151
|
Lange NE, Sparrow D, Vokonas P, Litonjua AA. Vitamin D deficiency, smoking, and lung function in the Normative Aging Study. Am J Respir Crit Care Med 2012; 186:616-21. [PMID: 22822023 PMCID: PMC3480523 DOI: 10.1164/rccm.201110-1868oc] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 07/06/2012] [Indexed: 12/17/2022] Open
Abstract
RATIONALE Vitamin D has immunomodulatory and antiinflammatory effects that may be modified by cigarette smoke and may affect lung function. OBJECTIVES To examine the effect of vitamin D deficiency and smoking on lung function and lung function decline. METHODS A total of 626 men from the Normative Aging Study had 25-hydroxyvitamin D levels measured at three different times between 1984 and 2003 with concurrent spirometry. Vitamin D deficiency was defined as serum level ≤ 20 ng/ml. Statistical analysis was performed using multivariable linear regression and mixed effects models. MEASUREMENTS AND MAIN RESULTS In the overall cohort, there was no significant effect of vitamin D deficiency on lung function or on lung function decline. In both cross-sectional and longitudinal multivariable models, there was effect modification by vitamin D status on the association between smoking and lung function. Cross-sectional analysis revealed lower lung function in current smokers with vitamin D deficiency (FEV(1), FVC, and FEV(1)/FVC; P ≤ 0.0002), and longitudinal analysis showed more rapid rates of decline in FEV(1) (P = 0.023) per pack-year of smoking in subjects with vitamin D deficiency as compared with subjects who were vitamin D sufficient. CONCLUSIONS Vitamin D deficiency was associated with lower lung function and more rapid lung function decline in smokers over 20 years in this longitudinal cohort of elderly men. This suggests that vitamin D sufficiency may have a protective effect against the damaging effects of smoking on lung function. Future studies should seek to confirm this finding in the context of smoking and other exposures that affect lung function.
Collapse
Affiliation(s)
- Nancy E Lange
- Channing Laboratory, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
152
|
Elhefny A, Mourad S, Morsi TS, Kamel MA, Mahmoud HM. Exhaled breath condensate nitric oxide end products and pH in controlled asthma. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2012. [DOI: 10.1016/j.ejcdt.2012.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
153
|
Ghanei M, Nezhad LH, Harandi AA, Alaeddini F, Shohrati M, Aslani J. Combination therapy for airflow limitation in COPD. ACTA ACUST UNITED AC 2012; 20:6. [PMID: 23226113 PMCID: PMC3514536 DOI: 10.1186/2008-2231-20-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 05/17/2012] [Indexed: 12/02/2022]
Abstract
Abstract Background and the purpose of the study Existing evidence confirms that no pharmacologic agent ameliorates the decline in the lung function or changes the prognosis of chronic obstructive pulmonary disease (COPD). We tried a critical combination therapy for management of COPD. Methods Current or past smoker (passive or active) COPD patients with moderate to severe COPD who did not respond to primitive therapy (i.e., oral prednisolone (50 mg in the morning) for 5 days; with Beclomethasone Fort (3 puff q12h, totally 1500 micrograms/day), Salmeterol (2 puffs q12h, 50 micrograms/puff) and ipratropium bromide (4 puffs q8h) for two months, enrolled to study. Furthermore they were received N-Acetylcysteine (1200 mg/daily), Azithromycin (tablet 250 mg/every other day) and Theophylline (100 mg BD). Results The study group consisted of 44 men and 4 women, with a mean age and standard deviation of 63.6 ± 12.7 years (range 22–86 years). Thirteen of 48 patients (27.0%) was responder based on 15% increasing in FEV 1 (27.7 ± 7.9) after 6.7 ± 6.1 months (57.9 ± 12.9 year old). There were statistically significant differences in age and smoking between responders and non-responders (P value was 0.05 and 0.04 respectively). There was no difference in emphysema and air trapping between two groups (p = 0.13). Conclusion Interestingly considerable proportion of patients with COPD can be reversible using combination drug therapy and patients will greatly benefit from different and synergic action of the drugs. The treatment was more effective in younger patients who smoke less.
Collapse
Affiliation(s)
- Mostafa Ghanei
- Research Center of Chemical Injuries, Baqiyatallah Medical Sciences University, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
154
|
Lung oxidative damage by hypoxia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:856918. [PMID: 22966417 PMCID: PMC3433143 DOI: 10.1155/2012/856918] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/11/2012] [Indexed: 12/12/2022]
Abstract
One of the most important functions of lungs is to maintain an adequate oxygenation in the organism. This organ can be affected by hypoxia facing both physiological and pathological situations. Exposure to this condition favors the increase of reactive oxygen species from mitochondria, as from NADPH oxidase, xanthine oxidase/reductase, and nitric oxide synthase enzymes, as well as establishing an inflammatory process. In lungs, hypoxia also modifies the levels of antioxidant substances causing pulmonary oxidative damage. Imbalance of redox state in lungs induced by hypoxia has been suggested as a participant in the changes observed in lung function in the hypoxic context, such as hypoxic vasoconstriction and pulmonary edema, in addition to vascular remodeling and chronic pulmonary hypertension. In this work, experimental evidence that shows the implied mechanisms in pulmonary redox state by hypoxia is reviewed. Herein, studies of cultures of different lung cells and complete isolated lung and tests conducted in vivo in the different forms of hypoxia, conducted in both animal models and humans, are described.
Collapse
|
155
|
Brar SS, Meyer JN, Bortner CD, Van Houten B, Martin WJ. Mitochondrial DNA-depleted A549 cells are resistant to bleomycin. Am J Physiol Lung Cell Mol Physiol 2012; 303:L413-24. [PMID: 22773697 DOI: 10.1152/ajplung.00343.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alveolar epithelial cells are considered to be the primary target of bleomycin-induced lung injury, leading to interstitial fibrosis. The molecular mechanisms by which bleomycin causes this damage are poorly understood but are suspected to involve generation of reactive oxygen species and DNA damage. We studied the effect of bleomycin on mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) in human alveolar epithelial A549 cells. Bleomycin caused an increase in reactive oxygen species production, DNA damage, and apoptosis in A549 cells; however, bleomycin induced more mtDNA than nDNA damage. DNA damage was associated with activation of caspase-3, cleavage of poly(ADP-ribose) polymerase, and cleavage and activation of protein kinase D1 (PKD1), a newly identified mitochondrial oxidative stress sensor. These effects appear to be mtDNA-dependent, because no caspase-3 or PKD1 activation was observed in mtDNA-depleted (ρ(0)) A549 cells. Survival rate after bleomycin treatment was higher for A549 ρ(0) than A549 cells. These results suggest that A549 ρ(0) cells are more resistant to bleomycin toxicity than are parent A549 cells, likely in part due to the depletion of mtDNA and impairment of mitochondria-dependent apoptotic pathways.
Collapse
Affiliation(s)
- Sukhdev S Brar
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | | | | | | | | |
Collapse
|
156
|
Antczak A, Ciebiada M, Pietras T, Piotrowski WJ, Kurmanowska Z, Górski P. Exhaled eicosanoids and biomarkers of oxidative stress in exacerbation of chronic obstructive pulmonary disease. Arch Med Sci 2012; 8:277-85. [PMID: 22662001 PMCID: PMC3361040 DOI: 10.5114/aoms.2012.28555] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 10/14/2010] [Accepted: 11/30/2010] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Eicosanoids and oxidants play an important role in inflammation, but their role in chronic obstructive pulmonary disease (COPD) is uncertain. In this study we hypothesized that levels of exhaled leukotrienes, prostaglandins and biomarkers of oxidative stress are increased in infectious exacerbations of COPD and that they decrease after antibiotic therapy. MATERIAL AND METHODS Cysteinyl-leukotrienes (LTs), leukotriene B(4) (LTB(4)), prostaglandin E(4), hydrogen peroxide (H(2)O(2)) and 8-isoprostane were measured in exhaled breath condensate (EBC) in 16 COPD patients with infectious exacerbations (mean age 64 ±12 years, 13 male) on day 1, during antibiotic therapy (days 2-4), 2-4 days after therapy and at a follow-up visit when stable (21-28 days after therapy). RESULTS There was a significant fall in concentration of cys-LTs, LTB(4) and 8-isoprostane at visit 3 compared to day 1 (cys-LTs: 196.5 ±38.4 pg/ml vs. 50.1 ±8.2 pg/ml, p < 0.002; LTB(4): 153.6 ±25.5 pg/ml vs. 71.9 ±11.3 pg/ml, p < 0.05; 8-isoprostane: 121.4 ±14.6 pg/ml vs. 56.1 ±5.2 pg/ml, p < 0.03, respectively). Exhaled H(2)O(2) was higher on day 1 compared to that at visits 2 and 3 (0.74 ±0.046 µM vs. 0.52 ±0.028 µM and 0.35 ±0.029 µM, p < 0.01 and p < 0.01, respectively). Exhaled PGE(2) levels did not change during exacerbations of COPD. Exhaled eicosanoids and H(2)O(2) in EBC measured at the follow-up visit (stable COPD) were significantly higher compared to those from healthy subjects. CONCLUSIONS We conclude that eicosanoids and oxidants are increased in infectious exacerbations of COPD. They are also elevated in the airways of stable COPD patients compared to healthy subjects.
Collapse
Affiliation(s)
- Adam Antczak
- Department of Pneumology and Allergy, Medical University of Lodz, Poland
| | | | | | | | | | | |
Collapse
|
157
|
Ngwuluka NC. Are Bombax buonopozense and Bombax malabaricum possible nutraceuticals for age management? Prev Med 2012; 54 Suppl:S64-70. [PMID: 22230475 DOI: 10.1016/j.ypmed.2011.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 01/09/2023]
Abstract
Human longevity and healthy ageing though controversial require extended investigations. Some studies have shown that ageing can be managed by reducing the amounts of free radicals the cells are exposed to. Oxidative stress has been shown to be combated by antioxidants and plant sources are known to generate antioxidants that are efficacious and low in toxicity. This review aims to enlighten on antioxidants from Bombax buonopozense and Bombax malabaricum for prevention, reversal or delay of age-related diseases. Furthermore, it advocates for more studies to enable the shift from research to commercial applications of the antioxidants as nutraceuticals in age management.
