mice, indicating that Q or Q+MQ may be used as an adjuvant therapy for IBD patients.
Collapse
|
166
|
Senyigit A, Durmus S, Mirzatas EB, Ozsobacı NP, Gelisgen R, Tuncdemir M, Ozcelik D, Simsek G, Uzun H. Effects of Quercetin on Lipid and Protein Damage in the Liver of Streptozotocin-Induced Experimental Diabetic Rats. J Med Food 2018; 22:52-56. [PMID: 30285538 DOI: 10.1089/jmf.2018.0030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Quercetin (QR) is part of a subclass of flavonoids called flavonols. We aimed to investigate the effect of QR on malondialdehyde (MDA), advanced oxidation protein products (AOPPs), and glutathione peroxidase (GSH-Px) activity in the liver of diabetic rats. We compared four groups of male adult Wistar albino rats: a control group, an untreated diabetic group, diabetic groups treated with QR, and QR group. Diabetes was induced by a single injection of streptozotocin (STZ) (50 mg/kg). Animals were kept in standard condition. On the 31st day of the study, the liver tissue was removed for biochemical parameters and histopathological evaluations. In an untreated diabetic group, liver MDA and AOPP levels were significantly higher than all groups. QR treatment significantly decreased the increased MDA, AOPP levels, and increased the decreased GSH-Px enzyme activity in liver tissues. The QR-treated rats in the diabetic group showed an improved histological appearance. Lesser vesicular vacuolization and fibrotic areas were observed in the QR-treated diabetic group than in the diabetic group. The STZ-induced liver injury is associated with oxidative stress, and coadministration of QR may reduce this damage effectively in a rat model. Our results are also supported by morphological improvement in liver tissue. Therefore, we think QR may be effective in treating hyperglycemia and oxidative damage in diabetes.
Collapse
Affiliation(s)
- Abdulhalim Senyigit
- 1 Department of Internal Medicine, Istanbul Medicine Hospital, Medical School, University of Biruni, Istanbul, Turkey
| | - Sinem Durmus
- 2 Department of Biochemistry, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Eda Buyukcolpan Mirzatas
- 3 Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Nural Pastacı Ozsobacı
- 4 Department of Biophysics, and Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Remise Gelisgen
- 2 Department of Biochemistry, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Matem Tuncdemir
- 3 Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Dervis Ozcelik
- 4 Department of Biophysics, and Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gonul Simsek
- 5 Department of Physiology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Hafize Uzun
- 2 Department of Biochemistry, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
167
|
Kim JK, Park SU. Quercetin and its role in biological functions: an updated review. EXCLI JOURNAL 2018; 17:856-863. [PMID: 30233284 PMCID: PMC6141818 DOI: 10.17179/excli2018-1538] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 08/18/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Jae Kwang Kim
- Division of Life Sciences and Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| |
Collapse
|
168
|
Quercetin ameliorates kidney injury and fibrosis by modulating M1/M2 macrophage polarization. Biochem Pharmacol 2018; 154:203-212. [DOI: 10.1016/j.bcp.2018.05.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/09/2018] [Indexed: 12/11/2022]
|
169
|
Multidirectional investigations on different parts of Allium scorodoprasum L. subsp. rotundum (L.) Stearn: Phenolic components, in vitro biological, and in silico propensities. Food Res Int 2018; 108:641-649. [DOI: 10.1016/j.foodres.2018.03.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 12/12/2022]
|
170
|
Regulation of Immune Function by Polyphenols. J Immunol Res 2018; 2018:1264074. [PMID: 29850614 PMCID: PMC5925142 DOI: 10.1155/2018/1264074] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/27/2018] [Indexed: 12/31/2022] Open
Abstract
Immune dysfunction is caused by various factors, including changes in relevant immune regulators and environmental stress. Immune system imbalance leads to a variety of diseases in humans. Nutrition may play an essential role in immunity by interfering with proinflammatory cytokine synthesis, immune cell regulation, and gene expression. Polyphenols, one of many categories of natural substances, exhibit a range of biological activities. Polyphenols promote immunity to foreign pathogens via various pathways. Different immune cells express multiple types of polyphenol receptors that recognise and allow cellular uptake of polyphenols, which subsequently activate signalling pathways to initiate immune responses. Furthermore, the polyphenols curcumin and epigallocatechin gallate can induce epigenetic changes in cells. In summary, polyphenols can be used to regulate intestinal mucosal immune responses, allergic diseases, and antitumour immunity.
