151
|
Nakamura K, Ajijola OA, Aliotta E, Armour JA, Ardell JL, Shivkumar K. Pathological effects of chronic myocardial infarction on peripheral neurons mediating cardiac neurotransmission. Auton Neurosci 2016; 197:34-40. [PMID: 27209472 DOI: 10.1016/j.autneu.2016.05.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To determine whether chronic myocardial infarction (MI) induces structural and neurochemical changes in neurons within afferent and efferent ganglia mediating cardiac neurotransmission. METHODS Neuronal somata in i) right atrial (RAGP) and ii) ventral interventricular ganglionated plexi (VIVGP), iii) stellate ganglia (SG) and iv) T1-2 dorsal root ganglia (DRG) bilaterally derived from normal (n=8) vs. chronic MI (n=8) porcine subjects were studied. We examined whether the morphology and neuronal nitric oxide synthase (nNOS) expression in soma of RAGP, VIVGP, DRG and SG neurons were altered as a consequence of chronic MI. In DRG, we also examined immunoreactivity of calcitonin gene related peptide (CGRP), a marker of afferent neurons. Chronic MI increased neuronal size and nNOS immunoreactivity in VIVGP (but not RAGP), as well as in the SG bilaterally. Across these ganglia, the increase in neuronal size was more pronounced in nNOS immunoreactive neurons. In the DRG, chronic MI also caused neuronal enlargement, and increased CGRP immunoreactivity. Further, DRG neurons expressing both nNOS and CGRP were increased in MI animals compared to controls, and represented a shift from double negative neurons. CONCLUSIONS Chronic MI impacts diverse elements within the peripheral cardiac neuraxis. That chronic MI imposes such widespread, diverse remodeling of the peripheral cardiac neuraxis must be taken into consideration when contemplating neuronal regulation of the ischemic heart.
Collapse
Affiliation(s)
- Keijiro Nakamura
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, University of California, Los Angeles, CA, USA; Department of Radiology, University of California, Los Angeles, CA, USA
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, University of California, Los Angeles, CA, USA; Department of Radiology, University of California, Los Angeles, CA, USA.
| | - Eric Aliotta
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, University of California, Los Angeles, CA, USA; Department of Radiology, University of California, Los Angeles, CA, USA
| | - J Andrew Armour
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, University of California, Los Angeles, CA, USA; Department of Radiology, University of California, Los Angeles, CA, USA
| | - Jeffrey L Ardell
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, University of California, Los Angeles, CA, USA; Department of Radiology, University of California, Los Angeles, CA, USA
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, University of California, Los Angeles, CA, USA; Department of Radiology, University of California, Los Angeles, CA, USA
| |
Collapse
|
152
|
Rijnierse MT, Allaart CP, Knaapen P. Principles and techniques of imaging in identifying the substrate of ventricular arrhythmia. J Nucl Cardiol 2016; 23:218-34. [PMID: 26667814 PMCID: PMC4785206 DOI: 10.1007/s12350-015-0344-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 11/10/2015] [Indexed: 01/26/2023]
Abstract
Life-threatening ventricular arrhythmias (VA) are a major cause of death in patients with cardiomyopathy. To date, impaired left ventricular ejection fraction remains the primary criterion for implantable cardioverter-defibrillator therapy to prevent sudden cardiac death. In recent years, however, advanced imaging techniques such as nuclear imaging, cardiac magnetic resonance imaging, and computed tomography have allowed for a more detailed evaluation of the underlying substrate of VA. These imaging modalities have emerged as a promising approach to assess the risk of sudden cardiac death. In addition, non-invasive identification of the critical sites of arrhythmias may guide ablation therapy. Typical anatomical substrates that can be evaluated by multiple advanced imaging techniques include perfusion abnormalities, scar and its border zone, and sympathetic denervation. Understanding the principles and techniques of different imaging modalities is essential to gain more insight in their role in identifying the arrhythmic substrate. The current review describes the principles of currently available imaging techniques to identify the substrate of VA.
Collapse
Affiliation(s)
- Mischa T Rijnierse
- Department of Cardiology and Institute for Cardiovascular Research (IcaR-VU), VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Cornelis P Allaart
- Department of Cardiology and Institute for Cardiovascular Research (IcaR-VU), VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Paul Knaapen
- Department of Cardiology and Institute for Cardiovascular Research (IcaR-VU), VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
153
|
Effects of urate-lowering agents on arrhythmia vulnerability in post-infarcted rat hearts. J Pharmacol Sci 2016; 131:28-36. [PMID: 27129614 DOI: 10.1016/j.jphs.2016.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 12/20/2022] Open
Abstract
Hyperuricemia has been shown to be associated with ventricular arrhythmias. However, the mechanisms remained unknown. We assessed whether different urate-lowering agents can attenuate arrhythmias through lowering urate itself or inhibiting xanthenes oxidize (XO) activity in infarcted rats. Male Wistar rats after ligating coronary artery were randomized to either allopurinol, or febuxostat, chemically unrelated inhibitors of XO, benzbromarone or vehicle for 4 weeks. Post-infarction was associated with increased oxidant stress, as measured by myocardial superoxide, isoprostane, XO activity and dihydroethidine fluorescence staining. Measurement of myocardial norepinephrine levels revealed a significant elevation in vehicle-treated infarcted rats compared with sham-operated rats. Sympathetic hyperinnervation was blunted after administering both XO inhibitors, assessed by immunofluorescent analysis, Western blotting and real-time quantitative RT-PCR. Besides, the XO inhibitors-attenuated nerve growth factor levels were reversed in the presence of peroxynitrite generator. Arrhythmic scores in the XO inhibitors-treated infarcted rats were significantly lower than that in vehicle. For similar levels of urate lowering, the uricosuric agent benzbromarone had no beneficial effects on oxidative stress, sympathetic hyperinnervation or arrhythmia vulnerability. Chronic use of XO inhibitors, but not uricosuric agent, down-regulated sympathetic innervation probably through a superoxide-dependent pathway and plays a role in the beneficial effect on arrhythmogenic response.
Collapse
|
154
|
Xu Y, Cheng K, Zhu W. Swallowing-induced atrial tachycardia: case report. Clin Case Rep 2016; 4:123-5. [PMID: 26862405 PMCID: PMC4736516 DOI: 10.1002/ccr3.466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/04/2015] [Accepted: 10/29/2015] [Indexed: 11/24/2022] Open
Abstract
A 53‐year‐old man presented with heart palpitations while swallowing. Electrophysiologic study (EPS) and immunohistochemical results of his esophageal leiomyoma suggested that swallowing‐induced atrial tachycardia is related with neural reflex. S100‐immunopositive nerve fibers are demonstrated sympathetic nerves which possibly explain the mechanism. Metoprolol tartrate tablets are effective in our patient.
Collapse
Affiliation(s)
- Ye Xu
- Department of Cardiology Shanghai Institute of Cardiovascular Disease Zhongshan Hospital Fudan University Shanghai China
| | - Kuan Cheng
- Department of Cardiology Shanghai Institute of Cardiovascular Disease Zhongshan Hospital Fudan University Shanghai China
| | - Wenqing Zhu
- Department of Cardiology Shanghai Institute of Cardiovascular Disease Zhongshan Hospital Fudan University Shanghai China
| |
Collapse
|
155
|
|
156
|
Sitagliptin decreases ventricular arrhythmias by attenuated glucose-dependent insulinotropic polypeptide (GIP)-dependent resistin signalling in infarcted rats. Biosci Rep 2016; 36:BSR20150139. [PMID: 26811539 PMCID: PMC4793300 DOI: 10.1042/bsr20150139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 01/19/2016] [Indexed: 11/17/2022] Open
Abstract
Myocardial infarction (MI) was associated with insulin resistance, in which resistin acts as a critical mediator. We aimed to determine whether sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, can attenuate arrhythmias by regulating resistin-dependent nerve growth factor (NGF) expression in postinfarcted rats. Normoglycaemic male Wistar rats after ligating coronary artery were randomized to either vehicle or sitagliptin for 4 weeks starting 24 h after operation. Post-infarction was associated with increased myocardial noradrenaline [norepinephrine (NE)] levels and sympathetic hyperinnervation. Compared with vehicle, sympathetic innervation was blunted after administering sitagliptin, as assessed by immunofluorescent analysis of tyrosine hydroxylase, growth-associated factor 43 and neurofilament and western blotting and real-time quantitative RT-PCR of NGF. Arrhythmic scores in the sitagliptin-treated infarcted rats were significantly lower than those in vehicle. Furthermore, sitagliptin was associated with reduced resistin expression and increased Akt activity. Ex vivo studies showed that glucose-dependent insulinotropic polypeptide (GIP) infusion, but not glucagon-like peptide-1 (GLP-1), produced similar reduction in resistin levels to sitagliptin in postinfarcted rats. Furthermore, the attenuated effects of sitagliptin on NGF levels can be reversed by wortmannin (a phosphatidylinositol 3-kinase antagonist) and exogenous resistin infusion. Sitagliptin protects ventricular arrhythmias by attenuating sympathetic innervation in the non-diabetic infarcted rats. Sitagliptin attenuated resistin expression via the GIP-dependent pathway, which inhibited sympathetic innervation through a signalling pathway involving phosphatidylinositol 3-kinase (PI3K) and Akt protein.
Collapse
|
157
|
Ripplinger CM, Noujaim SF, Linz D. The nervous heart. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 120:199-209. [PMID: 26780507 DOI: 10.1016/j.pbiomolbio.2015.12.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/29/2015] [Accepted: 12/31/2015] [Indexed: 12/23/2022]
Abstract
Many cardiac electrophysiological abnormalities are accompanied by autonomic nervous system dysfunction. Here, we review mechanisms by which the cardiac nervous system controls normal and abnormal excitability and may contribute to atrial and ventricular tachyarrhythmias. Moreover, we explore the potential antiarrhythmic and/or arrhythmogenic effects of modulating the autonomic nervous system by several strategies, including ganglionated plexi ablation, vagal and spinal cord stimulations, and renal sympathetic denervation as therapies for atrial and ventricular arrhythmias.
Collapse
Affiliation(s)
- Crystal M Ripplinger
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA.
| | - Sami F Noujaim
- Molecular Pharmacology and Physiology, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA.
| | - Dominik Linz
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421 Homburg, Saar, Germany.
| |
Collapse
|
158
|
Cardiac Sympathetic Nerve Sprouting and Susceptibility to Ventricular Arrhythmias after Myocardial Infarction. Cardiol Res Pract 2015; 2015:698368. [PMID: 26793403 PMCID: PMC4697091 DOI: 10.1155/2015/698368] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/02/2015] [Indexed: 12/04/2022] Open
Abstract
Ventricular arrhythmogenesis is thought to be a common cause of sudden cardiac death following myocardial infarction (MI). Nerve remodeling as a result of MI is known to be an important genesis of life-threatening arrhythmias. It is hypothesized that neural modulation might serve as a therapeutic option of malignant arrhythmias. In fact, left stellectomy or β-blocker therapy is shown to be effective in the prevention of ventricular tachyarrhythmias (VT), ventricular fibrillation (VF), and sudden cardiac death (SCD) after MI both in patients and in animal models. Results from decades of research already evidenced a positive relationship between abnormal nerve density and ventricular arrhythmias after MI. In this review, we summarized the molecular mechanisms involved in cardiac sympathetic rejuvenation and mechanisms related to sympathetic hyperinnervation and arrhythmogenesis after MI and analyzed the potential therapeutic implications of nerve sprouting modification for ventricular arrhythmias and SCD control.