Collapse
Affiliation(s)
- Ndidi C Ngwuluka
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of Jos, Jos, Nigeria.
| |
Collapse
|
158
|
Zhang R, Bai Y, Zhang B, Chen L, Yan B. The potential health risk of titania nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2012; 211-212:404-413. [PMID: 22118851 DOI: 10.1016/j.jhazmat.2011.11.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 11/04/2011] [Accepted: 11/07/2011] [Indexed: 05/31/2023]
Abstract
Widespread use of titania nanoparticles (TNPs) has caused a significant release of TNPs into the environment, increasing human exposure to TNPs. The potential toxicity of TNPs has become an urgent concern. Various models have been used to evaluate the toxic effects of TNPs, but the relationship between TNPs' toxicity and physicochemical properties is largely unknown. This review summarizes relevant reports to support the development of better predictive toxicological models and the safe future application of TNPs.
Collapse
Affiliation(s)
- Ruinan Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | | | | | | | | |
Collapse
|
159
|
Degese MS, Mendizabal JE, Gandini NA, Gutkind JS, Molinolo A, Hewitt SM, Curino AC, Coso OA, Facchinetti MM. Expression of heme oxygenase-1 in non-small cell lung cancer (NSCLC) and its correlation with clinical data. Lung Cancer 2012; 77:168-75. [PMID: 22418244 DOI: 10.1016/j.lungcan.2012.02.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 12/29/2011] [Accepted: 02/17/2012] [Indexed: 01/19/2023]
Abstract
While changes in heme oxygenase (HO-1) in lung cancer have already been reported, conflicting results were obtained for enzyme expression in human lung cancer specimens. Therefore, the aim of this work was to study HO-1 expression in a large collection of human lung cancer samples. For this purpose, we analyzed the expression of HO-1 in an organized tissue microarray (TMA) and investigated its correlation with clinicopathological data. Ninety-six percent of tumor samples were positive for HO-1, and the expression of HO-1 was significantly higher in cancerous than in non-cancerous tissues. Importantly, HO-1 expression correlated with advanced stages and lymph node involvement. Additionally, quantitative RT-PCR in 18 pairs of human lung carcinomas and their adjacent non-malignant tissues was performed. Our results demonstrate that HO-1 protein is upregulated in epithelial malignant cells in NSCLC and its expression is associated with higher stages of the disease. Additionally, different subcellular localization is observed between tumor and adjacent non-malignant tissues.
Collapse
Affiliation(s)
- María S Degese
- Laboratorio de Fisiología y Biología Molecular, IFIBYNE - CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Patelarou E, Giourgouli G, Lykeridou A, Vrioni E, Fotos N, Siamaga E, Vivilaki V, Brokalaki H. Association between biomarker-quantified antioxidant status during pregnancy and infancy and allergic disease during early childhood: a systematic review. Nutr Rev 2012; 69:627-41. [PMID: 22029830 DOI: 10.1111/j.1753-4887.2011.00445.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recent findings suggest a significant association between the antioxidant status of pregnant women and of their children during the first years of life and the development of allergic disease during childhood. The aim of this review was to identify all studies that estimated the effect of intake of antioxidants in pregnant women and their children on the development of allergic disease during early childhood. A systematic review was conducted of epidemiological studies featuring original peer-reviewed data on the association between dietary antioxidant status and allergic disease during childhood. A systematic search was performed following the Meta-analysis of Observational Studies in Epidemiology Guidelines. A comprehensive search of the literature yielded 225 studies, 18 of which were selected for the extraction of results and were related to antioxidant status and allergic disease. The systematic review included five prospective cohort studies, four cross-sectional studies, and nine case-control studies. Eight studies reported an important association between antioxidant status and asthma onset during childhood. Similarly, wheezing and eczema were studied as an outcome in six and in five studies, respectively. Recent observational studies suggest that a higher intake of antioxidant vitamins, zinc, and selenium during pregnancy and childhood reduces the likelihood of childhood asthma, wheezing, and eczema.
Collapse
|
161
|
Majima Y, Kurono Y, Hirakawa K, Ichimura K, Haruna S, Suzaki H, Kawauchi H, Takeuchi K, Naito K, Kase Y, Harada T, Moriyama H. Efficacy of combined treatment with S-carboxymethylcysteine (carbocisteine) and clarithromycin in chronic rhinosinusitis patients without nasal polyp or with small nasal polyp. Auris Nasus Larynx 2012; 39:38-47. [DOI: 10.1016/j.anl.2011.04.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 04/26/2011] [Accepted: 04/29/2011] [Indexed: 10/18/2022]
|
162
|
Potts-Kant EN, Li Z, Tighe RM, Lindsey JY, Frush BW, Foster WM, Hollingsworth JW. RETRACTED: NAD(P)H:quinone oxidoreductase 1 protects lungs from oxidant-induced emphysema in mice. Free Radic Biol Med 2012; 52:705-715. [PMID: 22198263 PMCID: PMC3267893 DOI: 10.1016/j.freeradbiomed.2011.11.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/28/2011] [Accepted: 11/22/2011] [Indexed: 10/14/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Authors. Since learning of potential discrepancies between the raw data from the animal pulmonary physiology laboratory at Duke that were used to calculate the in vivo pulmonary mechanics and the re-exported machine-generated raw data, some studies published elsewhere have been replicated successfully. However it is not possible to replicate this study as the NQO1-deficient mice on the C57BL/6 background are no longer available from the NCI. The authors recognize that previous work to identify differences in alveolar size can vary dependent on background strain when comparing inbred mouse strains (Soutiere SE et al Resp Physiol Neurobiol 2004;140(3)183–91 doi: 10.1016/j.resp.2004.02.003). Because of the prolonged period of time required to successfully backcross NQO1-deficient animals onto C57BL/6J background and the time required to repeat studies presented in this manuscript the authors think it does not seem feasible to conduct replicate studies in a reasonable timeline. Therefore, the most appropriate course of action is to retract the report as it is the authors' goal to maintain accuracy of the scientific record to the best of their ability. The authors offer sincere apologies to the scientific community.
Collapse
Affiliation(s)
- Erin N Potts-Kant
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Zhuowei Li
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Robert M Tighe
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - James Y Lindsey
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Benjamin W Frush
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - W Michael Foster
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - John W Hollingsworth
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
163
|
Devillier P, Jebrak G, Morel H, Chinet T, Didier A, Roche N. [Treatment of distal airways involvement in COPD]. Rev Mal Respir 2011; 28:1340-56. [PMID: 22152941 DOI: 10.1016/j.rmr.2011.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Accepted: 08/06/2011] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The current pharmacological treatment of COPD provides only partial beneficial effects on symptoms, exercise tolerance, frequency of exacerbations and quality of life. This could be related to poor targeting of the distal airways by current treatments, yet these airways are particularly involved in airflow obstruction and its consequences such as hyperinflation. BACKGROUND Many treatments used in COPD could have effects on distal airways, including bronchodilators, corticosteroids, mucolytics and antibiotics. However, these possible effects remain poorly understood. VIEWPOINTS New treatments targeting more specifically the mechanisms of inflammation, oxidative stress and tissue remodeling that characterize COPD, could prove useful in its management, but most are still only in the early stages of their development. Advances could also come from improvements in inhalation devices, delivering more of the medication to the distal airways. CONCLUSIONS Improvement in the management of COPD could come from progress in terms of both molecules and their mode of administration.
Collapse
Affiliation(s)
- P Devillier
- UPRES EA 220, pôle des maladies respiratoires, hôpital Foch, 11 rue Guillaume-Lenoir, Suresnes, France
| | | | | | | | | | | |
Collapse
|
164
|
Genetic polymorphisms of xenobiotic-metabolizing enzymes influence the risk of pulmonary emphysema. Pharmacogenet Genomics 2011; 21:876-83. [DOI: 10.1097/fpc.0b013e32834d597f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
165
|
Li C, Zhou HM. The role of manganese superoxide dismutase in inflammation defense. Enzyme Res 2011; 2011:387176. [PMID: 21977313 PMCID: PMC3185262 DOI: 10.4061/2011/387176] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 07/19/2011] [Indexed: 12/26/2022] Open
Abstract
Antioxidant enzymes maintain cellular redox homeostasis. Manganese superoxide dismutase (MnSOD), an enzyme located in mitochondria, is the key enzyme that protects the energy-generating mitochondria from oxidative damage. Levels of MnSOD are reduced in many diseases, including cancer, neurodegenerative diseases, and psoriasis. Overexpression of MnSOD in tumor cells can significantly attenuate the malignant phenotype. Past studies have reported that this enzyme has the potential to be used as an anti-inflammatory agent because of its superoxide anion scavenging ability. Superoxide anions have a proinflammatory role in many diseases. Treatment of a rat model of lung pleurisy with the MnSOD mimetic MnTBAP suppressed the inflammatory response in a dose-dependent manner. In this paper, the mechanisms underlying the suppressive effects of MnSOD in inflammatory diseases are studied, and the potential applications of this enzyme and its mimetics as anti-inflammatory agents are discussed.