Collapse
|
171
|
Sukhotnik I, Moati D, Shaoul R, Loberman B, Pollak Y, Schwartz B. Quercetin prevents small intestinal damage and enhances intestinal recovery during methotrexate-induced intestinal mucositis of rats. Food Nutr Res 2018; 62:1327. [PMID: 30026677 PMCID: PMC5883860 DOI: 10.29219/fnr.v62.1327] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 09/20/2017] [Accepted: 02/19/2018] [Indexed: 12/29/2022] Open
Abstract
Background Gastrointestinal mucositis occurs as a consequence of cytotoxic treatment. Quercetin (QCT) is a bioflavonoid that exerts significant antioxidant activity and anti-inflammatory as well as anti-malignancy properties. Objective To evaluate the effects of oral QCT consumption in preventing intestinal mucosal damage and stimulating intestinal recovery following methotrexate (MTX)-induced intestinal damage in a rat model. Design Male Sprague–Dawley rats were divided into four groups: Control Group A (CONTR) – rats were treated with 2 cc of saline given by gavage for 6 days. Group B (CONTR-QCT) – rats were treated with QCT (100 mg/kg in 2 ml saline) given by gavage 3 days before and 3 days after intraperitoneal (IP) injection of saline. Group C (MTX) – rats were injected a single dose (25 mg/kg) of MTX IP. Group D (MTX-QCT) rats were treated with QCT (similar to Group B) 3 days before and 3 days after IP MTX injection. Intestinal mucosal parameters (bowel and mucosal weight, mucosal DNA and protein content, and villus height and crypt depth), enterocytes proliferation, and enterocyte apoptosis degree were investigated at sacrifice on the 4th day after MTX or saline injection. Results Administration of QCT to MTX-treated rats resulted in: (1) significant decrease in intestinal injury score, (2) significant increase in intestinal and mucosal weight in jejunum and ileum, (3) increase on the protein content of the ileum, (4) increase in the villus height in the ileum, (5) increase of crypt depth of jejunum and ileum, and (6) increase in cell proliferation in the jejunum and ileum compared to MTX-nontreated group. Conclusions Administration of QCT prevents intestinal damage and improves intestinal recovery following MTX-induced intestinal damage in a rat. We surmise that the effect of QCT is based on induction of cell proliferation in the crypt rather than inhibition of apoptosis.
Collapse
Affiliation(s)
- Igor Sukhotnik
- The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Laboratory of Intestinal Adaptation and Recovery, Haifa, Israel.,Department of Pediatric Surgery, Bnai Zion Medical Center, Haifa, Israel
| | - Dalia Moati
- The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Laboratory of Intestinal Adaptation and Recovery, Haifa, Israel.,Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ron Shaoul
- The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Laboratory of Intestinal Adaptation and Recovery, Haifa, Israel.,Pediatric Gastroenterology and Nutrition Unit, Meyer Children's Hospital of Haifa, Rambam Medical Center, Haifa, Israel
| | - Boaz Loberman
- The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Laboratory of Intestinal Adaptation and Recovery, Haifa, Israel
| | - Yulia Pollak
- The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Laboratory of Intestinal Adaptation and Recovery, Haifa, Israel
| | - Betty Schwartz
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
172
|
Yang DK, Kang HS. Anti-Diabetic Effect of Cotreatment with Quercetin and Resveratrol in Streptozotocin-Induced Diabetic Rats. Biomol Ther (Seoul) 2018; 26:130-138. [PMID: 29462848 PMCID: PMC5839491 DOI: 10.4062/biomolther.2017.254] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 12/29/2017] [Accepted: 01/09/2018] [Indexed: 12/31/2022] Open
Abstract
Quercetin and resveratrol are known to have beneficial effects on the diabetes and diabetic complication, however, the effects of combined treatment of these compounds on diabetes are not fully revealed. Therefore, the present study was designed to investigate the combined antidiabetic action of quercetin (QE) and resveratrol (RS) in streptozotocin (STZ)-induced diabetic rats. To test the effects of co-treated with these compounds on diabetes, serum glucose, insulin, lipid profiles, oxidative stress biomarkers, and ions were determined. Additionally, the activities of hepatic glucose metabolic enzymes and histological analyses of pancreatic tissues were evaluated. 50 male Sprague-Dawley rats were divided into five groups; normal control, 50 mg/kg STZ-induced diabetic, and three (30 mg/kg QE, 10 mg/kg RS, and combined) compound-treated diabetic groups. The elevated serum blood glucose levels, insulin levels, and dyslipidemia in diabetic rats were significantly improved by QE, RS, and combined treatments. Oxidative stress and tissue injury biomarkers were dramatically inhibited by these compounds. They also shown to improve the hematological parameters which were shown to the hyperlactatemia and ketoacidosis as main causes of diabetic complications. The compounds treatment maintained the activities of hepatic glucose metabolic enzymes and structure of pancreatic β-cells from the diabetes, and it is noteworthy that cotreatment with QE and RS showed the most preventive effect on the diabetic rats. Therefore, our study suggests that cotreatment with QE and RS has beneficial effects against diabetes. We further suggest that cotreatment with QE and RS has the potential for use as an alternative therapeutic strategy for diabetes.