Collapse
|
159
|
Rajendran PS, Nakamura K, Ajijola OA, Vaseghi M, Armour JA, Ardell JL, Shivkumar K. Myocardial infarction induces structural and functional remodelling of the intrinsic cardiac nervous system. J Physiol 2015; 594:321-41. [PMID: 26572244 DOI: 10.1113/jp271165] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 11/12/2015] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Intrinsic cardiac (IC) neurons undergo differential morphological and phenotypic remodelling that reflects the site of myocardial infarction (MI). Afferent neural signals from the infarcted region to IC neurons are attenuated, while those from border and remote regions are preserved post-MI, giving rise to a 'neural sensory border zone'. Convergent IC local circuit (processing) neurons have enhanced transduction capacity following MI. Functional network connectivity within the intrinsic cardiac nervous system is reduced post-MI. MI reduces the response and alters the characteristics of IC neurons to ventricular pacing. ABSTRACT Autonomic dysregulation following myocardial infarction (MI) is an important pathogenic event. The intrinsic cardiac nervous system (ICNS) is a neural network located on the heart that is critically involved in autonomic regulation. The aims of this study were to characterize structural and functional remodelling of the ICNS post-MI in a porcine model (control (n = 16) vs. healed anteroapical MI (n = 16)). In vivo microelectrode recordings of basal activity, as well as responses to afferent and efferent stimuli, were recorded from intrinsic cardiac neurons. From control 118 neurons and from MI animals 102 neurons were functionally classified as afferent, efferent, or convergent (receiving both afferent and efferent inputs). In control and MI, convergent neurons represented the largest subpopulation (47% and 48%, respectively) and had enhanced transduction capacity following MI. Efferent inputs to neurons were maintained post-MI. Afferent inputs were attenuated from the infarcted region (19% in control vs. 7% in MI; P = 0.03), creating a 'neural sensory border zone', or heterogeneity in afferent information. MI reduced transduction of changes in preload (54% in control vs. 41% in MI; P = 0.05). The overall functional network connectivity, or the ability of neurons to respond to independent pairs of stimuli, within the ICNS was reduced following MI. The neuronal response was differentially decreased to ventricular vs. atrial pacing post-MI (63% in control vs. 44% in MI to ventricular pacing; P < 0.01). MI induced morphological and phenotypic changes within the ICNS. The alteration of afferent neural signals, and remodelling of convergent neurons, represents a 'neural signature' of ischaemic heart disease.
Collapse
Affiliation(s)
- Pradeep S Rajendran
- University of California - Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, USA.,Neurocardiology Research Center of Excellence, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.,Molecular, Cellular & Integrative Physiology Program, UCLA, Los Angeles, CA, USA
| | - Keijiro Nakamura
- University of California - Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, USA.,Neurocardiology Research Center of Excellence, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Olujimi A Ajijola
- University of California - Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, USA.,Neurocardiology Research Center of Excellence, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Marmar Vaseghi
- University of California - Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, USA.,Neurocardiology Research Center of Excellence, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.,Molecular, Cellular & Integrative Physiology Program, UCLA, Los Angeles, CA, USA
| | - J Andrew Armour
- University of California - Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, USA.,Neurocardiology Research Center of Excellence, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Jeffrey L Ardell
- University of California - Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, USA.,Neurocardiology Research Center of Excellence, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.,Molecular, Cellular & Integrative Physiology Program, UCLA, Los Angeles, CA, USA
| | - Kalyanam Shivkumar
- University of California - Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, USA.,Neurocardiology Research Center of Excellence, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.,Molecular, Cellular & Integrative Physiology Program, UCLA, Los Angeles, CA, USA
| |
Collapse
|
160
|
Zhang L, Lu Y, Sun J, Zhou X, Tang B. Subthreshold vagal stimulation suppresses ventricular arrhythmia and inflammatory response in a canine model of acute cardiac ischaemia and reperfusion. Exp Physiol 2015; 101:41-9. [PMID: 26553757 DOI: 10.1113/ep085518] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/05/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Ling Zhang
- Department of Cardiology, First Affiliated Hospital; Xinjiang Medical University; Urumqi 830054 China
| | - Yanmei Lu
- Department of Cardiology, First Affiliated Hospital; Xinjiang Medical University; Urumqi 830054 China
| | - Juan Sun
- Department of Cardiology, First Affiliated Hospital; Xinjiang Medical University; Urumqi 830054 China
| | - Xianhui Zhou
- Department of Cardiology, First Affiliated Hospital; Xinjiang Medical University; Urumqi 830054 China
| | - Baopeng Tang
- Department of Cardiology, First Affiliated Hospital; Xinjiang Medical University; Urumqi 830054 China
| |
Collapse
|
161
|
Watanabe Y, Arakawa T, Kageyama I, Aizawa Y, Kumaki K, Miki A, Terashima T. Gross anatomical study on the human myocardial bridges with special reference to the spatial relationship among coronary arteries, cardiac veins, and autonomic nerves. Clin Anat 2015; 29:333-41. [DOI: 10.1002/ca.22662] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/17/2015] [Accepted: 10/20/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Yuko Watanabe
- Division of Anatomy and Neurobiology; Department of Physiology and Cell Biology; Kobe University Graduate School of Medicine; Kobe Japan
- Department of Rehabilitation Sciences; Kobe University Graduate School of Health Sciences; Kobe Japan
| | - Takamitsu Arakawa
- Department of Rehabilitation Sciences; Kobe University Graduate School of Health Sciences; Kobe Japan
| | - Ikuo Kageyama
- Department of Anatomy; School of Life Dentistry at Niigata, Nippon Dental University; Niigata Japan
| | - Yukio Aizawa
- Department of Anatomy; School of Life Dentistry at Niigata, Nippon Dental University; Niigata Japan
| | - Katsuji Kumaki
- Department of Physical Therapy; Niigata Graduate School of Rehabilitation; Niigata Japan
| | - Akinori Miki
- Department of Rehabilitation Sciences; Kobe University Graduate School of Health Sciences; Kobe Japan
| | - Toshio Terashima
- Division of Anatomy and Neurobiology; Department of Physiology and Cell Biology; Kobe University Graduate School of Medicine; Kobe Japan
| |
Collapse
|
162
|
Yang LC, Zhang PP, Chen XM, Li CY, Sun J, Hou JW, Chen RH, Wang YP, Li YG. Semaphorin 3a transfection into the left stellate ganglion reduces susceptibility to ventricular arrhythmias after myocardial infarction in rats. Europace 2015; 18:1886-1896. [PMID: 26541708 DOI: 10.1093/europace/euv276] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/06/2015] [Indexed: 02/01/2023] Open
Abstract
AIMS Myocardial infarction (MI) induces neural remodelling of the left stellate ganglion (LSG), which may contribute to ischaemia-induced arrhythmias. The neural chemorepellent Semaphorin 3a (Sema3a) has been identified as a negative regulator of sympathetic innervation in the LSG and heart. We previously reported that overexpression of Sema3a in the border zone could reduce the arrhythmogenic effects of cardiac sympathetic hyperinnervation post-MI. This study investigated whether Sema3a overexpression within the LSG confers an antiarrhythmic effect after MI through decreasing extra- and intra-cardiac neural remodelling. METHODS AND RESULTS Sprague-Dawley rats were subjected to MI, and randomly allocated to intra-LSG microinjection of either phosphate-buffered saline (PBS), adenovirus encoding green fluorescent protein (AdGFP), or adenovirus encoding Sema3a (AdSema3a). Sham-operated rats served as controls. Two weeks after infarction, MI-induced nerve sprouting and sympathetic hyperinnervation in the LSG and myocardium were significantly attenuated by intra-LSG injection with AdSema3a, as assessed by immunohistochemistry and western blot analysis of growth-associated protein 43 and tyrosine hydroxylase. This was also confirmed by sympathetic nerve function changes assessed by cardiac norepinephrine content. Additionally, intra-LSG injection with AdSema3a alleviated MI-induced accumulation of dephosphorylated connexin 43 in the infarct border zone. Furthermore, Sema3a overexpression in the LSG reduced the incidence of inducible ventricular tachyarrhythmia by programmed electrical stimulation post-MI, and arrhythmia scores were significantly lower in the AdSema3a group than in the PBS and AdGFP groups. CONCLUSION Semaphorin 3a overexpression in the LSG ameliorates the inducibility of ventricular arrhythmias after MI, mainly through attenuation of neural remodelling within the cardiac-neuraxis.
Collapse
Affiliation(s)
- Ling-Chao Yang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Peng-Pai Zhang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Xiao-Meng Chen
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Chang-Yi Li
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Jian Sun
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Jian-Wen Hou
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Ren-Hua Chen
- Department of Cardiology, Ganzhou People Hospital, Ganzhou Hospital Affiliated to Nanchang University, Ganzhou, Jiangxi 341000, China
| | - Yue-Peng Wang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Yi-Gang Li
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| |
Collapse
|
163
|
Park JH, Hong SY, Wi J, Lee DL, Joung B, Lee MH, Pak HN. Catheter Ablation of Atrial Fibrillation Raises the Plasma Level of NGF-β Which Is Associated with Sympathetic Nerve Activity. Yonsei Med J 2015; 56:1530-7. [PMID: 26446633 PMCID: PMC4630039 DOI: 10.3349/ymj.2015.56.6.1530] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/23/2014] [Accepted: 02/02/2015] [Indexed: 11/27/2022] Open
Abstract
PURPOSE The expression of nerve growth factor-β (NGF-β) is related to cardiac nerve sprouting and sympathetic hyper innervation. We investigated the changes of plasma levels of NGF-β and the relationship to follow-up heart rate variability (HRV) after radiofrequency catheter ablation (RFCA) of atrial fibrillation (AF). MATERIALS AND METHODS This study included 147 patients with AF (117 men, 55.8±11.5 years, 106 paroxysmal AF) who underwent RFCA. The plasma levels of NGF-β were quantified using double sandwich enzyme linked immunosorbent assay method before (NGF-βpre) and 1 hour after RFCA (NGF-βpost-1 hr). HRV at pre-procedure (HRVpre), 3 months (HRVpost-3 mo), and 1 year post-procedure (HRVpost-1 yr) were analyzed and compared with plasma levels of NGF-β. RESULTS 1) The plasma levels of NGF-β significantly increased after RFCA (20.05±11.09 pg/mL vs. 29.60±19.43 pg/mL, p<0.001). The patients who did not show increased NGF-βpost-1 hr were older (p=0.023) and had greater left atrial volume index (p=0.028) than those with increased NGF-βpost-1 hr. 2) In patients with NGF-βpre>18 pg/mL, low frequency components (LF)/high-frequency components (HF) (p=0.003) and the number of atrial premature contractions (APCs, p=0.045) in HRVpost-3 mo were significantly higher than those with ≤18 pg/mL. 3) The LF/HF at HRVpost-3 mo was linearly associated with the NGF-βpre (B=4.240, 95% CI 1.114-7.336, p=0.008) and the NGF-βpost-1 hr (B=7.617, 95% CI 2.106-13.127, p=0.007). 4) Both NGF-βpre (OR=1.159, 95% CI 1.045-1.286, p=0.005) and NGF-βpost-1 hr (OR=1.098, 95% CI 1.030-1.170, p=0.004) were independent predictors for the increase of LF/HF at HRVpost-3 mo. CONCLUSION AF catheter ablation increases plasma level of NGF-β, and high plasma levels of NGF-βpre was associated with higher sympathetic nerve activity and higher frequency of APCs in HRVpost-3 mo.
