151
|
Coulouarn C, Clément B. Stellate cells and the development of liver cancer: therapeutic potential of targeting the stroma. J Hepatol 2014; 60:1306-1309. [PMID: 24530649 DOI: 10.1016/j.jhep.2014.02.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/31/2014] [Accepted: 02/04/2014] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are the most common types of primary tumors in the liver. Although major advances have been made in understanding the cellular and molecular mechanisms underlying liver carcinogenesis, HCC and ICC are still deadly cancers worldwide waiting for innovative therapeutic options. Growing evidence from the literature highlight the critical role of the tumor cell microenvironment in the pathogenesis of cancer diseases. Thus, targeting the microenvironment, particularly the crosstalk between tumor cells and stromal cells, has emerged as a promising therapeutic strategy. This strategy would be particularly relevant for liver cancers which frequently develop in a setting of chronic inflammation and microenvironment remodeling associated with hepatic fibrosis and cirrhosis, such processes in which hepatic stellate cells (HSC) greatly contribute. This review brings a genomic point of view on the alterations of the cellular microenvironment in liver cancers, particularly the stromal tissue within tumor nodules, emphasizing the importance of the crosstalk between tumor cells and stromal cells, notably activated HSC, in tumor onset and progression. Furthermore, potential therapeutic modalities of targeting the stroma and HSC are discussed.
Collapse
Affiliation(s)
- Cédric Coulouarn
- Inserm, UMR991, Liver Metabolisms and Cancer, F-35033 Rennes, France; Université de Rennes 1, F-35043 Rennes, France.
| | - Bruno Clément
- Inserm, UMR991, Liver Metabolisms and Cancer, F-35033 Rennes, France; Université de Rennes 1, F-35043 Rennes, France
| |
Collapse
|
152
|
Anthérieu S, Le Guillou D, Coulouarn C, Begriche K, Trak-Smayra V, Martinais S, Porceddu M, Robin MA, Fromenty B. Chronic exposure to low doses of pharmaceuticals disturbs the hepatic expression of circadian genes in lean and obese mice. Toxicol Appl Pharmacol 2014; 276:63-72. [PMID: 24525044 DOI: 10.1016/j.taap.2014.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/16/2014] [Accepted: 01/28/2014] [Indexed: 12/19/2022]
Abstract
Drinking water can be contaminated with pharmaceuticals. However, it is uncertain whether this contamination can be harmful for the liver, especially during obesity. Hence, the goal of our study was to determine whether chronic exposure to low doses of pharmaceuticals could have deleterious effects on livers of lean and obese mice. To this end, lean and ob/ob male mice were treated for 4 months with a mixture of 11 drugs provided in drinking water at concentrations ranging from 10 to 10⁶ ng/l. At the end of the treatment, some liver and plasma abnormalities were observed in ob/ob mice treated with the cocktail containing 10⁶ ng/l of each drug. For this dosage, a gene expression analysis by microarray showed altered expression of circadian genes (e.g. Bmal1, Dbp, Cry1) in lean and obese mice. RT-qPCR analyses carried out in all groups of animals confirmed that expression of 8 different circadian genes was modified in a dose-dependent manner. For some genes, a significant modification was observed for dosages as low as 10²-10³ ng/l. Drug mixture and obesity presented an additive effect on circadian gene expression. These data were validated in an independent study performed in female mice. Thus, our study showed that chronic exposure to trace pharmaceuticals disturbed hepatic expression of circadian genes, particularly in obese mice. Because some of the 11 drugs can be found in drinking water at such concentrations (e.g. acetaminophen, carbamazepine, ibuprofen) our data could be relevant in environmental toxicology, especially for obese individuals exposed to these contaminants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mathieu Porceddu
- Mitologics SAS, Hôpital Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France
| | | | | |
Collapse
|
153
|
Galler K, Schleser F, Fröhlich E, Requardt RP, Kortgen A, Bauer M, Popp J, Neugebauer U. Exploitation of the hepatic stellate cell Raman signature for their detection in native tissue samples. Integr Biol (Camb) 2014; 6:946-56. [DOI: 10.1039/c4ib00130c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The unique information concentrated in Raman spectra serves to differentiate hepatic stellate cells from hepatocytes, detect them in living tissue and provide insight in their activation state.