Collapse
Affiliation(s)
- Dong Kwon Yang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Biosafety Research Institute and Korea Zoonosis Research Institute, Center for Poultry Diseases Control, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Hyung-Sub Kang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Biosafety Research Institute and Korea Zoonosis Research Institute, Center for Poultry Diseases Control, Chonbuk National University, Iksan 54596, Republic of Korea
| |
Collapse
|
173
|
Xu L, Li Y, Dai Y, Peng J. Natural products for the treatment of type 2 diabetes mellitus: Pharmacology and mechanisms. Pharmacol Res 2018; 130:451-465. [PMID: 29395440 DOI: 10.1016/j.phrs.2018.01.015] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 02/06/2023]
Abstract
Epidemiological studies have implied that diabetes mellitus (DM) will become an epidemic accompany with metabolic and endocrine disorders worldwide. Most of DM patients are affected by type 2 diabetes mellitus (T2DM) with insulin resistance and insulin secretion defect. Generally, the strategies to treat T2DM are diet control, moderate exercise, hypoglycemic and lipid-lowing agents. Despite the therapeutic benefits for the treatment of T2DM, most of the drugs can produce some undesirable side effects. Considering the pathogenesis of T2DM, natural products (NPs) have become the important resources of bioactive agents for anti-T2DM drug discovery. Recently, more and more natural components have been elucidated to possess anti-T2DM properties, and many efforts have been carried out to elucidate the possible mechanisms. The aim of this paper was to overview the activities and underlying mechanisms of NPs against T2DM. Developments of anti-T2DM agents will be greatly promoted with the increasing comprehensions of NPs for their multiple regulating effects on various targets and signal pathways.
Collapse
Affiliation(s)
- Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yue Li
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yan Dai
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| |
Collapse
|
174
|
Inducers of Senescence, Toxic Compounds, and Senolytics: The Multiple Faces of Nrf2-Activating Phytochemicals in Cancer Adjuvant Therapy. Mediators Inflamm 2018; 2018:4159013. [PMID: 29618945 PMCID: PMC5829354 DOI: 10.1155/2018/4159013] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/19/2017] [Indexed: 12/18/2022] Open
Abstract
The reactivation of senescence in cancer and the subsequent clearance of senescent cells are suggested as therapeutic intervention in the eradication of cancer. Several natural compounds that activate Nrf2 (nuclear factor erythroid-derived 2-related factor 2) pathway, which is involved in complex cytoprotective responses, have been paradoxically shown to induce cell death or senescence in cancer. Promoting the cytoprotective Nrf2 pathway may be desirable for chemoprevention, but it might be detrimental in later stages and advanced cancers. However, senolytic activity shown by some Nrf2-activating compounds could be used to target senescent cancer cells (particularly in aged immune-depressed organisms) that escape immunosurveillance. We herein describe in vitro and in vivo effects of fifteen Nrf2-interacting natural compounds (tocotrienols, curcumin, epigallocatechin gallate, quercetin, genistein, resveratrol, silybin, phenethyl isothiocyanate, sulforaphane, triptolide, allicin, berberine, piperlongumine, fisetin, and phloretin) on cellular senescence and discuss their use in adjuvant cancer therapy. In light of available literature, it can be concluded that the meaning and the potential of adjuvant therapy with natural compounds in humans remain unclear, also taking into account the existence of few clinical trials mostly characterized by uncertain results. Further studies are needed to investigate the therapeutic potential of those compounds that display senolytic activity.