Collapse
Affiliation(s)
- Jae Hyung Park
- Department of Cardiology, Yonsei University Health System, Seoul, Korea
| | - Sung Yu Hong
- Department of Cardiology, Yonsei University Health System, Seoul, Korea.
| | - Jin Wi
- Department of Cardiology, Yonsei University Health System, Seoul, Korea
| | - Da Lyung Lee
- Department of Cardiology, Yonsei University Health System, Seoul, Korea
| | - Boyoung Joung
- Department of Cardiology, Yonsei University Health System, Seoul, Korea
| | - Moon Hyoung Lee
- Department of Cardiology, Yonsei University Health System, Seoul, Korea
| | - Hui-Nam Pak
- Department of Cardiology, Yonsei University Health System, Seoul, Korea.
| |
Collapse
|
164
|
Krul SPJ, Berger WR, Veldkamp MW, Driessen AHG, Wilde AAM, Deneke T, de Bakker JMT, Coronel R, de Groot JR. Treatment of Atrial and Ventricular Arrhythmias Through Autonomic Modulation. JACC Clin Electrophysiol 2015; 1:496-508. [PMID: 29759403 DOI: 10.1016/j.jacep.2015.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 08/19/2015] [Accepted: 09/24/2015] [Indexed: 11/26/2022]
Abstract
This paper reviews the contribution of autonomic nervous system (ANS) modulation in the treatment of arrhythmias. Both the atria and ventricles are innervated by an extensive network of nerve fibers of parasympathetic and sympathetic origin. Both the parasympathetic and sympathetic nervous system exert arrhythmogenic electrophysiological effects on atrial and pulmonary vein myocardium, while in the ventricle the sympathetic nervous system plays a more dominant role in arrhythmogenesis. Identification of ANS activity is possible with nuclear imaging. This technique may provide further insight in mechanisms and treatment targets. Additionally, the myocardial effects of the intrinsic ANS can be identified through stimulation of the ganglionic plexuses. These can be ablated for the treatment of atrial fibrillation. New (non-) invasive treatment options targeting the extrinsic cardiac ANS, such as low-level tragus stimulation and renal denervation, provide interesting future treatment possibilities both for atrial fibrillation and ventricular arrhythmias. However, the first randomized trials have yet to be performed. Future clinical studies on modifying the ANS may not only improve the outcome of ablation therapy but may also advance our understanding of the manner in which the ANS interacts with the myocardium to modify arrhythmogenic triggers and substrate.
Collapse
Affiliation(s)
- Sébastien P J Krul
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Wouter R Berger
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Marieke W Veldkamp
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Antoine H G Driessen
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Arthur A M Wilde
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, the Netherlands; Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, Kingdom of Saudi Arabia
| | - Thomas Deneke
- Heart Center Bad Neustadt, Bad Neustadt a.d. Saale, Germany
| | - Jacques M T de Bakker
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, the Netherlands; Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - Ruben Coronel
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, the Netherlands; L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France
| | - Joris R de Groot
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
165
|
Zhou Q, Zhou X, TuEr-Hong ZL, Wang H, Yin T, Li Y, Zhang L, Lu Y, Xing Q, Zhang J, Yang Y, Tang B. Renal sympathetic denervation suppresses atrial fibrillation induced by acute atrial ischemia/infarction through inhibition of cardiac sympathetic activity. Int J Cardiol 2015; 203:187-95. [PMID: 26512836 DOI: 10.1016/j.ijcard.2015.10.120] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/13/2015] [Accepted: 10/16/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVE This study aims to explore the effects of renal sympathetic denervation (RSD) on atrial fibrillation (AF) inducibility and sympathetic activity induced by acute atrial ischemia/infarction. METHODS Acute ischemia/infarction was induced in 12 beagle dogs by ligating coronary arteries that supply the atria. Six dogs in the sham-RSD group did not undergo RSD, and six dogs without coronary artery ligation served as controls. AF induction rate, sympathetic discharge, catecholamine concentration and densities of tyrosine hydroxylase-positive nerves were measured. RESULTS Acute atrial ischemia/infarction resulted in a significant increase of AF induction rate, which was decreased by RSD compared to controls (P<0.05). The root-mean-square peak value, peak area and number of sympathetic discharges were significantly augmented by atrial ischemia relative to the baseline and control (P<0.05). The number of sympathetic discharges was significantly reduced in the RSD group, compared to the control and sham-RSD groups (P<0.05). Norepinephrine and epinephrine concentrations in the atria, ventricle and kidney were elevated by atrial ischemia/infarction, but were reduced by RSD (P<0.05). CONCLUSIONS Sympathetic hyperactivity was associated with pacing-induced AF after acute atrial ischemia/infarction. RSD has the potential to reduce the incidence of new-onset AF after acute atrial ischemia/infarction. The inhibition of cardiac sympathetic activity by RSD may be one of the major underlying mechanisms for the marked reduction of AF inducibility.
Collapse
Affiliation(s)
- Qina Zhou
- Clinical Medicine, Postdoctoral Scientific Research Station, Xinjiang Medical University, Urumqi, China
| | - Xianhui Zhou
- Heart Center, Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - ZuKe-la TuEr-Hong
- Heart Center, Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hongli Wang
- Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Tingting Yin
- Heart Center, Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yaodong Li
- Heart Center, Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ling Zhang
- Heart Center, Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yanmei Lu
- Heart Center, Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Qiang Xing
- Heart Center, Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jianghua Zhang
- Heart Center, Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yining Yang
- Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| | - Baopeng Tang
- Heart Center, Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
166
|
Novel Interventional Therapies to Modulate the Autonomic Tone in Heart Failure. JACC-HEART FAILURE 2015; 3:786-802. [DOI: 10.1016/j.jchf.2015.05.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/17/2015] [Accepted: 05/01/2015] [Indexed: 01/09/2023]
|
167
|
Lee TM, Chen WT, Chang NC. Dipeptidyl peptidase-4 inhibition attenuates arrhythmias via a protein kinase A-dependent pathway in infarcted hearts. Circ J 2015; 79:2461-70. [PMID: 26399925 DOI: 10.1253/circj.cj-15-0515] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The effect of dipeptidyl peptidase-4 (DPP-4) inhibitors on arrhythmias remains unknown. The aim of this study was to investigate whether sitagliptin attenuates arrhythmias through inhibiting nerve growth factor (NGF) expression, focusing on cyclic adenosine monophosphate (cAMP) downstream signaling such as protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac). METHODS AND RESULTS Male Wistar rats were randomized to either vehicle or sitagliptin for 4 weeks starting 24 h after ligating the coronary artery. Post-infarction was associated with increased oxidative stress. Measurement of myocardial norepinephrine levels revealed a significant elevation in vehicle-treated rats compared with sham. Compared with the vehicle, infarcted rats treated with sitagliptin had significantly increased cAMP levels, decreased DPP-4 activity, oxidative stress, NGF levels and immunofluorescence-stained sympathetic hyperinnervation. Arrhythmic scores were significantly lower in the sitagliptin-treated infarcted rats than in vehicle. Ex vivo studies showed that sitagliptin increased the phosphorylated cAMP response element-binding protein (CREB), which can be reversed by H-89 (a PKA inhibitor), not brefeldin A (an Epac inhibitor).Heme oxygenase-1(HO-1) expression was increased by a PKA agonist but not by an Epac agonist.HO-1expression was attenuated in KG-501 (a CREB inhibitor)-treated infarcted rats in the presence of a PKA agonist. CONCLUSIONS Sitagliptin protects ventricular arrhythmias by attenuating NGF-induced sympathetic innervation via upregulation ofHO-1expression in a cAMP/PKA/CREB-dependent antioxidant pathway in non-diabetic infarcted rats.
Collapse
Affiliation(s)
- Tsung-Ming Lee
- Department of Medicine, Cardiology Section, China Medical University-An Nan Hospital
| | | | | |
Collapse
|
168
|
Yuan Y, Jiang Z, He Y, Ding FB, Ding SA, Yang Y, Mei J. Continuous vagal nerve stimulation affects atrial neural remodeling and reduces atrial fibrillation inducibility in rabbits. Cardiovasc Pathol 2015; 24:395-8. [PMID: 26365807 DOI: 10.1016/j.carpath.2015.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 08/17/2015] [Accepted: 08/17/2015] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The effects of continuous vagal nerve stimulation (VNS) on atrial neural remodeling during atrial fibrillation (AF) remain unclear. OBJECTIVE To test the hypothesis that VNS affects atrial neural remodeling and reduces AF inducibility. METHODS Twenty rabbits were randomly divided into two groups: rapid atrial pacing (RAP) group and RAP with VNS group. AF inducibility studies and atrial histologic analyses were performed after 4 weeks. RESULTS Five rabbits of RAP group (5/10) in the RAP group developed sustained AF. None of rabbits in RAP with VNS group had developed AF. The incidence of sustained AF in VNS group was significant lower than that in rapid pacing group (P<.01). Treatment with VNS resulted in a significant reduction in atrial neural remodeling and AF duration (P<.01). CONCLUSIONS Atrial neural remodeling plays an important role in the initiation and maintenance of AF. Modulating autonomic nerve function with VNS can contribute to AF control.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Zhaolei Jiang
- Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yi He
- Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Fang-Bao Ding
- Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Shi-Ao Ding
- Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yang Yang
- Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Ju Mei
- Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
169
|
Affiliation(s)
- Stanley F Fernandez
- From the Departments of Medicine, Biomedical Engineering, Physiology and Biophysics, VA WNY Health Care System, and Clinical and Translational Research Center, University at Buffalo, NY
| | - John M Canty
- From the Departments of Medicine, Biomedical Engineering, Physiology and Biophysics, VA WNY Health Care System, and Clinical and Translational Research Center, University at Buffalo, NY.
| |
Collapse
|
170
|
Abstract
Optimal cardiac function depends on proper timing of excitation and contraction in various regions of the heart, as well as on appropriate heart rate. This is accomplished via specialized electrical properties of various components of the system, including the sinoatrial node, atria, atrioventricular node, His-Purkinje system, and ventricles. Here we review the major regionally determined electrical properties of these cardiac regions and present the available data regarding the molecular and ionic bases of regional cardiac function and dysfunction. Understanding these differences is of fundamental importance for the investigation of arrhythmia mechanisms and pharmacotherapy.
Collapse
Affiliation(s)
- Daniel C Bartos
- Department of Pharmacology, University of California Davis, Davis, California, USA
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, California, USA
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California Davis, Davis, California, USA
| |
Collapse
|
171
|
Dalla Vecchia L, De Maria B, Marinou K, Sideri R, Lucini A, Porta A, Mora G. Cardiovascular neural regulation is impaired in amyotrophic lateral sclerosis patients. A study by spectral and complexity analysis of cardiovascular oscillations. Physiol Meas 2015; 36:659-70. [PMID: 25798998 DOI: 10.1088/0967-3334/36/4/659] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Although the clinical hallmark of amyotrophic lateral sclerosis (ALS) is a progressive motor weakness, different combinations of autonomic nervous system (ANS) dysfunction have been described. No clear correlation between ANS abnormalities and ALS clinical characteristics has been found so far. We investigated the cardiovascular neural regulation in ALS with a non-invasive methodology, using spectral and complexity analysis of heart rate variability (HRV) and systolic arterial pressure (SAP) variability. In all patients, we found low RR variance and an altered response to orthostasis, witnessed by the indices derived from both spectral and complexity analysis of HRV and SAP variability. Besides, we identified two groups with distinct autonomic profiles at rest, those with higher, and those with lower cardiac sympathetic activity. In both groups the cardiovascular response to tilting was impaired. Our study outlined that ANS is invariably impaired in ALS, and patients can present with different baseline patterns. Our findings suggest important pathophysiological, clinical and prognostic insights. The presence of different autonomic profiles at rest supports the new concept of ALS as a multisystem disorder with phenotypic heterogeneity. Our results are also relevant in clinical practice. They can help to improve patients' management, and to identify prognostic factors.