Collapse
Affiliation(s)
- Kerstin Galler
- Leibniz Institute of Photonic Technology
- Jena, Germany
- Center for Sepsis Control and Care
- Jena University Hospital
- Germany
| | - Franziska Schleser
- Center for Sepsis Control and Care
- Jena University Hospital
- Germany
- Department of Anesthesiology and Intensive Care Medicine
- Jena University Hospital
| | - Esther Fröhlich
- Center for Sepsis Control and Care
- Jena University Hospital
- Germany
- Department of Anesthesiology and Intensive Care Medicine
- Jena University Hospital
| | | | - Andreas Kortgen
- Center for Sepsis Control and Care
- Jena University Hospital
- Germany
- Department of Anesthesiology and Intensive Care Medicine
- Jena University Hospital
| | - Michael Bauer
- Center for Sepsis Control and Care
- Jena University Hospital
- Germany
- Department of Anesthesiology and Intensive Care Medicine
- Jena University Hospital
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology
- Jena, Germany
- Center for Sepsis Control and Care
- Jena University Hospital
- Germany
| | - Ute Neugebauer
- Leibniz Institute of Photonic Technology
- Jena, Germany
- Center for Sepsis Control and Care
- Jena University Hospital
- Germany
| |
Collapse
|
154
|
Magistri P, Leonard SY, Tang CM, Chan JC, Lee TE, Sicklick JK. The glypican 3 hepatocellular carcinoma marker regulates human hepatic stellate cells via Hedgehog signaling. J Surg Res 2013; 187:377-85. [PMID: 24439425 DOI: 10.1016/j.jss.2013.12.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 12/09/2013] [Accepted: 12/13/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) frequently represents two diseases as it often arises in the setting of cirrhosis caused by the proliferation and activation of hepatic stellate cells (HSCs). Previously, we identified that Hedgehog (Hh) signaling regulates HSC viability and fibrinogenesis, as well as HCC tumorigenesis. Although it is increasingly recognized that HSCs and HCCs communicate via paracrine signaling, Hh's role in this process is just emerging. We hypothesized that a secreted HCC tumor marker and Hh mediator, glypican 3 (GPC3), may regulate HSC. METHODS Using three human HCC lines (Hep3B, PLC/PRF/5 and SK-Hep-1) and one Hh-responsive human HSC line (LX-2), we developed two in vitro models of HCC-to-HSC paracrine signaling using a Transwell coculture system and HCC-conditioned media. We then evaluated the effects of these models, as well as GPC3, on HSC viability and gene expression. RESULTS Using our coculture and conditioned media models, we demonstrate that the three HCC lines decrease HSC viability. Furthermore, we demonstrate that recombinant GPC3 dose-dependently decreases the LX-2 viability while inhibiting the expression of Hh target genes that regulate HSC viability. Finally, GPC3's inhibitory effects on cell viability and Hh target gene expression are partially abrogated by heparin, a competitor for GPC3 binding. CONCLUSIONS For the first time, we show that GPC3, an HCC biomarker and Hh mediator, regulates human HSC viability by regulating Hh signaling. This expands on existing data suggesting a role for tumor-stroma interactions in the liver and suggests that GPC3 plays a role in this process.
Collapse
Affiliation(s)
- Paolo Magistri
- Division of Surgical Oncology, Department of Surgery, Moores UCSD Cancer Center, University of California, San Diego, California; Faculty of Medicine and Psychology, Azienda Ospedaliera Sant'Andrea, Sapienza-Università di Roma, Rome, Italy
| | - Stephanie Y Leonard
- Division of Surgical Oncology, Department of Surgery, Moores UCSD Cancer Center, University of California, San Diego, California
| | - Chih-Min Tang
- Division of Surgical Oncology, Department of Surgery, Moores UCSD Cancer Center, University of California, San Diego, California
| | - Jonathan C Chan
- Division of Surgical Oncology, Department of Surgery, Moores UCSD Cancer Center, University of California, San Diego, California
| | - Tracy E Lee
- Division of Surgical Oncology, Department of Surgery, Moores UCSD Cancer Center, University of California, San Diego, California
| | - Jason K Sicklick
- Division of Surgical Oncology, Department of Surgery, Moores UCSD Cancer Center, University of California, San Diego, California.
| |
Collapse
|
155
|
Sulpice L, Rayar M, Desille M, Turlin B, Fautrel A, Boucher E, Llamas-Gutierrez F, Meunier B, Boudjema K, Clément B, Coulouarn C. Molecular profiling of stroma identifies osteopontin as an independent predictor of poor prognosis in intrahepatic cholangiocarcinoma. Hepatology 2013; 58:1992-2000. [PMID: 23775819 DOI: 10.1002/hep.26577] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 06/02/2013] [Indexed: 12/12/2022]
Abstract
UNLABELLED Intrahepatic cholangiocarcinoma (ICC) is the second most common type of primary cancer in the liver. ICC is an aggressive cancer with poor prognosis and limited therapeutic strategies. The identification of new drug targets and prognostic biomarkers is an important clinical challenge for ICC. The presence of an abundant stroma is a histological hallmark of ICC. Given the well-established role of the stromal compartment in the progression of cancer diseases, we hypothesized that relevant biomarkers could be identified by analyzing the stroma of ICC. By combining laser capture microdissection and gene expression profiling, we demonstrate that ICC stromal cells exhibit dramatic genomic changes. We identified a signature of 1,073 nonredundant genes that significantly discriminate the tumor stroma from nontumor fibrous tissue. Functional analysis of differentially expressed genes demonstrated that up-regulated genes in the stroma of ICC were related to cell cycle, extracellular matrix, and transforming growth factor beta (TGFβ) pathways. Tissue microarray analysis using an independent cohort of 40 ICC patients validated at a protein level the increased expression of collagen 4A1/COL4A1, laminin gamma 2/LAMC2, osteopontin/SPP1, KIAA0101, and TGFβ2 genes in the stroma of ICC. Statistical analysis of clinical and pathological features demonstrated that the expression of osteopontin, TGFβ2, and laminin in the stroma of ICC was significantly correlated with overall patient survival. More important, multivariate analysis demonstrated that the stromal expression of osteopontin was an independent prognostic marker for overall and disease-free survival. CONCLUSION The study identifies clinically relevant genomic alterations in the stroma of ICC, including candidate biomarkers for prognosis, supporting the idea that tumor stroma is an important factor for ICC onset and progression.