Collapse
Affiliation(s)
- Chang Li
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hai-Meng Zhou
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Institute of Tsinghua University, Yangtze Delta Region, Jiaxing 314006, China
| |
Collapse
|
166
|
Ghanei M, Harandi AA. Molecular and cellular mechanism of lung injuries due to exposure to sulfur mustard: a review. Inhal Toxicol 2011; 23:363-71. [PMID: 21639706 DOI: 10.3109/08958378.2011.576278] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Sulfur mustard (SM), a potent chemical weapon agent, was used by Iraqi forces against Iranian in the Iraq-Iran war (1981-1989). Chronic obstructive pulmonary disease (COPD) is a late toxic pulmonary consequence after SM exposure. The COPD observed in these patients is unique (described as Mustard Lung) and to some extent different from COPD resulted from other well-known causes. Several mechanisms have been hypothesized to contribute to the pathogenesis of COPD including oxidative stress, disruption of the balance between apoptosis and replenishment, proteinase-antiproteinase imbalance and inflammation. However, it is not obvious which of these pathways are relevant to the pathogenesis of mustard lung. In this paper, we reviewed studies addressing the pathogenicity of mustard lung, and reduced some recent ambiguities in this field. There is ample evidence in favor of crucial role of both oxidative stress and apoptosis as two known mechanisms that are more involved in pathogenesis of mustard lung comparing to COPD. However, according to available evidences there are no such considerable data supporting neither proteolytic activity nor inflammation mechanism as the main underlying pathogenesis in Mustard Lung.
Collapse
Affiliation(s)
- Mostafa Ghanei
- Research Center of Chemical Injuries, Baqiyatallah Medical Sciences University, Tehran, Iran.
| | | |
Collapse
|
167
|
Identifying developmental toxicity pathways for a subset of ToxCast chemicals using human embryonic stem cells and metabolomics. Toxicol Appl Pharmacol 2011; 257:111-21. [PMID: 21925528 DOI: 10.1016/j.taap.2011.08.025] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 08/28/2011] [Indexed: 11/23/2022]
Abstract
Metabolomics analysis was performed on the supernatant of human embryonic stem (hES) cell cultures exposed to a blinded subset of 11 chemicals selected from the chemical library of EPA's ToxCast™ chemical screening and prioritization research project. Metabolites from hES cultures were evaluated for known and novel signatures that may be indicative of developmental toxicity. Significant fold changes in endogenous metabolites were detected for 83 putatively annotated mass features in response to the subset of ToxCast chemicals. The annotations were mapped to specific human metabolic pathways. This revealed strong effects on pathways for nicotinate and nicotinamide metabolism, pantothenate and CoA biosynthesis, glutathione metabolism, and arginine and proline metabolism pathways. Predictivity for adverse outcomes in mammalian prenatal developmental toxicity studies used ToxRefDB and other sources of information, including Stemina Biomarker Discovery's predictive DevTox® model trained on 23 pharmaceutical agents of known developmental toxicity and differing potency. The model initially predicted developmental toxicity from the blinded ToxCast compounds in concordance with animal data with 73% accuracy. Retraining the model with data from the unblinded test compounds at one concentration level increased the predictive accuracy for the remaining concentrations to 83%. These preliminary results on a 11-chemical subset of the ToxCast chemical library indicate that metabolomics analysis of the hES secretome provides information valuable for predictive modeling and mechanistic understanding of mammalian developmental toxicity.
Collapse
|
168
|
Ferguson GT. Maintenance pharmacotherapy of mild and moderate COPD: What is the Evidence? Respir Med 2011; 105:1268-74. [DOI: 10.1016/j.rmed.2011.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/28/2011] [Accepted: 02/07/2011] [Indexed: 10/18/2022]
|
169
|
Lindsey JY, Ganguly K, Brass DM, Li Z, Potts EN, Degan S, Chen H, Brockway B, Abraham SN, Berndt A, Stripp BR, Foster WM, Leikauf GD, Schulz H, Hollingsworth JW. c-Kit is essential for alveolar maintenance and protection from emphysema-like disease in mice. Am J Respir Crit Care Med 2011; 183:1644-52. [PMID: 21471107 PMCID: PMC3136992 DOI: 10.1164/rccm.201007-1157oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
RATIONALE Previously, we demonstrated a candidate region for susceptibility to airspace enlargement on mouse chromosome 5. However, the specific candidate genes within this region accounting for emphysema-like changes remain unrecognized. c-Kit is a receptor tyrosine kinase within this candidate gene region that has previously been recognized to contribute to the survival, proliferation, and differentiation of hematopoietic stem cells. Increases in the percentage of cells expressing c-Kit have previously been associated with protection against injury-induced emphysema. OBJECTIVES Determine whether genetic variants of c-Kit are associated with spontaneous airspace enlargement. METHODS Perform single-nucleotide polymorphism association studies in the mouse strains at the extremes of airspace enlargement phenotype for variants in c-Kit tyrosine kinase. Characterize mice bearing functional variants of c-Kit compared with wild-type controls for the development of spontaneous airspace enlargement. Epithelial cell proliferation was measured in culture. MEASUREMENTS AND MAIN RESULTS Upstream regulatory single-nucleotide polymorphisms in the divergent mouse strains were associated with the lung compliance difference observed between the extreme strains. c-Kit mutant mice (Kit(W-sh)/(W-sh)), when compared with genetic controls, developed altered lung histology, increased total lung capacity, increased residual volume, and increased lung compliance that persist into adulthood. c-Kit inhibition with imatinib attenuated in vitro proliferation of cells expressing epithelial cell adhesion molecule. CONCLUSIONS Our findings indicate that c-Kit sustains and/or maintains normal alveolar architecture in the lungs of mice. In vitro data suggest that c-Kit can regulate epithelial cell clonal expansion. The precise mechanisms that c-Kit contributes to the development of airspace enlargement and increased lung compliance remain unclear and warrants further investigation.
Collapse
Affiliation(s)
- James Y. Lindsey
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pediatrics, Duke University Medical Center, Center for Molecular and Biomolecular Imaging, Duke University Medical Center, Department of Pathology and Department of Molecular Genetics and Microbiology, Duke University Medical Center, and Department of Immunology, Duke University Medical Center, Durham, North Carolina; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and Institute of Epidemiology and Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum, Munchen, German Research Center for Environmental Health, Munich, Germany
| | - Koustav Ganguly
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pediatrics, Duke University Medical Center, Center for Molecular and Biomolecular Imaging, Duke University Medical Center, Department of Pathology and Department of Molecular Genetics and Microbiology, Duke University Medical Center, and Department of Immunology, Duke University Medical Center, Durham, North Carolina; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and Institute of Epidemiology and Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum, Munchen, German Research Center for Environmental Health, Munich, Germany
| | - David M. Brass
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pediatrics, Duke University Medical Center, Center for Molecular and Biomolecular Imaging, Duke University Medical Center, Department of Pathology and Department of Molecular Genetics and Microbiology, Duke University Medical Center, and Department of Immunology, Duke University Medical Center, Durham, North Carolina; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and Institute of Epidemiology and Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum, Munchen, German Research Center for Environmental Health, Munich, Germany
| | - Zhuowei Li
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pediatrics, Duke University Medical Center, Center for Molecular and Biomolecular Imaging, Duke University Medical Center, Department of Pathology and Department of Molecular Genetics and Microbiology, Duke University Medical Center, and Department of Immunology, Duke University Medical Center, Durham, North Carolina; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and Institute of Epidemiology and Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum, Munchen, German Research Center for Environmental Health, Munich, Germany
| | - Erin N. Potts
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pediatrics, Duke University Medical Center, Center for Molecular and Biomolecular Imaging, Duke University Medical Center, Department of Pathology and Department of Molecular Genetics and Microbiology, Duke University Medical Center, and Department of Immunology, Duke University Medical Center, Durham, North Carolina; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and Institute of Epidemiology and Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum, Munchen, German Research Center for Environmental Health, Munich, Germany
| | - Simone Degan
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pediatrics, Duke University Medical Center, Center for Molecular and Biomolecular Imaging, Duke University Medical Center, Department of Pathology and Department of Molecular Genetics and Microbiology, Duke University Medical Center, and Department of Immunology, Duke University Medical Center, Durham, North Carolina; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and Institute of Epidemiology and Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum, Munchen, German Research Center for Environmental Health, Munich, Germany
| | - Huaiyong Chen
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pediatrics, Duke University Medical Center, Center for Molecular and Biomolecular Imaging, Duke University Medical Center, Department of Pathology and Department of Molecular Genetics and Microbiology, Duke University Medical Center, and Department of Immunology, Duke University Medical Center, Durham, North Carolina; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and Institute of Epidemiology and Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum, Munchen, German Research Center for Environmental Health, Munich, Germany
| | - Brian Brockway
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pediatrics, Duke University Medical Center, Center for Molecular and Biomolecular Imaging, Duke University Medical Center, Department of Pathology and Department of Molecular Genetics and Microbiology, Duke University Medical Center, and Department of Immunology, Duke University Medical Center, Durham, North Carolina; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and Institute of Epidemiology and Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum, Munchen, German Research Center for Environmental Health, Munich, Germany
| | - Soman N. Abraham
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pediatrics, Duke University Medical Center, Center for Molecular and Biomolecular Imaging, Duke University Medical Center, Department of Pathology and Department of Molecular Genetics and Microbiology, Duke University Medical Center, and Department of Immunology, Duke University Medical Center, Durham, North Carolina; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and Institute of Epidemiology and Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum, Munchen, German Research Center for Environmental Health, Munich, Germany
| | - Annerose Berndt
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pediatrics, Duke University Medical Center, Center for Molecular and Biomolecular Imaging, Duke University Medical Center, Department of Pathology and Department of Molecular Genetics and Microbiology, Duke University Medical Center, and Department of Immunology, Duke University Medical Center, Durham, North Carolina; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and Institute of Epidemiology and Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum, Munchen, German Research Center for Environmental Health, Munich, Germany