Collapse
Affiliation(s)
- Laura Dalla Vecchia
- Istituto Scientifico di Milano, IRCCS Fondazione Salvatore Maugeri, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
172
|
Abstract
Semaphorins were originally identified as neuronal guidance molecules mediating their attractive or repulsive signals by forming complexes with plexin and neuropilin receptors. Subsequent research has identified functions for semaphorin signaling in many organs and tissues outside of the nervous system. Vital roles for semaphorin signaling in vascular patterning and cardiac morphogenesis have been demonstrated, and impaired semaphorin signaling has been associated with various human cardiovascular disorders, including persistent truncus arteriosus, sinus bradycardia and anomalous pulmonary venous connections. Here, we review the functions of semaphorins and their receptors in cardiovascular development and disease and highlight important recent discoveries in the field.
Collapse
Affiliation(s)
- Jonathan A Epstein
- Department of Cell and Developmental Biology, Cardiovascular Institute and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA.
| | - Haig Aghajanian
- Department of Cell and Developmental Biology, Cardiovascular Institute and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Manvendra K Singh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School Singapore, and the National Heart Research Institute Singapore, National Heart Center Singapore, Singapore.
| |
Collapse
|
173
|
Gardner RT, Wang L, Lang BT, Cregg JM, Dunbar CL, Woodward WR, Silver J, Ripplinger CM, Habecker BA. Targeting protein tyrosine phosphatase σ after myocardial infarction restores cardiac sympathetic innervation and prevents arrhythmias. Nat Commun 2015; 6:6235. [PMID: 25639594 PMCID: PMC4315356 DOI: 10.1038/ncomms7235] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/07/2015] [Indexed: 11/24/2022] Open
Abstract
Millions of people suffer a myocardial infarction (MI) every year, and those who survive have increased risk of arrhythmias and sudden cardiac death. Recent clinical studies have identified sympathetic denervation as a predictor of increased arrhythmia susceptibility. Chondroitin sulfate proteoglycans present in the cardiac scar after MI prevent sympathetic reinnervation by binding the neuronal protein tyrosine phosphatase receptor σ (PTPσ). Here we show that the absence of PTPσ, or pharmacologic modulation of PTPσ by the novel intracellular sigma peptide (ISP) beginning 3 days after injury, restores sympathetic innervation to the scar and markedly reduces arrhythmia susceptibility. Using optical mapping we observe increased dispersion of action potential duration, supersensitivity to β-adrenergic receptor stimulation and Ca(2+) mishandling following MI. Sympathetic reinnervation prevents these changes and renders hearts remarkably resistant to induced arrhythmias.
Collapse
Affiliation(s)
- R. T. Gardner
- Department of Physiology and Pharmacology, Neuroscience Graduate Program, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - L. Wang
- Department of Pharmacology, University of California, Davis, California 95616, USA
| | - B. T. Lang
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - J. M. Cregg
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - C. L. Dunbar
- Department of Physiology and Pharmacology, Neuroscience Graduate Program, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - W. R. Woodward
- Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - J. Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - C. M. Ripplinger
- Department of Pharmacology, University of California, Davis, California 95616, USA
| | - B. A. Habecker
- Department of Physiology and Pharmacology, Neuroscience Graduate Program, Oregon Health and Science University, Portland, Oregon 97239, USA
| |
Collapse
|
174
|
Lautamaki R, Sasano T, Higuchi T, Nekolla SG, Lardo AC, Holt DP, Dannals RF, Abraham MR, Bengel FM. Multiparametric molecular imaging provides mechanistic insights into sympathetic innervation impairment in the viable infarct border zone. J Nucl Med 2015; 56:457-63. [PMID: 25635137 DOI: 10.2967/jnumed.114.149971] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Impaired catecholamine handling in the viable infarct border zone may play an important role in ventricular remodeling and lethal arrhythmia. We sought to get further biologic insights into cardiac sympathetic neuronal pathology after myocardial infarction, using multiple tomographic imaging techniques. METHODS In a porcine model of myocardial infarction (n = 13), PET and MR imaging were performed after 4-6 wk and integrated with electrophysiologic testing and postmortem histology. RESULTS PET with the physiologic neurotransmitter (11)C-epinephrine, which is sensitive to metabolic degradation unless it is stored and protected in neuronal vesicles, identified a defect exceeding the perfusion defect (defined by (13)N-ammonia; defect size in all animals, 42 ± 12 vs. 35% ± 12% of left ventricle, P < 0.001). In a subgroup of 7 animals, defect of the metabolically resistant catecholamine (11)C-hydroxyephedrine was smaller than epinephrine (41 ± 8 vs. 47% ± 6% of left ventricle, P = 0.004), whereas defect of a third catecholamine, (11)C-phenylephrine, which is sensitive to metabolic degradation, was similar to epinephrine (48 ± 6 vs. 47% ± 6%, P = 0.011 vs. perfusion defect). Histology confirmed the presence of nerve fibers in the infarct border zone. Tagged MR imaging identified impaired peak circumferential wall strain and wall thickening in myocardial segments with epinephrine/perfusion mismatch (n = 6). Confirmatory of prior work, inducible ventricular tachycardia was associated with a larger epinephrine/perfusion mismatch (n = 11). CONCLUSION In the viable infarct border zone, neuronal vesicular catecholamine storage and protection from metabolic degradation are more severely altered than catecholamine uptake. This alteration may reflect an intermediate state between normal innervation and complete denervation in advanced disease.
Collapse
Affiliation(s)
- Riikka Lautamaki
- Division of Nuclear Medicine, Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| | - Tetsuo Sasano
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Takahiro Higuchi
- Division of Nuclear Medicine, Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| | - Stephan G Nekolla
- Nuklearmedizinische Klinik, Technische University of Munich, Munich, Germany; and
| | - Albert C Lardo
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Daniel P Holt
- Division of Nuclear Medicine, Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| | - Robert F Dannals
- Division of Nuclear Medicine, Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| | - M Roselle Abraham
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Frank M Bengel
- Division of Nuclear Medicine, Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
175
|
In rats the duration of diabetes influences its impact on cardiac autonomic innervations and electrophysiology. Auton Neurosci 2015; 189:31-6. [PMID: 25655058 DOI: 10.1016/j.autneu.2015.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 11/21/2022]
Abstract
Diabetic cardiac autonomic neuropathy (DCAN) may cause fatal ventricular arrhythmias and increase mortality in diabetics. However, limited data are available with regard to the precise changes in cardiac autonomic denervation after diabetes onset. In this study, we dynamically observed the progression of DCAN and its relationship with the inducibility of ventricular arrhythmias in diabetic rats. Rats were randomly divided into normal control and diabetes mellitus (DM) groups. The rats were sacrificed at 3 or 6 months post-treatment. Heart rate variability and programmed electrical stimulation were used to assess the electrophysiological characteristics and the inducibility of ventricular arrhythmias in the animals. Immunohistochemistry and real-time RT-PCR were used to measure choline acetyltransferase and tyrosine hydroxylase-positive nerve fibers and the corresponding mRNA expression levels in the proximal and distal regions of the left ventricle. Short-term diabetes resulted in distal myocardial parasympathetic denervation with sparing of the proximal myocardium. By 6 months, both parasympathetic and sympathetic denervation were further aggravated. Moreover, electrophysiological experiments demonstrated a sympatho-parasympathetic imbalance and an increase in ventricular arrhythmia inducibility in the diabetic rats. These results suggest that DM causes cardiac nerve denervation, relative sympathetic hyperinnervation and inhomogeneous neural innervations, which may be associated with an increase in the induction of ventricular arrhythmia in diabetic rats.
Collapse
|
176
|
Renal sympathetic denervation for treatment of ventricular arrhythmias: a review on current experimental and clinical findings. Clin Res Cardiol 2015; 104:535-43. [PMID: 25596725 DOI: 10.1007/s00392-015-0812-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/12/2015] [Indexed: 01/09/2023]
Abstract
Ventricular arrhythmias (VAs) remain the major cause of mortality and sudden cardiac death (SCD) in almost all forms of heart disease. Despite so many therapeutic advances, such as pharmacological therapies, catheter ablation, and arrhythmia surgery, management of VAs remains a great challenge for cardiologists. Evidence from histological studies and from direct nerve activity recordings have suggested that increased sympathetic nerve density and activity contribute to the generation of VAs and SCD. It is well known that renal sympathetic nerve (RSN), either afferent component or efferent component, plays an important role in modulation of central sympathetic activity. We have recently shown that RSN activation by electrical stimulation significantly increases cardiac and systemic sympathetic activity and promotes the incidence of acute ischemia-induced VAs, suggesting RSN has a role in the development of VAs. Initial experience of RSN denervation (RDN) in patients with resistant hypertension showed that this novel and minimally invasive device-based approach significantly reduced not only kidney but also whole-body norepinephrine spillover. In addition, experimental studies find that left stellate ganglion nerve activity is significantly decreased after RDN. Based on these observations, it is reasonable to conclude that RDN may be an effective therapy for the management of VAs. Indeed, RDN has provided a protection against VAs in both animal models and patients. In this article, we review the role of the RSN in the generation of VAs and SCD and the role of RDN as a potential treatment strategy for VAs and SCD.
Collapse
|
177
|
Lee TM, Lin SZ, Chang NC. Inhibition of glycogen synthase kinase-3β prevents sympathetic hyperinnervation in infarcted rats. Exp Biol Med (Maywood) 2015; 240:979-92. [PMID: 25576342 DOI: 10.1177/1535370214564746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 10/29/2014] [Indexed: 11/16/2022] Open
Abstract
We have demonstrated that nerve growth factor (NGF) expression in the myocardium is selectively increased during chronic stage of myocardial infarction, resulting in sympathetic hyperinnervation. Glycogen synthase kinase-3 (GSK-3) signal has been shown to play key roles in the regulation of cytoskeletal assembly during axon regeneration. We assessed whether lithium, a GSK-3 inhibitor, attenuates cardiac sympathetic reinnervation after myocardial infarction through attenuated NGF expression and Tau expression. Twenty-four hours after ligation of the anterior descending artery, male Wistar rats were randomized to either LiCl or SB216763, chemically unrelated inhibitors of GSK-3β, a combination of LiCl and SB216763, or vehicle for four weeks. Myocardial norepinephrine levels revealed a significant elevation in vehicle-treated rats compared with sham-operated rats, consistent with excessive sympathetic reinnervation after infarction. Immunohistochemical analysis for sympathetic nerve also confirmed the change of myocardial norepinephrine. This was paralleled by a significant upregulation of NGF protein and mRNA in the vehicle-treated rats, which was reduced after administering either LiCl, SB216763, or combination. Arrhythmic scores during programmed stimulation in the vehicle-treated rats were significantly higher than those treated with GSK-3 inhibitors. Addition of SB216763 did not have additional beneficial effects compared with those seen in rats treated with LiCl alone. Furthermore, lithium treatment increased Tau1 and decreased AT8 and AT180 levels. Chronic use of lithium after infarction, resulting in attenuated sympathetic reinnervation by GSK-3 inhibition, may modify the arrhythmogenic response to programmed electrical stimulation.
