151
|
Flores-Morales A, Bergmann TB, Lavallee C, Batth TS, Lin D, Lerdrup M, Friis S, Bartels A, Kristensen G, Krzyzanowska A, Xue H, Fazli L, Hansen KH, Røder MA, Brasso K, Moreira JM, Bjartell A, Wang Y, Olsen JV, Collins CC, Iglesias-Gato D. Proteogenomic Characterization of Patient-Derived Xenografts Highlights the Role of REST in Neuroendocrine Differentiation of Castration-Resistant Prostate Cancer. Clin Cancer Res 2018; 25:595-608. [PMID: 30274982 DOI: 10.1158/1078-0432.ccr-18-0729] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 08/04/2018] [Accepted: 09/25/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE An increasing number of castration-resistant prostate cancer (CRPC) tumors exhibit neuroendocrine (NE) features. NE prostate cancer (NEPC) has poor prognosis, and its development is poorly understood.Experimental Design: We applied mass spectrometry-based proteomics to a unique set of 17 prostate cancer patient-derived xenografts (PDX) to characterize the effects of castration in vivo, and the proteome differences between NEPC and prostate adenocarcinomas. Genome-wide profiling of REST-occupied regions in prostate cancer cells was correlated to the expression changes in vivo to investigate the role of the transcriptional repressor REST in castration-induced NEPC differentiation. RESULTS An average of 4,881 proteins were identified and quantified from each PDX. Proteins related to neurogenesis, cell-cycle regulation, and DNA repair were found upregulated and elevated in NEPC, while the reduced levels of proteins involved in mitochondrial functions suggested a prevalent glycolytic metabolism of NEPC tumors. Integration of the REST chromatin bound regions with expression changes indicated a direct role of REST in regulating neuronal gene expression in prostate cancer cells. Mechanistically, depletion of REST led to cell-cycle arrest in G1, which could be rescued by p53 knockdown. Finally, the expression of the REST-regulated gene secretagogin (SCGN) correlated with an increased risk of suffering disease relapse after radical prostatectomy. CONCLUSIONS This study presents the first deep characterization of the proteome of NEPC and suggests that concomitant inhibition of REST and the p53 pathway would promote NEPC. We also identify SCGN as a novel prognostic marker in prostate cancer.
Collapse
Affiliation(s)
- Amilcar Flores-Morales
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Danish Cancer Society, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tobias B Bergmann
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Danish Cancer Society, Copenhagen, Denmark
| | - Charlotte Lavallee
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Danish Cancer Society, Copenhagen, Denmark
| | - Tanveer S Batth
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dong Lin
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mads Lerdrup
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Stine Friis
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Danish Cancer Society, Copenhagen, Denmark
| | - Anette Bartels
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Danish Cancer Society, Copenhagen, Denmark
| | - Gitte Kristensen
- Copenhagen Prostate Cancer Center, Department of Urology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Agnieszka Krzyzanowska
- Department of Translational Medicine, Division of Urological Cancers, Lund University, Lund, Sweden
| | - Hui Xue
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ladan Fazli
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Klaus H Hansen
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Martin A Røder
- Copenhagen Prostate Cancer Center, Department of Urology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Brasso
- Copenhagen Prostate Cancer Center, Department of Urology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - José M Moreira
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Danish Cancer Society, Copenhagen, Denmark
| | - Anders Bjartell
- Department of Translational Medicine, Division of Urological Cancers, Lund University, Lund, Sweden
| | - Yuzhuo Wang
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Colin C Collins
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Diego Iglesias-Gato
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- The Danish Cancer Society, Copenhagen, Denmark
| |
Collapse
|
152
|
Niu Y, Guo C, Wen S, Tian J, Luo J, Wang K, Tian H, Yeh S, Chang C. ADT with antiandrogens in prostate cancer induces adverse effect of increasing resistance, neuroendocrine differentiation and tumor metastasis. Cancer Lett 2018; 439:47-55. [PMID: 30227222 DOI: 10.1016/j.canlet.2018.09.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 09/08/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022]
Abstract
Prostate cancer (PCa) is the most common cancer and the 2nd leading cause of cancer-related deaths among men in the United States. Androgen-deprivation-therapy (ADT) with antiandrogens to target the androgens/androgen receptor (AR) signals remains the standard therapy for advanced PCa. However, most of the PCa patients who received ADT with antiandrogens, including the recently developed Enzalutamide (Enz) that might extend PCa patients survival an extra 4.8 months, will still develop the castration (or antiandrogen) resistance. Mechanism dissection studies suggest these antiandrogen resistances may involve the induction of AR splicing variants and/or AR mutants. Further preclinical in vitro/in vivo studies suggest ADT-antiandrogens may also enhance the neuroendocrine differentiation (NED) and PCa cell invasion, and these unwanted side-effects may function through various mechanisms including altering the infiltrating inflammatory cells within the prostate tumor microenvironment. This review summarizes these unwanted ADT-induced side-effects and discusses multiple approaches to overcome these side-effects to better suppress the PCa at the castration resistant stage.
Collapse
Affiliation(s)
- Yuanjie Niu
- Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, Tianjin Medical University, Tianjin, 300211, China; George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Changcheng Guo
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, 14642, USA; Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Simeng Wen
- Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, Tianjin Medical University, Tianjin, 300211, China; George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jing Tian
- Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, Tianjin Medical University, Tianjin, 300211, China; George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jie Luo
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Keliang Wang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, 14642, USA; Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin, 150000, China
| | - Hao Tian
- Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, Tianjin Medical University, Tianjin, 300211, China; George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Shuyuan Yeh
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, 14642, USA; Sex Hormone Research Center, China Medical University/Hospital, Taichung, 404, Taiwan.
| |
Collapse
|
153
|
van Duijn PW, Marques RB, Ziel-van der Made ACJ, van Zoggel HJAA, Aghai A, Berrevoets C, Debets R, Jenster G, Trapman J, van Weerden WM. Tumor heterogeneity, aggressiveness, and immune cell composition in a novel syngeneic PSA-targeted Pten knockout mouse prostate cancer (MuCaP) model. Prostate 2018; 78:1013-1023. [PMID: 30133757 DOI: 10.1002/pros.23659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/09/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Prostate cancer is recognized as a heterogeneous disease demanding appropriate preclinical models that reflect tumor complexity. Previously, we established the PSA-Cre;PtenLoxP/LoxP genetic engineered mouse model (GEMM) for prostate cancer reflecting the various stages of tumor development. Prostate tumors in this Pten KO model slowly develop, requiring more than 10 months. In order to enhance its practical utility, we established a syngeneic panel of cell lines derived from PSA-Cre targeted Pten KO tumors, designated the mouse prostate cancer (MuCap) model. METHODS Four different MuCaP epithelial cell lines were established from three independent primary Pten KO mouse prostate tumors. Tumorigenic capacity of the MuCaP cell lines was determined by subcutaneous inoculation of these cell lines in immunocompetent mice. Response to PI3K-targeted therapy was validated in ex vivo tissue slices of the established MuCaP tumors. RESULTS The MuCaP cell lines were all tumorigenic in immunocompetent mice after subcutaneous inoculation. Interestingly, these syngrafted tumors represented different tumor growth rates and morphologies. Treatment with the specific PI3K inhibitor GDC0941 resulted in responses very similar between syngeneic MuCaP and primary Pten KO prostate tumors. Finally, immunoprofiling of the different syngeneic MuCaP tumors demonstrated differential numbers of tumor infiltrating lymphocytes and distinct immune gene profiles with expression of CD8, INFy, and PD1 being inversely related to tumor aggressiveness. CONCLUSIONS Collectively, we present here a well-defined MuCaP platform of in vitro and in vivo mouse prostate cancer models that may support preclinical assessment of (immune)-therapies for prostate cancer.
Collapse
Affiliation(s)
- Petra W van Duijn
- Department of Pathology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Urology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rute B Marques
- Department of Urology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | - Ashraf Aghai
- Department of Urology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Cor Berrevoets
- Department of Medical Oncology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Reno Debets
- Department of Medical Oncology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Guido Jenster
- Department of Urology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jan Trapman
- Department of Pathology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Wytske M van Weerden
- Department of Urology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
154
|
Abstract
Despite the high long-term survival in localized prostate cancer, metastatic prostate cancer remains largely incurable even after intensive multimodal therapy. The lethality of advanced disease is driven by the lack of therapeutic regimens capable of generating durable responses in the setting of extreme tumor heterogeneity on the genetic and cell biological levels. Here, we review available prostate cancer model systems, the prostate cancer genome atlas, cellular and functional heterogeneity in the tumor microenvironment, tumor-intrinsic and tumor-extrinsic mechanisms underlying therapeutic resistance, and technological advances focused on disease detection and management. These advances, along with an improved understanding of the adaptive responses to conventional cancer therapies, anti-androgen therapy, and immunotherapy, are catalyzing development of more effective therapeutic strategies for advanced disease. In particular, knowledge of the heterotypic interactions between and coevolution of cancer and host cells in the tumor microenvironment has illuminated novel therapeutic combinations with a strong potential for more durable therapeutic responses and eventual cures for advanced disease. Improved disease management will also benefit from artificial intelligence-based expert decision support systems for proper standard of care, prognostic determinant biomarkers to minimize overtreatment of localized disease, and new standards of care accelerated by next-generation adaptive clinical trials.
Collapse
Affiliation(s)
- Guocan Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Di Zhao
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Denise J Spring
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
155
|
Kang HN, Choi JW, Shim HS, Kim J, Kim DJ, Lee CY, Hong MH, Park SY, Park AY, Shin EJ, Lee SY, Pyo KH, Yun MR, Choi HM, Lee SS, Kim SY, Lee H, Paik S, Cho BC, Lee JG, Kim HR. Establishment of a platform of non-small-cell lung cancer patient-derived xenografts with clinical and genomic annotation. Lung Cancer 2018; 124:168-178. [PMID: 30268457 DOI: 10.1016/j.lungcan.2018.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Preclinical models that can better predict therapeutic activity in clinical trials are needed in this era of personalized cancer treatment. Herein, we established genomically and clinically annotated patient-derived xenografts (PDXs) from non-small-cell lung cancer (NSCLC) patients and investigated whether these PDXs would faithfully recapitulate patient responses to targeted therapy. METHODS Patient-derived tumors were implanted in immunodeficient mice and subsequently expanded via re-implantation. Established PDXs were examined by light microscopy, genomic profiling, and in vivo drug testing, and the successful engraft rate was analyzed with the mutation profile, histology, or acquisition method. Finally, the drug responses of PDXs were compared with the clinical responses of the respective patients. RESULTS Using samples from 122 patients, we established 41 NSCLC PDXs [30 adenocarcinoma (AD), 11 squamous cell carcinoma (SQ)], among which the following driver mutation were observed: 13 EGFR-mutant, 4 ALK-rearrangement, 1 ROS1-rearrangement, 1 PIK3CA-mutant, 1 FGFR1-amplification, and 2 KRAS-mutant. We rigorously characterized the relationship of clinical features to engraftment rate and latency rates. The engraft rates were comparable across histologic type. The AD engraft rate tended to be higher for surgically resected tissues relative to biopsies, whereas similar engraft rates was observed for SQ, irrespective of the acquisition method. Notably, EGFR-mutants demonstrated significantly longer latency time than EGFR-WT (86 vs. 37days, P = 0.007). The clinical responses were recapitulated by PDXs harboring driver gene alteration (EGFR, ALK, ROS1, or FGFR1) which regressed to their target inhibitors, suggesting that established PDXs comprise a clinically relevant platform. CONCLUSION The establishment of genetically and clinically annotated NSCLC PDXs can yield a robust preclinical tool for biomarker, therapeutic target, and drug discovery.