| | - Barry R. Stripp
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pediatrics, Duke University Medical Center, Center for Molecular and Biomolecular Imaging, Duke University Medical Center, Department of Pathology and Department of Molecular Genetics and Microbiology, Duke University Medical Center, and Department of Immunology, Duke University Medical Center, Durham, North Carolina; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and Institute of Epidemiology and Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum, Munchen, German Research Center for Environmental Health, Munich, Germany
| | - W. Michael Foster
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pediatrics, Duke University Medical Center, Center for Molecular and Biomolecular Imaging, Duke University Medical Center, Department of Pathology and Department of Molecular Genetics and Microbiology, Duke University Medical Center, and Department of Immunology, Duke University Medical Center, Durham, North Carolina; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and Institute of Epidemiology and Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum, Munchen, German Research Center for Environmental Health, Munich, Germany
| | - George D. Leikauf
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pediatrics, Duke University Medical Center, Center for Molecular and Biomolecular Imaging, Duke University Medical Center, Department of Pathology and Department of Molecular Genetics and Microbiology, Duke University Medical Center, and Department of Immunology, Duke University Medical Center, Durham, North Carolina; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and Institute of Epidemiology and Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum, Munchen, German Research Center for Environmental Health, Munich, Germany
| | - Holger Schulz
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pediatrics, Duke University Medical Center, Center for Molecular and Biomolecular Imaging, Duke University Medical Center, Department of Pathology and Department of Molecular Genetics and Microbiology, Duke University Medical Center, and Department of Immunology, Duke University Medical Center, Durham, North Carolina; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and Institute of Epidemiology and Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum, Munchen, German Research Center for Environmental Health, Munich, Germany
| | - John W. Hollingsworth
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pediatrics, Duke University Medical Center, Center for Molecular and Biomolecular Imaging, Duke University Medical Center, Department of Pathology and Department of Molecular Genetics and Microbiology, Duke University Medical Center, and Department of Immunology, Duke University Medical Center, Durham, North Carolina; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and Institute of Epidemiology and Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum, Munchen, German Research Center for Environmental Health, Munich, Germany
| |
Collapse
|
170
|
Hanaoka M, Droma Y, Chen Y, Agatsuma T, Kitaguchi Y, Voelkel NF, Kubo K. Carbocisteine Protects Against Emphysema Induced by Cigarette Smoke Extract in Rats. Chest 2011; 139:1101-1108. [DOI: 10.1378/chest.10-0920] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
171
|
Liu SL, Liu K, Sun Q, Liu WW, Tao HY, Sun XJ. Hydrogen Therapy may be a Novel and Effective Treatment for COPD. Front Pharmacol 2011; 2:19. [PMID: 21687512 PMCID: PMC3108576 DOI: 10.3389/fphar.2011.00019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 03/28/2011] [Indexed: 12/13/2022] Open
Abstract
The protective effect of hydrogen (H(2)) on ROS-induced diseases has been proved by many researches, which demonstrated that through eliminating •OH and •ONOO-, H(2) could effectively attenuate lipid and DNA peroxidation, improve cellular antioxidant capacity, and then protect cells against oxidant damage. Most of free radicals in human body are ROS, including O(2)•-,•OH, H(2)O(2), NO•,•ONOO-, and so on. Under normal circumstances cells are able to maintain an adequate homeostasis between the formation and removal of ROS through particular enzymatic pathways or antioxidants. But under some pathological conditions, the balance is disturbed, leading to oxidative stress and various diseases, such as chronic obstructive pulmonary disease (COPD). Studies have shown that ROS played a pivotal role in the development of COPD and some antioxidants were effective in the protection against the damaging effects of oxidative stress. Therefore, we hypothesize that owing to its peculiarity to eliminate toxic ROS, hydrogen therapy may be a novel and effective treatment for COPD.
Collapse
Affiliation(s)
- Shu-Lin Liu
- Faculty of Naval Medicine, Department of Diving Medicine, Second Military Medical UniversityShanghai, People's Republic of China
| | - Kan Liu
- Faculty of Naval Medicine, Department of Diving Medicine, Second Military Medical UniversityShanghai, People's Republic of China
| | - Qiang Sun
- Faculty of Naval Medicine, Department of Diving Medicine, Second Military Medical UniversityShanghai, People's Republic of China
| | - Wen-Wu Liu
- Faculty of Naval Medicine, Department of Diving Medicine, Second Military Medical UniversityShanghai, People's Republic of China
| | - Heng-Yi Tao
- Faculty of Naval Medicine, Department of Diving Medicine, Second Military Medical UniversityShanghai, People's Republic of China
| | - Xue-Jun Sun
- Faculty of Naval Medicine, Department of Diving Medicine, Second Military Medical UniversityShanghai, People's Republic of China
| |
Collapse
|
172
|
Sprenger L, Goldmann T, Vollmer E, Steffen A, Wollenberg B, Zabel P, Hauber HP. Dexamethasone and N-acetyl-cysteine attenuate Pseudomonas aeruginosa-induced mucus expression in human airways. Pulm Pharmacol Ther 2011; 24:232-9. [DOI: 10.1016/j.pupt.2010.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 11/11/2010] [Accepted: 11/28/2010] [Indexed: 11/29/2022]
|
173
|
Delfino RJ, Staimer N, Vaziri ND. Air pollution and circulating biomarkers of oxidative stress. AIR QUALITY, ATMOSPHERE, & HEALTH 2011; 4:37-52. [PMID: 23626660 PMCID: PMC3634798 DOI: 10.1007/s11869-010-0095-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Chemical components of air pollutant exposures that induce oxidative stress and subsequent inflammation may be partly responsible for associations of cardiovascular morbidity and mortality with airborne particulate matter and combustion-related pollutant gasses. However, epidemiologic evidence regarding this is limited. An exposure-assessment approach is to measure the oxidative potential of particle mixtures because it is likely that hundreds of correlated chemicals are involved in overall effects of air pollution on health. Oxidative potential likely depends on particle composition and size distribution, especially ultrafine particle concentration, and on transition metals and certain semivolatile and volatile organic chemicals. For health effects, measuring systemic oxidative stress in the blood is one feasible approach, but there is no universal biomarker of oxidative stress and there are many potential target molecules (lipids, proteins, DNA, nitric oxide, etc.), which may be more or less suitable for specific study goals. Concurrent with the measurement of oxidative stress, it is important to measure gene and/or protein expression of endogenous antioxidant enzymes because they can modify relations between oxidative stress biomarkers and air pollutants. Conversely, the expression and activities of these enzymes are modified by oxidative stress. This interplay will likely determine the observed effects of air pollutants on systemic inflammatory and thrombotic mediators and related clinical outcomes. Studies are needed to assess the reliability and validity of oxidative stress biomarkers, evaluate differences in associations between oxidative stress biomarkers and various pollutant measurements (mass, chemical components, and oxidative potential), and evaluate impacts of antioxidant responses on these relations.
Collapse
Affiliation(s)
- Ralph J. Delfino
- Department of Epidemiology, School of Medicine, University of California, Irvine, 100 Theory, Suite 100, Irvine, CA 92617-7555, USA
| | - Norbert Staimer
- Department of Epidemiology, School of Medicine, University of California, Irvine, 100 Theory, Suite 100, Irvine, CA 92617-7555, USA
| | - Nosratola D. Vaziri
- Nephrology and Hypertension Division, Department of Medicine, School of Medicine, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
174
|
Onur E, Kabaroğlu C, Günay Ö, Var A, Yilmaz Ö, Dündar P, Tikiz C, Güvenç Y, Yüksel H. The beneficial effects of physical exercise on antioxidant status in asthmatic children. Allergol Immunopathol (Madr) 2011; 39:90-5. [PMID: 21242022 DOI: 10.1016/j.aller.2010.04.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 03/31/2010] [Accepted: 04/13/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND The pathogenesis of asthma involves both airway inflammation and an oxidant/antioxidant imbalance. It is demonstrated in asthmatic adults that exercise programmes improve lung function, a mechanism yet to be elucidated. The purpose of this study was to investigate the possible beneficial effects of physical exercise on antioxidant status in asthmatic children which may lead to ameliorated lung function. METHODS The study enrolled thirteen control and thirty asthmatic children. The asthmatic group was subdivided into two: the first group receiving only pharmacological treatment (n=15) and the second receiving pharmacological treatment with exercise programme (n=15) for 8 weeks. Blood samples were drawn from the subjects before and after treatment periods. As oxidant stress markers blood levels of malondialdehyde (MDA) and total nitric oxide (NO), and as antioxidant status, glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) enzyme activities were assessed. RESULTS Before any treatment was initiated, MDA and NO levels in the asthmatic group were significantly higher than the controls (3.40±0.96 nmol/ml vs 2.46±0.58 nmol/ml, and 12.53±2.10 vs 9.40±1.39 micromol/L, respectively). Both SOD (p=0.0001) and GSH-Px (p=0.023) activities were significantly lower in the asthmatic group. Pharmacological treatment and exercise programme together significantly improved lung performance and decreased the levels of oxidant stress markers, in concordance with a significantly increase in antioxidant enzyme activity measures when compared to the pharmacological treatment. CONCLUSION Structured exercise programme in asthmatic children resulted in better lung function, which may be attributed to its effect on antioxidant status.
Collapse
|
175
|
Jagetia GC, Reddy TK. Alleviation of iron induced oxidative stress by the grape fruit flavanone naringin in vitro. Chem Biol Interact 2011; 190:121-8. [PMID: 21345335 DOI: 10.1016/j.cbi.2011.02.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 02/07/2023]
Abstract
Iron is an essential element that participates in several metabolic activities of cells; however, excess iron is a major cause of iron-induced oxidative stress and several human diseases. The protective effect of naringin, a grape fruit flavanone, was studied in iron overloaded isolated mouse liver mitochondria, where the isolated mitochondrial fraction was incubated with various concentrations of naringin before ferric ion loading. Iron overloading of mitochondrial fraction resulted in an increase in lipid peroxidation, protein oxidation, and DNA damage, whereas iron overload reduced the glutathione (GSH) concentration, glutathione-S-transferase (GST), glutathione peroxidase (GSHPx), catalase and superoxide dismutase (SOD) activities. Pretreatment of mitochondrial fraction with naringin inhibited iron-induced lipid peroxidation, protein oxidation, and DNA damage. Conversely, naringin supplementation arrested iron-induced depletion in the GSH contents, GSHPx, GST, SOD and catalase activities significantly. Ferric iron reduction assay revealed that naringin could not reduce ferric iron into ferrous iron indicating that it did not exhibit prooxidant activity. Iron free coordination site assay indicated that naringin was unable to occupy all the active sites of iron indicating that naringin did not completely chelate iron. Our study demonstrates that naringin was able to share the burden of endogenous oxidants by inhibiting the iron-induced depletion of all important antioxidant enzymes as well as GSH and may act as a good antioxidant.