Collapse
Affiliation(s)
- Tsung-Ming Lee
- Department of Medicine, Cardiology Section, China Medical University-An Nan Hospital, Tainan 709, Taiwan Department of Medicine, China Medical University, Taichung 40447, Taiwan Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Shinn-Zong Lin
- Neuropsychiatry Center, China Medical University Hospital, Taichung 40447, Taiwan Graduate Institute of Immunology, China Medical University, Taichung 40447, Taiwan Department of Neurosurgery, China Medical University Beigan Hospital, Yunlin 651, Taiwan Department of Neurosurgery, China Medical University-An Nan Hospital, Tainan 40447, Taiwan
| | - Nen-Chung Chang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
| |
Collapse
|
178
|
Lee TM, Lin SZ, Chang NC. Antiarrhythmic effect of lithium in rats after myocardial infarction by activation of Nrf2/HO-1 signaling. Free Radic Biol Med 2014; 77:71-81. [PMID: 25224036 DOI: 10.1016/j.freeradbiomed.2014.08.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/28/2014] [Accepted: 08/20/2014] [Indexed: 11/19/2022]
Abstract
Glycogen synthase kinase-3 (GSK-3) signaling has been shown to play a role in the regulation of nuclear factor erythroid-2-related factor 2 (Nrf2), a master regulator of antioxidant genes, including heme oxygenase-1 (HO-1). We assessed whether lithium, a GSK-3 inhibitor, attenuates cardiac sympathetic reinnervation after myocardial infarction, a status of high reactive oxygen species (ROS), by attenuating nerve growth factor (NGF) expression and whether Nrf2/HO-1 signaling is involved in the protection. Twenty-four hours after ligation of the left anterior descending artery, male Wistar rats were treated for 4 weeks. The postinfarction period was associated with increased oxidative-nitrosative stress, as measured by myocardial superoxide, nitrotyrosine, and dihydroethidium fluorescent staining. In concert, myocardial norepinephrine levels and immunohistochemical analysis of sympathetic nerve revealed a significant increase in innervation in vehicle-treated rats compared with sham-operated rats. Arrhythmic scores during programmed stimulation in the vehicle-treated rats were significantly higher than those in sham. This was paralleled by a significant upregulation of NGF protein and mRNA in the vehicle-treated rats, which was reduced after administration of LiCl. LiCl stimulated the nuclear translocation of Nrf2 and the transactivation of the Nrf2 target gene HO-1. Inhibition of phosphoinositide 3-kinase by wortmannin reduced the increase in Nrf2 nucleus translocation and HO-1 expression compared with lithium alone. In addition, the lithium-attenuated NGF levels were reversed in the presence of the Nrf2 inhibitor trigonelline, HO-1 inhibitor SnPP, and peroxynitrite generator SIN-1, indicating the role of Nrf2/HO-1/ROS. In conclusion, lithium protects against ventricular arrhythmias by attenuating NGF-induced sympathetic innervation via antioxidant activation of the Nrf2/HO-1 axis.
Collapse
Affiliation(s)
- Tsung-Ming Lee
- Cardiology Section, Department of Medicine, China Medical University-An Nan Hospital, Tainan 709, Taiwan; Department of Medicine, China Medical University, Taichung, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shinn-Zong Lin
- Neuropsychiatry Center, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Immunology, China Medical University, Taichung, Taiwan; Department of Neurosurgery, China Medical University-An Nan Hospital, Tainan 709, Taiwan; Department of Neurosurgery, China Medical University Beigan Hospital, Yunlin, Taiwan
| | - Nen-Chung Chang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
179
|
Hamon D, Taleski J, Vaseghi M, Shivkumar K, Boyle NG. Arrhythmias in the Heart Transplant Patient. Arrhythm Electrophysiol Rev 2014; 3:149-55. [PMID: 26835083 DOI: 10.15420/aer.2014.3.3.149] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/07/2014] [Indexed: 01/16/2023] Open
Abstract
Orthotopic heart transplantation (OHT) is currently the most effective long-term therapy for patients with end-stage cardiac disease, even as left ventricular devices show markedly improved outcomes. As surgical techniques and immunosuppressive regimens have been refined, short-term mortality caused by sepsis has decreased, while morbidity caused by repeated rejection episodes and vasculopathy has increased, and is often manifested by arrhythmias. These chronic transplant complications require early and aggressive multidisciplinary treatment. Understanding the relationship between arrhythmias and these complications in the acute and chronic stages following OHT is critical in improving patient prognosis, as arrhythmias may be the earliest or sole presentation. Finally, decentralised/ denervated hearts represent a unique opportunity to investigate the underlying mechanisms of arrhythmias.
Collapse
Affiliation(s)
- David Hamon
- UCLA Cardiac Arrhythmia Center, UCLA Health System, David Geffen School of Medicine at UCLA, Los Angeles, US
| | - Jane Taleski
- Department of Cardiac Electrophysiology, University Clinic of Cardiology, University of St. Cyril and Methodius, Skopje, Former Yugoslav Republic of Macedonia
| | - Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center, UCLA Health System, David Geffen School of Medicine at UCLA, Los Angeles, US
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center, UCLA Health System, David Geffen School of Medicine at UCLA, Los Angeles, US
| | - Noel G Boyle
- UCLA Cardiac Arrhythmia Center, UCLA Health System, David Geffen School of Medicine at UCLA, Los Angeles, US
| |
Collapse
|
180
|
Lee TM, Chen WT, Yang CC, Lin SZ, Chang NC. Sitagliptin attenuates sympathetic innervation via modulating reactive oxygen species and interstitial adenosine in infarcted rat hearts. J Cell Mol Med 2014; 19:418-29. [PMID: 25388908 PMCID: PMC4407589 DOI: 10.1111/jcmm.12465] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 09/15/2014] [Indexed: 12/24/2022] Open
Abstract
We investigated whether sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, attenuates arrhythmias through inhibiting nerve growth factor (NGF) expression in post-infarcted normoglycemic rats, focusing on adenosine and reactive oxygen species production. DPP-4 bound adenosine deaminase has been shown to catalyse extracellular adenosine to inosine. DPP-4 inhibitors increased adenosine levels by inhibiting the complex formation. Normoglycemic male Wistar rats were subjected to coronary ligation and then randomized to either saline or sitagliptin in in vivo and ex vivo studies. Post-infarction was associated with increased oxidative stress, as measured by myocardial superoxide, nitrotyrosine and dihydroethidium fluorescent staining. Measurement of myocardial norepinephrine levels revealed a significant elevation in vehicle-treated infarcted rats compared with sham. Compared with vehicle, infarcted rats treated with sitagliptin significantly increased interstitial adenosine levels and attenuated oxidative stress. Sympathetic hyperinnervation was blunted after administering sitagliptin, as assessed by immunofluorescent analysis and western blotting and real-time quantitative RT-PCR of NGF. Arrhythmic scores in the sitagliptin-treated infarcted rats were significantly lower than those in vehicle. Ex vivo studies showed a similar effect of erythro-9-(2-hydroxy-3-nonyl) adenine (an adenosine deaminase inhibitor) to sitagliptin on attenuated levels of superoxide and NGF. Furthermore, the beneficial effects of sitagliptin on superoxide anion production and NGF levels can be reversed by 8-cyclopentyl-1,3-dipropulxanthine (adenosine A1 receptor antagonist) and exogenous hypoxanthine. Sitagliptin protects ventricular arrhythmias by attenuating sympathetic innervation via adenosine A1 receptor and xanthine oxidase-dependent pathways, which converge through the attenuated formation of superoxide in the non-diabetic infarcted rats.
Collapse
Affiliation(s)
- Tsung-Ming Lee
- Department of Medicine, Cardiology Section, China Medical University-An Nan Hospital, Tainan, Taiwan; Department of Medicine, China Medical University, Taichung, Taiwan; Department of Internal Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
181
|
Hepatocyte growth factor modification enhances the anti-arrhythmic properties of human bone marrow-derived mesenchymal stem cells. PLoS One 2014; 9:e111246. [PMID: 25360679 PMCID: PMC4216066 DOI: 10.1371/journal.pone.0111246] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 09/17/2014] [Indexed: 12/15/2022] Open
Abstract
Background/Aims Chronic myocardial infarction (MI) results in the formation of arrhythmogenic substrates, causing lethal ventricular arrhythmia (VA). We aimed to determine whether mesenchymal stem cells (MSCs) carrying a hepatocyte growth factor (HGF) gene modification (HGF-MSCs) decrease the levels of arrhythmogenic substrates and reduce the susceptibility to developing VA compared with unmodified MSCs and PBS in a swine infarction model. Methods The left descending anterior artery was balloon-occluded to establish an MI model. Four weeks later, the randomly grouped pigs were administered MSCs, PBS or HGF-MSCs via thoracotomy. After an additional four weeks, dynamic electrocardiography was performed to assess heart rate variability, and programmed electrical stimulation was conducted to evaluate the risk for VA. Then, the pigs were euthanized for morphometric, immunofluorescence and western blot analyses. Results: The HGF-MSC group displayed the highest vessel density and Cx43 expression levels, and the lowest levels of apoptosis, and tyrosine hydroxylase (TH) and growth associated protein 43 (GAP43) expression. Moreover, the HGF-MSC group exhibited a decrease in the number of sympathetic nerve fibers, substantial decreases in the low frequency and the low-/high- frequency ratio and increases in the root mean square of successive differences (rMSSD) and the percentage of successive normal sinus R-R intervals longer than 50 ms (pNN50), compared with the other two groups. Finally, the HGF-MSC group displayed the lowest susceptibility to developing VA. Conclusion HGF-MSCs displayed potent antiarrhythmic effects, reducing the risk for VA.
Collapse
|
182
|
Zhang F, Song G, Li X, Gu W, Shen Y, Chen M, Yang B, Qian L, Cao K. Transplantation of iPSc ameliorates neural remodeling and reduces ventricular arrhythmias in a post-infarcted swine model. J Cell Biochem 2014; 115:531-9. [PMID: 24122925 DOI: 10.1002/jcb.24687] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/26/2013] [Indexed: 12/14/2022]
Abstract
Neural remodeling after myocardial infarction (MI) may cause malignant ventricular arrhythmia, which is the main cause of sudden cardiac death following MI. Herein, we aimed to examine whether induced pluripotent stem cells (iPSc) transplantation can ameliorate neural remodeling and reduce ventricular arrhythmias (VA) in a post-infarcted swine model. Left anterior descending coronary arteries were balloon-occluded to generate MI. Animals were then divided into Sham, PBS control, and iPS groups. Dynamic electrocardiography programmed electric stimulation were performed to evaluate VA. The spatial distribution of vascularization, Cx43 and autonomic nerve regeneration were evaluated by immunofluorescence staining. Associated protein expression was detected by Western blotting. Likewise, we measured the enzymatic activities of superoxide dismutase and content of malondialdehyde. Six weeks later, the number of blood vessels increased significantly in the iPSc group. The expression of vascular endothelial growth factor and connexin 43 in the iPS group was significantly higher than the PBS group; however, the levels of nerve growth factor and tyrosine hydroxylase were lower. The oxidative stress was ameliorated by iPSc transplantation. Moreover, the number of sympathetic nerves in the iPSc group was reduced, while the parasympathetic nerve fibers had no obvious change. The transplantation of iPSc also significantly decreased the low-/high-frequency ratio and arrhythmia score of programmed electric stimulation-induced VA. In conclusion, iPSc intramyocardial transplantation reduces vulnerability to VAs, and the mechanism was related to the remodeling amelioration of autonomic nerves and gap junctions. Moreover, possible mechanisms of iPSc transplantation in improving neural remodeling may be related to attenuated oxidative stress and inflammatory response.