Collapse
Affiliation(s)
- Laurent Sulpice
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France; Université de Rennes 1, Rennes, France; CHU Rennes, Service de Chirurgie Hépatobiliaire et Digestive, Rennes, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Clapéron A, Mergey M, Aoudjehane L, Ho-Bouldoires THN, Wendum D, Prignon A, Merabtene F, Firrincieli D, Desbois-Mouthon C, Scatton O, Conti F, Housset C, Fouassier L. Hepatic myofibroblasts promote the progression of human cholangiocarcinoma through activation of epidermal growth factor receptor. Hepatology 2013; 58:2001-11. [PMID: 23787814 DOI: 10.1002/hep.26585] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 06/07/2013] [Indexed: 12/26/2022]
Abstract
UNLABELLED Intrahepatic cholangiocarcinoma (CCA) is characterized by an abundant desmoplastic environment. Poor prognosis of CCA has been associated with the presence of alpha-smooth muscle actin (α-SMA)-positive myofibroblasts (MFs) in the stroma and with the sustained activation of the epidermal growth factor receptor (EGFR) in tumor cells. Among EGFR ligands, heparin-binding epidermal growth factor (HB-EGF) has emerged as a paracrine factor that contributes to intercellular communications between MFs and tumor cells in several cancers. This study was designed to test whether hepatic MFs contributed to CCA progression through EGFR signaling. The interplay between CCA cells and hepatic MFs was examined first in vivo, using subcutaneous xenografts into immunocompromised mice. In these experiments, cotransplantation of CCA cells with human liver myofibroblasts (HLMFs) increased tumor incidence, size, and metastatic dissemination of tumors. These effects were abolished by gefitinib, an EGFR tyrosine kinase inhibitor. Immunohistochemical analyses of human CCA tissues showed that stromal MFs expressed HB-EGF, whereas EGFR was detected in cancer cells. In vitro, HLMFs produced HB-EGF and their conditioned media induced EGFR activation and promoted disruption of adherens junctions, migratory and invasive properties in CCA cells. These effects were abolished in the presence of gefitinib or HB-EGF-neutralizing antibody. We also showed that CCA cells produced transforming growth factor beta 1, which, in turn, induced HB-EGF expression in HLMFs. CONCLUSION A reciprocal cross-talk between CCA cells and myofibroblasts through the HB-EGF/EGFR axis contributes to CCA progression.
Collapse
Affiliation(s)
- Audrey Clapéron
- Inserm, UMRS 938, Centre de Recherche Saint-Antoine, Paris, France; UPMC, Univ Paris 06, UMRS 938, Centre de Recherche Saint-Antoine, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Sun B, Zhang X, Cheng X, Zhang Y, Chen L, Shi L, Liu Z, Qian H, Wu M, Yin Z. Intratumoral hepatic stellate cells as a poor prognostic marker and a new treatment target for hepatocellular carcinoma. PLoS One 2013; 8:e80212. [PMID: 24278260 PMCID: PMC3835887 DOI: 10.1371/journal.pone.0080212] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 09/30/2013] [Indexed: 12/29/2022] Open
Abstract
Hepatic stellate cells (HSCs), a specialized stromal cytotype in the liver, have been demonstrated to actively contribute to hepatocellular carcinoma (HCC) development. However, the previous studies were performed using HSC cell lines, and the prognostic value of intratumoral HSCs (tHSCs) was unclear. Here we isolated tHSCs from fresh human HCC tissues, and analyzed the abilities of tHSCs to promote HCC progression by using in vitro assays for cell viability, migration and invasion as well as epithelial-mesenchymal transition (EMT) phenotype. 252 HCC patients who underwent hepatectomy were enrolled for analysis of tHSCs and E-cadherin expression in tumor tissues, and 55 HCC patients for analysis of tHSCs in tumor tissues and circulating tumor cells (CTCs) in blood. Prognostic factors were then identified. The results showed that coculture of tHSCs with HCC cells had a stronger effect on HCC cell viability, migration and invasion, accompanied with the acquisition of epithelial-mesenchymal transition (EMT) phenotype. In vivo cotransplantation of HCC cells with tHSCs into nude mice more efficiently promoted tumor formation and growth. Icaritin, a known apoptosis inducer of HSCs, was demonstrated to effectively inhibit tHSC proliferation in vitro and tHSC-induced HCC-promoting effects in vivo. Clinical evidence indicated that tHSCs were rich in 45% of the HCC specimens, tHSC-rich subtypes were negatively correlated either with E-cadherin expression in tumor tissues (r = -0.256, p < 0.001) or with preoperative CTCs in blood (r = -0.287, p = 0.033), and were significantly correlated with tumor size (p = 0.027), TNM staging (p = 0.018), and vascular invasion (p = 0.008). Overall and recurrence-free survival rates of tHSC-rich patients were significantly worse than those for tHSC-poor patients. Multivariate analysis revealed tHSC-rich as an independent factor for overall and recurrence-free survival. In conclusion, tHSCs provide a promising prognostic biomarker and a new treatment target for HCC.