Collapse
Affiliation(s)
- Han Na Kang
- JE-UK Institute for Cancer Research, JEUK Co. Ltd., Gumi-City, Kyungbuk, Republic of Korea; Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Woo Choi
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyo Sup Shim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jinna Kim
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dae Joon Kim
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chang Young Lee
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Hee Hong
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seong Yong Park
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - A-Young Park
- JE-UK Institute for Cancer Research, JEUK Co. Ltd., Gumi-City, Kyungbuk, Republic of Korea
| | - Eun Joo Shin
- JE-UK Institute for Cancer Research, JEUK Co. Ltd., Gumi-City, Kyungbuk, Republic of Korea
| | - Seo Yoon Lee
- JE-UK Institute for Cancer Research, JEUK Co. Ltd., Gumi-City, Kyungbuk, Republic of Korea
| | - Kyoung-Ho Pyo
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mi Ran Yun
- JE-UK Institute for Cancer Research, JEUK Co. Ltd., Gumi-City, Kyungbuk, Republic of Korea; Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hun Mi Choi
- JE-UK Institute for Cancer Research, JEUK Co. Ltd., Gumi-City, Kyungbuk, Republic of Korea; Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Sook Lee
- Department of Hematology-Oncology Inje University Haeundae Paik Hospital, Busan, Republic of Korea
| | - Seok-Young Kim
- JE-UK Institute for Cancer Research, JEUK Co. Ltd., Gumi-City, Kyungbuk, Republic of Korea
| | - Hanna Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soonmyung Paik
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byoung Chul Cho
- JE-UK Institute for Cancer Research, JEUK Co. Ltd., Gumi-City, Kyungbuk, Republic of Korea; Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jin Gu Lee
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Hye Ryun Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
156
|
Lee AR, Gan Y, Tang Y, Dong X. A novel mechanism of SRRM4 in promoting neuroendocrine prostate cancer development via a pluripotency gene network. EBioMedicine 2018; 35:167-177. [PMID: 30100395 PMCID: PMC6154886 DOI: 10.1016/j.ebiom.2018.08.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 12/26/2022] Open
Abstract
Background Prostate adenocarcinoma (AdPC) cells can undergo lineage switching to neuroendocrine cells and develop into therapy-resistant neuroendocrine prostate cancer (NEPC). While genomic/epigenetic alterations are shown to induce neuroendocrine differentiation via an intermediate stem-like state, RNA splicing factor SRRM4 can transform AdPC cells into NEPC xenografts through a direct neuroendocrine transdifferentiation mechanism. Whether SRRM4 can also regulate a stem-cell gene network for NEPC development remains unclear. Methods Multiple AdPC cell models were transduced by lentiviral vectors encoding SRRM4. SRRM4-mediated RNA splicing and neuroendocrine differentiation of cells and xenografts were determined by qPCR, immunoblotting, and immunohistochemistry. Cell morphology, proliferation, and colony formation rates were also studied. SRRM4 transcriptome in the DU145 cell model was profiled by AmpliSeq and analyzed by gene enrichment studies. Findings SRRM4 induces an overall NEPC-specific RNA splicing program in multiple cell models but creates heterogeneous transcriptomes. SRRM4-transduced DU145 cells present the most dramatic neuronal morphological changes, accelerated cell proliferation, and enhanced resistance to apoptosis. The derived xenografts show classic phenotypes similar to clinical NEPC. Whole transcriptome analyses further reveal that SRRM4 induces a pluripotency gene network consisting of the stem-cell differentiation gene, SOX2. While SRRM4 overexpression enhances SOX2 expression in both time- and dose-dependent manners in DU145 cells, RNA depletion of SOX2 compromises SRRM4-mediated stimulation of pluripotency genes. More importantly, this SRRM4-SOX2 axis is present in a subset of NEPC patient cohorts, patient-derived xenografts, and clinically relevant transgenic mouse models. Interpretation We report a novel mechanism by which SRRM4 drives NEPC progression via a pluripotency gene network. Fund Canadian Institutes of Health Research, National Nature Science Foundation of China, and China Scholar Council.
Collapse
Affiliation(s)
- Ahn R Lee
- Vancouver Prostate Centre, Department of Urologic Sciences, The University of British Columbia, 2660 Oak Street, Vancouver, BC, Canada.
| | - Yu Gan
- Vancouver Prostate Centre, Department of Urologic Sciences, The University of British Columbia, 2660 Oak Street, Vancouver, BC, Canada; Xiangya Hospital, Department of Urology, Central South University, Changsha, Hunan, China; Third Xiangya Hospital, Department of Urology, Central South University, Changsha, Hunan, China.
| | - Yuxin Tang
- Third Xiangya Hospital, Department of Urology, Central South University, Changsha, Hunan, China.
| | - Xuesen Dong
- Vancouver Prostate Centre, Department of Urologic Sciences, The University of British Columbia, 2660 Oak Street, Vancouver, BC, Canada.
| |
Collapse
|
157
|
Guo S, Gao S, Liu R, Shen J, Shi X, Bai S, Wang H, Zheng K, Shao Z, Liang C, Peng S, Jin G. Oncological and genetic factors impacting PDX model construction with NSG mice in pancreatic cancer. FASEB J 2018; 33:873-884. [PMID: 30091943 DOI: 10.1096/fj.201800617r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A patient-derived xenograft (PDX) approach, which relies on direct transplantation of tumor specimens into an immunocompromised animal, is a commonly used method for investigating tumor therapy predictions in vivo. This study evaluated influencing factors, including clinical, oncological, and genetic variables, for a pancreatic PDX model in mice. Tumor specimens were obtained from 121 patients with pancreatic ductal adenocarcinoma who underwent surgical resection at the Changhai Pancreatic Surgery Medical Center (Shanghai, China) between April 2016 and February 2017. Pancreatic cancer (PC) samples <3 mm3 were subcutaneously implanted into the NOD/Shi-scid/IL-2Rγnull (NSG) mice. Once the xenograft reached 300-500 mm3 or reached 180 d after cell inoculation, the tumor was excised. Part of the tumor was subsequently transplanted to next-generation mice, and another part was analyzed by using immunohistochemistry. Among the 121 patients with PC, tumor xenograft was successfully generated in 86 patients (71.1%). Primary tumor >3.5 cm in size was independently associated with xenograft formation rate. In addition, several enriched mutated genes within the VEGF pathway and higher microvessel density were found in the positive group (with xenograft) compared with the negative group (without xenograft). We concluded that tumor size and mutated VEGF pathway in PC are important factors affecting PDX model construction with NSG mice.-Guo, S., Gao, S., Liu, R., Shen, J., Shi, X., Bai, S., Wang, H., Zheng, K., Shao, Z., Liang, C., Peng, S., Jin, G. Oncological and genetic factors impacting PDX model construction with NSG mice in pancreatic cancer.
Collapse
Affiliation(s)
- Shiwei Guo
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China; and
| | - Suizhi Gao
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China; and
| | - Rendong Liu
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China; and
| | - Jing Shen
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China; and
| | - Xiaohan Shi
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China; and
| | - Sijia Bai
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China; and
| | - Huan Wang
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China; and
| | - Kailian Zheng
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China; and
| | - Zhuo Shao
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China; and
| | | | - Siying Peng
- Beijing IDMO Company Limited, Beijing, China
| | - Gang Jin
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China; and
| |
Collapse
|
158
|
Risbridger GP, Toivanen R, Taylor RA. Preclinical Models of Prostate Cancer: Patient-Derived Xenografts, Organoids, and Other Explant Models. Cold Spring Harb Perspect Med 2018; 8:a030536. [PMID: 29311126 PMCID: PMC6071547 DOI: 10.1101/cshperspect.a030536] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Prostate cancer remains a lethal disease. Preclinical cancer models that accurately represent the tumors of the patients they are intended to help are necessary to test potential therapeutic approaches and to better translate research discoveries. However, research in the prostate cancer field is hampered by the limited number of human cell lines and xenograft models, most of which do not recapitulate the human disease seen in the clinic today. This work reviews the recent advances in human patient-derived xenograft, organoid, and other explant models to address this need. In contrast to other tumor streams, the prostate cancer field is challenged by this approach, yet despite the limitations, patient-derived models remain an integral component of the preclinical testing pathway leading to better treatments for men with prostate cancer.
Collapse
Affiliation(s)
- Gail P Risbridger
- Monash Partners Comprehensive Cancer Consortium, Melbourne, Victoria 3168, Australia
- Cancer Discovery Program, Biomedicine Discovery Institute; Prostate Cancer Research Group, Department of Anatomy and Developmental Biology; and Department of Physiology, Monash University, Melbourne, Victoria 3800, Australia
- Prostate Cancer Program, Cancer Research Division, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Roxanne Toivanen
- Prostate Cancer Program, Cancer Research Division, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria 3000, Australia
- Departments of Medicine, Genetics & Development, Urology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032
| | - Renea A Taylor
- Cancer Discovery Program, Biomedicine Discovery Institute; Prostate Cancer Research Group, Department of Anatomy and Developmental Biology; and Department of Physiology, Monash University, Melbourne, Victoria 3800, Australia
- Prostate Cancer Program, Cancer Research Division, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria 3000, Australia
| |
Collapse
|
159
|
Aggarwal R, Huang J, Alumkal JJ, Zhang L, Feng FY, Thomas GV, Weinstein AS, Friedl V, Zhang C, Witte ON, Lloyd P, Gleave M, Evans CP, Youngren J, Beer TM, Rettig M, Wong CK, True L, Foye A, Playdle D, Ryan CJ, Lara P, Chi KN, Uzunangelov V, Sokolov A, Newton Y, Beltran H, Demichelis F, Rubin MA, Stuart JM, Small EJ. Clinical and Genomic Characterization of Treatment-Emergent Small-Cell Neuroendocrine Prostate Cancer: A Multi-institutional Prospective Study. J Clin Oncol 2018; 36:2492-2503. [PMID: 29985747 DOI: 10.1200/jco.2017.77.6880] [Citation(s) in RCA: 484] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Purpose The prevalence and features of treatment-emergent small-cell neuroendocrine prostate cancer (t-SCNC) are not well characterized in the era of modern androgen receptor (AR)-targeting therapy. We sought to characterize the clinical and genomic features of t-SCNC in a multi-institutional prospective study. Methods Patients with progressive, metastatic castration-resistant prostate cancer (mCRPC) underwent metastatic tumor biopsy and were followed for survival. Metastatic biopsy specimens underwent independent, blinded pathology review along with RNA/DNA sequencing. Results A total of 202 consecutive patients were enrolled. One hundred forty-eight (73%) had prior disease progression on abiraterone and/or enzalutamide. The biopsy evaluable rate was 79%. The overall incidence of t-SCNC detection was 17%. AR amplification and protein expression were present in 67% and 75%, respectively, of t-SCNC biopsy specimens. t-SCNC was detected at similar proportions in bone, node, and visceral organ biopsy specimens. Genomic alterations in the DNA repair pathway were nearly mutually exclusive with t-SCNC differentiation ( P = .035). Detection of t-SCNC was associated with shortened overall survival among patients with prior AR-targeting therapy for mCRPC (hazard ratio, 2.02; 95% CI, 1.07 to 3.82). Unsupervised hierarchical clustering of the transcriptome identified a small-cell-like cluster that further enriched for adverse survival outcomes (hazard ratio, 3.00; 95% CI, 1.25 to 7.19). A t-SCNC transcriptional signature was developed and validated in multiple external data sets with > 90% accuracy. Multiple transcriptional regulators of t-SCNC were identified, including the pancreatic neuroendocrine marker PDX1. Conclusion t-SCNC is present in nearly one fifth of patients with mCRPC and is associated with shortened survival. The near-mutual exclusivity with DNA repair alterations suggests t-SCNC may be a distinct subset of mCRPC. Transcriptional profiling facilitates the identification of t-SCNC and novel therapeutic targets.
Collapse
Affiliation(s)
- Rahul Aggarwal
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Jiaoti Huang
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Joshi J Alumkal
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Li Zhang
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Felix Y Feng
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - George V Thomas
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Alana S Weinstein
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Verena Friedl
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Can Zhang
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Owen N Witte
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Paul Lloyd
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Martin Gleave
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Christopher P Evans
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Jack Youngren
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Tomasz M Beer
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Matthew Rettig
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Christopher K Wong
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Lawrence True
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Adam Foye
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Denise Playdle
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Charles J Ryan
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Primo Lara
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Kim N Chi
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Vlado Uzunangelov
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Artem Sokolov
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Yulia Newton
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Himisha Beltran
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Francesca Demichelis
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Mark A Rubin
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Joshua M Stuart
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Eric J Small
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| |
Collapse
|
160
|
GABA promotes gastrin-releasing peptide secretion in NE/NE-like cells: Contribution to prostate cancer progression. Sci Rep 2018; 8:10272. [PMID: 29980692 PMCID: PMC6035255 DOI: 10.1038/s41598-018-28538-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/22/2018] [Indexed: 01/10/2023] Open
Abstract
In prostate cancer (PCa), neuroendocrine cells (NE) have been associated with the progression of the disease due to the secretion of neuropeptides that are capable of diffusing and influence surrounding cells. The GABAergic system is enriched in NE-like cells, and contributes to PCa progression. Additionally, γ-aminobutyric acid (GABA) stimulates the secretion of gastrin-releasing peptide (GRP) in peripheral organs. For the first time, in this study we show the role of GABA and GABAB receptor 1 (GABBR1) expression in GRP secretion in NE-like prostate cancer cells. We demonstrated an increase in GRP levels in NE-like cell medium treated with GABAB receptor agonist. Moreover, the blocking of this receptor inhibited GABA-induced GRP secretion. The invasive potential of PC3 cells was enhanced by either GRP or conditioned medium of NE-like cells treated with GABA. Additionally, we confirmed a positive correlation between GABA and GRP levels in the serum of PCa patients with NE markers. Finally, using public available data sets, we found a negative correlation between GABBR1 and androgen receptor (AR) expression, as well as a strong positive correlation between GABBR1 and enolase 2. These results suggest that GABA via GABBR1 induces GRP secretion in NE like cells involved in PCa progression.
