151
|
Cooper PR, Kliwinski CM, Perkinson RA, Ragwan E, Mabus JR, Powers GD, Dorai H, Giles-Komar J, Hornby PJ. The contribution of cell surface FcRn in monoclonal antibody serum uptake from the intestine in suckling rat pups. Front Pharmacol 2014; 5:225. [PMID: 25339905 PMCID: PMC4188031 DOI: 10.3389/fphar.2014.00225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/19/2014] [Indexed: 11/25/2022] Open
Abstract
The neonatal Fc receptor (FcRn) in intestinal epithelium is the primary mechanism for transfer of maternal immunoglobulin G (IgG) from suckled milk to serum; but the factors contributing to the rapid uptake of IgG are poorly understood. These studies help to determine the contribution of cell surface FcRn in IgG uptake in 2-week-old rat pups by varying local pH and binding conditions. Variants of a human wild-type (WT) IgG monoclonal antibody (mAb WT) were assessed for binding affinity (KD) to rat (r)FcRn at pH 6.0 and subsequent off-rate at pH 7.4 (1/s) by surface plasmon resonance. Selected mAbs were administered intra-intestinally in isoflurane-anesthetized 2-week rat pups. Full length mAb in serum was quantified by immunoassay, (r)FcRn mRNA expression by reverse transcription polymerase chain reaction, and mAb epithelial localization was visualized by immunohistochemistry. After duodenal administration, serum levels of mAb variants correlated with their rFcRn off-rate at pH 7.4, but not their affinity at pH 6.0. The greatest serum levels of IgG were measured when mAb was administered in the duodenum where rFcRn mRNA expression is greatest, and was increased further by duodenal administration in pH 6.0 buffer. More intense human IgG immunostaining was detected in epithelium than the same variant administered at higher pH. These data suggest an increased contribution for cell surface receptor. We conclude that, in the neonate duodenum, receptor off-rates are as important as affinities for FcRn mediated uptake, and cell surface binding of IgG to rFcRn plays contributes to IgG uptake alongside pinocytosis; both of which responsible for increased IgG uptake.
Collapse
Affiliation(s)
- Philip R Cooper
- Biologics Research, Janssen R&D - Johnson & Johnson, Biotechnology Center of Excellence Spring House, PA, USA
| | - Connie M Kliwinski
- Biologics Pharmacology and Toxicology, Janssen R&D - Johnson & Johnson, Biotechnology Center of Excellence Spring House, PA, USA
| | - Robert A Perkinson
- Biologics Research, Janssen R&D - Johnson & Johnson, Biotechnology Center of Excellence Spring House, PA, USA
| | - Edwin Ragwan
- Biologics Research, Janssen R&D - Johnson & Johnson, Biotechnology Center of Excellence Spring House, PA, USA
| | - John R Mabus
- Biologics Research, Janssen R&D - Johnson & Johnson, Biotechnology Center of Excellence Spring House, PA, USA
| | - Gordon D Powers
- Biologics Research, Janssen R&D - Johnson & Johnson, Biotechnology Center of Excellence Spring House, PA, USA
| | - Haimanti Dorai
- Biologics Research, Janssen R&D - Johnson & Johnson, Biotechnology Center of Excellence Spring House, PA, USA
| | - Jill Giles-Komar
- Biologics Research, Janssen R&D - Johnson & Johnson, Biotechnology Center of Excellence Spring House, PA, USA
| | - Pamela J Hornby
- Biologics Research, Janssen R&D - Johnson & Johnson, Biotechnology Center of Excellence Spring House, PA, USA
| |
Collapse
|
152
|
Pridgen EM, Alexis F, Farokhzad OC. Polymeric nanoparticle technologies for oral drug delivery. Clin Gastroenterol Hepatol 2014; 12:1605-10. [PMID: 24981782 PMCID: PMC4171204 DOI: 10.1016/j.cgh.2014.06.018] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 06/24/2014] [Indexed: 02/07/2023]
Abstract
Biologics increasingly are being used for the treatment of many diseases. These treatments typically require repeated doses administered by injection. Alternate routes of administration, particularly oral, are considered favorable because of improved convenience and compliance by patients, but physiological barriers such as extreme pH level, enzyme degradation, and poor intestinal epithelium permeability limit absorption. Encapsulating biologics in drug delivery systems such as polymeric nanoparticles prevents inactivation and degradation caused by low pH and enzymes of the gastrointestinal tract. However, transport across the intestinal epithelium remains the most critical barrier to overcome for efficient oral delivery. This review focuses on recent advances in polymeric nanoparticles being developed to overcome transport barriers and their potential for translation into clinical use.