Collapse
|
175
|
Burmańczuk A, Hola P, Milczak A, Piech T, Kowalski C, Wojciechowska B, Grabowski T. Quercetin decrease somatic cells count in mastitis of dairy cows. Res Vet Sci 2018; 117:255-259. [PMID: 29331686 DOI: 10.1016/j.rvsc.2018.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 12/01/2017] [Accepted: 01/08/2018] [Indexed: 12/20/2022]
Abstract
Quercetin is a dietary flavonoid which has an effect on inflammation, angiogenesis and vascular inflammation. In several other flavonoids (e.g. kaempferol, astragalin, alpinetin, baicalein, indirubin), anti-inflammatory mechanism was proven by using mice mastitis model. The aim of the current study was pilot analysis of quercetin tolerability and its impact on somatic cells count (SCC) after multiple intramammary treatment on dairy cows with clinical mastitis. Based on SCC and clinical investigation, 9 dairy cows with clinical mastitis of one quarter were selected for the pilot study. Baseline analysis (hematology, TNFα, SCC) was performed every 24h among all cows three days before the first dose (B1-B3). After the baseline monitoring (B1-B3) eight days treatment (D1-D8) was performed with a high and low dose. Selected blood parameters were analyzed. Starting from D1 to D8, a decrease of SCC in relation to baseline was characterized by declining trend. The presented results allowed the confirmation of the significant influence of quercetin on the reduction of SCC in mastitis in dairy cows after 8days of therapy.
Collapse
Affiliation(s)
- Artur Burmańczuk
- Department of Pharmacology, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland.
| | - Piotr Hola
- Agromarina Sp. z o. o., Kulczyn Kolonia 48, 22-235 Hańsk Pierwszy, Poland
| | - Andrzej Milczak
- Department and Clinic of Animal Internal Diseases, Sub-Department of Companion Animal Internal Medicine, Faculty of Veterinary Medicine, University of Life Sciences, Głęboka 30, 20-612 Lublin, Poland
| | - Tomasz Piech
- Department and Clinic of Animal Reproduction, Faculty of Veterinary Medicine, University of Life Science, Głęboka 30, 20-612 Lublin, Poland.
| | - Cezary Kowalski
- Department of Pharmacology, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland.
| | | | | |
Collapse
|
176
|
Costa C, Tsatsakis A, Mamoulakis C, Teodoro M, Briguglio G, Caruso E, Tsoukalas D, Margina D, Dardiotis E, Kouretas D, Fenga C. Current evidence on the effect of dietary polyphenols intake on chronic diseases. Food Chem Toxicol 2017; 110:286-299. [DOI: 10.1016/j.fct.2017.10.023] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023]
|
177
|
Singh A, Chokriwal A, Sharma MM, Jain D, Saxena J, Stephen BJ. Therapeutic Role and Drug Delivery Potential of Neuroinflammation as a Target in Neurodegenerative Disorders. ACS Chem Neurosci 2017; 8:1645-1655. [PMID: 28719178 DOI: 10.1021/acschemneuro.7b00144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neuroinflammation, the condition associated with the hyperactivity of immune cells within the CNS (central nervous system), has recently been linked to a host range of neurodegenerative disorders. Targeting neuroinflammation could be of prime importance as recent research highlights the beneficial aspects associated with modulating the inflammatory mediators associated with the CNS. One of the main obstructions in neuroinflammatory treatments is the hindrance posed by the blood-brain barrier for the delivery of drugs. Hence, research has focused on novel modes of transport for drugs to cross the barrier through drug delivery and nanotechnology approaches. In this Review, we highlight the therapeutic advancement made in the field of neurodegenerative disorders by focusing on the effect neuroinflammation treatment has on these conditions.
Collapse
Affiliation(s)
- Abhijeet Singh
- Department
of Biosciences, Manipal University Jaipur, Dehmi Kalan, Near JVK Toll plaza,
Jaipur-Ajmer expressway, Jaipur-303007, Rajasthan, India
| | - Ankit Chokriwal
- Department
of Biosciences, Manipal University Jaipur, Dehmi Kalan, Near JVK Toll plaza,
Jaipur-Ajmer expressway, Jaipur-303007, Rajasthan, India
| | - Madan Mohan Sharma
- Department
of Biosciences, Manipal University Jaipur, Dehmi Kalan, Near JVK Toll plaza,
Jaipur-Ajmer expressway, Jaipur-303007, Rajasthan, India
| | - Devendra Jain
- Department
of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur-313001, Rajasthan, India
| | - Juhi Saxena
- Dr. B. Lal Institute of Biotechnology, 6-E, Malviya Industrial Area, Jaipur-302017, Rajasthan, India
| | - Bjorn John Stephen
- Department
of Biosciences, Manipal University Jaipur, Dehmi Kalan, Near JVK Toll plaza,
Jaipur-Ajmer expressway, Jaipur-303007, Rajasthan, India
| |
Collapse
|
178
|