Collapse
|
161
|
Soundararajan R, Paranjape AN, Maity S, Aparicio A, Mani SA. EMT, stemness and tumor plasticity in aggressive variant neuroendocrine prostate cancers. Biochim Biophys Acta Rev Cancer 2018; 1870:229-238. [PMID: 29981816 DOI: 10.1016/j.bbcan.2018.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 12/25/2022]
Abstract
Neuroendocrine/Aggressive Variant Prostate Cancers are lethal variants of the disease, with an aggressive clinical course and very short responses to conventional therapy. The age-adjusted incidence rate for this tumor sub-type has steadily increased over the past 20 years in the United States, with no reduction in the associated mortality rate. The molecular networks fueling its emergence and sustenance are still obscure; however, many factors have been associated with the onset and progression of neuroendocrine differentiation in clinically typical adenocarcinomas including loss of androgen-receptor expression and/or signaling, conventional therapy, and dysregulated cytokine function. "Tumor-plasticity" and the ability to dedifferentiate into alternate cell lineages are central to this process. Epithelial-to-mesenchymal (EMT) signaling pathways are major promoters of stem-cell properties in prostate tumor cells. In this review, we examine the contributions of EMT-induced cellular-plasticity and stem-cell signaling pathways to the progression of Neuroendocrine/Aggressive Variant Prostate Cancers in the light of potential therapeutic opportunities.
Collapse
Affiliation(s)
- Rama Soundararajan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Anurag N Paranjape
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sankar Maity
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ana Aparicio
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Stem Cell and Developmental Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
162
|
Puca L, Bareja R, Prandi D, Shaw R, Benelli M, Karthaus WR, Hess J, Sigouros M, Donoghue A, Kossai M, Gao D, Cyrta J, Sailer V, Vosoughi A, Pauli C, Churakova Y, Cheung C, Deonarine LD, McNary TJ, Rosati R, Tagawa ST, Nanus DM, Mosquera JM, Sawyers CL, Chen Y, Inghirami G, Rao RA, Grandori C, Elemento O, Sboner A, Demichelis F, Rubin MA, Beltran H. Patient derived organoids to model rare prostate cancer phenotypes. Nat Commun 2018; 9:2404. [PMID: 29921838 PMCID: PMC6008438 DOI: 10.1038/s41467-018-04495-z] [Citation(s) in RCA: 240] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/25/2018] [Indexed: 12/25/2022] Open
Abstract
A major hurdle in the study of rare tumors is a lack of existing preclinical models. Neuroendocrine prostate cancer is an uncommon and aggressive histologic variant of prostate cancer that may arise de novo or as a mechanism of treatment resistance in patients with pre-existing castration-resistant prostate cancer. There are few available models to study neuroendocrine prostate cancer. Here, we report the generation and characterization of tumor organoids derived from needle biopsies of metastatic lesions from four patients. We demonstrate genomic, transcriptomic, and epigenomic concordance between organoids and their corresponding patient tumors. We utilize these organoids to understand the biologic role of the epigenetic modifier EZH2 in driving molecular programs associated with neuroendocrine prostate cancer progression. High-throughput organoid drug screening nominated single agents and drug combinations suggesting repurposing opportunities. This proof of principle study represents a strategy for the study of rare cancer phenotypes.
Collapse
Affiliation(s)
- Loredana Puca
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
| | - Rohan Bareja
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Davide Prandi
- Center for Integrative Biology, University of Trento, 38123, Trento, Italy
| | - Reid Shaw
- Cure First and SEngine Precision Medicine, Seattle, WA, 98109, USA
| | - Matteo Benelli
- Center for Integrative Biology, University of Trento, 38123, Trento, Italy
| | - Wouter R Karthaus
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Judy Hess
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Michael Sigouros
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Adam Donoghue
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Myriam Kossai
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Dong Gao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Joanna Cyrta
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
| | - Verena Sailer
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
| | - Aram Vosoughi
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
| | - Chantal Pauli
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
| | - Yelena Churakova
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
| | - Cynthia Cheung
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
| | | | - Terra J McNary
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
| | - Rachele Rosati
- Cure First and SEngine Precision Medicine, Seattle, WA, 98109, USA
| | - Scott T Tagawa
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA
| | - David M Nanus
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Juan Miguel Mosquera
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Rema A Rao
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
| | - Carla Grandori
- Cure First and SEngine Precision Medicine, Seattle, WA, 98109, USA
| | - Olivier Elemento
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Andrea Sboner
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Francesca Demichelis
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
- Center for Integrative Biology, University of Trento, 38123, Trento, Italy
| | - Mark A Rubin
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Himisha Beltran
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA.
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA.
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA.
| |
Collapse
|
163
|
Carneiro BA, Pamarthy S, Shah AN, Sagar V, Unno K, Han H, Yang XJ, Costa RB, Nagy RJ, Lanman RB, Kuzel TM, Ross JS, Gay L, Elvin JA, Ali SM, Cristofanilli M, Chae YK, Giles FJ, Abdulkadir SA. Anaplastic Lymphoma Kinase Mutation ( ALK F1174C) in Small Cell Carcinoma of the Prostate and Molecular Response to Alectinib. Clin Cancer Res 2018; 24:2732-2739. [PMID: 29559559 PMCID: PMC6715284 DOI: 10.1158/1078-0432.ccr-18-0332] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/27/2018] [Accepted: 03/15/2018] [Indexed: 12/13/2022]
Abstract
Purpose: Small cell carcinoma of the prostate (SCCP) is an aggressive disease that can arise de novo or by transdifferentiation from prostate adenocarcinoma. Alterations in anaplastic lymphoma kinase (ALK) gene are involved in neuroblastoma, lung cancer, and other malignancies, but its role in SCCP has not been documented. We describe a patient with refractory de novo SCCP with ALK F1174C-activating mutation who obtained clinical benefit from treatment with ALK inhibitor.Experimental Design: Next-generation sequencing (NGS) was used to analyze primary and circulating tumor DNA (ctDNA). Prostate cancer databases were queried for alterations in ALK gene, mRNA, and its impact in clinical outcomes. In vitro prostate cell line/organoid models were generated by lentiviral-mediated expression of ALK and ALK F1174C and assessed for response to ALK inhibitors crizotinib and alectinib.Results: NGS analysis of the primary tumor and ctDNA of a 39-year-old patient with refractory SSCP identified ALK F1174C mutation. Treatment with second-generation ALK inhibitor alectinib resulted in radiographic stable disease for over 6 months, symptomatic improvement, and significant molecular response as reflected by declining ctDNA allele fraction. Analysis of prostate cancer datasets showed that ALK amplification was associated with poor outcome. In prostate cancer cells and organoids, ALK F1174C expression enhanced growth and induced expression of the neuroendocrine marker neuron-specific enolase. Alectinib was more effective than crizotinib in inhibiting ALK F1174C-expressing cell growth.Conclusions: These findings implicate ALK-activating mutations in SCCP pathogenesis and suggest the therapeutic potential of targeting ALK molecular alterations in some patients with SCCP. Clin Cancer Res; 24(12); 2732-9. ©2018 AACR.
Collapse
Affiliation(s)
- Benedito A Carneiro
- Division of Hematology/Oncology, Lifespan Cancer Institute, the Warren Alpert Medical School, Brown University, Providence, Rhode Island.
| | - Sahithi Pamarthy
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Ami N Shah
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Vinay Sagar
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Kenji Unno
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - HuiYing Han
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Ximing J Yang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Rubens B Costa
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | | | - Timothy M Kuzel
- Rush University Medical Center, Division of Hematology/Oncology, Chicago, Illinois
| | - Jeffrey S Ross
- Foundation Medicine Inc., Cambridge, Massachusetts
- Upstate Medical University, Syracuse, New York
| | - Laurie Gay
- Foundation Medicine Inc., Cambridge, Massachusetts
| | | | - Siraj M Ali
- Foundation Medicine Inc., Cambridge, Massachusetts
| | - Massimo Cristofanilli
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Young K Chae
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | - Sarki A Abdulkadir
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
164
|
Choi SYC, Ettinger SL, Lin D, Xue H, Ci X, Nabavi N, Bell RH, Mo F, Gout PW, Fleshner NE, Gleave ME, Collins CC, Wang Y. Targeting MCT4 to reduce lactic acid secretion and glycolysis for treatment of neuroendocrine prostate cancer. Cancer Med 2018; 7:3385-3392. [PMID: 29905005 PMCID: PMC6051138 DOI: 10.1002/cam4.1587] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 01/03/2023] Open
Abstract
Development of neuroendocrine prostate cancer (NEPC) is emerging as a major problem in clinical management of advanced prostate cancer (PCa). As increasingly potent androgen receptor (AR)‐targeting antiandrogens are more widely used, PCa transdifferentiation into AR‐independent NEPC as a mechanism of treatment resistance becomes more common and precarious, since NEPC is a lethal PCa subtype urgently requiring effective therapy. Reprogrammed glucose metabolism of cancers, that is elevated aerobic glycolysis involving increased lactic acid production/secretion, plays a key role in multiple cancer‐promoting processes and has been implicated in therapeutics development. Here, we examined NEPC glucose metabolism using our unique panel of patient‐derived xenograft PCa models and patient tumors. By calculating metabolic pathway scores using gene expression data, we found that elevated glycolysis coupled to increased lactic acid production/secretion is an important metabolic feature of NEPC. Specific inhibition of expression of MCT4 (a plasma membrane lactic acid transporter) by antisense oligonucleotides led to reduced lactic acid secretion as well as reduced glucose metabolism and NEPC cell proliferation. Taken together, our results indicate that elevated glycolysis coupled to excessive MCT4‐mediated lactic acid secretion is clinically relevant and functionally important to NEPC. Inhibition of MCT4 expression appears to be a promising therapeutic strategy for NEPC.
Collapse
Affiliation(s)
- Stephen Yiu Chuen Choi
- The Vancouver Prostate Centre, Vancouver General Hospital, The University of British Columbia, Vancouver, BC, Canada.,Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada.,Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Susan L Ettinger
- The Vancouver Prostate Centre, Vancouver General Hospital, The University of British Columbia, Vancouver, BC, Canada.,Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Dong Lin
- The Vancouver Prostate Centre, Vancouver General Hospital, The University of British Columbia, Vancouver, BC, Canada.,Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada.,Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Hui Xue
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Xinpei Ci
- The Vancouver Prostate Centre, Vancouver General Hospital, The University of British Columbia, Vancouver, BC, Canada.,Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada.,Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Noushin Nabavi
- The Vancouver Prostate Centre, Vancouver General Hospital, The University of British Columbia, Vancouver, BC, Canada.,Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada.,Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Robert H Bell
- The Vancouver Prostate Centre, Vancouver General Hospital, The University of British Columbia, Vancouver, BC, Canada.,Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Fan Mo
- The Vancouver Prostate Centre, Vancouver General Hospital, The University of British Columbia, Vancouver, BC, Canada.,Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Peter W Gout
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Neil E Fleshner
- Division of Urology, Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network and the University of Toronto, Toronto, ON, Canada
| | - Martin E Gleave
- The Vancouver Prostate Centre, Vancouver General Hospital, The University of British Columbia, Vancouver, BC, Canada.,Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Colin C Collins
- The Vancouver Prostate Centre, Vancouver General Hospital, The University of British Columbia, Vancouver, BC, Canada.,Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Yuzhuo Wang
- The Vancouver Prostate Centre, Vancouver General Hospital, The University of British Columbia, Vancouver, BC, Canada.,Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada.,Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| |
Collapse
|
165
|
Brennen WN, Isaacs JT. The what, when, and why of human prostate cancer xenografts. Prostate 2018; 78:646-654. [PMID: 29575112 DOI: 10.1002/pros.23510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Presently, ∼85 serially transplantable human prostate cancer xenografts spanning the phenotypic, epigenetic, and genetic heterogeneity seen clinically are available in a variety of laboratories throughout the world. If distributed to the prostate cancer research community, these can provide an experimental platform for resolving the specificity versus generalizability of basic cancer biology principles (eg, credentialing of therapeutic molecular targets) and for validating translational approaches for prevention, diagnosis, and therapy. Thus, there is an urgent need to distribute the already established serially transplantable human prostate cancer xenografts and to develop robust methods for establishing new ones. METHODS To accelerate the development of such additional xenografts, particularly from patients treated with the newer standard of care agents (ie, abiraterone, enzalutamide, cabazitaxel, alpharadin, etc), a historic review of the field will be presented. RESULTS Over the last 50 years, multiple groups throughout the world have developed methods for the successful establishment of serially transplantable human prostate cancer xenografts using a variety of immune deficient mice. These are summarized chronologically. CONCLUSIONS AND FUTURE With the ever growing appreciation of the value of personalized medicine (aka precision medicine), methods need to be developed that allow efficient and timely growth of primary patient derived prostate cancer xenografts (PDXs), which can be used as "avatars" for defining optimal therapy for that specific patient. Such development should be based upon the leads obtained from the successful establishment of serially transplantable prostate cancer xenografts described in this review.