Collapse
|
176
|
Yu H, Li Q, Zhou X, Kolosov VP, Perelman JM. Role of hyaluronan and CD44 in reactive oxygen species-induced mucus hypersecretion. Mol Cell Biochem 2011; 352:65-75. [PMID: 21308480 DOI: 10.1007/s11010-011-0740-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 01/27/2011] [Indexed: 02/05/2023]
Abstract
Mucus hypersecretion is an important manifestation in patients with chronic inflammatory airway diseases. Mucin 5AC (MUC5AC) is a major component of airway mucus. MUC5AC expression is regulated by epidermal growth factor receptor (EGFR) which can be activated by reactive oxygen species (ROS). Hyaluronan (HA), a linear glycosaminoglycan with molecular weights ranging from 2 × 10(5) to 1 × 10(7), is expressed in airway epithelium and can be depolymerized by ROS into hyaluronan fragments. The mechanisms through which fragmented HA exerts its biologic functions have been elucidated by interactions with its receptor CD44. The aim of our study was to examine the role of HA and CD44 in ROS-induced EGFR activation and MUC5AC expression. We exposed NCI-H292 cells to ROS generated by xanthine/xanthine oxidase (X/XO). ROS-induced EGFR phosphorylation, which was activated by tissue kallekrein (TK) activation and EGF release. We found ROS promoted CD44 co-immunoprecipitation with EGFR and MUC5AC up-regulation. These effects were mimicked by hyaluronan fragments. All the effects were inhibited by blocking CD44 or EGFR, suggesting that CD44 plays a critical role in ROS-induced MUC5AC up-regulation. These results show that ROS depolymerizes hyaluronan into fragments, and these fragments bind their receptor CD44 to induce TK activation, which cleaves EGF precursors into mature EGF to activate its receptor EGFR. Furthermore, we provide evidence that hyaluronan fragments are sufficient to induce CD44/EGFR interaction and EGFR signaling which lead to MUC5AC expression. The results indicate that the regulation of ROS-induced MUC5AC expression by hyaluronan and CD44 may provide important insights in the mechanism of mucus hypersecretion.
Collapse
Affiliation(s)
- Hongmei Yu
- Division of Respiratory Medicine, Second Affiliated Hospital, Chongqing Medical University, Yuzhong District, Chongqing, China
| | | | | | | | | |
Collapse
|
177
|
Yao H, Rahman I. Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease. Toxicol Appl Pharmacol 2011; 254:72-85. [PMID: 21296096 DOI: 10.1016/j.taap.2009.10.022] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 10/04/2009] [Accepted: 10/04/2009] [Indexed: 12/17/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a global health problem. The current therapies for COPD are poorly effective and the mainstays of pharmacotherapy are bronchodilators. A better understanding of the pathobiology of COPD is critical for the development of novel therapies. In the present review, we have discussed the roles of oxidative/aldehyde stress, inflammation/immunity, and chromatin remodeling in the pathogenesis of COPD. An imbalance of oxidants/antioxidants caused by cigarette smoke and other pollutants/biomass fuels plays an important role in the pathogenesis of COPD by regulating redox-sensitive transcription factors (e.g., NF-κB), autophagy and unfolded protein response leading to chronic lung inflammatory response. Cigarette smoke also activates canonical/alternative NF-κB pathways and their upstream kinases leading to sustained inflammatory response in lungs. Recently, epigenetic regulation has been shown to be critical for the development of COPD because the expression/activity of enzymes that regulate these epigenetic modifications have been reported to be abnormal in airways of COPD patients. Hence, the significant advances made in understanding the pathophysiology of COPD as described herein will identify novel therapeutic targets for intervention in COPD.
Collapse
Affiliation(s)
- Hongwei Yao
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY 1464, USA
| | | |
Collapse
|
178
|
Panatto JP, Jeremias IC, Ferreira GK, Ramos AC, Rochi N, Gonçalves CL, Daufenbach JF, Jeremias GC, Carvalho-Silva M, Rezin GT, Scaini G, Streck EL. Inhibition of mitochondrial respiratory chain in the brain of rats after hepatic failure induced by acetaminophen. Mol Cell Biochem 2011; 350:149-54. [PMID: 21203802 DOI: 10.1007/s11010-010-0689-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 12/02/2010] [Indexed: 12/13/2022]
Abstract
Hepatic encephalopathy is an important cause of morbidity and mortality in patients with severe hepatic failure. This disease is clinically characterized by a large variety of symptoms including motor symptoms, cognitive deficits, as well as changes in the level of alertness up to hepatic coma. Acetaminophen is frequently used in animals to produce an experimental model to study the mechanisms involved in the progression of hepatic disease. The brain is highly dependent on ATP and most cell energy is obtained through oxidative phosphorylation, a process requiring the action of various respiratory enzyme complexes located in a special structure of the inner mitochondrial membrane. In this context, the authors evaluated the activities of mitochondrial respiratory chain complexes in the brain of rats submitted to acute administration of acetaminophen and treated with the combination of N-acetylcysteine (NAC) plus deferoxamine (DFX) or taurine. These results showed that acetaminophen administration inhibited the activities of complexes I and IV in cerebral cortex and that the treatment with NAC plus DFX or taurine was not able to reverse this inhibition. The authors did not observe any effect of acetaminophen administration on complexes II and III activities in any of the structures studied. The participation of oxidative stress has been postulated in the hepatic encephalopathy and it is well known that the electron transport chain itself is vulnerable to damage by reactive oxygen species. Since there was no effect of NAC + DFX, the effect of acetaminophen was likely to be due to something else than oxidative stress.
Collapse
Affiliation(s)
- Jordana P Panatto
- Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Dogan OT, Elagoz S, Ozsahin SL, Epozturk K, Tuncer E, Akkurt I. Pulmonary toxicity of chronic exposure to tobacco and biomass smoke in rats. Clinics (Sao Paulo) 2011; 66:1081-7. [PMID: 21808879 PMCID: PMC3129947 DOI: 10.1590/s1807-59322011000600027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 03/25/2011] [Accepted: 03/28/2011] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE The objective of this study was to examine the separate and combined effects of tobacco and biomass smoke exposure on pulmonary histopathology in rats. INTRODUCTION In addition to smoking, indoor pollution in developing countries contributes to the development of respiratory diseases. METHODS Twenty-eight adult rats were divided into four groups as follows: control group (Group I, no exposure to tobacco or biomass smoke), exposed to tobacco smoke (Group II), exposed to biomass smoke (Group III), and combined exposure to tobacco and biomass smoke (Group IV). After six months the rats in all four groups were sacrificed. Lung tissue samples were examined under light microscopy. The severity of pathological changes was scored. RESULTS Group II differed from Group I in all histopathological alterations except intraparenchymal vascular thrombosis. There was no statistically significant difference in histopathological changes between the subjects exposed exclusively to tobacco smoke (Group II) and those with combined exposure to tobacco and biomass smoke (Group IV). The histopathological changes observed in Group IV were found to be more severe than those in subjects exposed exclusively to biomass smoke (Group III). DISCUSSION Chronic exposure to tobacco and biomass smoke caused an increase in severity and types of lung injury. CONCLUSION Exposure to cigarette smoke caused serious damage to the respiratory system, particularly with concomitant exposure to biomass smoke.
Collapse
Affiliation(s)
- Omer Tamer Dogan
- Department of Chest Diseases, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| | | | | | | | | | | |
Collapse
|
180
|
Validation of the respiratory toxics exposure score (RTES) for chronic obstructive pulmonary disease screening. Int J Occup Med Environ Health 2011; 24:339-47. [DOI: 10.2478/s13382-011-0043-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 09/12/2011] [Indexed: 11/20/2022] Open
Abstract
Abstract
Collapse
|
181
|
Shamseer L, Adams D, Brown N, Johnson JA, Vohra S. Antioxidant micronutrients for lung disease in cystic fibrosis. Cochrane Database Syst Rev 2010:CD007020. [PMID: 21154377 DOI: 10.1002/14651858.cd007020.pub2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Airway infection leads to progressive damage of the lungs in cystic fibrosis (CF), partly due to oxidative stress. Supplementation of antioxidant micronutrients (vitamin E, vitamin C, ß-carotene and selenium) may help maintain an oxidant-antioxidant balance. Current literature suggests a relationship between oxidative status and lung function. OBJECTIVES To synthesize existing knowledge of the effect of vitamin C, vitamin E, ß-carotene and selenium in CF lung disease. SEARCH STRATEGY The Cochrane CF and Genetic Disorders Group CF Trials Register, PubMed, CINAHL and AMED were searched using detailed search strategies. We contacted authors of included studies and checked reference lists of these studies for additional, potentially relevant studies.Last search of CF Trials Register: 09 September 2010. SELECTION CRITERIA Randomized controlled trials and quasi-randomized controlled trials of people with CF with explicitly stated diagnostic criteria, comparing vitamin E, vitamin C, ß-carotene and selenium (individually or in combination) to placebo or standard care. DATA COLLECTION AND ANALYSIS Two authors independently selected trials, extracted data and assessed risk of bias. We contacted trialists to obtain missing information. Primary outcomes are lung function and quality of life; secondary outcomes are oxidative stress, inflammation, body mass index, days on antibiotics and adverse events during supplementation. If meta-analysed, studies were subgrouped according to combined or single antioxidant supplementation. MAIN RESULTS Four randomized controlled trials and one quasi-randomized controlled trial were included; only three trials (87 participants) presented data suitable for analysis. Based on two trials, there was no significant improvement in lung function; one trial indicated significant improvement in quality of life favouring control, mean difference -0.06 points on the quality of well-being scale (95% confidence interval -0.12 to -0.01). Based on two trials, selenium-dependent glutathione peroxidase enzyme significantly improved in favour of combined supplementation, mean difference 1.60 units per gram of haemoglobin (95% CI 0.30 to 2.90) and selenium supplementation, mean difference 10.20 units per gram of haemoglobin (95% CI 2.22 to 18.18). All plasma antioxidant levels, except vitamin C, significantly improved with supplementation. AUTHORS' CONCLUSIONS There appears to be conflicting evidence regarding the clinical effectiveness of antioxidant supplementation in CF. Based on the evidence, antioxidants appear to decrease quality of life and oxidative stress; however, few trials contributed data towards analysis. Further trials examining clinically important outcomes and elucidation of a clear biological pathway of oxidative stress in CF are necessary before a firm conclusion regarding effects of antioxidants supplementation can be drawn.