Collapse
Affiliation(s)
- Bin Sun
- Molecular Oncology Laboratory, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xiaofeng Zhang
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xianshuo Cheng
- Molecular Oncology Laboratory, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yu Zhang
- Molecular Oncology Laboratory, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Lei Chen
- Molecular Oncology Laboratory, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Lehua Shi
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Zhenyu Liu
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Haihua Qian
- Molecular Oncology Laboratory, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Mengchao Wu
- Molecular Oncology Laboratory, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Zhengfeng Yin
- Molecular Oncology Laboratory, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- * E-mail:
| |
Collapse
|
158
|
Shrivastava S, Mukherjee A, Ray R, Ray RB. Hepatitis C virus induces interleukin-1β (IL-1β)/IL-18 in circulatory and resident liver macrophages. J Virol 2013; 87:12284-90. [PMID: 24006444 PMCID: PMC3807883 DOI: 10.1128/jvi.01962-13] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hepatitis C virus (HCV)-mediated chronic liver disease is a global health problem, and inflammation is believed to be an important player in disease pathogenesis. HCV infection often leads to severe fibrosis/cirrhosis and hepatocellular carcinoma, although the mechanisms for advancement of disease are not fully understood. The proinflammatory cytokines interleukin-1β (IL-1β) and IL-18 have critical roles in establishment of inflammation. In this study, we examined induction of IL-1β/IL-18 secretion following HCV infection. Our results demonstrated that monocyte-derived human macrophages (THP-1) incubated with cell culture-grown HCV enhance the secretion of IL-1β/IL-18 into culture supernatants. A similar cytokine release was also observed for peripheral blood mononuclear cell (PBMC)-derived primary human macrophages and Kupffer cells (liver-resident macrophages) upon incubation with HCV. THP-1 cells incubated with HCV led to caspase-1 activation and release of proinflammatory cytokines. Subsequent studies demonstrated that HCV induces pro-IL-1β and pro-IL-18 synthesis via the NF-κB signaling pathway in macrophages. Furthermore, introduction of HCV viroporin p7 RNA into THP-1 cells was sufficient to cause IL-1β secretion. Together, our results suggested that human macrophages exposed to HCV induce IL-1β and IL-18 secretion, which may play a role in hepatic inflammation.
Collapse
Affiliation(s)
| | | | - Ranjit Ray
- Internal Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Ratna B. Ray
- Departments of Pathology
- Internal Medicine, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
159
|
Sun X, Sui Q, Zhang C, Tian Z, Zhang J. Targeting blockage of STAT3 in hepatocellular carcinoma cells augments NK cell functions via reverse hepatocellular carcinoma-induced immune suppression. Mol Cancer Ther 2013; 12:2885-96. [PMID: 24107450 DOI: 10.1158/1535-7163.mct-12-1087] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
STAT3 is an important transcriptional factor for cell growth, differentiation, and apoptosis. Although evidence suggests a positive role for STAT3 in cancer, the inhibitory effects of tumor STAT3 on natural killer (NK) cell functions in human hepatocellular carcinoma are unclear. In this study, we found that blocking STAT3 in hepatocellular carcinoma cells enhanced NK-cell antitumor function. In the case of STAT3-blocked hepatocellular carcinoma cells, NKG2D ligands were upregulated, which promoted recognition by NK cells. Importantly, the cytokine profile of hepatocellular carcinoma cells was altered; in particular, TGF-β and interleukin 10 (IL-10) expression was reduced, and type I interferon (IFN) was induced, thus facilitating NK-cell activation. Indeed, the cytotoxicity of NK cells treated with supernatant from STAT3-blocked hepatocellular carcinoma cells was augmented, with a concomitant elevation of molecules associated with NK cytolysis. Further experiments confirmed that the recovery of NK cells depended on the downregulation of TGF-β and upregulation of type I IFN derived from STAT3-blocked hepatocellular carcinoma cells. These findings demonstrated a pivotal role for STAT3 in hepatocellular carcinoma-mediated NK-cell dysfunction, and highlighted the importance of STAT3 blockade for hepatocellular carcinoma immunotherapy, which could restore NK-cell cytotoxicity in addition to its direct influence on tumor cells.
Collapse
Affiliation(s)
- Xiaoxia Sun
- Corresponding Author: Jian Zhang, Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan 250012, China.
| | | | | | | | | |
Collapse
|
160
|
Hayashi Y, Asuzu DT, Gibbons SJ, Aarsvold KH, Bardsley MR, Lomberk GA, Mathison AJ, Kendrick ML, Shen KR, Taguchi T, Gupta A, Rubin BP, Fletcher JA, Farrugia G, Urrutia RA, Ordog T. Membrane-to-nucleus signaling links insulin-like growth factor-1- and stem cell factor-activated pathways. PLoS One 2013; 8:e76822. [PMID: 24116170 PMCID: PMC3792098 DOI: 10.1371/journal.pone.0076822] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/29/2013] [Indexed: 11/29/2022] Open
Abstract
Stem cell factor (mouse: Kitl, human: KITLG) and insulin-like growth factor-1 (IGF1), acting via KIT and IGF1 receptor (IGF1R), respectively, are critical for the development and integrity of several tissues. Autocrine/paracrine KITLG-KIT and IGF1-IGF1R signaling are also activated in several cancers including gastrointestinal stromal tumors (GIST), the most common sarcoma. In murine gastric muscles, IGF1 promotes Kitl-dependent development of interstitial cells of Cajal (ICC), the non-neoplastic counterpart of GIST, suggesting cooperation between these pathways. Here, we report a novel mechanism linking IGF1-IGF1R and KITLG-KIT signaling in both normal and neoplastic cells. In murine gastric muscles, the microenvironment for ICC and GIST, human hepatic stellate cells (LX-2), a model for cancer niches, and GIST cells, IGF1 stimulated Kitl/KITLG protein and mRNA expression and promoter activity by activating several signaling pathways including AKT-mediated glycogen synthase kinase-3β inhibition (GSK3i). GSK3i alone also stimulated Kitl/KITLG expression without activating mitogenic pathways. Both IGF1 and GSK3i induced chromatin-level changes favoring transcriptional activation at the Kitl promoter including increased histone H3/H4 acetylation and H3 lysine (K) 4 methylation, reduced H3K9 and H3K27 methylation and reduced occupancy by the H3K27 methyltransferase EZH2. By pharmacological or RNA interference-mediated inhibition of chromatin modifiers we demonstrated that these changes have the predicted impact on KITLG expression. KITLG knock-down and immunoneutralization inhibited the proliferation of GIST cells expressing wild-type KIT, signifying oncogenic autocrine/paracrine KITLG-KIT signaling. We conclude that membrane-to-nucleus signaling involving GSK3i establishes a previously unrecognized link between the IGF1-IGF1R and KITLG-KIT pathways, which is active in both physiologic and oncogenic contexts and can be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Yujiro Hayashi