Collapse
Affiliation(s)
- Eric M Pridgen
- School of Medicine, Stanford University, Stanford, California.
| | - Frank Alexis
- Department of Bioengineering, Clemson University, Clemson, South Carolina
| | - Omid C Farokhzad
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
153
|
Baker K, Rath T, Pyzik M, Blumberg RS. The Role of FcRn in Antigen Presentation. Front Immunol 2014; 5:408. [PMID: 25221553 PMCID: PMC4145246 DOI: 10.3389/fimmu.2014.00408] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/12/2014] [Indexed: 01/06/2023] Open
Abstract
Immunoglobulins are unique molecules capable of simultaneously recognizing a diverse array of antigens and themselves being recognized by a broad array of receptors. The abundance specifically of the IgG subclass and the variety of signaling receptors to which it binds render this an important immunomodulatory molecule. In addition to the classical Fcγ receptors that bind IgG at the cell surface, the neonatal Fc receptor (FcRn) is a lifelong resident of the endolysosomal system of most hematopoietic cells where it determines the intracellular fate of both IgG and IgG-containing immune complexes (IgG IC). Cross-linking of FcRn by multivalent IgG IC within antigen presenting cells such as dendritic cells initiates specific mechanisms that result in trafficking of the antigen-bearing IgG IC into compartments from which the antigen can successfully be processed into peptide epitopes compatible with loading onto both major histocompatibility complex class I and II molecules. In turn, this enables the synchronous activation of both CD4(+) and CD8(+) T cell responses against the cognate antigen, thereby bridging the gap between the humoral and cellular branches of the adaptive immune response. Critically, FcRn-driven T cell priming is efficient at very low doses of antigen due to the exquisite sensitivity of the IgG-mediated antigen delivery system through which it operates. FcRn-mediated antigen presentation has important consequences in tissue compartments replete with IgG and serves not only to determine homeostatic immune activation at a variety of sites but also to induce inflammatory responses upon exposure to antigens perceived as foreign. Therapeutically targeting the pathway by which FcRn enables T cell activation in response to IgG IC is thus a highly attractive prospect not only for the treatment of diseases that are driven by immune complexes but also for manipulating local immune responses against defined antigens such as those present during infections and cancer.
Collapse
Affiliation(s)
- Kristi Baker
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Timo Rath
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Department of Medicine, Erlangen University Hospital, Friedrich Alexander University Erlangen-Nueremberg, Erlangen, Germany
| | - Michal Pyzik
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard S. Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Digestive Diseases Center, Boston, MA, USA
| |
Collapse
|
154
|
Brülisauer L, Valentino G, Morinaga S, Cam K, Thostrup Bukrinski J, Gauthier MA, Leroux JC. Bio-reduction of Redox-Sensitive Albumin Conjugates in FcRn-Expressing Cells. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
155
|
Brülisauer L, Valentino G, Morinaga S, Cam K, Thostrup Bukrinski J, Gauthier MA, Leroux JC. Bio-reduction of Redox-Sensitive Albumin Conjugates in FcRn-Expressing Cells. Angew Chem Int Ed Engl 2014; 53:8392-6. [DOI: 10.1002/anie.201404238] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Indexed: 11/10/2022]
|
156
|
Sand KMK, Dalhus B, Christianson GJ, Bern M, Foss S, Cameron J, Sleep D, Bjørås M, Roopenian DC, Sandlie I, Andersen JT. Dissection of the neonatal Fc receptor (FcRn)-albumin interface using mutagenesis and anti-FcRn albumin-blocking antibodies. J Biol Chem 2014; 289:17228-39. [PMID: 24764301 DOI: 10.1074/jbc.m113.522565] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Albumin is the most abundant protein in blood and plays a pivotal role as a multitransporter of a wide range of molecules such as fatty acids, metabolites, hormones, and toxins. In addition, it binds a variety of drugs. Its role as distributor is supported by its extraordinary serum half-life of 3 weeks. This is related to its size and binding to the cellular receptor FcRn, which rescues albumin from intracellular degradation. Furthermore, the long half-life has fostered a great and increasing interest in utilization of albumin as a carrier of protein therapeutics and chemical drugs. However, to fully understand how FcRn acts as a regulator of albumin homeostasis and to take advantage of the FcRn-albumin interaction in drug design, the interaction interface needs to be dissected. Here, we used a panel of monoclonal antibodies directed towards human FcRn in combination with site-directed mutagenesis and structural modeling to unmask the binding sites for albumin blocking antibodies and albumin on the receptor, which revealed that the interaction is not only strictly pH-dependent, but predominantly hydrophobic in nature. Specifically, we provide mechanistic evidence for a crucial role of a cluster of conserved tryptophan residues that expose a pH-sensitive loop of FcRn, and identify structural differences in proximity to these hot spot residues that explain divergent cross-species binding properties of FcRn. Our findings expand our knowledge of how FcRn is controlling albumin homeostasis at a molecular level, which will guide design and engineering of novel albumin variants with altered transport properties.