Collapse
Affiliation(s)
- W Nathaniel Brennen
- Department of Oncology, Prostate Cancer Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John T Isaacs
- Department of Oncology, Prostate Cancer Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
166
|
Patient-derived Hormone-naive Prostate Cancer Xenograft Models Reveal Growth Factor Receptor Bound Protein 10 as an Androgen Receptor-repressed Gene Driving the Development of Castration-resistant Prostate Cancer. Eur Urol 2018; 73:949-960. [DOI: 10.1016/j.eururo.2018.02.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/20/2018] [Indexed: 11/22/2022]
|
167
|
Gan Y, Li Y, Long Z, Lee AR, Xie N, Lovnicki JM, Tang Y, Chen X, Huang J, Dong X. Roles of Alternative RNA Splicing of the Bif-1 Gene by SRRM4 During the Development of Treatment-induced Neuroendocrine Prostate Cancer. EBioMedicine 2018; 31:267-275. [PMID: 29759485 PMCID: PMC6013970 DOI: 10.1016/j.ebiom.2018.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/12/2018] [Accepted: 05/01/2018] [Indexed: 02/02/2023] Open
Abstract
Treatment-induced neuroendocrine prostate cancer (t-NEPC) is an aggressive subtype of prostate cancer (PCa) that becomes more prevalent when hormonal therapy, chemotherapy, or radiation therapy is applied to patients with metastatic prostate adenocarcinoma (AdPC). How AdPC cells survive these anti-cancer therapies and progress into t-NEPC remains unclear. By comparing the whole transcriptomes between AdPC and t-NEPC, we identified Bif-1, an apoptosis-associated gene, which undergoes alternative RNA splicing in t-NEPC. We found that while Bif-1a is the predominant variant of the Bif-1 gene in AdPC, two neural-specific variants, Bif-1b and Bif-1c, are highly expressed in t-NEPC patients, patient derived xenografts, and cell models. The neural-specific RNA splicing factor, SRRM4, promotes Bif-1b and Bif-1c splicing, and the expression of SRRM4 in tumors is strongly associated with Bif-1b/-1c levels. Furthermore, we showed that Bif-1a is pro-apoptotic, while Bif-1b and Bif-1c are anti-apoptotic in PCa cells under camptothecin and UV light irritation treatments. Taken together, our data indicate that SRRM4 regulates alternative RNA splicing of the Bif-1 gene that enables PCa cells resistant to apoptotic stimuli under anti-cancer therapies, and may contribute to AdPC progression into t-NEPC. Alternative RNA splicing of the apoptosis-related gene, Bif-1, is associated with the development of t-NEPC. SRRM4 regulates alternative RNA splicing of the Bif-1 gene. Bif-1a in AdPC cells is pro-apoptotic, while neural Bif-1 variants, Bif-1b/-1c, enable tumor cells resistant to apoptosis.
Treatment-induced neuroendocrine prostate cancer (t-NEPC) is an aggressive subtype of castration-resistant prostate cancer. It becomes more prevalent when more potent androgen receptor inhibitors are applied to patients. However, mechanisms by which t-NEPC develops remain unclear. Here we report alternative RNA splicing of the apoptosis-related gene, Bif-1, may contribute to t-NEPC establishment. We show that the expression of neural Bif-1 variants is upregulated in t-NEPC, and confers tumor cells resistance to apoptotic stimuli. We propose that tumor cells have to first develop mechanisms to counteract therapy-induced cell death before they can undergo neuroendocrine differentiation for t-NEPC.
Collapse
Affiliation(s)
- Yu Gan
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Canada; Department of Urology, Xiangya Hospital, Central South University, Changsha, China; Department of Urology, Third Xiangya Hospital, Central South University, Changsha, China.
| | - Yinan Li
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Canada.
| | - Zhi Long
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Canada; Department of Urology, Third Xiangya Hospital, Central South University, Changsha, China.
| | - Ahn R Lee
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Canada.
| | - Ning Xie
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Canada.
| | - Jessica M Lovnicki
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Canada.
| | - Yuxin Tang
- Department of Urology, Third Xiangya Hospital, Central South University, Changsha, China.
| | - Xiang Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| | - Xuesen Dong
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Canada.
| |
Collapse
|
168
|
|
169
|
Ci X, Hao J, Dong X, Choi SY, Xue H, Wu R, Qu S, Gout PW, Zhang F, Haegert AM, Fazli L, Crea F, Ong CJ, Zoubeidi A, He HH, Gleave ME, Collins CC, Lin D, Wang Y. Heterochromatin Protein 1α Mediates Development and Aggressiveness of Neuroendocrine Prostate Cancer. Cancer Res 2018; 78:2691-2704. [PMID: 29487201 DOI: 10.1158/0008-5472.can-17-3677] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/19/2018] [Accepted: 02/23/2018] [Indexed: 11/16/2022]
Abstract
Neuroendocrine prostate cancer (NEPC) is a lethal subtype of prostate cancer arising mostly from adenocarcinoma via neuroendocrine transdifferentiation following androgen deprivation therapy. Mechanisms contributing to both NEPC development and its aggressiveness remain elusive. In light of the fact that hyperchromatic nuclei are a distinguishing histopathologic feature of NEPC, we utilized transcriptomic analyses of our patient-derived xenograft (PDX) models, multiple clinical cohorts, and genetically engineered mouse models to identify 36 heterochromatin-related genes that are significantly enriched in NEPC. Longitudinal analysis using our unique, first-in-field PDX model of adenocarcinoma-to-NEPC transdifferentiation revealed that, among those 36 heterochromatin-related genes, heterochromatin protein 1α (HP1α) expression increased early and steadily during NEPC development and remained elevated in the developed NEPC tumor. Its elevated expression was further confirmed in multiple PDX and clinical NEPC samples. HP1α knockdown in the NCI-H660 NEPC cell line inhibited proliferation, ablated colony formation, and induced apoptotic cell death, ultimately leading to tumor growth arrest. Its ectopic expression significantly promoted NE transdifferentiation in adenocarcinoma cells subjected to androgen deprivation treatment. Mechanistically, HP1α reduced expression of androgen receptor and RE1 silencing transcription factor and enriched the repressive trimethylated histone H3 at Lys9 mark on their respective gene promoters. These observations indicate a novel mechanism underlying NEPC development mediated by abnormally expressed heterochromatin genes, with HP1α as an early functional mediator and a potential therapeutic target for NEPC prevention and management.Significance: Heterochromatin proteins play a fundamental role in NEPC, illuminating new therapeutic targets for this aggressive disease. Cancer Res; 78(10); 2691-704. ©2018 AACR.
Collapse
Affiliation(s)
- Xinpei Ci
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, British Columbia, Canada
| | - Jun Hao
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, British Columbia, Canada
| | - Xin Dong
- Department of Experimental Therapeutics, BC Cancer, Vancouver, British Columbia, Canada
| | - Stephen Y Choi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, British Columbia, Canada
| | - Hui Xue
- Department of Experimental Therapeutics, BC Cancer, Vancouver, British Columbia, Canada
| | - Rebecca Wu
- Department of Experimental Therapeutics, BC Cancer, Vancouver, British Columbia, Canada
| | - Sifeng Qu
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, British Columbia, Canada
| | - Peter W Gout
- Department of Experimental Therapeutics, BC Cancer, Vancouver, British Columbia, Canada
| | - Fang Zhang
- Department of Experimental Therapeutics, BC Cancer, Vancouver, British Columbia, Canada
| | - Anne M Haegert
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ladan Fazli
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Francesco Crea
- School of Life, Health and Chemical Sciences, the Open University, Walton Hall, Milton Keynes, United Kingdom
| | - Christopher J Ong
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amina Zoubeidi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Housheng H He
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Martin E Gleave
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin C Collins
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dong Lin
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
- Department of Experimental Therapeutics, BC Cancer, Vancouver, British Columbia, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
- Department of Experimental Therapeutics, BC Cancer, Vancouver, British Columbia, Canada
| |
Collapse
|
170
|
Nguyen HG, Conn CS, Kye Y, Xue L, Forester CM, Cowan JE, Hsieh AC, Cunningham JT, Truillet C, Tameire F, Evans MJ, Evans CP, Yang JC, Hann B, Koumenis C, Walter P, Carroll PR, Ruggero D. Development of a stress response therapy targeting aggressive prostate cancer. Sci Transl Med 2018; 10:eaar2036. [PMID: 29720449 PMCID: PMC6045425 DOI: 10.1126/scitranslmed.aar2036] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/24/2018] [Accepted: 04/06/2018] [Indexed: 12/23/2022]
Abstract
Oncogenic lesions up-regulate bioenergetically demanding cellular processes, such as protein synthesis, to drive cancer cell growth and continued proliferation. However, the hijacking of these key processes by oncogenic pathways imposes onerous cell stress that must be mitigated by adaptive responses for cell survival. The mechanism by which these adaptive responses are established, their functional consequences for tumor development, and their implications for therapeutic interventions remain largely unknown. Using murine and humanized models of prostate cancer (PCa), we show that one of the three branches of the unfolded protein response is selectively activated in advanced PCa. This adaptive response activates the phosphorylation of the eukaryotic initiation factor 2-α (P-eIF2α) to reset global protein synthesis to a level that fosters aggressive tumor development and is a marker of poor patient survival upon the acquisition of multiple oncogenic lesions. Using patient-derived xenograft models and an inhibitor of P-eIF2α activity, ISRIB, our data show that targeting this adaptive brake for protein synthesis selectively triggers cytotoxicity against aggressive metastatic PCa, a disease for which presently there is no cure.
Collapse
Affiliation(s)
- Hao G Nguyen
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
| | - Crystal S Conn
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA.
| | - Yae Kye
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
| | - Lingru Xue
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
| | - Craig M Forester
- Division of Pediatric Allergy, Immunology and Bone Marrow Transplantation, UCSF, San Francisco, CA 94158, USA
| | - Janet E Cowan
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
| | - Andrew C Hsieh
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
| | - John T Cunningham
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
| | - Charles Truillet
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA 94158, USA
| | - Feven Tameire
- Department of Radiation Oncology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Evans
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA 94158, USA
| | - Christopher P Evans
- Department of Urology, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Joy C Yang
- Department of Urology, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Byron Hann
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA 94158, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter Walter
- Department of Biochemistry and Biophysics, UCSF, Howard Hughes Medical Institute, San Francisco, CA 94158, USA
| | - Peter R Carroll
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
| | - Davide Ruggero
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA.
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA 94158, USA
| |
Collapse
|
171
|
Chen R, Dong X, Gleave M. Molecular model for neuroendocrine prostate cancer progression. BJU Int 2018; 122:560-570. [DOI: 10.1111/bju.14207] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ruiqi Chen
- Department of Urologic Sciences; Vancouver Prostate Centre; University of British Columbia; Vancouver BC Canada
- Faculty of Medicine; University of Toronto; Toronto ON Canada
| | - Xuesen Dong
- Department of Urologic Sciences; Vancouver Prostate Centre; University of British Columbia; Vancouver BC Canada
| | - Martin Gleave
- Department of Urologic Sciences; Vancouver Prostate Centre; University of British Columbia; Vancouver BC Canada
| |
Collapse
|
172
|
Lee AR, Che N, Lovnicki JM, Dong X. Development of Neuroendocrine Prostate Cancers by the Ser/Arg Repetitive Matrix 4-Mediated RNA Splicing Network. Front Oncol 2018; 8:93. [PMID: 29666783 PMCID: PMC5891588 DOI: 10.3389/fonc.2018.00093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/16/2018] [Indexed: 12/19/2022] Open
Abstract
While the use of next-generation androgen receptor pathway inhibition (ARPI) therapy has significantly increased the survival of patients with metastatic prostate adenocarcinoma (AdPC), several groups have reported a treatment-resistant mechanism, whereby cancer cells can become androgen receptor (AR) indifferent and gain a neuroendocrine (NE)-like phenotype. This subtype of castration-resistant prostate cancer has been termed "treatment-induced castration-resistant neuroendocrine prostate cancer" (CRPC-NE). Recent reports indicate that the overall genomic landscapes of castration-resistant tumors with AdPC phenotypes and CRPC-NE are not significantly altered. However, CRPC-NE tumors have been found to contain a NE-specific pattern throughout their epigenome and splicing transcriptome, which are significantly modified. The molecular mechanisms by which CRPC-NE develops remain unclear, but several factors have been implicated in the progression of the disease. Recently, Ser/Arg repetitive matrix 4 (SRRM4), a neuronal-specific RNA splicing factor that is upregulated in CRPC-NE tumors, has been shown to establish a CRPC-NE-unique splicing transcriptome, to induce a NE-like morphology in AdPC cells, and, most importantly, to transform AdPC cells into CRPC-NE xenografts under ARPI. Moreover, the SRRM4-targeted splicing genes are highly enriched in various neuronal processes, suggesting their roles in facilitating a CRPC-NE program. This article will address the importance of SRRM4-mediated alternative RNA splicing in reprogramming translated proteins to facilitate NE differentiation, survival, and proliferation of cells to establish CRPC-NE tumors. In addition, we will discuss the potential roles of SRRM4 in conjunction with other known pathways and factors important for CRPC-NE development, such as the AR pathway, TP53 and RB1 genes, the FOXA family of proteins, and environmental factors. This study aims to explore the multifaceted functions of SRRM4 and SRRM4-mediated splicing in driving a CRPC-NE program as a coping mechanism for therapy resistance, as well as define future SRRM4-targeted therapeutic approaches for treating CRPC-NE or mitigating its development.