Collapse
Affiliation(s)
- Fengxiang Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Li Z, Wang M, Zhang Y, Zheng S, Wang X, Hou Y. The effect of the left stellate ganglion on sympathetic neural remodeling of the left atrium in rats following myocardial infarction. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2014; 38:107-14. [PMID: 25224585 DOI: 10.1111/pace.12513] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/09/2014] [Accepted: 08/07/2014] [Indexed: 01/24/2023]
Abstract
BACKGROUND The neural remodeling of the atrium plays an important role in the initiation of atrial fibrillation after myocardial infarction (MI); however, the effects of the left stellate ganglion (LSG) on the neural remodeling of the atrium remain incompletely understood. Thus, this study investigated the mechanism by which the LSG mediates sympathetic neural remodeling of the left atrium (LA) in rats after MI. METHODS Sixty rats were randomly divided into a Sham group and an MI group. The expression levels of growth-associated protein-43 (GAP43) and nerve growth factor (NGF) messenger ribonucleic acid (mRNA) were measured by reverse transcription polymerase chain reaction. Immunohistochemistry was used to detect the distribution and density of GAP43- and NGF-positive nerves. The expression levels of the proteins were quantified by Western blotting. RESULTS Compared with the Sham group, GAP43 mRNA expression in the LSG was increased in the MI group (P < 0.01), but not significantly increased in the LA. Immunohistochemical analysis demonstrated that in both the LSG and the LA, the mean densities of GAP43- and NGF-positive nerves in the MI group were increased (P < 0.01). In both the LSG and the LA, the protein levels of GAP43 and NGF in the MI group were increased relative to the Sham group (P < 0.01). CONCLUSIONS The increased levels of NGF and GAP43 proteins can induce sympathetic nerve hyperinnervation in the LSG and the LA after MI. The increased GAP43 proteins in the LA, which may have been transported from the LSG, accelerated LA sympathetic neural remodeling in rats.
Collapse
Affiliation(s)
- Zhiyuan Li
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China; Department of Cardiology, Shandong Provincial Taishan Hospital, Tai'an, Shandong, China
| | | | | | | | | | | |
Collapse
|
184
|
Huang B, Yu L, Scherlag BJ, Wang S, He B, Yang K, Liao K, Lu Z, He W, Zhang L, Po SS, Jiang H. Left renal nerves stimulation facilitates ischemia-induced ventricular arrhythmia by increasing nerve activity of left stellate ganglion. J Cardiovasc Electrophysiol 2014; 25:1249-56. [PMID: 25066536 DOI: 10.1111/jce.12498] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/14/2014] [Accepted: 07/21/2014] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Renal sympathetic nerve (RSN) activity plays a key role in systemic sympathetic hyperactivity. Previous studies have shown that cardiac sympathetic hyperactivity, especially the left stellate ganglion (LSG), contributes to the pathogenesis of ventricular arrhythmias (VAs) after acute myocardial infarction (AMI). METHODS AND RESULTS Twenty-eight dogs received 3 hours of continuous left-sided electrical stimulation of RSN (LRS; Group-1, n = 9), sham RSN stimulation (Group-2, n = 9), or LSG ablation plus 3 hours of LRS (Group-3, n = 10) were included. AMI was induced by ligating the proximal left anterior descending coronary artery. LRS was performed using electrical stimulation on the adventitia of left renal artery at the voltage increasing the systolic blood pressure (BP) by 10%. BP, heart rate variability (HRV), serum norepinephrine (NE) level, and LSG function were measured at baseline and the end of each hour of LRS. C-fos and nerve growth factor (NGF) protein expressed in the LSG were examined in Group-1 and Group-2. Compared with baseline, 3 hours of LRS induced a significant increase in BP, sympathetic indices of HRV, serum NE level, and LSG function. The incidence of VAs in Group-1 was significantly higher than other groups. The expression of c-fos and NGF protein in the LSG was significantly higher in Group-1 than Group-2. CONCLUSION Three hours of LRS induces both systemic and cardiac sympathetic hyperactivity and increases the incidence of ischemia-induced VAs.
Collapse
Affiliation(s)
- Bing Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Cho Y, Cha MJ, Choi EK, Oh IY, Oh S. Effects of low-intensity autonomic nerve stimulation on atrial electrophysiology. Korean Circ J 2014; 44:243-9. [PMID: 25089136 PMCID: PMC4117845 DOI: 10.4070/kcj.2014.44.4.243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/09/2014] [Accepted: 04/23/2014] [Indexed: 12/03/2022] Open
Abstract
Background and Objectives The cardiac autonomic nervous system is an emerging target for therapeutic control of atrial fibrillation (AF). We evaluated the effects of low-intensity autonomic nerve stimulation (LI-ANS) on atrial electrophysiology, AF vulnerability, and neural remodeling. Subjects and Methods Fourteen dogs were subjected to 3 hours rapid atrial pacing (RAP, 5 Hz) and concomitant high frequency LI-ANS (20 Hz, at voltages 40% below the threshold) as follows: no autonomic stimulation (control, n=3); or right cervical vagus nerve (RVN, n=6), anterior right ganglionated plexi (ARGP, n=3), and superior left ganglionated plexi (SLGP, n=2) stimulation. Programmed and burst atrial pacing were performed at baseline and at the end of each hour to determine atrial effective refractory period (ERP), window of vulnerability (WOV), and inducibility of sustained AF. Results Atrial ERP was significantly shortened by 3 hours RAP (in control group, ΔERP=-47.9±8.9%, p=0.032), and RAP-induced ERP shortening was attenuated by LI-ANS (in LI-ANS group, ΔERP=-15.4±5.9%, p=0.019; vs. control, p=0.035). Neither WOV for AF nor AF inducibility changed significantly during 3 hours RAP with simultaneous LI-ANS. There was no significant difference between the control and LI-ANS group in nerve density and sprouting evaluated by anti-tyrosine hydroxylase and anti-growth associated protein-43 staining. Among the various sites for LI-ANS, the ARGP-stimulation group showed marginally lower ΔWOV (p=0.077) and lower nerve sprouting (p=0.065) compared to the RVN-stimulation group. Conclusion Low-intensity autonomic nerve stimulation significantly attenuated the shortening of atrial ERP caused by RAP. ARGP may be a better target for LI-ANS than RVN for the purpose of suppressing atrial remodeling in AF.
Collapse
Affiliation(s)
- Youngjin Cho
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Myung-Jin Cha
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Eue-Keun Choi
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Il-Young Oh
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seil Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
186
|
Yu Y, Wei C, Liu L, Lian AL, Qu XF, Yu G. Atrial fibrillation increases sympathetic and parasympathetic neurons in the intrinsic cardiac nervous system. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2014; 37:1462-9. [PMID: 25053212 DOI: 10.1111/pace.12450] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 03/22/2014] [Accepted: 05/25/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Chronic atrial fibrillation (AF) leads to heterogeneous autonomic nerve innervation termed neural remodeling. The quantitative changes in neural density as a function of autonomic remodeling and its association with sustained AF has not been previously determined. METHOD AND RESULTS Seven dogs (paced group) were chronically paced with electrodes sutured to the epicardium of left atrial appendages. Seven dogs (control animals) were not paced. All paced dogs developed sustained AF by 5 weeks of pacing. The fat pads on the atrial epicardium containing ganglionated plexuses (GP) were separated along with underlying myocardial tissue. Immunocytochemical techniques were used to identify the neurons immunoreactive to anti-tyrosine hydroxylase (TH) and anti-acetylcholine antibodies. After chronic AF, sympathetic and parasympathetic neurons in the atrial intrinsic cardiac ganglia increased significantly. In paced dogs, the density of sympathetic neurons was 3,022 ± 507 μm(2) /mm(2) in the right atrial GP (vs control P < 0.01), 8,571 ± 476 μm(2) /mm(2) in the ventral left atrial GP (vs control P < 0.0001), 6,422 ± 464 μm(2) /mm(2) in the dorsal atrial GP (vs control P < 0.0001) and 5,392 ± 595 μm(2) /mm(2) in the inferior vena cava-inferior atrial GP (vs control P <0.0001), respectively. The density of parasympathetic neurons was 4,396 ± 877 μm(2) /mm(2) in the right atrial GP, 7,769 ± 465 μm(2) /mm(2) in the ventral left atrial GP, 7,016.47 ± 687 μm(2) /mm(2) in the dorsal atrial GP and 5,485 ± 554 μm(2) /mm(2) in the inferior vena cava-inferior atrial GP, respectively, which was higher than control cohorts in corresponding GP (P < 0.05). CONCLUSIONS This study provides evidence for the remodeling in atrial intrinsic cardiac ganglia in the dogs with pacing induced AF. A significant increase of sympathetic and parasympathetic neurons was present in atrial intrinsic cardiac ganglia.
Collapse
Affiliation(s)
- Yang Yu
- Department of Cardiovascular Diseases, First Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | | | | | | | | | | |
Collapse
|
187
|
Chen T, Cai MX, Li YY, He ZX, Shi XC, Song W, Wang YH, Xi Y, Kang YM, Tian ZJ. Aerobic exercise inhibits sympathetic nerve sprouting and restores β-adrenergic receptor balance in rats with myocardial infarction. PLoS One 2014; 9:e97810. [PMID: 24842290 PMCID: PMC4026473 DOI: 10.1371/journal.pone.0097810] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 04/24/2014] [Indexed: 12/24/2022] Open
Abstract
Background Cardiac sympathetic nerve sprouting and the dysregulation of β-adrenergic receptor (β-AR) play a critical role in the deterioration of cardiac function after myocardial infarction (MI). Growing evidence indicates that exercise provides protection against MI. The aims of this study were to investigate whether aerobic exercise following MI could inhibit sympathetic nerve sprouting and restore the balance of β3-AR/β1-AR. Methods Male Sprague-Dawley rats were divided into three groups: sham-operated control group (SC), MI group (MI), and MI with aerobic exercise group (ME). The rats in ME group were assigned to 8 weeks of exercise protocol (16 m/min, 50 min/d, 5 d/wk). The expression of nerve growth factor (NGF), the sympathetic nerve marker-tyrosine hydroxylase (TH), the nerve sprouting marker-growth associated protein 43 (GAP43), and β1- and β2-AR expression in the peri-infarct area of the left ventricle (LV) were measured by Western blot and immunohistochemistry, while β3-AR expression was determined by Western blot and immunofluorescence. Endothelial nitric oxide synthase (NOS2), phospho-NOS2 (p-NOS2), and neuronal nitric oxide synthase (NOS1) were measured by Western blot. Results MI increased LV end-diastolic pressure (LVEDP), and decreased LV systolic pressure (LVSP). Compared with the MI group, aerobic exercise significantly decreased LVEDP and increased LVSP. The protein expression of TH, GAP43 and NGF was significantly increased after MI, which was normalized by exercise. Compared with the SC group, the ratios of β2-AR/β1-AR and β3-AR/β1-AR were elevated in the MI group, and the protein expression of β3-AR and NOS1 increased after MI. Compared with the MI group, the ratios of β2-AR/β1-AR and β3-AR/β1-AR were normalized in the ME group, while the protein expression of β3-AR and NOS1 significantly increased, and NOS2 was activated by exercise. Conclusions Aerobic exercise inhibits cardiac sympathetic nerve sprouting, restores β3-AR/β1-AR balance and increases β3-AR expression through the activation of NOS2 and NOS1 after myocardial infarction.