Collapse
Affiliation(s)
- Kine Marita Knudsen Sand
- From the Centre for Immune Regulation (CIR) and Department of Biosciences, University of Oslo, N-0316 Oslo, Norway, CIR and Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Norway, N-0424 Oslo, Norway
| | - Bjørn Dalhus
- the Department for Microbiology, Oslo University Hospital Rikshospitalet and University of Oslo, Nydalen, N-0424 Oslo, Norway, the Department of Medical Biochemistry, Oslo University Hospital Rikshospitalet and University of Oslo, Nydalen, N-0424 Oslo, Norway
| | | | - Malin Bern
- From the Centre for Immune Regulation (CIR) and Department of Biosciences, University of Oslo, N-0316 Oslo, Norway, CIR and Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Norway, N-0424 Oslo, Norway
| | - Stian Foss
- From the Centre for Immune Regulation (CIR) and Department of Biosciences, University of Oslo, N-0316 Oslo, Norway, CIR and Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Norway, N-0424 Oslo, Norway
| | - Jason Cameron
- Novozymes Biopharma UK, Ltd., Castle Court, 59 Castle Boulevard, NG7 1FD Nottingham, United Kingdom
| | - Darrell Sleep
- Novozymes Biopharma UK, Ltd., Castle Court, 59 Castle Boulevard, NG7 1FD Nottingham, United Kingdom
| | - Magnar Bjørås
- the Department for Microbiology, Oslo University Hospital Rikshospitalet and University of Oslo, Nydalen, N-0424 Oslo, Norway, the Department of Medical Biochemistry, Oslo University Hospital Rikshospitalet and University of Oslo, Nydalen, N-0424 Oslo, Norway
| | | | - Inger Sandlie
- From the Centre for Immune Regulation (CIR) and Department of Biosciences, University of Oslo, N-0316 Oslo, Norway, CIR and Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Norway, N-0424 Oslo, Norway
| | - Jan Terje Andersen
- CIR and Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Norway, N-0424 Oslo, Norway,
| |
Collapse
|
157
|
Ward ES, Velmurugan R, Ober RJ. Targeting FcRn for therapy: from live cell imaging to in vivo studies in mice. Immunol Lett 2014; 160:158-62. [PMID: 24572175 DOI: 10.1016/j.imlet.2014.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 12/18/2022]
Abstract
The role of FcRn in regulating antibody levels and transport in the body is well documented. The use of fluorescence microscopy to investigate the subcellular trafficking behavior of FcRn and its IgG ligand has led to insight into the function of this receptor, including the identification of new intracellular pathways. The inhibition of FcRn using engineered antibodies that bind to this receptor with increased affinity through their Fc region can be exploited to treat antibody mediated autoimmunity. The efficacy of this approach in mouse models of arthritis and multiple sclerosis has been demonstrated. Finally, the cross-species difference between mouse and man for FcRn-IgG interactions needs to be considered when engineering antibodies for improved activities in FcRn-mediated functions.