Collapse
Affiliation(s)
- Ahn R Lee
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Nicole Che
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jessica M Lovnicki
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Xuesen Dong
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
173
|
Lu D, Luo P, Zhang J, Ye Y, Wang Q, Li M, Zhou H, Xie M, Wang B. Patient-derived tumor xenografts of lung squamous cell carcinoma alter long non-coding RNA profile but not responsiveness to cisplatin. Oncol Lett 2018; 15:8589-8603. [PMID: 29805594 PMCID: PMC5950531 DOI: 10.3892/ol.2018.8401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/20/2018] [Indexed: 12/24/2022] Open
Abstract
Lung squamous cell carcinoma (LSCC), the second most common type of lung cancer, has received limited attention. Patient-derived tumor xenografts (PDTXs) are useful preclinical models to reproduce the diverse heterogeneity of cancer, but it is important to identify potential variations during their establishment. A total of 18 PDTXs were established from 37 the surgical specimens and 16 were serially passaged to third generation. Second- and third-generation xenografts had a faster growth rate in mice. The tumor implantation success rate was associated with poorer differentiation, larger tumor volume and higher expression of Ki-67. The xenografts largely retained histological and key immunophenotypic features (including p53, p63, cytokeratin5/6, and E-cadherin). However, increased Ki-67 expression was identified in partial xenografts. Long non-coding RNA (lncRNA) and mRNA expression in third-generation xenografts differed from that of matched primary tumors. Gene Ontology and pathway analysis showed that mRNAs involved in cell cycle, and metabolism regulation were generally upregulated in xenografts, while those associated with immune responses were typically downregulated. Furthermore, the responses of xenografts to cisplatin were consistent with clinical outcome. In the present study, PDTXs of SCC were successfully established, and closely resembled their original tumor regarding their immunophenotype and response to cisplatin. Overall, PDTXS of LSCC altered the lncRNA profile and increased the proliferative activity of cancer cells, whilst retaining responsiveness to cisplatin.
Collapse
Affiliation(s)
- Dapeng Lu
- Department of Clinical Laboratory, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Peng Luo
- Department of Clinical Laboratory, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Ju Zhang
- Department of Clinical Laboratory, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Yuanyuan Ye
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Qi Wang
- Department of Clinical Laboratory, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Ming Li
- Department of Clinical Laboratory, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Hangcheng Zhou
- Department of Pathology, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Mingran Xie
- Department of Thoracic Surgery, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Baolong Wang
- Department of Clinical Laboratory, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
174
|
Lee AR, Li Y, Xie N, Gleave ME, Cox ME, Collins CC, Dong X. Alternative RNA splicing of the MEAF6 gene facilitates neuroendocrine prostate cancer progression. Oncotarget 2018; 8:27966-27975. [PMID: 28427194 PMCID: PMC5438622 DOI: 10.18632/oncotarget.15854] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/20/2017] [Indexed: 12/31/2022] Open
Abstract
Although potent androgen receptor pathway inhibitors (ARPI) improve overall survival of metastatic prostate cancer patients, treatment-induced neuroendocrine prostate cancer (t-NEPC) as a consequence of the selection pressures of ARPI is becoming a more common clinical issue. Improved understanding of the molecular biology of t-NEPC is essential for the development of new effective management approaches for t-NEPC. In this study, we identify a splice variant of the MYST/Esa1-associated factor 6 (MEAF6) gene, MEAF6-1, that is highly expressed in both t-NEPC tumor biopsies and neuroendocrine cell lines of prostate and lung cancers. We show that MEAF6-1 splicing is stimulated by neuronal RNA splicing factor SRRM4. Rather than inducing neuroendocrine trans-differentiation of cells in prostate adenocarcinoma, MEAF6-1 upregulation stimulates cell proliferation, anchorage-independent cell growth, invasion and xenograft tumor growth. Gene microarray identifies that these MEAF6-1 actions are in part mediated by the ID1 and ID3 genes. These findings suggest that the MEAF6-1 variant does not induce neuroendocrine differentiation of prostate cancer cells, but rather facilitates t-NEPC progression by increasing the proliferation rate of cells that have acquired neuroendocrine phenotypes.
Collapse
Affiliation(s)
- Ahn R Lee
- Vancouver Prostate Centre, Department of Urologic Sciences, The University of British Columbia, Vancouver V6H 3Z6, Canada
| | - Yinan Li
- Vancouver Prostate Centre, Department of Urologic Sciences, The University of British Columbia, Vancouver V6H 3Z6, Canada
| | - Ning Xie
- Vancouver Prostate Centre, Department of Urologic Sciences, The University of British Columbia, Vancouver V6H 3Z6, Canada
| | - Martin E Gleave
- Vancouver Prostate Centre, Department of Urologic Sciences, The University of British Columbia, Vancouver V6H 3Z6, Canada
| | - Michael E Cox
- Vancouver Prostate Centre, Department of Urologic Sciences, The University of British Columbia, Vancouver V6H 3Z6, Canada
| | - Colin C Collins
- Vancouver Prostate Centre, Department of Urologic Sciences, The University of British Columbia, Vancouver V6H 3Z6, Canada
| | - Xuesen Dong
- Vancouver Prostate Centre, Department of Urologic Sciences, The University of British Columbia, Vancouver V6H 3Z6, Canada
| |
Collapse
|
175
|
Qu S, Xue H, Dong X, Lin D, Wu R, Nabavi N, Collins CC, Gleave ME, Gout PW, Wang Y. Aneustat (OMN54) has aerobic glycolysis-inhibitory activity and also immunomodulatory activity as indicated by a first-generation PDX prostate cancer model. Int J Cancer 2018; 143:419-429. [PMID: 29441566 PMCID: PMC6001442 DOI: 10.1002/ijc.31310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/01/2018] [Indexed: 01/16/2023]
Abstract
Aneustat (OMN54) is a multivalent, botanical anticancer candidate therapeutic. A recent Phase-I clinical trial has indicated that it is well tolerated by patients and has immunomodulatory activity. In our study, using in vitro and in vivo prostate cancer models, we investigated Aneustat with regard to effects on (i) cancer-generated immunosuppression based on aerobic glycolysis leading to acidification of the tumor microenvironment, and (ii) immune-related processes such as macrophage differentiation and shifts in the intratumoral levels of host immune cells. Aneustat markedly reduced glucose consumption, lactic acid secretion, glycolysis-related gene expressions and proliferation of human LNCaP prostate cancer cells. In addition, Aneustat induced differentiation of RAW264.7 macrophages to the M1 anticancer phenotype. Treatment of LNCaP xenografts and first-generation patient-derived prostate cancer tissue xenografts with Aneustat in both cases led to a marked shift in intratumoral host (mouse/patient) immune cell levels: a higher ratio of cytotoxic CD8+ T/Treg cells, higher numbers of NK cells, lower numbers of Treg cells and MDSCs, i.e. changes favoring the host anticancer immune response. Taken together, the data indicate that Aneustat has immunomodulatory activity based on inhibition of aerobic glycolysis which in patients may lead to reduction of cancer-induced immunosuppression. Furthermore, first-generation patient-derived cancer tissue xenograft models may be used for screening compounds for immunomodulatory activity.
Collapse
Affiliation(s)
- Sifeng Qu
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver, BC, Canada.,Interdisciplinary Oncology Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Hui Xue
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada
| | - Xin Dong
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada
| | - Dong Lin
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Rebecca Wu
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada
| | | | - Colin C Collins
- Vancouver Prostate Centre, Vancouver, BC, Canada.,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Martin E Gleave
- Vancouver Prostate Centre, Vancouver, BC, Canada.,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Peter W Gout
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada
| | - Yuzhuo Wang
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver, BC, Canada.,Interdisciplinary Oncology Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
176
|
Davies AH, Beltran H, Zoubeidi A. Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nat Rev Urol 2018; 15:271-286. [PMID: 29460922 DOI: 10.1038/nrurol.2018.22] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The success of next-generation androgen receptor (AR) pathway inhibitors, such as abiraterone acetate and enzalutamide, in treating prostate cancer has been hampered by the emergence of drug resistance. This acquired drug resistance is driven, in part, by the ability of prostate cancer cells to change their phenotype to adopt AR-independent pathways for growth and survival. Around one-quarter of resistant prostate tumours comprise cells that have undergone cellular reprogramming to become AR-independent and to acquire a continuum of neuroendocrine characteristics. These highly aggressive and lethal tumours, termed neuroendocrine prostate cancer (NEPC), exhibit reactivation of developmental programmes that are associated with epithelial-mesenchymal plasticity and acquisition of stem-like cell properties. In the past few years, our understanding of the link between lineage plasticity and an emergent NEPC phenotype has considerably increased. This new knowledge can contribute to novel therapeutic modalities that are likely to improve the treatment and clinical management of aggressive prostate cancer.
Collapse
Affiliation(s)
- Alastair H Davies
- Vancouver Prostate Centre, 2660 Oak Street, Vancouver, BC, Canada.,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, Vancouver, BC, Canada
| | - Himisha Beltran
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, 413 East 69th Street, New York, NY, USA
| | - Amina Zoubeidi
- Vancouver Prostate Centre, 2660 Oak Street, Vancouver, BC, Canada.,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, Vancouver, BC, Canada
| |
Collapse
|
177
|
Davies AH, Wang Y, Zoubeidi A. Patient-derived xenografts: A platform for accelerating translational research in prostate cancer. Mol Cell Endocrinol 2018; 462:17-24. [PMID: 28315377 DOI: 10.1016/j.mce.2017.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 03/01/2017] [Accepted: 03/13/2017] [Indexed: 11/19/2022]
Abstract
Recently, there has been renewed interest in the development and characterization of patient-derived tumour xenograft (PDX) models. Numerous PDX models have been established for prostate cancer and, importantly, retain the principal molecular, genetic, and histological characteristics of the donor tumour. As such, these models provide significant improvements over standard cell line xenograft models for biological studies, preclinical drug development, and personalized medicine strategies. This review summarizes the current state of the art in this field, illustrating the opportunities and limitations of PDX models in translational prostate cancer research.
Collapse
Affiliation(s)
- Alastair H Davies
- Vancouver Prostate Centre, Vancouver, BC, Canada; Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, BC, Canada; Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Amina Zoubeidi
- Vancouver Prostate Centre, Vancouver, BC, Canada; Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
178
|
Sang M, Hulsurkar M, Zhang X, Song H, Zheng D, Zhang Y, Li M, Xu J, Zhang S, Ittmann M, Li W. GRK3 is a direct target of CREB activation and regulates neuroendocrine differentiation of prostate cancer cells. Oncotarget 2018; 7:45171-45185. [PMID: 27191986 PMCID: PMC5216714 DOI: 10.18632/oncotarget.9359] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 04/23/2016] [Indexed: 01/22/2023] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is an aggressive subtype of prostate cancer that commonly arises through neuroendocrine differentiation (NED) of prostate adenocarcinoma (PAC) after therapy, such as radiation therapy and androgen deprivation treatment (ADT). No effective therapeutic is available for NEPC and its molecular mechanisms remain poorly understood. We have reported that G protein-coupled receptor kinase 3 (GRK3, also called ADRBK2) promotes prostate cancer progression. In this study, we demonstrate that the ADT-activated cAMP response element binding protein (CREB) directly targets and induces GRK3. We show GRK3 expression is higher in NEPC than in PAC cells and mouse models, and it positively correlates with the expression and activity of CREB in human prostate cancers. Notably, overexpression of GRK3 in PAC cells increased the expression of NE markers in a kinase activity dependent manner. Conversely, silencing GRK3 blocked CREB-induced NED in PAC cells, reversed NE phenotypes and inhibited proliferation of NEPC cells. Taken together, these results indicate that GRK3 is a new critical activator of NE phenotypes and mediator of CREB activation in promoting NED of prostate cancer cells.