Collapse
Affiliation(s)
- Ting Chen
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, Shaanxi, P. R. China
- Department of Sports and Exercise, Tibet University for Nationalities, Xian yang, Shaanxi, P. R. China
| | - Meng-Xin Cai
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, Shaanxi, P. R. China
| | - You-You Li
- Department of Physiology and Department of Cardiology, Fourth Military Medical University, Xi’an, Shaanxi, P. R. China
| | - Zhi-Xiong He
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, Shaanxi, P. R. China
| | - Xiu-Chao Shi
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, Shaanxi, P. R. China
| | - Wei Song
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, Shaanxi, P. R. China
| | - You-Hua Wang
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, Shaanxi, P. R. China
| | - Yue Xi
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, Shaanxi, P. R. China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an Jiaotong University School of Medicine, Xi’an, Shaanxi, P. R. China
| | - Zhen-Jun Tian
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, Shaanxi, P. R. China
- * E-mail:
| |
Collapse
|
188
|
Sakai K, Fukuda T, Iwadate K. Is the denervation or hyperinnervation of the cardiac sympathetic nerve in the subepicardium related to unexpected cardiac death? Cardiovasc Pathol 2014; 23:211-6. [PMID: 24795174 DOI: 10.1016/j.carpath.2014.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/11/2014] [Accepted: 03/21/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Past studies have reported that abnormal innervation of cardiac sympathetic nerve can cause sudden cardiac death through the arrythmogenesis; however, the severe cardiac sympathetic degeneration does not necessarily cause clinical problems. This study aimed to examine whether denervation or hyperinnervation of cardiac sympathetic nerves in the subepicardium is associated with unexpected cardiac death (UCD). METHODS Cardiac tissues of 278 forensic autopsy cases within 48 h after death were analyzed by double-staining immunohistochemistry for tyrosine hydroxylase and neurofilament. The density of nerve fascicles and the degeneration rate in the subepicardium of the left ventricular anterior wall were compared between the UCD group and the non-UCD group. RESULTS The density of nerve fascicles was lower in the SCD group (median: 51.9/cm(2)) than in the non-SCD group (median: 58.9/cm(2)); however, the difference was not significant (P = .08). The degeneration rate was higher in the SCD group (median: 0.19) than in the non-SCD group (median: 0.17), but again, the difference was not significant (P = .43). The multiple logistic regression model did not show a significant association between the incidence of UCD and the density of nerve fascicles or the degeneration rate. CONCLUSIONS It cannot be concluded that the denervation or hyperinnervation of cardiac sympathetic nerves in the subepicardium is related to UCD. Abnormal innervation of cardiac sympathetic nerves in the subepicardium may not have a substantial effect on UCD, compared to other arrhythmogenic factors.
Collapse
Affiliation(s)
- Kentaro Sakai
- Department of Forensic Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| | - Takahiro Fukuda
- Division of Neuropathology, Department of Neuroscience, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Kimiharu Iwadate
- Department of Forensic Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
189
|
Hucker WJ, Singh JP, Parks K, Armoundas AA. Device-Based Approaches to Modulate the Autonomic Nervous System and Cardiac Electrophysiology. Arrhythm Electrophysiol Rev 2014; 3:30-5. [PMID: 26835062 PMCID: PMC4711497 DOI: 10.15420/aer.2011.3.1.30] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/04/2014] [Indexed: 01/29/2023] Open
Abstract
Alterations in resting autonomic tone can be pathogenic in many cardiovascular disease states, such as heart failure and hypertension. Indeed, autonomic modulation by way of beta-blockade is a standard treatment of these conditions. There is a significant interest in developing non-pharmacological methods of autonomic modulation as well. For instance, clinical trials of vagal stimulation and spinal cord stimulation in the treatment of heart failure are currently underway, and renal denervation has been studied recently in the treatment of resistant hypertension. Notably, autonomic stimulation is also a potent modulator of cardiac electrophysiology. Manipulating the autonomic nervous system in studies designed to treat heart failure and hypertension have revealed that autonomic modulation may have a role in the treatment of common atrial and ventricular arrhythmias as well. Experimental data on vagal nerve and spinal cord stimulation suggest that each technique may reduce ventricular arrhythmias. Similarly, renal denervation may play a role in the treatment of atrial fibrillation, as well as in controlling refractory ventricular arrhythmias. In this review, we present the current experimental and clinical data on the effect of these therapeutic modalities on cardiac electrophysiology and their potential role in arrhythmia management.
Collapse
Affiliation(s)
- William J Hucker
- Fellow in Cardiovascular Medicine, Division of Cardiology, Massachusetts General Hospital, US;
| | - Jagmeet P Singh
- Associate Professor of Medicine, Harvard Medical School, Director, Resynchronization and Advanced Cardiac Therapeutics Program, Massachusetts General Hospital, US
| | - Kimberly Parks
- Instructor in Medicine, Harvard Medical School, Advanced Heart Failure and Transplantation, Massachusetts General Hospital, US
| | - Antonis A Armoundas
- Assistant Professor of Medicine, Harvard Medical School Cardiovascular Research Center, Massachusetts General Hospital, US
| |
Collapse
|
190
|
Schipke J, Mayhew TM, Mühlfeld C. Allometry of left ventricular myocardial innervation. J Anat 2014; 224:518-26. [PMID: 24325466 PMCID: PMC4098685 DOI: 10.1111/joa.12151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2013] [Indexed: 11/30/2022] Open
Abstract
Body mass (BM) of terrestrial mammalian species ranges from a few grams in the case of the Etruscan shrew to a few tonnes for an elephant. The mass-specific metabolic rate, as well as heart rate, decrease with increasing BM, whereas heart mass is proportional to BM. In the present study, we investigated the scaling behaviour of several compartments of the left ventricular myocardium, notably its innervation, capillaries and cardiomyocytes. Myocardial samples were taken from 10 mammalian species with BM between approximately 2 g and 900 kg. Samples were analysed by design-based stereology and electron microscopy and the resulting data were subjected to linear regression and correlation analyses. The total length of nerve fibres (axons) in the left ventricle increased from 0.017 km (0.020 km) in the shrew to 7237 km (13,938 km) in the horse. The innervation density was similar among species but the mean number of axons per nerve fibre profile increased with rising BM. The total length of capillaries increased from 0.119 km (shrew) to 10,897 km (horse). The volume of cardiomyocytes was 0.017 cm(3) in the shrew and 1818 cm(3) in the horse. Scaling of the data against BM indicated a higher degree of complexity of the axon tree in larger animals and an allometric relationship between total length of nerve fibres/axons and BM. In contrast, the density of nerve fibres is independent of BM. It seems that the structural components of the autonomic nervous system in the heart are related to BM and heart mass rather than to functional parameters such as metabolic rate.
Collapse
Affiliation(s)
- Julia Schipke
- Institute of Functional and Applied Anatomy, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL)Hannover, Germany
| | - Terry M Mayhew
- School of Biomedical Sciences, Queen's Medical Centre, University of NottinghamNottingham, UK
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL)Hannover, Germany
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy)Hannover, Germany
- Institute of Anatomy and Cell Biology, University of GießenGießen, Germany
| |
Collapse
|
191
|
Rizas KD, Nieminen T, Barthel P, Zürn CS, Kähönen M, Viik J, Lehtimäki T, Nikus K, Eick C, Greiner TO, Wendel HP, Seizer P, Schreieck J, Gawaz M, Schmidt G, Bauer A. Sympathetic activity-associated periodic repolarization dynamics predict mortality following myocardial infarction. J Clin Invest 2014; 124:1770-80. [PMID: 24642467 DOI: 10.1172/jci70085] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/16/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Enhanced sympathetic activity at the ventricular myocardium can destabilize repolarization, increasing the risk of death. Sympathetic activity is known to cluster in low-frequency bursts; therefore, we hypothesized that sympathetic activity induces periodic low-frequency changes of repolarization. We developed a technique to assess the sympathetic effect on repolarization and identified periodic components in the low-frequency spectral range (≤0.1 Hz), which we termed periodic repolarization dynamics (PRD). METHODS We investigated the physiological properties of PRD in multiple experimental studies, including a swine model of steady-state ventilation (n=7) and human studies involving fixed atrial pacing (n=10), passive head-up tilt testing (n=11), low-intensity exercise testing (n=11), and beta blockade (n=10). We tested the prognostic power of PRD in 908 survivors of acute myocardial infarction (MI). Finally, we tested the predictive values of PRD and T-wave alternans (TWA) in 2,965 patients undergoing clinically indicated exercise testing. RESULTS PRD was not related to underlying respiratory activity (P<0.001) or heart-rate variability (P=0.002). Furthermore, PRD was enhanced by activation of the sympathetic nervous system, and pharmacological blockade of sympathetic nervous system activity suppressed PRD (P≤0.005 for both). Increased PRD was the strongest single risk predictor of 5-year total mortality (hazard ratio 4.75, 95% CI 2.94-7.66; P<0.001) after acute MI. In patients undergoing exercise testing, the predictive value of PRD was strong and complementary to that of TWA. CONCLUSION We have described and identified low-frequency rhythmic modulations of repolarization that are associated with sympathetic activity. Increased PRD can be used as a predictor of mortality in survivors of acute MI and patients undergoing exercise testing. TRIAL REGISTRATION ClinicalTrials.gov NCT00196274. FUNDING This study was funded by Angewandte Klinische Forschung, University of Tübingen (252-1-0).
Collapse
|
192
|
Pellegrino MJ, McCully BH, Habecker BA. Leptin stimulates sympathetic axon outgrowth. Neurosci Lett 2014; 566:1-5. [PMID: 24561183 DOI: 10.1016/j.neulet.2014.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 01/27/2014] [Accepted: 02/07/2014] [Indexed: 12/28/2022]
Abstract
The neurohormone leptin regulates energy homeostasis. Circulating levels of leptin secreted by adipose tissue act on hypothalamic neurons in the brain leading to decreased appetite and increased energy expenditure. Although leptin signaling in the central nervous system (CNS) is fundamental to its ability to regulate the body's metabolic balance, leptin also has a variety of effects in many peripheral tissues including the heart, the liver, and the sympathetic nervous system. Leptin stimulation of the hypothalamus can stimulate glucose uptake via the sympathetic nervous system in heart, muscle, and brown adipose tissue. Leptin receptors (Ob-Rb) are also expressed by peripheral sympathetic neurons, but their functional role is not clear. In this study, we found that leptin stimulates axonal growth of both adult and neonatal sympathetic neurons in vitro. Leptin stimulates acute activation of the transcription factor STAT3 via phosphorylation of tyrosine 705. STAT3 phosphorylation is required for leptin-stimulated sympathetic axon outgrowth. Thus, circulating levels of leptin may enhance sympathetic nerve innervation of peripheral tissues.