Collapse
Affiliation(s)
- E Sally Ward
- Department of Immunology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| | - Ramraj Velmurugan
- Department of Immunology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Biomedical Engineering Graduate Program, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas TX 75390, USA.
| | - Raimund J Ober
- Department of Immunology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Electrical Engineering, University of Texas at Dallas, Richardson, TX 75080, USA.
| |
Collapse
|
158
|
FcRn: from molecular interactions to regulation of IgG pharmacokinetics and functions. Curr Top Microbiol Immunol 2014; 382:249-72. [PMID: 25116104 DOI: 10.1007/978-3-319-07911-0_12] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The neonatal Fc receptor, FcRn, is related to MHC class I with respect to its structure and association with β2microglobulin (β2m). However, by contrast with MHC class I molecules, FcRn does not bind to peptides, but interacts with the Fc portion of IgGs and belongs to the Fc receptor family. Unlike the 'classical' Fc receptors, however, the primary functions of FcRn include salvage of IgG (and albumin) from lysosomal degradation through the recycling and transcytosis of IgG within cells. The characteristic feature of FcRn is pH-dependent binding to IgG, with relatively strong binding at acidic pH (<6.5) and negligible binding at physiological pH (7.3-7.4). FcRn is expressed in many different cell types, and endothelial and hematopoietic cells are the dominant cell types involved in IgG homeostasis in vivo. FcRn also delivers IgG across cellular barriers to sites of pathogen encounter and consequently plays a role in protection against infections, in addition to regulating renal filtration and immune complex-mediated antigen presentation. Further, FcRn has been targeted to develop both IgGs with extended half-lives and FcRn inhibitors that can lower endogenous antibody levels. These approaches have implications for the development of longer lived therapeutics and the removal of pathogenic or deleterious antibodies.
Collapse
|
159
|
Tian Z, Sutton BJ, Zhang X. Distribution of rat neonatal Fc receptor in the principal organs of neonatal and pubertal rats. J Recept Signal Transduct Res 2013; 34:137-42. [PMID: 24303938 DOI: 10.3109/10799893.2013.865745] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The neonatal Fc receptor (FcRn) mediates the transfer of IgG and albumin, also protects them from catabolism. This study characterized the expression of FcRn in different organs of neonatal and pubertal rats by reverse transcription-PCR (RT-PCR) and immunohistochemistry, demonstrates that FcRn is expressed in liver, kidney, intestine, heart, lung, spleen, skin and skeletal muscles at varying levels post-gestation from d 1 to d 63. This finding is contrary to previous studies claiming that FcRn is undetectable in most tissues after weaning. Lungs were the predominant organs for FcRn expression, whereas skin, liver and intestine are considerably less expressed organs. The expression of FcRn fluctuated in all the organs tested, and with a higher frequency before weaning compared to puberty. These findings may provide clues for the better understanding of FcRn function, and are important for determining the dosage levels for IgG and the constant region fragment (Fc)-containing therapeutic proteins whose half-life is regulated by FcRn.
Collapse
Affiliation(s)
- Zehua Tian
- College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi , PR China
| | | | | |
Collapse
|
160
|
Pridgen EM, Alexis F, Kuo TT, Levy-Nissenbaum E, Karnik R, Blumberg RS, Langer R, Farokhzad OC. Transepithelial transport of Fc-targeted nanoparticles by the neonatal fc receptor for oral delivery. Sci Transl Med 2013; 5:213ra167. [PMID: 24285486 PMCID: PMC4023672 DOI: 10.1126/scitranslmed.3007049] [Citation(s) in RCA: 298] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nanoparticles are poised to have a tremendous impact on the treatment of many diseases, but their broad application is limited because currently they can only be administered by parenteral methods. Oral administration of nanoparticles is preferred but remains a challenge because transport across the intestinal epithelium is limited. We show that nanoparticles targeted to the neonatal Fc receptor (FcRn), which mediates the transport of immunoglobulin G antibodies across epithelial barriers, are efficiently transported across the intestinal epithelium using both in vitro and in vivo models. In mice, orally administered FcRn-targeted nanoparticles crossed the intestinal epithelium and reached systemic circulation with a mean absorption efficiency of 13.7%*hour compared with only 1.2%*hour for nontargeted nanoparticles. In addition, targeted nanoparticles containing insulin as a model nanoparticle-based therapy for diabetes were orally administered at a clinically relevant insulin dose of 1.1 U/kg and elicited a prolonged hypoglycemic response in wild-type mice. This effect was abolished in FcRn knockout mice, indicating that the enhanced nanoparticle transport was specifically due to FcRn. FcRn-targeted nanoparticles may have a major impact on the treatment of many diseases by enabling drugs currently limited by low bioavailability to be efficiently delivered though oral administration.