Collapse
Affiliation(s)
- Meixiang Sang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.,Tumor Research Institute, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Mohit Hulsurkar
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.,Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xiaochong Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.,Tumor Research Institute, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haiping Song
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.,Breast and Thyroid surgery center, The Union Hospital of Tongji Medical College, Huazhong University of science and technology, Wuhan, China
| | - Dayong Zheng
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Medical Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.,The Union Hospital of Tongji Medical College, Huazhong University of science and technology, Wuhan, China
| | - Min Li
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jianming Xu
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Songlin Zhang
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, and Michael E. DeBakey VAMC, Houston, TX, USA
| | - Wenliang Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.,Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA.,Division of Oncology, Department of Internal Medicine, and Memorial Herman Cancer Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
179
|
Akamatsu S, Inoue T, Ogawa O, Gleave ME. Clinical and molecular features of treatment-related neuroendocrine prostate cancer. Int J Urol 2018; 25:345-351. [PMID: 29396873 DOI: 10.1111/iju.13526] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/13/2017] [Indexed: 12/14/2022]
Abstract
Treatment-related neuroendocrine prostate cancer is a lethal form of prostate cancer that emerges in the later stages of castration-resistant prostate cancer treatment. Treatment-related neuroendocrine prostate cancer transdifferentiates from adenocarcinoma as an adaptive response to androgen receptor pathway inhibition. The incidence of treatment-related neuroendocrine prostate cancer has been rising due to the increasing use of potent androgen receptor pathway inhibitors. Typically, treatment-related neuroendocrine prostate cancer is characterized by either low or absent androgen receptor expression, small cell carcinoma morphology and expression of neuroendocrine markers. Clinically, it manifests with predominantly visceral or lytic bone metastases, bulky tumor masses, low prostate-specific antigen levels or a short response duration to androgen deprivation therapy. Furthermore, although the tumor initially responds to platinum-based chemotherapy, the duration of the response is short. Based on the poor prognosis, it is imperative to identify novel molecular targets for treatment-related neuroendocrine prostate cancer. Recent advances in genomic and molecular research, supported by novel in vivo models, have identified some of the key molecular characteristics of treatment-related neuroendocrine prostate cancer. The gain of MYCN and AURKA oncogenes, along with the loss of tumor suppressor genes TP53 and RB1 are key genomic alterations associated with treatment-related neuroendocrine prostate cancer. Androgen receptor repressed genes, such as BRN2 and PEG10, are also necessary for treatment-related neuroendocrine prostate cancer. These genetic changes converge on pathways upregulating genes, such as SOX2 and EZH2, that facilitate lineage plasticity and neuroendocrine differentiation. As a result, on potent androgen receptor pathway inhibition, castration-resistant prostate cancer transdifferentiates to treatment-related neuroendocrine prostate cancer in a clonally divergent manner. Further understanding of the disease biology is required to develop novel drugs and biomarkers that would help treat this aggressive prostate cancer variant.
Collapse
Affiliation(s)
- Shusuke Akamatsu
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahiro Inoue
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Osamu Ogawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Martin E Gleave
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
180
|
A novel patient-derived xenograft model for claudin-low triple-negative breast cancer. Breast Cancer Res Treat 2018; 169:381-390. [PMID: 29392581 DOI: 10.1007/s10549-018-4685-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/20/2018] [Indexed: 10/18/2022]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) subtypes are clinically aggressive and cannot be treated with targeted therapeutics commonly used in other breast cancer subtypes. The claudin-low (CL) molecular subtype of TNBC has high rates of metastases, chemoresistance and recurrence. There exists an urgent need to identify novel therapeutic targets in TNBC; however, existing models utilized in target discovery research are limited. Patient-derived xenograft (PDX) models have emerged as superior models for target discovery experiments because they recapitulate features of patient tumors that are limited by cell-line derived xenograft methods. METHODS We utilize immunohistochemistry, qRT-PCR and Western Blot to visualize tumor architecture, cellular composition, genomic and protein expressions of a new CL-TNBC PDX model (TU-BcX-2O0). We utilize tissue decellularization techniques to examine extracellular matrix composition of TU-BcX-2O0. RESULTS Our laboratory successfully established a TNBC PDX tumor, TU-BCX-2O0, which represents a CL-TNBC subtype and maintains this phenotype throughout subsequent passaging. We dissected TU-BCx-2O0 to examine aspects of this complex tumor that can be targeted by developing therapeutics, including the whole and intact breast tumor, specific cell populations within the tumor, and the extracellular matrix. CONCLUSIONS Here, we characterize a claudin-low TNBC patient-derived xenograft model that can be utilized for therapeutic research studies.
Collapse
|
181
|
Treatment with docetaxel in combination with Aneustat leads to potent inhibition of metastasis in a patient-derived xenograft model of advanced prostate cancer. Br J Cancer 2018; 118:802-812. [PMID: 29381682 PMCID: PMC5877435 DOI: 10.1038/bjc.2017.474] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 01/09/2023] Open
Abstract
Background: Docetaxel used for first-line treatment of advanced prostate cancer (PCa) is only marginally effective. We previously showed, using the LTL-313H subrenal capsule patient-derived metastatic PCa xenograft model, that docetaxel combined with Aneustat (OMN54), a multivalent plant-derived therapeutic, led to marked synergistic tumour growth inhibition. Here, we investigated the effect of docetaxel+Aneustat on metastasis. Methods: C4-2 cells were incubated with docetaxel, Aneustat and docetaxel+Aneustat to assess effects on cell migration. The LTL-313H model, similarly treated, was analysed for effects on lung micro-metastasis and kidney invasion. The LTL-313H gene expression profile was compared with profiles of PCa patients (obtained from Oncomine) and subjected to IPA to determine involvement of cancer driver genes. Results: Docetaxel+Aneustat markedly inhibited C4-2 cell migration and LTL-313H lung micro-metastasis/kidney invasion. Oncomine analysis indicated that treatment with docetaxel+Aneustat was associated with improved patient outcome. The drug combination markedly downregulated expression of cancer driver genes such as FOXM1 (and FOXM1-target genes). FOXM1 overexpression reduced the anti-metastatic activity of docetaxel+Aneustat. Conclusions: Docetaxel+Aneustat can inhibit PCa tissue invasion and metastasis. This activity appears to be based on reduced expression of cancer driver genes such as FOXM1. Use of docetaxel+Aneustat may provide a new, more effective regimen for therapy of metastatic PCa.
Collapse
|
182
|
Ruan L, Wang L, Wang X, He M, Yao X. SIRT1 contributes to neuroendocrine differentiation of prostate cancer. Oncotarget 2018; 9:2002-2016. [PMID: 29416748 PMCID: PMC5788616 DOI: 10.18632/oncotarget.23111] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/11/2017] [Indexed: 01/04/2023] Open
Abstract
The epigenetic factor SIRT1 can promote prostate cancer progression, but it is unclear whether SIRT1 contributes to neuroendocrine differentiation. In this study, we showed that androgen deprivation can induce reactive oxygen species production and that reactive oxygen species, in turn, activate SIRT1 expression. The increased SIRT1 expression induces neuroendocrine differentiation of prostate cancer cells by activating the Akt pathway. In addition, the interaction between Akt and SIRT1 is independent of N-Myc and can drive the development of neuroendocrine prostate cancer when N-Myc is blocked. Furthermore, SIRT1 facilitates tumor maintenance, and targeting SIRT1 may reduce the tumor burden during androgen deprivation. Our findings suggest that SIRT1 is a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Lin Ruan
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
- Department of Nephrology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lei Wang
- Department of Urology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaosong Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Ming He
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiaoguang Yao
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
183
|
Rubin MA, Demichelis F. The Genomics of Prostate Cancer: emerging understanding with technologic advances. Mod Pathol 2018; 31:S1-11. [PMID: 29297493 DOI: 10.1038/modpathol.2017.166] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/10/2017] [Accepted: 10/10/2017] [Indexed: 01/06/2023]
Abstract
With the advent of next-generation sequencing technologies and large whole-exome and genome studies in prostate and other cancers, our understanding of the landscape of genomic alterations has dramatically been refined. In additional to well-known alterations in genomic regions involving 8p, 8q, 10q23, common ETS translocations and androgen receptor amplifications, newer technology have uncovered recurrent mutations in SPOP, FOXA1, MED12, IDH and complex large scale genomic alterations (eg, chromoplexy). This review surveys the enhanced landscape of genomic alterations in clinically localized and advanced prostate cancer.
Collapse
Affiliation(s)
- Mark A Rubin
- Institute for Precision Medicine, Weill Cornell Medical College-New York Presbyterian Hospital, New York, NY, USA.,Sandra and Edward Meyer Cancer Center at Weill Cornell Medical College, New York, NY, USA.,Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Francesca Demichelis
- Institute for Precision Medicine, Weill Cornell Medical College-New York Presbyterian Hospital, New York, NY, USA.,Centre of Integrative Biology, University of Trento, Trento, Italy
| |
Collapse
|
184
|
Lam HM, Nguyen HM, Corey E. Generation of Prostate Cancer Patient-Derived Xenografts to Investigate Mechanisms of Novel Treatments and Treatment Resistance. Methods Mol Biol 2018; 1786:1-27. [PMID: 29786784 DOI: 10.1007/978-1-4939-7845-8_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Treatment advances lead to survival benefits of patients with advanced prostate cancer. These treatments are highly efficacious in a subset of patients; however, similarly to other cancers, after initial responses the tumors develop resistance (acquired resistance) and the patients succumb to the disease. Furthermore, there is a subset of patients who do not respond to the treatment at all (de novo resistance). Preclinical testing using patient-derived xenografts (PDXs) has led to successful drug development, and PDXs will continue to provide valuable resources to generate clinically relevant data with translational potential. PDXs demonstrate tumor heterogeneity observed in patients, preserve tumor-microenvironment architecture, and provide clinically relevant treatment responses. In view of the evolving biology of the advanced prostate cancer associated with new treatments, PDXs representing these new tumor phenotypes are urgently needed for the study of treatment responses and resistance. In this chapter, we describe methodologies used to establish prostate cancer PDXs and use of these PDXs to study de novo and acquired resistance.
Collapse
Affiliation(s)
- Hung-Ming Lam
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Holly M Nguyen
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
185
|
Friedlander TW, Pritchard CC, Beltran H. Personalizing Therapy for Metastatic Prostate Cancer: The Role of Solid and Liquid Tumor Biopsies. Am Soc Clin Oncol Educ Book 2017; 37:358-369. [PMID: 28561699 DOI: 10.1200/edbk_175510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although biopsies of metastatic prostate cancer are rarely undertaken in the clinical setting, there is increasing interest in developing personalized approaches to therapy by taking into account the genetic and phenotypic changes in an individual tumor. Indeed, analysis of metastatic prostate tumors can predict sensitivity to agents that inhibit DNA repair and resistance to novel hormonal agents, such as abiraterone and enzalutamide, and identify phenotypic changes, such as neuroendocrine differentiation, that have important clinical implications. Although obtaining metastatic tumor tissue is necessary for this genomic and molecular profiling, knowing when to biopsy, selecting the appropriate metastatic lesion, and interpreting the results are major challenges facing clinicians today. In this article, we discuss the rationale for obtaining metastatic tumor tissue, review the bioinformatic approach to analyzing these specimens, discuss the timing and approach to solid and liquid tumor biopsies, review the challenges associated with obtaining and acting on clinically relevant results, and discuss opportunities for the future.
Collapse
Affiliation(s)
- Terence W Friedlander
- From the Division of Hematology and Medical Oncology, University of California, San Francisco, San Francisco, CA; Department of Laboratory Medicine, University of Washington, Seattle, WA; Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, NY
| | - Colin C Pritchard
- From the Division of Hematology and Medical Oncology, University of California, San Francisco, San Francisco, CA; Department of Laboratory Medicine, University of Washington, Seattle, WA; Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, NY
| | - Himisha Beltran
- From the Division of Hematology and Medical Oncology, University of California, San Francisco, San Francisco, CA; Department of Laboratory Medicine, University of Washington, Seattle, WA; Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, NY
| |
Collapse
|
186
|
Taurozzi AJ, Beekharry R, Wantoch M, Labarthe MC, Walker HF, Seed RI, Simms M, Rodrigues G, Bradford J, van der Horst G, van der Pluijm G, Collins AT. Spontaneous development of Epstein-Barr Virus associated human lymphomas in a prostate cancer xenograft program. PLoS One 2017; 12:e0188228. [PMID: 29145505 PMCID: PMC5690647 DOI: 10.1371/journal.pone.0188228] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/02/2017] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer research is hampered by the lack of in vivo preclinical models that accurately reflect patient tumour biology and the clinical heterogeneity of human prostate cancer. To overcome these limitations we propagated and characterised a new collection of patient-derived prostate cancer xenografts. Tumour fragments from 147 unsupervised, surgical prostate samples were implanted subcutaneously into immunodeficient Rag2-/-γC-/- mice within 24 hours of surgery. Histologic and molecular characterisation of xenografts was compared with patient characteristics, including androgen-deprivation therapy, and exome sequencing. Xenografts were established from 47 of 147 (32%) implanted primary prostate cancers. Only 14% passaged successfully resulting in 20 stable lines; derived from 20 independent patient samples. Surprisingly, only three of the 20 lines (15%) were confirmed as prostate cancer; one line comprised of mouse stroma, and 16 were verified as human donor-derived lymphoid neoplasms. PCR for Epstein-Barr Virus (EBV) nuclear antigen, together with exome sequencing revealed that the lymphomas were exclusively EBV-associated. Genomic analysis determined that 14 of the 16 EBV+ lines had unique monoclonal or oligoclonal immunoglobulin heavy chain gene rearrangements, confirming their B-cell origin. We conclude that the generation of xenografts from tumour fragments can commonly result in B-cell lymphoma from patients carrying latent EBV. We recommend routine screening, of primary outgrowths, for latent EBV to avoid this phenomenon.