- Enteric Neuroscience Program, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States of America
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - David T. Asuzu
- Enteric Neuroscience Program, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States of America
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Simon J. Gibbons
- Enteric Neuroscience Program, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Kirsten H. Aarsvold
- Enteric Neuroscience Program, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States of America
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Michael R. Bardsley
- Enteric Neuroscience Program, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States of America
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Gwen A. Lomberk
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Angela J. Mathison
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Michael L. Kendrick
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - K. Robert Shen
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Takahiro Taguchi
- Division of Human Health and Medical Science, Graduate School of Kuroshio Science, Kochi University, Nankoku, Kochi, Japan
| | - Anu Gupta
- Departments of Anatomic Pathology and Molecular Genetics, Lerner Research Institute and Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Brian P. Rubin
- Departments of Anatomic Pathology and Molecular Genetics, Lerner Research Institute and Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Jonathan A. Fletcher
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gianrico Farrugia
- Enteric Neuroscience Program, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Raul A. Urrutia
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Tamas Ordog
- Enteric Neuroscience Program, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States of America
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
161
|
The fibrotic microenvironment as a heterogeneity facet of hepatocellular carcinoma. FIBROGENESIS & TISSUE REPAIR 2013; 6:17. [PMID: 24350713 PMCID: PMC3849063 DOI: 10.1186/1755-1536-6-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 08/28/2013] [Indexed: 02/07/2023]
Abstract
It has long been recognized that hepatocellular carcinoma heterogeneity arises from variation in the microenvironment or from genomic alteration. Only recently it has become clear that non-genetic alterations, such as cytoskeletal rearrangement, protein localization and formation of protein complexes, are also involved in generating phenotype variability. These proteome fluctuations cause genetically identical cells to vary significantly in their responsiveness to microenvironment stimuli. In the cirrhotic liver pre-malignant hepatocytes are continuously exposed to abnormal microenvironments, such as direct contact with activated hepatic stellate cells (HSCs) and extracellular matrix components. These abnormal environments can have pronounced influences on the epigenetic aspects of cells, translating into abnormal phenotypes. Here we discuss non-genetic causes of phenotypic heterogeneity of hepatocellular carcinoma, with an emphasis on variability of membrane protein complexes and transferred functions raising important implications for diagnosis and treatment.
Collapse
|
162
|
Thiele M, Wiest R, Gluud LL, Albillos A, Krag A. Can non-selective beta-blockers prevent hepatocellular carcinoma in patients with cirrhosis? Med Hypotheses 2013; 81:871-4. [PMID: 24060485 DOI: 10.1016/j.mehy.2013.08.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/02/2013] [Accepted: 08/23/2013] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma is the main liver-related cause of death in patients with compensated cirrhosis. The early phases are asymptomatic and the prognosis is poor, which makes prevention essential. We propose that non-selective beta-blockers decrease the incidence and growth of hepatocellular carcinoma via a reduction of the inflammatory load from the gut to the liver and inhibition of angiogenesis. Due to their effect on the portal pressure, non-selective beta-blockers are used for prevention of esophageal variceal bleeding. Recently, non-hemodynamic effects of beta-blockers have received increasing attention. Blockage of β-adrenoceptors in the intestinal mucosa and gut lymphatic tissue together with changes in type and virulence of the intestinal microbiota lead to reduced bacterial translocation and a subsequent decrease in the portal load of pathogen-associated molecular patterns. This may reduce hepatic inflammation. Blockage of β-adrenoceptors also decrease angiogenesis by inhibition of vascular endothelial growth factors. Because gut-derived inflammation and neo-angiogenesis are important in hepatic carcinogenesis, non-selective beta-blockers can potentially reduce the development and growth of hepatocellular carcinoma. Rodent and in vitro studies support the hypothesis, but clinical verification is needed. Different study designs may be considered. The feasibility of a randomized controlled trial is limited due to the necessary large number of patients and long follow-up. Observational studies carry a high risk of bias. The meta-analytic approach may be used if the incidence and mortality of hepatocellular carcinoma can be extracted from trials on variceal bleeding and if the combined sample size and follow up is sufficient.