Collapse
Affiliation(s)
- Eric M. Pridgen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- The David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139
| | - Frank Alexis
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- MIT-Harvard Center for Cancer Nanotechnology Excellence, Cambridge, MA 02139
| | - Timothy T. Kuo
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Etgar Levy-Nissenbaum
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- MIT-Harvard Center for Cancer Nanotechnology Excellence, Cambridge, MA 02139
| | - Rohit Karnik
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Richard S. Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- The David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139
- MIT-Harvard Center for Cancer Nanotechnology Excellence, Cambridge, MA 02139
| | - Omid C. Farokhzad
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- MIT-Harvard Center for Cancer Nanotechnology Excellence, Cambridge, MA 02139
| |
Collapse
|
161
|
Hornby PJ, Cooper PR, Kliwinski C, Ragwan E, Mabus JR, Harman B, Thompson S, Kauffman AL, Yan Z, Tam SH, Dorai H, Powers GD, Giles-Komar J. Human and non-human primate intestinal FcRn expression and immunoglobulin G transcytosis. Pharm Res 2013; 31:908-22. [PMID: 24072267 PMCID: PMC3953555 DOI: 10.1007/s11095-013-1212-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/12/2013] [Indexed: 11/29/2022]
Abstract
Purpose To evaluate transcytosis of immunoglobulin G (IgG) by the neonatal Fc receptor (FcRn) in adult primate intestine to determine whether this is a means for oral delivery of monoclonal antibodies (mAbs). Methods Relative regional expression of FcRn and localization in human intestinal mucosa by RT-PCR, ELISA & immunohistochemistry. Transcytosis of full-length mAbs (sandwich ELISA-based detection) across human intestinal segments mounted in Ussing-type chambers, human intestinal (caco-2) cell monolayers grown in transwells, and serum levels after regional intestinal delivery in isoflurane-anesthetized cynomolgus monkeys. Results In human intestine, there was an increasing proximal-distal gradient of mucosal FcRn mRNA and protein expression. In cynomolgus, serum mAb levels were greater after ileum-proximal colon infusion than after administration to stomach or proximal small intestine (1–5 mg/kg). Serum levels of wild-type mAb dosed into ileum/proximal colon (2 mg/kg) were 124 ± 104 ng/ml (n = 3) compared to 48 ± 48 ng/ml (n = 2) after a non-FcRn binding variant. In vitro, mAb transcytosis in polarized caco-2 cell monolayers and was not enhanced by increased apical cell surface IgG binding to FcRn. An unexpected finding in primate small intestine, was intense FcRn expression in enteroendocrine cells (chromagranin A, GLP-1 and GLP-2 containing). Conclusions In adult primates, FcRn is expressed more highly in distal intestinal epithelial cells. However, mAb delivery to that region results in low serum levels, in part because apical surface FcRn binding does not influence mAb transcytosis. High FcRn expression in enteroendocrine cells could provide a novel means to target mAbs for metabolic diseases after systemic administration.
Collapse
Affiliation(s)
- Pamela J Hornby
- Biologics Research, Biotechnology CoE, Janssen Pharmaceutical J&J, Radnor, Pennsylvania, 19087, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Saslowsky DE, Te Welscher YM, Chinnapen DJF, Wagner JS, Wan J, Kern E, Lencer WI. Ganglioside GM1-mediated transcytosis of cholera toxin bypasses the retrograde pathway and depends on the structure of the ceramide domain. J Biol Chem 2013; 288:25804-25809. [PMID: 23884419 DOI: 10.1074/jbc.m113.474957] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cholera toxin causes diarrheal disease by binding ganglioside GM1 on the apical membrane of polarized intestinal epithelial cells and trafficking retrograde through sorting endosomes, the trans-Golgi network (TGN), and into the endoplasmic reticulum. A fraction of toxin also moves from endosomes across the cell to the basolateral plasma membrane by transcytosis, thus breeching the intestinal barrier. Here we find that sorting of cholera toxin into this transcytotic pathway bypasses retrograde transport to the TGN. We also find that GM1 sphingolipids can traffic from apical to basolateral membranes by transcytosis in the absence of toxin binding but only if the GM1 species contain cis-unsaturated or short acyl chains in the ceramide domain. We found previously that the same GM1 species are needed to efficiently traffic retrograde into the TGN and endoplasmic reticulum and into the recycling endosome, implicating a shared mechanism of action for sorting by lipid shape among these pathways.