Collapse
Affiliation(s)
- Alberto J. Taurozzi
- Cancer Research Unit, Department of Biology, University of York, York, United Kingdom
| | | | - Michelle Wantoch
- Leeds Institute of Cancer & Pathology, University of Leeds, Leeds, United Kingdom
| | | | - Hannah F. Walker
- Cancer Research Unit, Department of Biology, University of York, York, United Kingdom
| | - Robert I. Seed
- Cancer Research Unit, Department of Biology, University of York, York, United Kingdom
| | - Matthew Simms
- Department of Urology, Castle Hill Hospital, Cottingham, United Kingdom
- Hull -York Medical School, University of York, York, United Kingdom
| | - Greta Rodrigues
- Department of Pathology, Hull Royal Infirmary, Hull, United Kingdom
| | - James Bradford
- Sheffield Institute for Nucleic Acids, Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | | | - Gabri van der Pluijm
- Department of Urology, Leiden University Medical School, Leiden, The Netherlands
| | - Anne T. Collins
- Cancer Research Unit, Department of Biology, University of York, York, United Kingdom
- * E-mail:
| |
Collapse
|
187
|
Beltran H, Wyatt AW, Chedgy EC, Donoghue A, Annala M, Warner EW, Beja K, Sigouros M, Mo F, Fazli L, Collins CC, Eastham J, Morris M, Taplin ME, Sboner A, Halabi S, Gleave ME. Impact of Therapy on Genomics and Transcriptomics in High-Risk Prostate Cancer Treated with Neoadjuvant Docetaxel and Androgen Deprivation Therapy. Clin Cancer Res 2017; 23:6802-6811. [PMID: 28842510 PMCID: PMC5690882 DOI: 10.1158/1078-0432.ccr-17-1034] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/01/2017] [Accepted: 08/21/2017] [Indexed: 12/14/2022]
Abstract
Purpose: The combination of docetaxel chemotherapy and androgen deprivation therapy (ADT) has become a standard treatment for patients with metastatic prostate cancer. The recently accrued phase III CALGB 90203 trial was designed to investigate the clinical effectiveness of this treatment approach earlier in the disease. Specimens from this trial offer a unique opportunity to interrogate the acute molecular response to docetaxel and ADT and identify potential biomarkers.Experimental Design: We evaluated baseline clinical data, needle biopsies, and radical prostatectomy (RP) specimens from 52 (of 788) patients enrolled on CALGB 90203 at one high volume center. Pathology review, tumor and germline-targeted DNA sequencing (n = 72 genes), and expression profiling using NanoString platform (n = 163 genes) were performed to explore changes in critical prostate cancer pathways linked to aggression and resistance.Results: Three of 52 patients had only microfocal residual cancer at prostatectomy. The most common alterations included TMPRSS2-ERG fusion (n = 32), TP53 mutation or deletion (n = 11), PTEN deletion (n = 6), FOXA1 (n = 6), and SPOP (n = 4) mutation, with no significant enrichment in posttreated specimens. We did not observe AR amplification or mutations. The degree of AR signaling suppression varied among treated tumors and there was upregulation of both AR and AR-V7 expression as well as a subset of neuroendocrine and plasticity genes.Conclusions: These data support the feasibility of targeted and temporal genomic and transcriptome profiling of neoadjuvant-treated prostate cancer with limited formalin-fixed paraffin embedded tissue requirement. Characterization of the heterogeneity of treatment response and molecular outliers that arise posttreatment provides new insight into potential early markers of resistance. Clin Cancer Res; 23(22); 6802-11. ©2017 AACR.
Collapse
Affiliation(s)
- Himisha Beltran
- Division of Medical Oncology, Department of Medicine, Weill Medical College of Cornell University, New York, New York.
| | - Alexander W Wyatt
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Edmund C Chedgy
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Adam Donoghue
- Division of Medical Oncology, Department of Medicine, Weill Medical College of Cornell University, New York, New York
| | - Matti Annala
- Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland
| | - Evan W Warner
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Beja
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael Sigouros
- Division of Medical Oncology, Department of Medicine, Weill Medical College of Cornell University, New York, New York
| | - Fan Mo
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ladan Fazli
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin C Collins
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - James Eastham
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael Morris
- Department of Medical Oncology, Dana-Farber/Partners Cancer Care, Boston, Massachusetts
| | - Mary-Ellen Taplin
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York New York
| | - Andrea Sboner
- Department of Urology, Memorial Sloan Kettering Cancer Center, New York, New York
- Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York
| | - Susan Halabi
- Alliance Statistics and Data Center and Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
| | - Martin E Gleave
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
188
|
Kretschmer A, Tilki D. Biomarkers in prostate cancer - Current clinical utility and future perspectives. Crit Rev Oncol Hematol 2017; 120:180-193. [PMID: 29198331 DOI: 10.1016/j.critrevonc.2017.11.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/30/2017] [Accepted: 11/12/2017] [Indexed: 12/21/2022] Open
Abstract
Current tendencies in the treatment course of prostate cancer patients increase the need for reliable biomarkers that help in decision-making in a challenging clinical setting. Within the last decade, several novel biomarkers have been introduced. In the following comprehensive review article, we focus on diagnostic (PHI®, 4K score, SelectMDx®, ConfirmMDx®, PCA3, MiPS, ExoDX®, mpMRI) and prognostic (OncotypeDX GPS®, Prolaris®, ProMark®, DNA-ploidy, Decipher®) biomarkers that are in widespread clinical use and are supported by evidence. Hereby, we focus on multiple clinical situations in which innovative biomarkers may guide decision-making in prostate cancer therapy. In addition, we describe novel liquid biopsy approaches (circulating tumor cells, cell-free DNA) that have been described as predictive biomarkers in metastatic castration-resistant prostate cancer and might support an individual patient-centred oncological approach in the nearer future.
Collapse
Affiliation(s)
- Alexander Kretschmer
- The Vancouver Prostate Centre and Department of Urological Sciences, University of British Columbia, Vancouver, British Columbia, Canada; Department of Urology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Derya Tilki
- Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany; Department of Urology, University Hospital Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
189
|
Tsai HK, Lehrer J, Alshalalfa M, Erho N, Davicioni E, Lotan TL. Gene expression signatures of neuroendocrine prostate cancer and primary small cell prostatic carcinoma. BMC Cancer 2017; 17:759. [PMID: 29132337 PMCID: PMC5683385 DOI: 10.1186/s12885-017-3729-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 10/30/2017] [Indexed: 12/28/2022] Open
Abstract
Background Neuroendocrine prostate cancer (NEPC) may be rising in prevalence as patients with advanced prostate cancer potentially develop resistance to contemporary anti-androgen treatment through a neuroendocrine phenotype. While prior studies comparing NEPC and prostatic adenocarcinoma have identified important candidates for targeted therapy, most have relied on few NEPC patients due to disease rarity, resulting in thousands of differentially expressed genes collectively and offering an opportunity for meta-analysis. Moreover, past studies have focused on prototypical NEPC samples with classic immunohistochemistry profiles, whereas there is increasing recognition of atypical phenotypes. In the primary setting, small cell prostatic carcinoma (SCPC) is frequently admixed with adenocarcinomas that may be clonally related, and a minority of SCPCs express markers typical of prostatic adenocarcinoma while rare cases do not express neuroendocrine markers. We derived a meta-signature of prototypical high-grade NEPC, then applied it to develop a classifier of primary SCPC incorporating disease heterogeneity. Methods Prototypical NEPC samples from 15 patients across 6 frozen tissue microarray datasets were assessed for genes with consistent outlier expression relative to adenocarcinomas. Resulting genes were used to determine subgroups of primary SCPCs (N=16) and high-grade adenocarcinomas (N=16) profiled by exon arrays using formalin-fixed paraffin-embedded (FFPE) material from our institutional archives. A subgroup classifier was developed using differential expression for feature selection, and applied to radical prostatectomy cohorts. Results Sixty nine and 375 genes demonstrated consistent outlier expression in at least 80% and 60% of NEPC patients, with close resemblance in expression between NEPC and small cell lung cancer. Clustering by these genes generated 3 subgroups among primary samples from our institution. Nearest centroid classification based on the predominant phenotype from each subgroup (9 prototypical SCPCs, 9 prototypical adenocarcinomas, and 4 atypical SCPCs) achieved a 4.5% error rate by leave-one-out cross-validation. The classifier identified SCPC-like expression in 40% (2/5) of mixed adenocarcinomas and 0.3-0.6% of adenocarcinomas from prospective (4/2293) and retrospective (2/355) radical prostatectomy cohorts, where both SCPC-like retrospective cases subsequently developed metastases. Conclusions Meta-analysis generates a robust signature of prototypical high-grade NEPC, and may facilitate development of a primary SCPC classifier based on FFPE material with potential prognostic implications. Electronic supplementary material The online version of this article (10.1186/s12885-017-3729-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Harrison K Tsai
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Present address: Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
| | | | | | - Nicholas Erho
- GenomeDx Biosciences, Vancouver, British Columbia, Canada
| | - Elai Davicioni
- GenomeDx Biosciences, Vancouver, British Columbia, Canada
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
190
|
Gelman IH. How the TRAMP Model Revolutionized the Study of Prostate Cancer Progression. Cancer Res 2017; 76:6137-6139. [PMID: 27803100 DOI: 10.1158/0008-5472.can-16-2636] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/27/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Irwin H Gelman
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York.
| |
Collapse
|
191
|
Patient-derived xenografts undergo mouse-specific tumor evolution. Nat Genet 2017; 49:1567-1575. [PMID: 28991255 PMCID: PMC5659952 DOI: 10.1038/ng.3967] [Citation(s) in RCA: 501] [Impact Index Per Article: 71.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 09/13/2017] [Indexed: 12/14/2022]
Abstract
Patient-derived xenografts (PDXs) have become a prominent cancer model system, as they are presumed to faithfully represent the genomic features of primary tumors. Here we monitored the dynamics of copy number alterations (CNAs) in 1,110 PDX samples across 24 cancer types. We observed rapid accumulation of CNAs during PDX passaging, often due to selection of pre-existing minor clones. CNA acquisition in PDXs was correlated with the tissue-specific levels of aneuploidy and genetic heterogeneity observed in primary tumors. However, the particular CNAs acquired during PDX passaging differed from those acquired during tumor evolution in patients. Several CNAs recurrently observed in primary tumors gradually disappeared in PDXs, indicating that events undergoing positive selection in humans can become dispensable during propagation in mice. Importantly, the genomic stability of PDXs was associated with their response to chemotherapy and targeted drugs. These findings have important implications for PDX-based modeling of human cancer.
Collapse
|
192
|
Prendeville S, Al-Bozom I, Compérat E, Sweet J, Evans AJ, Ben-Gashir M, Mete O, van der Kwast TH, Downes MR. Prostate carcinoma with amphicrine features: further refining the spectrum of neuroendocrine differentiation in tumours of primary prostatic origin? Histopathology 2017; 71:926-933. [DOI: 10.1111/his.13330] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/26/2017] [Indexed: 02/06/2023]
Affiliation(s)
| | | | - Eva Compérat
- Hôpital La Pitié-Salpêtrière; Paris France
- Hôpital Tenon; Paris France
| | - Joan Sweet
- University Health Network; Toronto ON Canada
| | | | | | - Ozgur Mete
- University Health Network; Toronto ON Canada
| | | | | |
Collapse
|
193
|
Li Y, Chen R, Bowden M, Mo F, Lin YY, Gleave M, Collins C, Dong X. Establishment of a neuroendocrine prostate cancer model driven by the RNA splicing factor SRRM4. Oncotarget 2017; 8:66878-66888. [PMID: 28978002 PMCID: PMC5620142 DOI: 10.18632/oncotarget.19916] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/06/2017] [Indexed: 12/20/2022] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is becoming more prevalent as more potent androgen receptor (AR) pathway inhibitors are applied to patients with metastatic tumors. However, there are limited cell and xenograft models currently available, hindering the investigation of signal pathways involved in regulating NEPC progression and the design of high throughput screening assays for inhibitors to treat NEPC patients. Here, we report an NEPC model, LnNE, that is derived from prostate adenocarcinoma cells and has global similarity in transcription and RNA splicing to tumors from NEPC patients. LnNE xenografts are castrate-resistant and highly aggressive. Its tumor take is ∼3-5 weeks and tumor doubling time is ∼2-3 weeks. LnNE expresses multiple neuroendocrine markers, preserves AR expression, but is PSA negative. Its neuroendocrine phenotype cannot be reversed by androgen treatment. LnNE cells grow as multi-cellular spheroids under 2-dimensional culture conditions similar to the NEPC cell line NCI-H660, but have higher proliferation rate and are easier to be transfected. LnNE cells can also adapt to 3-dimensional culture conditions in a 96-plate format, allowing high throughput screening assays. In summary, the LnNE model is useful to study the mechanisms of NEPC progression and to discover potential therapies for NEPC.