Collapse
Affiliation(s)
- Michael J Pellegrino
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Belinda H McCully
- Trauma Research Institute of Oregon, Division of Trauma, Critical Care & Acute Care Surgery, Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Beth A Habecker
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
193
|
Freeman K, Tao W, Sun H, Soonpaa MH, Rubart M. In situ three-dimensional reconstruction of mouse heart sympathetic innervation by two-photon excitation fluorescence imaging. J Neurosci Methods 2014; 221:48-61. [PMID: 24056230 PMCID: PMC3858460 DOI: 10.1016/j.jneumeth.2013.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/06/2013] [Accepted: 09/08/2013] [Indexed: 12/26/2022]
Abstract
BACKGROUND Sympathetic nerve wiring in the mammalian heart has remained largely unexplored. Resolving the wiring diagram of the cardiac sympathetic network would help establish the structural underpinnings of neurocardiac coupling. NEW METHOD We used two-photon excitation fluorescence microscopy, combined with a computer-assisted 3-D tracking algorithm, to map the local sympathetic circuits in living hearts from adult transgenic mice expressing enhanced green fluorescent protein (EGFP) in peripheral adrenergic neurons. RESULTS Quantitative co-localization analyses confirmed that the intramyocardial EGFP distribution recapitulated the anatomy of the sympathetic arbor. In the left ventricular subepicardium of the uninjured heart, the sympathetic network was composed of multiple subarbors, exhibiting variable branching and looping topology. Axonal branches did not overlap with each other within their respective parental subarbor nor with neurites of annexed subarbors. The sympathetic network in the border zone of a 2-week-old myocardial infarction was characterized by substantive rewiring, which included spatially heterogeneous loss and gain of sympathetic fibers and formation of multiple, predominately nested, axon loops of widely variable circumference and geometry. COMPARISON WITH EXISTING METHODS In contrast to mechanical tissue sectioning methods that may involve deformation of tissue and uncertainty in registration across sections, our approach preserves continuity of structure, which allows tracing of neurites over distances, and thus enables derivation of the three-dimensional and topological morphology of cardiac sympathetic nerves. CONCLUSIONS Our assay should be of general utility to unravel the mechanisms governing sympathetic axon spacing during development and disease.
Collapse
Affiliation(s)
- Kim Freeman
- Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, Indianapolis, IN 46202
| | - Wen Tao
- Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, Indianapolis, IN 46202
| | - Hongli Sun
- Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, Indianapolis, IN 46202
| | - Mark H. Soonpaa
- Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, Indianapolis, IN 46202
| | - Michael Rubart
- Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, Indianapolis, IN 46202
| |
Collapse
|
194
|
Sovari AA, Shroff A, Kocheril AG. Postinfarct cardiac remodeling and the substrate for sudden cardiac death: role of oxidative stress and myocardial fibrosis. Expert Rev Cardiovasc Ther 2014; 10:267-70. [DOI: 10.1586/erc.12.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
195
|
Chen RH, Li YG, Jiao KL, Zhang PP, Sun Y, Zhang LP, Fong XF, Li W, Yu Y. Overexpression of Sema3a in myocardial infarction border zone decreases vulnerability of ventricular tachycardia post-myocardial infarction in rats. J Cell Mol Med 2014; 17:608-16. [PMID: 23711091 PMCID: PMC3822813 DOI: 10.1111/jcmm.12035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 01/11/2013] [Indexed: 01/20/2023] Open
Abstract
The expression of the chemorepellent Sema3a is inversely related to sympathetic innervation. We investigated whether overexpression of Sema3a in the myocardial infarction (MI) border zone could attenuate sympathetic hyper-innervation and decrease the vulnerability to malignant ventricular tachyarrhythmia (VT) in rats. Survived MI rats were randomized to phosphate buffered saline (PBS, n = 12); mock lentivirus (MLV, n = 13) and lentivirus-mediated overexpression of Sema3a (SLV, n = 13) groups. Sham-operated rats served as control group (CON, n = 20). Cardiac function and electrophysiological study (PES) were performed at 1 week later. Blood and tissue samples were collected for histological analysis, epinephrine (EPI), growth-associated factor 43 (GAP43) and tyrosine hydroxylase (TH) measurements. QTc intervals were significantly shorter in SLV group than in PBS and MLV groups (168.6 ± 7.8 vs. 178.1 ± 9.5 and 180.9 ± 8.2 ms, all P < 0.01). Inducibility of VT by PES was significantly lower in the SLV group [30.8% (4/13)] than in PBS [66.7% (8/12)] and MLV [61.5% (8/13)] groups (P < 0.05). mRNA and protein expressions of Sema3a were significantly higher and the protein expression of GAP43 and TH was significantly lower at 7 days after transduction in SLV group compared with PBS, MLV and CON groups. Myocardial EPI in the border zone was also significantly lower in SLV group than in PBS and MLV group (8.73 ± 1.30 vs. 11.94 ± 1.71 and 12.24 ± 1.54 μg/g protein, P < 0.001). Overexpression of Sema3a in MI border zone could reduce the inducibility of ventricular arrhythmias by reducing sympathetic hyper-reinnervation after infarction.
Collapse
Affiliation(s)
- Ren-Hua Chen
- Department of Cardiology, School of Medicine, Xinhua Hospital, Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Ventricular tachycardia in ischemic heart disease substrates. Indian Heart J 2014; 66 Suppl 1:S24-34. [PMID: 24568826 DOI: 10.1016/j.ihj.2013.12.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 12/10/2013] [Indexed: 01/18/2023] Open
Abstract
Advances in the treatment of myocardial infarction (MI) have improved survival after ischemic cardiac injury. Post-infarct structural and functional remodeling results in electrophysiologic substrates at risk for monomorphic ventricular tachycardia (MMVT). Characterization of this substrate using a variety of clinical and investigative tools has improved our understanding of MMVT circuits, and has accelerated the development of device and catheter-based therapies aimed at identification and elimination of this arrhythmia. This review will discuss the central role of the ischemic heart disease substrate in the development MMVT. Electrophysiologic characterization of the post-infarct myocardium using bipolar electrogram amplitudes to delineate scar border zones will be reviewed. Functional electrogram determinants of reentrant circuits such as isolated late potentials will be discussed. Strategies for catheter ablation of reentrant ventricular tachycardia, including structural and functional targets will also be examined, as will the role of the epicardial mapping and ablation in the management of recurrent MMVT.
Collapse
|
197
|
Naksuk N, DeSimone CV, Kapa S, Asirvatham SJ. Prevention of sudden cardiac death beyond the ICD: have we reached the boundary or are we just burning the surface? Indian Heart J 2014; 66 Suppl 1:S120-8. [PMID: 24568823 PMCID: PMC4237304 DOI: 10.1016/j.ihj.2013.12.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 12/10/2013] [Accepted: 12/13/2013] [Indexed: 11/18/2022] Open
Abstract
Preventing sudden cardiac death (SCD) remains a major unsolved problem in contemporary medical practice. As the most common cause of SCD, treatment for ventricular arrhythmias is the target area of interest in research field. While implantable cardioverter-defibrillator (ICD) effectively decreases death from ventricular arrhythmias in highly selected patients, risk of inappropriate shocks, mortality from frequent therapy, chance of failing in abortion of arrhythmias despite having a defibrillator, and our inability to recognize which of several hundreds of thousands of patients at risk for sudden death but do not meet current criteria for defibrillator, limit ICD effectiveness. In this article, a brief review of mechanism leading to SCD, the existing evidence for a defibrillator and the lacunae in present guidelines for patients clearly at risk for sudden death but without proven benefit from a defibrillator are presented in Section I. Following this, interventional approaches, both catheter-based and general measures that may serve as adjuncts to a defibrillator in preventing this all too common catastrophic end event, are summarized in Section II.
Collapse
Affiliation(s)
- Niyada Naksuk
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | | | - Suraj Kapa
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Samuel J Asirvatham
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA; Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
198
|
Xue M, Xuan YL, Wang Y, Hu HS, Li XL, Suo F, Li XR, Cheng WJ, Yan SH. Exogenous nerve growth factor promotes the repair of cardiac sympathetic heterogeneity and electrophysiological instability in diabetic rats. Cardiology 2013; 127:155-63. [PMID: 24356397 DOI: 10.1159/000355535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/07/2013] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Diabetic cardiac autonomic neuropathy can lead to an increased incidence of ventricular arrhythmias (VAs). However, few data are available regarding the pathogenesis and therapy of the VAs accompanying diabetic cardiac autonomic neuropathy. We aimed to explore whether or not exogenous nerve growth factor (NGF) can reduce the sympathetic heterogeneity and the incidence of VAs in diabetes mellitus (DM). METHODS Male Wistar rats were randomly divided into 3 groups: controls, rats with DM with saline infused into the left stellate ganglion (LSG), i.e. the DS group and rats with DM with NGF infused into the LSG, i.e. the DN group. After 28 weeks, all rats were subjected to electrophysiological experiments. Sympathetic innervations and NGF were studied by immunostaining, RT-PCR or Western blot analysis. RESULTS The incidence of inducible VAs was significantly higher in the DS group than in the control group, but was markedly decreased in the DN group. In the DS group, the tyrosine hydroxylase (TH) and NGF expression were significantly lower than in the other groups, and significant proximal-distal heterogeneities existed regarding the TH and NGF expression in the left ventricle, but were markedly repaired in the DN group. CONCLUSIONS NGF intervention in the LSG can reduce the heterogeneity of cardiac sympathetic innervations and the incidence of VAs in diabetic rats.
Collapse
Affiliation(s)
- Mei Xue
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Lee TM, Lin SZ, Chang NC. Differential effect of phosphodiesterase-3 inhibitors on sympathetic hyperinnervation in healed rat infarcts. Circ J 2013; 78:366-76. [PMID: 24304537 DOI: 10.1253/circj.cj-13-0749] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The effect of phosphodiesterase-3 (PDE-3) inhibitors on arrhythmia remains controversial, so the purpose of this study was to determine their differential effects on sympathetic hyperinnervation and the involved mechanisms in a rat model of myocardial infarction. METHODS AND RESULTS After ligating the coronary artery, male Wistar rats were randomized to cilostazol or milrinone, chemically unrelated inhibitors of PDE-3, or vehicle for 4 weeks. The postinfarction period was associated with increased myocardial norepinephrine levels and oxidant release, as measured by myocardial superoxide level and dihydroethidine fluorescence staining. Infarcted rats in the milrinone- and cilostazol-treated groups had favorable ventricular remodeling with similar potency. Compared with milrinone, cilostazol significantly increased interstitial adenosine levels and reduced the production of myocardial cAMP and superoxide. Cilostazol significantly blunted sympathetic hyperinnervation, as assessed by immunofluorescent analysis of sympathetic innervation, and western blotting and real-time quantitative RT-PCR of nerve growth factor. Furthermore, the inhibitory effect of cilostazol on nerve growth factor was reversed by 8-cyclopentyl-1,3-dipropylxanthine, a selective A1 receptor antagonist, and enhanced by tempol administration. In spite of similar arrhythmic vulnerability during programmed stimulation in both the vehicle-and cilostazol-treated groups, cilostazol did not have proarrhythmic effects compared with milrinone. CONCLUSIONS Unlike milrinone, cilostazol has therapeutic neutrality in arrhythmias because of adenosine uptake inhibition, which antagonizes the PDE-3-induced increase of sympathetic reinnervation via mediation of an adenosine A1 receptor-mediated antioxidation.
Collapse
Affiliation(s)
- Tsung-Ming Lee
- Department of Medicine, Cardiology Section, Tainan Municipal An-Nan Hospital-China Medical University
| | | | | |
Collapse
|
200
|
|