Collapse
Affiliation(s)
- David E Saslowsky
- From the Division of Gastroenterology, Boston Children's Hospital,; Harvard Digestive Diseases Center, and; Harvard Medical School, Boston, Massachusetts, 02115.
| | - Yvonne M Te Welscher
- From the Division of Gastroenterology, Boston Children's Hospital,; Harvard Medical School, Boston, Massachusetts, 02115
| | - Daniel J-F Chinnapen
- From the Division of Gastroenterology, Boston Children's Hospital,; Harvard Medical School, Boston, Massachusetts, 02115
| | - Jessica S Wagner
- From the Division of Gastroenterology, Boston Children's Hospital,; Harvard Digestive Diseases Center, and
| | - Joy Wan
- From the Division of Gastroenterology, Boston Children's Hospital
| | - Eli Kern
- From the Division of Gastroenterology, Boston Children's Hospital
| | - Wayne I Lencer
- From the Division of Gastroenterology, Boston Children's Hospital,; Harvard Digestive Diseases Center, and; Harvard Medical School, Boston, Massachusetts, 02115
| |
Collapse
|
163
|
Pharmacokinetics, pharmacodynamics and physiologically-based pharmacokinetic modelling of monoclonal antibodies. Clin Pharmacokinet 2013; 52:83-124. [PMID: 23299465 DOI: 10.1007/s40262-012-0027-4] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Development of monoclonal antibodies (mAbs) and their functional derivatives represents a growing segment of the development pipeline in the pharmaceutical industry. More than 25 mAbs and derivatives have been approved for a variety of therapeutic applications. In addition, around 500 mAbs and derivatives are currently in different stages of development. mAbs are considered to be large molecule therapeutics (in general, they are 2-3 orders of magnitude larger than small chemical molecule therapeutics), but they are not just big chemicals. These compounds demonstrate much more complex pharmacokinetic and pharmacodynamic behaviour than small molecules. Because of their large size and relatively poor membrane permeability and instability in the conditions of the gastrointestinal tract, parenteral administration is the most usual route of administration. The rate and extent of mAb distribution is very slow and depends on extravasation in tissue, distribution within the particular tissue, and degradation. Elimination primarily happens via catabolism to peptides and amino acids. Although not definitive, work has been published to define the human tissues mainly involved in the elimination of mAbs, and it seems that many cells throughout the body are involved. mAbs can be targeted against many soluble or membrane-bound targets, thus these compounds may act by a variety of mechanisms to achieve their pharmacological effect. mAbs targeting soluble antigen generally exhibit linear elimination, whereas those targeting membrane-bound antigen often exhibit non-linear elimination, mainly due to target-mediated drug disposition (TMDD). The high-affinity interaction of mAbs and their derivatives with the pharmacological target can often result in non-linear pharmacokinetics. Because of species differences (particularly due to differences in target affinity and abundance) in the pharmacokinetics and pharmacodynamics of mAbs, pharmacokinetic/pharmacodynamic modelling of mAbs has been used routinely to expedite the development of mAbs and their derivatives and has been utilized to help in the selection of appropriate dose regimens. Although modelling approaches have helped to explain variability in both pharmacokinetic and pharmacodynamic properties of these drugs, there is a clear need for more complex models to improve understanding of pharmacokinetic processes and pharmacodynamic interactions of mAbs with the immune system. There are different approaches applied to physiologically based pharmacokinetic (PBPK) modelling of mAbs and important differences between the models developed. Some key additional features that need to be accounted for in PBPK models of mAbs are neonatal Fc receptor (FcRn; an important salvage mechanism for antibodies) binding, TMDD and lymph flow. Several models have been described incorporating some or all of these features and the use of PBPK models are expected to expand over the next few years.