Collapse
Affiliation(s)
- Larissa Shamseer
- Ottawa Methods Centre, Clinical Epidemiology Program, Ottawa Hospital Research Institute, 501 Smyth Road, Box 208, Ottawa, Ontario, Canada, K1H 8L6
| | | | | | | | | |
Collapse
|
182
|
Gumus S, Yucel O, Gamsizkan M, Eken A, Deniz O, Tozkoparan E, Genc O, Bilgic H. The role of oxidative stress and effect of alpha-lipoic acid in reexpansion pulmonary edema - an experimental study. Arch Med Sci 2010; 6:848-53. [PMID: 22427756 PMCID: PMC3302694 DOI: 10.5114/aoms.2010.19290] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 11/30/2009] [Accepted: 02/02/2010] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION We investigated the role of oxidative stress in the pathogenesis of reexpansion pulmonary edema (RPE) and effect of alpha-lipoic acid (ALA) in the prevention of RPE. MATERIAL AND METHODS There were 4 groups consisting of 10 rats in each group; control group (CG), α-lipoic acid group (ALAG), reexpansion pulmonary edema group (RPEG), reexpansion pulmonary edema plus α-lipoic acid group (RPE + ALAG). In all the groups, all rats were sacrificed 2 hours after the reexpansion of lungs. To indicate oxidative stress malondialdehyde (MDA), and to indicate antioxidant status superoxide dismutase (SOD), catalase (CAT) and glutathione peroxides (GPx) were measured in the lungs of rats. RESULTS Mean MDA value was lower in CG (7.02 ±0.14) and in ALAG (6.95 ±0.11) than the other groups (p = 0.001). It was highest in RPEG (8.89 ±0.21) (p = 0.001). It was lower in RPE + ALA G (7.21 ±0.32) than RPEG (p = 0.001). Antioxidant levels: GPx (37.21 ±3.01), CAT (2.87 ±0.14) and SOD (100.12 ±12.39) were lowest in RPEG among all groups (p = 0.001). These values were GPx (45.21 ±3.54), CAT (3.24 ±0.21) and SOD (172.36 ±15.48) in RPE + ALA G and were greater than those of RPEG (p = 0.001). While normal pulmonary parenchyma was seen in 2 rats in RPE + ALAG, it was not seen in RPEG. Pulmonary edema was seen in 1 rat in RPE + ALAG; however, it was seen in 3 in RPEG. CONCLUSIONS Oxidative stress might have an important role in the pathogenesis of RPE. In addition, ALA treatment might contribute in preventing RPE.
Collapse
Affiliation(s)
- Seyfettin Gumus
- Department of Pulmonary Medicine, Gulhane Military Medical Academy, Ankara, Turkey
| | - Orhan Yucel
- Department of Thoracic Surgery, Gulhane Military Medical Academy, Ankara, Turkey
| | - Mehmet Gamsizkan
- Department of Pathology, Gulhane Military Medical Academy, Ankara, Turkey
| | - Ayse Eken
- Department of Pharmaceutical Toxicology, Gulhane Military Medical Academy, Ankara, Turkey
| | - Omer Deniz
- Department of Pulmonary Medicine, Gulhane Military Medical Academy, Ankara, Turkey
| | - Ergun Tozkoparan
- Department of Pulmonary Medicine, Gulhane Military Medical Academy, Ankara, Turkey
| | - Onur Genc
- Department of Thoracic Surgery, Gulhane Military Medical Academy, Ankara, Turkey
| | - Hayati Bilgic
- Department of Pulmonary Medicine, Gulhane Military Medical Academy, Ankara, Turkey
| |
Collapse
|
183
|
Aubier M, Marthan R, Berger P, Chambellan A, Chanez P, Aguilaniu B, Brillet PY, Burgel PR, Chaouat A, Devillier P, Escamilla R, Louis R, Mal H, Muir JF, Pérez T, Similowski T, Wallaert B, Roche N. [COPD and inflammation: statement from a French expert group: inflammation and remodelling mechanisms]. Rev Mal Respir 2010; 27:1254-66. [PMID: 21163401 DOI: 10.1016/j.rmr.2010.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 05/24/2010] [Indexed: 01/06/2023]
Abstract
The present study reviews the literature on inflammation and remodelling mechanisms in chronic obstructive pulmonary disease (COPD). The development of COPD is associated with chronic pulmonary inflammation. Immunity (innate or adaptive) plays a role in its onset and continuation. Airways inflammation alters bronchial structure/function relations: increased bronchial wall thickness, increased bronchial smooth muscle tone, seromucosal gland hypersecretion and loss of elastic structures. Circulating markers of pulmonary inflammation indicate its systemic dissemination. Oxidative stress plays a major role in the onset and persistence of tissue abnormalities. The determinants of extra- and intra-cellular redox control are only partially known. Susceptibility genes, antioxidant system insufficiency and reduced levels of anti-age molecules and of histone deacetylation are also involved. The molecular and cellular targets of inflammation and remodelling are numerous and complex. Currently, tools exist to limit inflammation in COPD but not to act on structural remodelling.
Collapse
Affiliation(s)
- M Aubier
- Inserm U 700, Service de Pneumologie A, Hôpital Bichat-Claude-Bernard, Groupement Hospitalier Universitaire Nord, Faculté de Médecine de Paris-Diderot, 46 Rue Henri-Huchard, 75018 Paris 7, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Anti-inflammatory, immunomodulatory, and heme oxygenase-1 inhibitory activities of ravan napas, a formulation of uighur traditional medicine, in a rat model of allergic asthma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2010; 2011. [PMID: 20953388 PMCID: PMC2952321 DOI: 10.1155/2011/725926] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Revised: 07/01/2010] [Accepted: 08/13/2010] [Indexed: 12/13/2022]
Abstract
Ravan Napas (RN) is a traditional formula used to treat pulmonary symptoms and diseases such as coughing, breathing difficulty, and asthma in traditional Uighur medicine. The purpose of this study was to investigate the anti-inflammatory, and immuno-modulatory activity of RN in a well-characterized animal model of allergic asthma. Rats were sensitized with intraperitoneal (ip) ovalbumin (OVA) and alum, and then challenged with OVA aerosols. The asthma model rats were treated with RN; saline- and dexamethasone- (DXM-) treated rats served as normal and model controls. The bronchoalveolar lavage fluid (BALF) cellular differential and the concentrations of sICAM-1, IL-4, IL-5, TNF-α, INF-γ, and IgE in serum were measured. Lung sections underwent histological analysis. The immunohistochemistry S-P method was used to measure the expression of ICAM-1 and HO-1 in the lung. RN significantly reduced the number of inflammatory cells in BALF and lung tissues, decreased sICAM-1, IL-4, IL-5, TNF-α, and IgE in serum, and increased serum INF-γ. There was a marked suppression of ICAM-1 and HO-1 expression in the lung. Our results suggest that RN may have an anti-inflammatory and immuneregulatory effect on allergic bronchial asthma by modulating the balance between Th1/Th2 cytokines.
Collapse
|
185
|
Park HS, Kim SR, Kim JO, Lee YC. The roles of phytochemicals in bronchial asthma. Molecules 2010; 15:6810-34. [PMID: 20924320 PMCID: PMC6259268 DOI: 10.3390/molecules15106810] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 09/16/2010] [Accepted: 09/30/2010] [Indexed: 02/02/2023] Open
Abstract
Despite gaps in our knowledge of how phytochemicals interfere with cellular functions, several natural plant products are utilized to prevent or treat a wide range of diseases. Identification of an agent with therapeutic potential requires multiple steps involving in vitro studies, efficacy and toxicity studies in animal models, and then human clinical trials. This review provides a brief introduction on natural products that may help to treat and/or prevent bronchial asthma and describes our current understanding of their molecular mechanisms based on various in vitro, in vivo, and clinical studies. We focus on the anti-inflammatory and anti-vascular actions of the plant products and other roles beyond the anti-oxidative effects.