Collapse
Affiliation(s)
- Yinan Li
- Department of Urologic Sciences, Vancouver Prostate Centre, The University of British Columbia, Vancouver, Canada
| | - Ruiqi Chen
- Department of Urologic Sciences, Vancouver Prostate Centre, The University of British Columbia, Vancouver, Canada
| | - Mary Bowden
- Department of Urologic Sciences, Vancouver Prostate Centre, The University of British Columbia, Vancouver, Canada
| | - Fan Mo
- Department of Urologic Sciences, Vancouver Prostate Centre, The University of British Columbia, Vancouver, Canada
| | - Yen-Yi Lin
- Department of Urologic Sciences, Vancouver Prostate Centre, The University of British Columbia, Vancouver, Canada
| | - Martin Gleave
- Department of Urologic Sciences, Vancouver Prostate Centre, The University of British Columbia, Vancouver, Canada
| | - Colin Collins
- Department of Urologic Sciences, Vancouver Prostate Centre, The University of British Columbia, Vancouver, Canada
| | - Xuesen Dong
- Department of Urologic Sciences, Vancouver Prostate Centre, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
194
|
McLean DT, Strand DW, Ricke WA. Prostate cancer xenografts and hormone induced prostate carcinogenesis. Differentiation 2017; 97:23-32. [PMID: 28923776 DOI: 10.1016/j.diff.2017.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/17/2017] [Accepted: 08/31/2017] [Indexed: 12/11/2022]
Abstract
Despite the advancement of transgenic and gene knockout animal models in the prostate cancer research, there is still a need for utilizing xenograft models. Xenografts can be grown in multiple sites/organs within immunocompromised animals such as mice and rats. Although prostate xenografts have been derived from many species, human cells and tissues are the most commonly used due to their potential clinical significance. Xenograft models that progress from one state or stage to another are commonly used to address important scientific questions including malignant transformation, metastatic spread, and castration resistance. Utilization of xenografts are commonly being used to assess the biology and genetics of prostate cancer, as well as, for therapeutic benefit. In addition to models for the study of prostate cancer, xenografts are also utilized as a tool in precision medicine where patient derived xenografts (PDX) can be grown in multiple animals and assessed for therapeutic efficacy. The popularity of such xenograft models and PDXs have led to availability of these resources through public and commercial institutions. In this review, we describe both traditional and emerging models of prostate cancer and their potential uses. Further development of current models and introduction of new models will likely provide new insights and better understanding of prostatic carcinogenesis and progression.
Collapse
Affiliation(s)
- Dalton T McLean
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Urology, University of Wisconsin-Madison, Madison, WI, USA; Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Douglas W Strand
- Department of Urology, UT Southwestern Medical Institute, Dallas, TX, USA
| | - William A Ricke
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Urology, University of Wisconsin-Madison, Madison, WI, USA; George M. O'Brien Center of Research Excellence, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
195
|
Fornaro L, Vivaldi C, Lin D, Xue H, Falcone A, Wang Y, Crea F, Bootman MD. Prognostic relevance of a T-type calcium channels gene signature in solid tumours: A correlation ready for clinical validation. PLoS One 2017; 12:e0182818. [PMID: 28846697 PMCID: PMC5573204 DOI: 10.1371/journal.pone.0182818] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/25/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND T-type calcium channels (TTCCs) mediate calcium influx across the cell membrane. TTCCs regulate numerous physiological processes including cardiac pacemaking and neuronal activity. In addition, they have been implicated in the proliferation, migration and differentiation of tumour tissues. Although the signalling events downstream of TTCC-mediated calcium influx are not fully elucidated, it is clear that variations in the expression of TTCCs promote tumour formation and hinder response to treatment. METHODS We examined the expression of TTCC genes (all three subtypes; CACNA-1G, CACNA-1H and CACNA-1I) and their prognostic value in three major solid tumours (i.e. gastric, lung and ovarian cancers) via a publicly accessible database. RESULTS In gastric cancer, expression of all the CACNA genes was associated with overall survival (OS) among stage I-IV patients (all p<0.05). By combining the three potential biomarkers, a TTCC signature was developed, which retained a significant association with OS both in stage IV and stage I-III patients. In lung and ovarian cancer, association with OS was also significant when all tumour stages were considered, but was partly lost or inconclusive after splitting cases into localized and metastatic subsets. CONCLUSIONS Alterations in CACNA gene expression are linked to tumour prognosis. Gastric cancer represents the most promising setting for further evaluation.
Collapse
Affiliation(s)
- Lorenzo Fornaro
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Caterina Vivaldi
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Dong Lin
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Hui Xue
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Alfredo Falcone
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Yuzhuo Wang
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Francesco Crea
- School of Life, Health & Chemical Sciences, The Open University, Walton Hall, Milton Keynes, United Kingdom
| | - Martin D. Bootman
- School of Life, Health & Chemical Sciences, The Open University, Walton Hall, Milton Keynes, United Kingdom
| |
Collapse
|
196
|
Biology and evolution of poorly differentiated neuroendocrine tumors. Nat Med 2017; 23:1-10. [PMID: 28586335 DOI: 10.1038/nm.4341] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 04/13/2017] [Indexed: 12/11/2022]
Abstract
Neuroendocrine (NE) cancers are a diverse group of neoplasms typically diagnosed and treated on the basis of their site of origin. This Perspective focuses on advances in our understanding of the tumorigenesis and treatment of poorly differentiated neuroendocrine tumors. Recent evidence from sequencing indicates that, although neuroendocrine tumors can arise de novo, they can also develop as a result of lineage plasticity in response to pressure from targeted therapies. We discuss the shared genomic alterations of these tumors independently of their site of origin, and we explore potential therapeutic strategies on the basis of recent biological findings.
Collapse
|
197
|
Weeber F, Ooft SN, Dijkstra KK, Voest EE. Tumor Organoids as a Pre-clinical Cancer Model for Drug Discovery. Cell Chem Biol 2017; 24:1092-1100. [PMID: 28757181 DOI: 10.1016/j.chembiol.2017.06.012] [Citation(s) in RCA: 342] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/24/2017] [Accepted: 06/20/2017] [Indexed: 01/21/2023]
Abstract
Tumor organoids are 3D cultures of cancer cells that can be derived on an individual patient basis with a high success rate. This creates opportunities to build large biobanks with relevant patient material that can be used to perform drug screens and facilitate drug development. The high take rate will also allow side-by-side comparison to evaluate the translational potential of this model system to the patient. These tumors-in-a-dish can be established for a variety of tumor types including colorectal, pancreas, stomach, prostate, and breast cancers. In this review, we highlight what is currently known about tumor organoid culture, the advantages and challenges of the model system, compare it with other pre-clinical cancer models, and evaluate its value for drug development.
Collapse
Affiliation(s)
- Fleur Weeber
- Department of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, Noord-Holland 1066CX, the Netherlands
| | - Salo N Ooft
- Department of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, Noord-Holland 1066CX, the Netherlands
| | - Krijn K Dijkstra
- Department of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, Noord-Holland 1066CX, the Netherlands
| | - Emile E Voest
- Department of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, Noord-Holland 1066CX, the Netherlands; Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, Noord-Holland 1066CX, the Netherlands; Foundation Hubrecht Organoid Technology (HUB), Utrecht, Utrecht 3584CM, the Netherlands; Cancer Genomics.nl, Utrecht, Utrecht 3584 CG, the Netherlands.
| |
Collapse
|
198
|
[Neuroendocrine prostate cancer: Natural history, molecular features, therapeutic management and future directions]. Bull Cancer 2017; 104:789-799. [PMID: 28673439 DOI: 10.1016/j.bulcan.2017.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 11/20/2022]
Abstract
Neuroendocrine prostate cancer is a rare malignancy with a an adverse prognostic. Histologically, It can be pure (small cells or large cells neuroendocrine carcinoma) or mixed with a adenocarcinoma component. Rarely diagnosed de novo, neuroendocrine prostate cancer is generally associated with advanced stage disease resistant to castration. As such, this histological subtype could represent an aggressive evolution of prostatic adenocarcinoma, through the epithelio-neuroendocrine transdifferentiation mechanism (phenomenon of lineage plasticity). Nonetheless, neuroendocrine prostate cancer is a heterogeneous malignancy with multiple histopathological variants showing distinct clinical features. The broad variety of molecular analyses could help to understand the ontogeny of this histological subtype and its signaling pathways. This may also allow identifying diagnostic and prognostic biomarkers as well as potential molecular targets. However, treatment options are currently limited and consist only in platinium-based chemotherapy for advanced stage disease.
Collapse
|
199
|
Nabavi N, Saidy NRN, Venalainen E, Haegert A, Parolia A, Xue H, Wang Y, Wu R, Dong X, Collins C, Crea F, Wang Y. miR-100-5p inhibition induces apoptosis in dormant prostate cancer cells and prevents the emergence of castration-resistant prostate cancer. Sci Rep 2017; 7:4079. [PMID: 28642484 PMCID: PMC5481412 DOI: 10.1038/s41598-017-03731-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/11/2017] [Indexed: 12/16/2022] Open
Abstract
Carcinoma of the prostate is the most common cancer in men. Treatment of aggressive prostate cancer involves a regiment of radical prostectomy, radiation therapy, chemotherapy and hormonal therapy. Despite significant improvements in the last decade, the treatment of prostate cancer remains unsatisfactory, because a significant fraction of prostate cancers develop resistance to multiple treatments and become incurable. This prompts an urgent need to investigate the molecular mechanisms underlying the evolution of therapy-induced resistance of prostate cancer either in the form of castration-resistant prostate cancer (CRPC) or transdifferentiated neuroendocrine prostate cancer (NEPC). By analyzing micro-RNA expression profiles in a set of patient-derived prostate cancer xenograft tumor lines, we identified miR-100-5p as one of the key molecular components in the initiation and evolution of androgen ablation therapy resistance in prostate cancer. In vitro results showed that miR-100-5p is required for hormone-independent survival and proliferation of prostate cancer cells post androgen ablation. In Silico target predictions revealed that miR-100-5p target genes are involved in key aspects of cancer progression, and are associated with clinical outcome. Our results suggest that mir-100-5p is a possible therapeutic target involved in prostate cancer progression and relapse post androgen ablation therapy.
Collapse
Affiliation(s)
- Noushin Nabavi
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Nur Ridzwan Nur Saidy
- Honors Biotechnology Program, Department of Microbiology and Immunology, University of British Columbia, 2329 West Mall, Vancouver, BC, V6T 1Z4, Canada
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Erik Venalainen
- Honors Biotechnology Program, Department of Microbiology and Immunology, University of British Columbia, 2329 West Mall, Vancouver, BC, V6T 1Z4, Canada
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Anne Haegert
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Abhijit Parolia
- Honors Biotechnology Program, Department of Microbiology and Immunology, University of British Columbia, 2329 West Mall, Vancouver, BC, V6T 1Z4, Canada
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Hui Xue
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Yuwei Wang
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Rebecca Wu
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Xin Dong
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Colin Collins
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Francesco Crea
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada.
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK.
| | - Yuzhuo Wang
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada.
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
200
|
A germline FANCA alteration that is associated with increased sensitivity to DNA damaging agents. Cold Spring Harb Mol Case Stud 2017; 3:mcs.a001487. [PMID: 28864460 PMCID: PMC5593159 DOI: 10.1101/mcs.a001487] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 04/27/2017] [Indexed: 12/26/2022] Open
Abstract
Defects in genes involved in DNA damage repair (DDR) pathway are emerging as novel biomarkers and targets for new prostate cancer drug therapies. A previous report revealed an association between an exceptional response to cisplatin treatment and a somatic loss of heterozygosity (LOH) of FANCA in a patient with metastatic prostate cancer who also harbored a germline FANCA variant (S1088F). Although germline FANCA mutations are the most frequent alterations in patients with Fanconi anemia, germline alterations are less common in prostate cancer. We hypothesized that the germline S1088F FANCA variant in combination with FANCA LOH was deleterious for FANCA function and contributed to the patient's exceptional response to cisplatin. We show that although it properly localizes to the nucleus, the S1088F FANCA mutant protein disrupts the FANC protein complex resulting in increased sensitivity to DNA damaging agents. Because molecular stratification is emerging as a strategy for treating men with metastatic, castrate-resistant prostate cancer harboring specific DDR gene defects, our findings suggest that more biomarker studies are needed to better define clinically relevant germline and somatic alterations.
Collapse
|