Collapse
|
164
|
Kauffman AL, Gyurdieva AV, Mabus JR, Ferguson C, Yan Z, Hornby PJ. Alternative functional in vitro models of human intestinal epithelia. Front Pharmacol 2013; 4:79. [PMID: 23847534 PMCID: PMC3703544 DOI: 10.3389/fphar.2013.00079] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/03/2013] [Indexed: 01/24/2023] Open
Abstract
Physiologically relevant sources of absorptive intestinal epithelial cells are crucial for human drug transport studies. Human adenocarcinoma-derived intestinal cell lines, such as Caco-2, offer conveniences of easy culture maintenance and scalability, but do not fully recapitulate in vivo intestinal phenotypes. Additional sources of renewable physiologically relevant human intestinal cells would provide a much needed tool for drug discovery and intestinal physiology. We compared two alternative sources of human intestinal cells, commercially available primary human intestinal epithelial cells (hInEpCs) and induced pluripotent stem cell (iPSC)-derived intestinal cells to Caco-2, for use in in vitro transwell monolayer intestinal transport assays. To achieve this for iPSC-derived cells, intestinal organogenesis was adapted to transwell differentiation. Intestinal cells were assessed by marker expression through immunocytochemical and mRNA expression analyses, monolayer integrity through Transepithelial Electrical Resistance (TEER) measurements and molecule permeability, and functionality by taking advantage the well-characterized intestinal transport mechanisms. In most cases, marker expression for primary hInEpCs and iPSC-derived cells appeared to be as good as or better than Caco-2. Furthermore, transwell monolayers exhibited high TEER with low permeability. Primary hInEpCs showed molecule efflux indicative of P-glycoprotein (Pgp) transport. Primary hInEpCs and iPSC-derived cells also showed neonatal Fc receptor-dependent binding of immunoglobulin G variants. Primary hInEpCs and iPSC-derived intestinal cells exhibit expected marker expression and demonstrate basic functional monolayer formation, similar to or better than Caco-2. These cells could offer an alternative source of human intestinal cells for understanding normal intestinal epithelial physiology and drug transport.
Collapse
Affiliation(s)
- Amanda L Kauffman
- Biologics Research, Biotechnology Center of Excellence, Janssen Pharmaceutical Companies of Johnson & Johnson Spring House, PA, USA
| | | | | | | | | | | |
Collapse
|
165
|
Recombinant IgA is sufficient to prevent influenza virus transmission in guinea pigs. J Virol 2013; 87:7793-804. [PMID: 23698296 DOI: 10.1128/jvi.00979-13] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A serum hemagglutination inhibition (HAI) titer of 40 or greater is thought to be associated with reduced influenza virus pathogenesis in humans and is often used as a correlate of protection in influenza vaccine studies. We have previously demonstrated that intramuscular vaccination of guinea pigs with inactivated influenza virus generates HAI titers greater than 300 but does not protect vaccinated animals from becoming infected with influenza virus by transmission from an infected cage mate. Only guinea pigs intranasally inoculated with a live influenza virus or a live attenuated virus vaccine, prior to challenge, were protected from transmission (A. C. Lowen et al., J. Virol. 83:2803-2818, 2009.). Because the serum HAI titer is mostly determined by IgG content, these results led us to speculate that prevention of viral transmission may require IgA antibodies or cellular immune responses. To evaluate this hypothesis, guinea pigs and ferrets were administered a potent, neutralizing mouse IgG monoclonal antibody, 30D1 (Ms 30D1 IgG), against the A/California/04/2009 (H1N1) virus hemagglutinin and exposed to respiratory droplets from animals infected with this virus. Even though HAI titers were greater than 160 1 day postadministration, Ms 30D1 IgG did not prevent airborne transmission to passively immunized recipient animals. In contrast, intramuscular administration of recombinant 30D1 IgA (Ms 30D1 IgA) prevented transmission to 88% of recipient guinea pigs, and Ms 30D1 IgA was detected in animal nasal washes. Ms 30D1 IgG administered intranasally also prevented transmission, suggesting the importance of mucosal immunity in preventing influenza virus transmission. Collectively, our data indicate that IgG antibodies may prevent pathogenesis associated with influenza virus infection but do not protect from virus infection by airborne transmission, while IgA antibodies are more important for preventing transmission of influenza viruses.
Collapse
|
166
|
Baker K, Rath T, Lencer WI, Fiebiger E, Blumberg RS. Cross-presentation of IgG-containing immune complexes. Cell Mol Life Sci 2013; 70:1319-1334. [PMID: 22847331 PMCID: PMC3609906 DOI: 10.1007/s00018-012-1100-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 07/09/2012] [Accepted: 07/17/2012] [Indexed: 12/23/2022]
Abstract
IgG is a molecule that functionally combines facets of both innate and adaptive immunity and therefore bridges both arms of the immune system. On the one hand, IgG is created by adaptive immune cells, but can be generated by B cells independently of T cell help. On the other hand, once secreted, IgG can rapidly deliver antigens into intracellular processing pathways, which enable efficient priming of T cell responses towards epitopes from the cognate antigen initially bound by the IgG. While this process has long been known to participate in CD4(+) T cell activation, IgG-mediated delivery of exogenous antigens into a major histocompatibility complex (MHC) class I processing pathway has received less attention. The coordinated engagement of IgG with IgG receptors expressed on the cell-surface (FcγR) and within the endolysosomal system (FcRn) is a highly potent means to deliver antigen into processing pathways that promote cross-presentation of MHC class I and presentation of MHC class II-restricted epitopes within the same dendritic cell. This review focuses on the mechanisms by which IgG-containing immune complexes mediate such cross-presentation and the implications that this understanding has for manipulation of immune-mediated diseases that depend upon or are due to the activities of CD8(+) T cells.