Collapse
Affiliation(s)
- Maja Thiele
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark.
| | | | | | | | | |
Collapse
|
163
|
Wang H, Chen L. Tumor microenviroment and hepatocellular carcinoma metastasis. J Gastroenterol Hepatol 2013; 28 Suppl 1:43-8. [PMID: 23855295 DOI: 10.1111/jgh.12091] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/06/2013] [Indexed: 12/16/2022]
Abstract
The cross talk between tumor cells and the surrounding peritumoral stroma has been extensively studied as a dynamic system involving the processes of hepatocarcinogenesis, tumor invasion, and metastasis in recent few decades. Besides hepatocytes, liver tumor microenvironments are generally classified into cellular and noncellular components, including hepatic stellate cells, fibroblasts, immune, endothelial, mesenchymal stem cells, together with growth factors, cytokines, extracellular matrix, hormone as well as viruses et al. The noncellular components manipulate hepatocellular carcinoma invasion and metastasis by facilitating epithelial-mesenchymal transition, increasing proteolytic activity of matrix metalloproteinases, and regulating antitumor immunity, etc. Because the main cause of death in hepatocellular carcinoma patients is tumor progression with metastasis, a better understanding of the interplay between hepatocytes and their environment during tumor metastasis may be helpful for the discovery of novel molecular targets.
Collapse
Affiliation(s)
- Hongyang Wang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China.
| | | |
Collapse
|
164
|
Mallat A, Lotersztajn S. Cellular mechanisms of tissue fibrosis. 5. Novel insights into liver fibrosis. Am J Physiol Cell Physiol 2013; 305:C789-99. [PMID: 23903700 DOI: 10.1152/ajpcell.00230.2013] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liver fibrosis is the common scarring reaction associated with chronic liver injury that results from prolonged parenchymal cell injury and/or inflammation. The fibrogenic response is characterized by progressive accumulation of extracellular matrix components enriched in fibrillar collagens and a failure of matrix turnover. This process is driven by a heterogeneous population of hepatic myofibroblasts, which mainly derive from hepatic stellate cells and portal fibroblasts. Regression of fibrosis can be achieved by the successful control of chronic liver injury, owing to termination of the fibrogenic reaction following clearance of hepatic myofibroblasts and restoration of fibrolytic pathways. Understanding of the complex network underlying liver fibrogenesis has allowed the identification of a large number of antifibrotic targets, but no antifibrotic drug has as yet been approved. This review will highlight recent advances regarding the mechanisms that regulate liver fibrogenesis and fibrosis regression, with special focus on novel signaling pathways and the role of inflammatory cells. Translation of these findings to therapies will require continued efforts to develop multitarget therapeutic approaches that will improve the grim prognosis of liver cirrhosis.
Collapse
|
165
|
Myristoylated Alanine-Rich protein Kinase C Substrate (MARCKS) expression modulates the metastatic phenotype in human and murine colon carcinoma in vitro and in vivo. Cancer Lett 2013; 333:244-52. [DOI: 10.1016/j.canlet.2013.01.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 01/23/2013] [Indexed: 11/20/2022]
|
166
|
Hepatitis C virus infection induces inflammatory cytokines and chemokines mediated by the cross talk between hepatocytes and stellate cells. J Virol 2013; 87:8169-78. [PMID: 23678168 DOI: 10.1128/jvi.00974-13] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Inflammatory cytokines and chemokines play important roles in inflammation during viral infection. Hepatitis C virus (HCV) is a hepatotropic RNA virus that is closely associated with chronic liver inflammation, fibrosis, and hepatocellular carcinoma. During the progression of HCV-related diseases, hepatic stellate cells (HSCs) contribute to the inflammatory response triggered by HCV infection. However, the underlying molecular mechanisms that mediate HSC-induced chronic inflammation during HCV infection are not fully understood. By coculturing HSCs with HCV-infected hepatocytes in vitro, we found that HSCs stimulated HCV-infected hepatocytes, leading to the expression of proinflammatory cytokines and chemokines such as interleukin-6 (IL-6), IL-8, macrophage inflammatory protein 1α (MIP-1α), and MIP-1β. Moreover, we found that this effect was mediated by IL-1α, which was secreted by HSCs. HCV infection enhanced production of CCAAT/enhancer binding protein (C/EBP) β mRNA, and HSC-dependent IL-1α production contributed to the stimulation of C/EBPβ target cytokines and chemokines in HCV-infected hepatocytes. Consistent with this result, knockdown of mRNA for C/EBPβ in HCV-infected hepatocytes resulted in decreased production of cytokines and chemokines after the addition of HSC conditioned medium. Induction of cytokines and chemokines in hepatocytes by the HSC conditioned medium required a yet to be identified postentry event during productive HCV infection. The cross talk between HSCs and HCV-infected hepatocytes is a key feature of inflammation-mediated, HCV-related diseases.
Collapse
|
167
|
Liao R, Wu H, Yi Y, Wang JX, Cai XY, He HW, Cheng YF, Zhou J, Fan J, Sun J, Qiu SJ. Clinical significance and gene expression study of human hepatic stellate cells in HBV related-hepatocellular carcinoma. J Exp Clin Cancer Res 2013; 32:22. [PMID: 23601182 PMCID: PMC3654985 DOI: 10.1186/1756-9966-32-22] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/14/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Peritumoral activated hepatic stellate cells (HSCs) are versatile myofibroblast-like cells closely related with hepatocellular carcinoma (HCC) progression. So far, comprehensive comparison of gene expression of human HSCs during hepatocarcinogenesis is scanty. Therefore, we identified the phenotypic and genomic characteristics of peritumoral HSCs to explore the valuable information on the prognosis and therapeutic targets of HBV related HCC. METHODS A tissue microarray containing 224 HBV related HCC patients was used to evaluate the expression of phenotype markers of HSCs including α-SMA, glial fibrillary acidic protein (GFAP), desmin, vinculin and vimentin. HSCs and cancer associated myofibroblasts (CAMFs) were isolated from normal, peritumoral human livers and cancer tissues, respectively. Flow cytometry and gene microarray analysis were performed to evaluate the phenotypic changes and gene expression in HCC, respectively. RESULTS Peritumoral α-SMA positive HSCs showed the prognostic value in time to recurrence (TTR) and overall survival (OS) of HCC patients, especially in early recurrence and AFP-normal HCC patients. Expression of GFAP positive HSCs cell lines LX-2 was significantly decreased after stimulation with tumor conditioned medium. Compared with quiescent HSCs, peritumoral HSCs and intratumoral CAMFs expressed considerable up- and down-regulated genes associated with biological process, cellular component, molecular function and signaling pathways involved in fibrogenesis, inflammation and progress of cancer. CONCLUSIONS Peritumoral activated HSCs displayed prognostic value in HBV related-HCC, and their genomic characteristics could present rational biomarkers for HCC risk and promising therapeutic targets.