Collapse
Affiliation(s)
- Hee Sun Park
- Department of Internal Medicine, Chungnam National University Medical School, Daejeon, Korea
| | | | | | | |
Collapse
|
186
|
Möller W, Heimbeck I, Weber N, Khadem Saba G, Körner B, Neiswirth M, Kohlhäufl M. Fractionated exhaled breath condensate collection shows high hydrogen peroxide release in the airways. J Aerosol Med Pulm Drug Deliv 2010; 23:129-35. [PMID: 20073556 DOI: 10.1089/jamp.2009.0764] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Exhaled breath condensate (EBC) allows noninvasive monitoring of inflammation in the lung. Activation of inflammatory cells results in an increased production of reactive oxygen species, leading to the formation of hydrogen peroxide (H(2)O(2)). In addition, cigarette smoking causes an influx of inflammatory cells, and higher levels of H(2)O(2) have been found in EBC of smokers. However, there are still unresolved issues reflected by large variations in exhaled H(2)O(2) and uncertainties about the origin of H(2)O(2) release in the lung. METHODS We collected EBC as fractionated samples from the airways and from the lung periphery in 10 nonsmokers, eight asymptomatic smokers, and in eight chronic obstructive pulmonary disease (COPD) patients, and H(2)O(2) concentration and acidity (pH) were analyzed in the airway and the alveolar fraction. RESULTS In all subjects studied, H(2)O(2) was 2.6 times higher in the airway versus the alveolar fraction. Airway H(2)O(2) was twofold higher in smokers and fivefold higher in COPD patients compared to nonsmokers. In all study groups, there was no significant difference in deaerated pH between the airway and the alveolar sample. CONCLUSIONS Exhaled H(2)O(2) is released at higher concentrations from the airways of all subjects studied, implying that the airways may be the dominant location of H(2)O(2) production. Because many lung diseases cause inflammation at different sites of the lung, fractionated sampling of EBC can reduce variability and maintain an anatomical allocation of the exhaled biomarkers.
Collapse
Affiliation(s)
- Winfried Möller
- Helmholtz Zentrum München, German Research Center for Environmental Health, Clinical Cooperation Group Inflammatory Lung Diseases, Institute for Lung Biology and Disease (iLBD), Gauting, Germany.
| | | | | | | | | | | | | |
Collapse
|
187
|
Fu YQ, Fang F, Lu ZY, Kuang FW, Xu F. N-acetylcysteine protects alveolar epithelial cells from hydrogen peroxide–induced apoptosis through scavenging reactive oxygen species and suppressing c-Jun N-terminalkinase. Exp Lung Res 2010; 36:352-61. [DOI: 10.3109/01902141003678582] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
188
|
Moretti M. Pharmacology and clinical efficacy of erdosteine in chronic obstructive pulmonary disease. Expert Rev Respir Med 2010; 1:307-16. [PMID: 20477170 DOI: 10.1586/17476348.1.3.307] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Erdosteine is a multimechanism, mucolytic agent that decreases the sputum viscoelastic properties and bacterial adhesion to the cell membrane, endowed with bronchial anti-inflammatory activity and a scavenging effect on free oxidant radicals. Erdosteine is a prodrug and metabolite I is the active metabolite of erdosteine owing to its free thiol group. In acute infective exacerbation of chronic bronchitis or chronic obstructive pulmonary disease (COPD), adding erdosteine to standard treatment significantly modified the outcome by improving the symptoms and reducing the length of disease. Furthermore, erdosteine has shown a synergism with antibiotic therapy. In stable COPD patients, long-term treatment with erdosteine had a protective effect against exacerbations by reducing the rate of exacerbations and hospitalizations in the study period. A total of 8 months of treatment with erdosteine significantly improved the patients' health status and preserved lung function. Erdosteine has a scavenging effect on free oxidant radicals by a direct and indirect antioxidative effect and the final result is a protective effect against tissue damage, as demonstrated in animal studies. In view of the persuasive evidence that oxidative stress is important in the pathophysiology of COPD, erdosteine appears to be a logical approach to therapy.
Collapse
Affiliation(s)
- Maurizio Moretti
- Clinica di Malattie dell'Apparato Respiratorio, Azienda Ospedaliero-Universitaria, Largo del Pozzo 71, 41100, Modena, Italy.
| |
Collapse
|
189
|
Mui TS, Man SP, Sin DD. Developments in drugs for the treatment of chronic obstructive pulmonary disease. Expert Rev Clin Immunol 2010; 4:365-77. [PMID: 20476926 DOI: 10.1586/1744666x.4.3.365] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) affects more than 600 million adults worldwide and accounts for 3 million deaths annually. Approximately 50% of the cases are directly attributable to cigarette smoking; the rest are accounted for by different risk factors, including childhood infections, genetic defects, environmental pollution and biomass exposure. The mainstay of current drug treatment is bronchodilation. Anti-inflammatory drugs are reserved for patients with moderate-to-severe disease. In this article, we will review the current paradigm of COPD pathogenesis and discuss some promising molecular targets that may be modified in the future to improve health outcomes of patients with COPD.
Collapse
Affiliation(s)
- Tammy Sy Mui
- The Providence Heart and Lung Center, The James Hogg iCAPTURE Center for Cardiovascular and Pulmonary Research, St Paul's Hospital & the Department of Medicine (Respiratory Division), The University of British Columbia, Vancouver, BC, Canada.
| | | | | |
Collapse
|
190
|
Unverdorben M, von Holt K, Winkelmann BR. Smoking and atherosclerotic cardiovascular disease: part II: role of cigarette smoking in cardiovascular disease development. Biomark Med 2010; 3:617-53. [PMID: 20477529 DOI: 10.2217/bmm.09.51] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Potential mechanisms and biomarkers of atherosclerosis related to cigarette smoking - a modifiable risk factor for that disease - are discussed in this article. These include smoking-associated inflammatory markers, such as leukocytes, high-sensitivity C-reactive protein, serum amyloid A, ICAM-1 and IL-6. Other reviewed markers are indicative for smoking-related impairment of arterial endothelial function (transcapillary leakage of albumin, inhibition of endogenous nitric oxide synthase activity and reduced endothelium-dependent vasodilation) or point to oxidative stress caused by various chemicals (cholesterol oxidation, autoantibodies to oxidized low-density lipoprotein, plasma levels of malondialdehyde and F(2)-isoprostanes and reduced antioxidant capacity). Smoking enhances platelet aggregability, increases blood viscosity and shifts the pro- and antithrombotic balance towards increased coagulability (e.g., fibrinogen, von Willebrand factor, ICAM-1 and P-selectin). Insulin resistance is higher in smokers compared with nonsmokers, and hemoglobin A1c is dose-dependently elevated, as is homocysteine. Smoke exposure may influence the kinetics of markers with different response to transient or chronic changes in cigarette smoking behavior.
Collapse
Affiliation(s)
- Martin Unverdorben
- Clinical Research Institute, Center for Cardiovascular Diseases, Heinz-Meise-Strasse 100, 36199 Rotenburg an der Fulda, Germany.
| | | | | |
Collapse
|
191
|
Qamar W, Sultana S. Polyphenols from Juglans regia L. (walnut) kernel modulate cigarette smoke extract induced acute inflammation, oxidative stress and lung injury in Wistar rats. Hum Exp Toxicol 2010; 30:499-506. [DOI: 10.1177/0960327110374204] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The present study was designed to evaluate the protective effects of Juglans regia kernel extract against cigarette smoke extract (CSE)-induced lung toxicities in Wistar rats. Prophylactic treatment of methanolic extract of J. regia kernel at the doses of 50 mg/kg b.wt. and 100 mg/kg b.wt was given by gavage to Wistar rats for 1 week prior to CSE exposure. Female Wistar rats were administered with single dose (1.3 mL/kg b.wt.) of CSE through intratracheal instillation. Lung injury markers lactate dehydrogenase (LDH) activity, total cell count, total protein and reduced glutathione (GSH) in bronchoalveolar lavage fluid (BALF) were evaluated. Glutathione reductase (GR), xanthine oxidase (XO) and catalase activities were measured in lung tissue. J. regia extract significantly decreased the levels of LDH, total cell count, total protein and increased the GSH level in BALF, it also significantly restored the levels of GR, catalase and reduced the XO activity in lung tissue. Total polyphenolic content of J. regia kernel extract was found to be 96 ± 0.81 mg gallic acid equivalent (GAE)/g dry weight of extract. In DPPH (2,2-Diphenyl-1-Picrylhydrazyl) assay, the extract shows high free radical scavenging potential. On the basis of these results, protective role of J. regia extract against CSE-induced acute lung toxicity in Wistar rats is suggested.
Collapse
Affiliation(s)
- Wajhul Qamar
- Section of Chemoprevention and Nutrition Toxicology, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, India
| | - Sarwat Sultana
- Section of Chemoprevention and Nutrition Toxicology, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, India,
| |
Collapse
|
192
|
Smits NC, Shworak NW, Dekhuijzen PR, van Kuppevelt TH. Heparan Sulfates in the Lung: Structure, Diversity, and Role in Pulmonary Emphysema. Anat Rec (Hoboken) 2010; 293:955-67. [DOI: 10.1002/ar.20895] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
193
|
Boutten A, Goven D, Boczkowski J, Bonay M. Oxidative stress targets in pulmonary emphysema: focus on the Nrf2 pathway. Expert Opin Ther Targets 2010; 14:329-46. [PMID: 20148719 DOI: 10.1517/14728221003629750] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
IMPORTANCE OF THE FIELD Oxidative stress has been implicated in the pathogenesis of pulmonary emphysema. Nuclear factor erythroid-2-related factor 2 (Nrf2) a major antioxidant transcription factor could play a protective role in pulmonary emphysema. AREAS COVERED IN THIS REVIEW Nrf2 is ubiquitously expressed throughout the lung, but is predominantly found in epithelium and alveolar macrophages. Evidence suggests that Nrf2 and several Nrf2 downstream genes have an essential protective role in the lung against oxidative stress from environmental pollutants and toxicants such as cigarette smoke, a major causative factor for the development and progression of pulmonary emphysema. Application of Nrf2-deficient mice identified an extensive range of protective roles for Nrf2 against the pathogenesis of pulmonary emphysema. Therefore, Nrf2 promises to be an attractive therapeutic target for intervention and prevention strategies. WHAT THE READER WILL GAIN In this review, we discuss recent findings on the association of oxidative stress with pulmonary emphysema. We also address the mechanisms of Nrf2 lung protection against oxidative stress based on emerging evidence from experimental oxidative disease models and human studie. TAKE HOME MESSAGE The current literature suggests that among oxidative stress targets, Nrf2 is a valuable therapeutic target in pulmonary emphysema.