Wu KC, Kao CP, Ho YL, Chang YS. Quality Control of the Root and Rhizome of Helminthostachys zeylanica (Daodi-Ugon) by HPLC Using Quercetin and Ugonins as Markers. Molecules 2017; 22:molecules22071115. [PMID: 28678195 PMCID: PMC6152333 DOI: 10.3390/molecules22071115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 06/26/2017] [Accepted: 07/02/2017] [Indexed: 11/23/2022] Open
Abstract
Daodi-Ugon is the dried root and rhizome of Helminthostachys zeylanica (L.) Hook. and has been used for centuries in the treatment of inflammation, fever, pneumonia, burns, and various disorders. However, the chromatographic methods to determine the phytochemical composition of H. zeylanica have never been reported. This study not only aims to develop a valid high-performance liquid chromatography (HPLC) method and to establish a chromatographic fingerprint for the quality control of H. zeylanica, it also establish the proposed content limits of Quercetin, Ugonin J, and Ugonin M. An HPLC method with a RP18 column (250 × 4.6 mm, 5 μm) was developed for the quantitative analysis of Quercetin, Ugonin J, and Ugonin M in H. zeylanica. A simple gradient of (A) methanol/(B) phosphoric acid in water (5–45 min, 70–80% A; 50–55 min, 80–70% A) was used and 360 nm was selected as the detection wavelength. The average contents and proposed content limits for H. zeylanica were calculated with a t-test and a measurement uncertainty test based on 20 batches of authentic H. zeylanica samples. Limits of detection (LOD), quantification (LOQ), linearity, precision, repeatability, stability, and recovery of the developed method were validated. All of the validation results of quantitative determination and fingerprinting methods were satisfactory. The developed method was then applied to assay the contents of Quercetin, Ugonin J, and Ugonin M and to acquire the fingerprints of all of the collected H. zeylanica samples. At the 99% confidence level, the calculated content limits were 56.45, 112.15, and 277.98 mg/kg for Quercetin, Ugonin J, and Ugonin M, respectively. Those validated HPLC quantitative method, fingerprinting profile, and the proposed content limits of three chemical markers that could be used in the quality control of H. zeylanica in the market.
Collapse
Affiliation(s)
- Kun-Chang Wu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Chun-Pin Kao
- Department of Nursing, Hsin Sheng Junior College of Medical Care and Management, Taoyuan 32544, Taiwan.
| | - Yu-Ling Ho
- Department of Nursing, Hungkuang University, Taichung 43302, Taiwan.
| | - Yuan-Shiun Chang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
- Chinese Crude Drug Pharmacy, China Medical University Hospital, Taichung 40402, Taiwan.
| |
Collapse
|
179
|
Nam W, Kim SP, Nam SH, Friedman M. Structure-Antioxidative and Anti-Inflammatory Activity Relationships of Purpurin and Related Anthraquinones in Chemical and Cell Assays. Molecules 2017; 22:E265. [PMID: 28208613 PMCID: PMC6155578 DOI: 10.3390/molecules22020265] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 01/09/2023] Open
Abstract
Anthraquinone (9,10-anthraquinone) and several hydroxy derivatives, including purpurin (1,2,4-trihydroxyanthraquinone), anthrarufin (1,5-dihydroxyanthraquinone), and chrysazin (1,8-dihydroxyanthraquinone), were evaluated for antioxidative and anti-inflammatory activities in chemical assays and mammalian cells (murine macrophage RAW 264.7 cells). Several tests were used to assess their activities: 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical; ABTS radical cation; hydrogen peroxide scavenging; reduction of potassium ferricyanide; chelation of ferrous ions; inhibition of lipid peroxidation; inhibition of nitric oxide generation; scavenging of the intracellular hydroxyl radical; expression of NLRP3 polypeptide for inflammasome assembly; and quantitation of proinflammatory cytokine interleukin 1β (IL-1β) for inflammasome activation. The results show that purpurin, from the root of the madder plant (Rubia tinctorum L.), exhibited the highest antioxidative activity in both chemical and cultured cell antioxidant assays. The antioxidative activities of the other three anthraquinones were lower than that of purpurin. In addition, purpurin could down-regulate NLRP3 inflammasome assembly and activation, suggesting that it might protect foods against oxidative damage and prevent in vivo oxidative stress and inflammation. Structure-activity relationships and the significance of the results for food quality and human health are discussed.
Collapse
Affiliation(s)
- Woo Nam
- Department of Biological Science, Ajou University, Suwon 16499, Korea.
| | - Sung Phil Kim
- Research Institute of Basic Sciences, Ajou University, Suwon 16499, Korea.
- STR Biotech. Ltd., Chuncheon 24232, Korea.
| | - Seok Hyun Nam
- Department of Biological Science, Ajou University, Suwon 16499, Korea.
| | - Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA 94710, USA.
| |
Collapse
|