Collapse
Affiliation(s)
- Rui Liao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, the Chinese Ministry of Education, Shanghai, China
| | - Han Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, the Chinese Ministry of Education, Shanghai, China
| | - Yong Yi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, the Chinese Ministry of Education, Shanghai, China
| | - Jia-Xing Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, the Chinese Ministry of Education, Shanghai, China
| | - Xiao-Yan Cai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, the Chinese Ministry of Education, Shanghai, China
| | - Hong-Wei He
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, the Chinese Ministry of Education, Shanghai, China
| | - Yun-Feng Cheng
- Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, the Chinese Ministry of Education, Shanghai, China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, the Chinese Ministry of Education, Shanghai, China
| | - Jian Sun
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, the Chinese Ministry of Education, Shanghai, China
| | - Shuang-Jian Qiu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, the Chinese Ministry of Education, Shanghai, China
- Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
168
|
Lemoinne S, Cadoret A, El Mourabit H, Thabut D, Housset C. Origins and functions of liver myofibroblasts. Biochim Biophys Acta Mol Basis Dis 2013; 1832:948-54. [PMID: 23470555 DOI: 10.1016/j.bbadis.2013.02.019] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/22/2013] [Accepted: 02/23/2013] [Indexed: 02/06/2023]
Abstract
Myofibroblasts combine the matrix-producing functions of fibroblasts and the contractile properties of smooth muscle cells. They are the main effectors of fibrosis in all tissues and make a major contribution to other aspects of the wound healing response, including regeneration and angiogenesis. They display the de novo expression of α-smooth muscle actin. Myofibroblasts, which are absent from the normal liver, are derived from two major sources: hepatic stellate cells (HSCs) and portal mesenchymal cells in the injured liver. Reliable markers for distinguishing between the two subpopulations at the myofibroblast stage are currently lacking, but there is evidence to suggest that both myofibroblast cell types, each exposed to a particular microenvironment (e.g. hypoxia for HSC-MFs, ductular reaction for portal mesenchymal cell-derived myofibroblasts (PMFs)), expand and exert specialist functions, in scarring and inflammation for PMFs, and in vasoregulation and hepatocellular healing for HSC-MFs. Angiogenesis is a major mechanism by which myofibroblasts contribute to the progression of fibrosis in liver disease. It has been clearly demonstrated that liver fibrosis can regress, and this process involves a deactivation of myofibroblasts, although probably not to a fully quiescent phenotype. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.
Collapse
Affiliation(s)
- Sara Lemoinne
- UPMC Univ Paris 06, UMR_S 938, Paris, France; INSERM, U938, CdR Saint-Antoine, Paris, France
| | | | | | | | | |
Collapse
|
169
|
Van Beneden K, Mannaerts I, Pauwels M, Van den Branden C, van Grunsven LA. HDAC inhibitors in experimental liver and kidney fibrosis. FIBROGENESIS & TISSUE REPAIR 2013; 6:1. [PMID: 23281659 PMCID: PMC3564760 DOI: 10.1186/1755-1536-6-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 11/29/2012] [Indexed: 02/08/2023]
Abstract
Histone deacetylase (HDAC) inhibitors have been extensively studied in experimental models of cancer, where their inhibition of deacetylation has been proven to regulate cell survival, proliferation, differentiation and apoptosis. This in turn has led to the use of a variety of HDAC inhibitors in clinical trials. In recent years the applicability of HDAC inhibitors in other areas of disease has been explored, including the treatment of fibrotic disorders. Impaired wound healing involves the continuous deposition and cross-linking of extracellular matrix governed by myofibroblasts leading to diseases such as liver and kidney fibrosis; both diseases have high unmet medical needs which are a burden on health budgets worldwide. We provide an overview of the potential use of HDAC inhibitors against liver and kidney fibrosis using the current understanding of these inhibitors in experimental animal models and in vitro models of fibrosis.
Collapse
Affiliation(s)
- Katrien Van Beneden
- Department of Human Anatomy, Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Inge Mannaerts
- Department of Cell Biology, Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marina Pauwels
- Department of Human Anatomy, Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Leo A van Grunsven
- Department of Cell Biology, Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
170
|
Shukla SD, Lim RW. Epigenetic effects of ethanol on the liver and gastrointestinal system. Alcohol Res 2013; 35:47-55. [PMID: 24313164 PMCID: PMC3860425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The widening web of epigenetic regulatory mechanisms also encompasses ethanol-induced changes in the gastrointestinal (GI)-hepatic system. In the past few years, increasing evidence has firmly established that alcohol modifies several epigenetic parameters in the GI tract and liver. The major pathways affected include DNA methylation, different site-specific modifications in histone proteins, and microRNAs. Ethanol metabolism, cell-signaling cascades, and oxidative stress have been implicated in these responses. Furthermore, ethanol-induced fatty liver (i.e., steatohepatitis) and progression of liver cancer (i.e., hepatic carcinoma) may be consequences of the altered epigenetics. Modification of gene and/or protein expression via epigenetic changes also may contribute to the cross-talk among the GI tract and the liver as well as to systemic changes involving other organs. Thus, epigenetic effects of ethanol may have a central role in the various pathophysiological responses induced by ethanol in multiple organs and mediated via the liver-GI axis.