Collapse
Affiliation(s)
- A Boutten
- Inserm, U700, Université Paris 7, Faculté de Médecine Denis Diderot-site Bichat, BP416, 75870 Paris Cedex 18, France
| | | | | | | |
Collapse
|
194
|
Fang C, Siew LQC, Corrigan CJ, Ying S. The role of thymic stromal lymphopoietin in allergic inflammation and chronic obstructive pulmonary disease. Arch Immunol Ther Exp (Warsz) 2010; 58:81-90. [PMID: 20143171 DOI: 10.1007/s00005-010-0064-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 08/06/2009] [Indexed: 11/26/2022]
Abstract
Thymic stromal lymphopoietin (TSLP) primes dendritic cells to promote a Th2 inflammatory response. Its action is mediated by a heterodimeric receptor which consists of the interleukin-7 receptor alpha chain and the TSLP receptor chain (TSLPR). TSLPR resembles the common gamma chain subunit utilized by many type 1 cytokine receptors. Normal epithelial cells, keratinocytes, and stromal cells constitutively express TSLP. Dendritic cells that are activated by TSLP promote the development of CD4(+) T cells into pro-inflammatory Th2 cells. TSLP thus plays a potentially important role in the pathogenesis of allergic inflammation in asthma and atopic dermatitis. TSLP also has direct effects on other types of cells in the bronchial mucosa. It is over-expressed in the bronchial mucosa in chronic obstructive pulmonary disease (COPD), which is traditionally described as a Th1-related disease, as well as severe asthma, which is traditionally described as a Th2-related disease. In this review we will discuss TSLP expression, function, and available and potential mechanisms in both allergic inflammation and COPD.
Collapse
Affiliation(s)
- Cailong Fang
- Division of Asthma, Allergy and Lung Biology, MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, UK
| | | | | | | |
Collapse
|
195
|
Poli D, Goldoni M, Corradi M, Acampa O, Carbognani P, Internullo E, Casalini A, Mutti A. Determination of aldehydes in exhaled breath of patients with lung cancer by means of on-fiber-derivatisation SPME-GC/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:2643-51. [PMID: 20149763 DOI: 10.1016/j.jchromb.2010.01.022] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 01/18/2010] [Accepted: 01/18/2010] [Indexed: 01/14/2023]
Abstract
A number of volatile organic compounds (VOCs) have been identified and used in preliminary clinical studies of the early diagnosis of lung cancer. The aim of this study was to evaluate the potential of aldehydes (known biomarkers of oxidative stress) in the diagnosis of patients with non-small cell lung cancer (NSCLC). We used an on-fiber-derivatisation SPME sampling technique coupled with GC/MS analysis to measure straight aldehydes C3-C9 in exhaled breath. Linearity was established over two orders of magnitude (range: 3.3-333.3×10(-12) M); the LOD and LOQ of all the aldehydes were respectively 1×10(-12) M and 3×10(-12) M. Accuracy was within 93% and precision calculated as % RSD was 7.2-15.1%. Aldehyde stability in a Bio-VOC(®) tube stored at +4°C was 10-17 h, but this became >10 days using a specific fiber storage device. Finally, exhaled aldehydes were measured in 38 asymptomatic non-smokers (controls) and 40 NSCLC patients. The levels of all of the aldehydes were increased in the NSCLC patients without any significant effect of smoking habits and little effect of age. The good discriminant power of the aldehyde pattern (90%) was confirmed by multivariate analysis. These results show that straight aldehydes may be promising biomarkers associated with NSCLC, and increase the sensitivity and specificity of previously identified VOC patterns.
Collapse
Affiliation(s)
- Diana Poli
- Laboratory of Industrial Toxicology, Department of Clinical Medicine, Nephrology and Health Sciences, University of Parma, via Gramsci 14, 43100 Parma, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
196
|
Adler F, Thorpe MJ, Cossel KC, Ye J. Cavity-enhanced direct frequency comb spectroscopy: technology and applications. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2010; 3:175-205. [PMID: 20636039 DOI: 10.1146/annurev-anchem-060908-155248] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cavity-enhanced direct frequency comb spectroscopy combines broad bandwidth, high spectral resolution, and ultrahigh detection sensitivity in one experimental platform based on an optical frequency comb efficiently coupled to a high-finesse cavity. The effective interaction length between light and matter is increased by the cavity, massively enhancing the sensitivity for measurement of optical losses. Individual comb components act as independent detection channels across a broad spectral window, providing rapid parallel processing. In this review we discuss the principles, the technology, and the first applications that demonstrate the enormous potential of this spectroscopic method. In particular, we describe various frequency comb sources, techniques for efficient coupling between comb and cavity, and detection schemes that utilize the technique's high-resolution, wide-bandwidth, and fast data-acquisition capabilities. We discuss a range of applications, including breath analysis for medical diagnosis, trace-impurity detection in specialty gases, and characterization of a supersonic jet of cold molecules.
Collapse
Affiliation(s)
- Florian Adler
- JILA, National Institute of Standards and Technology, Department of Physics, University of Colorado, Boulder, 80309-0440, USA.
| | | | | | | |
Collapse
|
197
|
Kim HC, Lee GD, Hwang YS. Skeletal Muscle Dysfunction in Patients with Chronic Obstructive Pulmonary Disease. Tuberc Respir Dis (Seoul) 2010. [DOI: 10.4046/trd.2010.68.3.125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Ho Cheol Kim
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, Korea
- Gyeongsang Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Gi Dong Lee
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Young Sil Hwang
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, Korea
| |
Collapse
|
198
|
Sim YS, Ham E, Choi KY, Lee SY, Kim SC, Kim YK, Park SH. Longitudinal Evaluation of Lung Function Associated with Emphysema in Healthy Smokers. Tuberc Respir Dis (Seoul) 2010. [DOI: 10.4046/trd.2010.69.3.177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Yun Su Sim
- Department of Health Promotion Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Eunjae Ham
- Department of Health Promotion Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Kyu Yong Choi
- Department of Health Promotion Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Suk Young Lee
- Department of Respiratory and Critical Care Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Seok Chan Kim
- Department of Respiratory and Critical Care Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Young Kyoon Kim
- Department of Respiratory and Critical Care Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Sung Hak Park
- Department of Respiratory and Critical Care Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| |
Collapse
|
199
|
Sherratt MJ. Tissue elasticity and the ageing elastic fibre. AGE (DORDRECHT, NETHERLANDS) 2009; 31:305-25. [PMID: 19588272 PMCID: PMC2813052 DOI: 10.1007/s11357-009-9103-6] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 06/08/2009] [Indexed: 04/16/2023]
Abstract
The ability of elastic tissues to deform under physiological forces and to subsequently release stored energy to drive passive recoil is vital to the function of many dynamic tissues. Within vertebrates, elastic fibres allow arteries and lungs to expand and contract, thus controlling variations in blood pressure and returning the pulmonary system to a resting state. Elastic fibres are composite structures composed of a cross-linked elastin core and an outer layer of fibrillin microfibrils. These two components perform distinct roles; elastin stores energy and drives passive recoil, whilst fibrillin microfibrils direct elastogenesis, mediate cell signalling, maintain tissue homeostasis via TGFβ sequestration and potentially act to reinforce the elastic fibre. In many tissues reduced elasticity, as a result of compromised elastic fibre function, becomes increasingly prevalent with age and contributes significantly to the burden of human morbidity and mortality. This review considers how the unique molecular structure, tissue distribution and longevity of elastic fibres pre-disposes these abundant extracellular matrix structures to the accumulation of damage in ageing dermal, pulmonary and vascular tissues. As compromised elasticity is a common feature of ageing dynamic tissues, the development of strategies to prevent, limit or reverse this loss of function will play a key role in reducing age-related morbidity and mortality.
Collapse
Affiliation(s)
- Michael J Sherratt
- Tissue Injury and Repair Group, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, UK.
| |
Collapse
|
200
|
Profita M, Sala A, Bonanno A, Riccobono L, Ferraro M, La Grutta S, Albano GD, Montalbano AM, Gjomarkaj M. Chronic obstructive pulmonary disease and neutrophil infiltration: role of cigarette smoke and cyclooxygenase products. Am J Physiol Lung Cell Mol Physiol 2009; 298:L261-9. [PMID: 19897740 DOI: 10.1152/ajplung.90593.2008] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cigarette smoke is the main cause of chronic obstructive pulmonary disease (COPD), where it can contribute to the observed airway inflammation. PGE(2) is produced within human airways, and both pro- and anti-inflammatory activities have been reported. We quantitated PGE(2) concentrations in induced sputum supernatants from different groups of subjects and correlated the obtained values to neutrophil infiltration as well as to the expression of cyclooxygenase-2 (COX-2). Cigarette smoke extract (CSE) was used to evaluate the effect of smoking on COX-2 and PGE(2) receptor expression as well as on PGE(2) release in neutrophils and alveolar macrophages (AM) obtained from normal donors. The effects of PGE(2) and of PGE receptor agonists and antagonists were evaluated on the adhesion of neutrophil to a human bronchial epithelial cell line (16HBE). PGE(2) levels, COX-2 expression, and neutrophil infiltration were significantly higher in normal smokers and COPD smokers (P < 0.0001) compared with controls and COPD former smokers. Induced sputum supernatant caused neutrophil adhesion to 16HBE that was significantly reduced, in COPD smokers only, by PGE(2) immunoprecipitation. In vitro experiments confirmed that CSE increased PGE(2) release and COX-2 and PGE(2) receptor expression in neutrophils and AM; PGE(2) enhanced the adhesion of neutrophils to 16HBE, and a specific E-prostanoid 4 (EP(4)) receptor antagonist blunted its effect. These results suggest that CSE promote the induction of COX-2 and contributes to the proinflammatory effects of PGE(2) in the airways of COPD subjects.
Collapse
Affiliation(s)
- Mirella Profita
- Institute of Biomedicine and Molecular Immunology, Italian National Research Council, Via U. La Malfa 153, 90146 Palermo, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|