Collapse
|
171
|
Xiu M, Liu YH, Brigstock DR, He FH, Zhang RJ, Gao RP. Connective tissue growth factor is overexpressed in human hepatocellular carcinoma and promotes cell invasion and growth. World J Gastroenterol 2012; 18:7070-7078. [PMID: 23323010 PMCID: PMC3531696 DOI: 10.3748/wjg.v18.i47.7070] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 11/13/2012] [Accepted: 11/24/2012] [Indexed: 02/06/2023] Open
Abstract
AIM To determine the expression characteristics of connective tissue growth factor (CTGF/CCN2) in human hepatocellular carcinoma (HCC) in histology and to elucidate the roles of CCN2 on hepatoma cell cycle progression and metastasis in vitro. METHODS Liver samples from 36 patients (who underwent hepatic resection for the first HCC between 2006 and 2011) and 6 normal individuals were examined for transforming growth factor β1 (TGF-β1) or CCN2 mRNA by in situ hybridization. Computer image analysis was performed to measure integrated optimal density of CCN2 mRNA-positive cells in carcinoma foci and the surrounding stroma. Fibroblast-specific protein-1 (FSP-1) and E-cadherin were examined to evaluate the process of epithelial to mesenchymal transition, α-smooth muscle actin and FSP-1 were detected to identify hepatic stellate cells, and CD34 was measured to evaluate the extent of vascularization in liver tissues by immunohistochemical staining. CCN2 was assessed for its stimulation of HepG2 cell migration and invasion using commercial kits while flow cytometry was used to determine CCN2 effects on HepG2 cell-cycle. RESULTS In situ hybridization analysis showed that TGF-β1 mRNA was mainly detected in connective tissues and vasculature around carcinoma foci. In comparison to normal controls, CCN2 mRNA was enhanced 1.9-fold in carcinoma foci (12.36 ± 6.08 vs 6.42 ± 2.35) or 9.4-fold in the surrounding stroma (60.27 ± 28.71 vs 6.42 ± 2.35), with concomitant expression of CCN2 and TGF-β1 mRNA in those areas. Epithelial-mesenchymal transition phenotype related with CCN2 was detected in 12/36 (33.3%) of HCC liver samples at the edges between carcinoma foci and vasculature. Incubation of HepG2 cells with CCN2 (100 ng/mL) resulted in more of the cells transitioning into S phase (23.85 ± 2.35 vs 10.94 ± 0.23), and induced a significant migratory (4.0-fold) and invasive (5.7-fold) effect. TGF-β1-induced cell invasion was abrogated by a neutralizing CCN2 antibody showing that CCN2 is a downstream mediator of TGF-β1-induced hepatoma cell invasion. CONCLUSION These data support a role for CCN2 in the growth and metastasis of HCC and highlight CCN2 as a potential novel therapeutic target.
Collapse
|
172
|
Hu HM, Chen Y, Liu L, Zhang CG, Wang W, Gong K, Huang Z, Guo MX, Li WX, Li W. C1orf61 acts as a tumor activator in human hepatocellular carcinoma and is associated with tumorigenesis and metastasis. FASEB J 2012; 27:163-73. [PMID: 23012322 DOI: 10.1096/fj.12-216622] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The genomic amplification of chromosome 1q long arm, the chromosomal region containing C1orf61, is a common event in human cancers. However, the expression pattern of chromosome 1 open reading frame 61 (C1orf61) in hepatocellular carcinoma (HCC) and its effects on HCC progression remain unclear. We have previously reported that C1orf61 is highly up-regulated during human embryogenesis. In this study, we report that C1orf61 expression is associated with the progression of liver disease. We found that C1orf61 is up-regulated in hepatic cirrhosis tissues and is further up-regulated in primary HCC tumors. Moreover, hepatitis B virus (HBV)-positive patients exhibited significantly higher levels of C1orf61 expression than HBV-negative patients. The evaluation of highly malignant HCC cell lines revealed high protein expression levels of C1orf61. Furthermore, the C1orf61 protein was found to be predominantly distributed within the cytoplasm. The ectopic expression of C1orf61 in the nonmalignant L02 cell line promoted cellular proliferation and colony formation in vitro, as well as cell cycle progression via the regulation of the expression of specific cell cycle-related proteins. In addition, the overexpression of C1orf61 in L02 cells facilitated cellular invasion and metastasis. The down-regulation of epithelial markers (E-cadherin and occludin) and the up-regulation of mesenchymal markers (N-cadherin, vimentin, and snail) suggested that the overexpression of C1orf61 induced the epithelial-mesenchymal transition (EMT) that is linked to metastasis. Taken together, our findings demonstrate, for the first time, the roles of C1orf61 in HCC tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Hai-Ming Hu
- College of Life Sciences, Wuhan University, Wuhan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|