Collapse
Affiliation(s)
- Kristi Baker
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Timo Rath
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Wayne I. Lencer
- Division of Gastroenterology and Nutrition, Children’s Hospital Boston, Harvard Medical School, Boston, MA 02115 USA
- Harvard Digestive Diseases Center, Boston, MA 02115 USA
| | - Edda Fiebiger
- Division of Gastroenterology and Nutrition, Children’s Hospital Boston, Harvard Medical School, Boston, MA 02115 USA
- Harvard Digestive Diseases Center, Boston, MA 02115 USA
| | - Richard S. Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
- Harvard Digestive Diseases Center, Boston, MA 02115 USA
| |
Collapse
|
167
|
Kliwinski C, Cooper PR, Perkinson R, Mabus JR, Tam SH, Wilkinson TM, Giles-Komar J, Scallon B, Powers GD, Hornby PJ. Contribution of FcRn binding to intestinal uptake of IgG in suckling rat pups and human FcRn-transgenic mice. Am J Physiol Gastrointest Liver Physiol 2013; 304:G262-70. [PMID: 23220220 DOI: 10.1152/ajpgi.00340.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Immunoglobulin G (IgG) is transcytosed across intestinal epithelial cells of suckling mammals by the neonatal Fc receptor (FcRn); however, the contribution of FcRn vs. FcRn-independent uptake to serum IgG levels had not been determined in either rat pups or human (h)FcRn-expressing mice (Tg276 and Tg32). In isoflurane-anesthetized rodents, serum levels were determined after regional intestinal delivery of human monoclonal antibodies (hIgG) with either wild-type (WT) Fc sequences or variants engineered for different FcRn binding affinities. Detection of full-length hIgG was by immunoassay; intestinal hFcRn and hIgG localization was by immunocytochemistry. High (μg/ml) serum levels of hIgG were detected after proximal intestinal delivery (0.1-10 mg/kg) in 2-wk-old rats. Human FcRn was visualized in epithelial cells of Tg276 mice, but low serum hIgG levels (<10 ng/ml) were obtained. In rat pups, intraintestinal hIgG1 WT administration resulted in dose-related and saturable uptake, whereas uptake of a low FcRn-binding affinity variant was nonsaturable. There were no differences in hIgG levels from systemic and hepatic portal vein serum samples, and intense hIgG immunostaining was noted in villi enterocytes and within lymphatic lacteal-like vessels. This study demonstrated that FcRn-mediated uptake in rat pups accounted for ~80% of serum hIgG levels and that IgG enters the circulation via the lymph and not the hepatic portal vein. The remaining uptake though the immature intestine is nonreceptor mediated. Intestinal epithelial cell hFcRn expression occurred in Tg276 mice, but receptor-mediated transport of IgG was not observed. The suckling rat pup intestine is a mechanistic model of FcRn-IgG-mediated transcytosis.
Collapse
Affiliation(s)
- C Kliwinski
- Biologics Toxicology, Biotechnology Center of Excellence, Janssen Pharmaceutical Companies of Johnson & Johnson, Radnor, PA 19087, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Strazielle N, Ghersi-Egea JF. Physiology of blood-brain interfaces in relation to brain disposition of small compounds and macromolecules. Mol Pharm 2013; 10:1473-91. [PMID: 23298398 DOI: 10.1021/mp300518e] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The brain develops and functions within a strictly controlled environment resulting from the coordinated action of different cellular interfaces located between the blood and the extracellular fluids of the brain, which include the interstitial fluid and the cerebrospinal fluid (CSF). As a correlate, the delivery of pharmacologically active molecules and especially macromolecules to the brain is challenged by the barrier properties of these interfaces. Blood-brain interfaces comprise both the blood-brain barrier located at the endothelium of the brain microvessels and the blood-CSF barrier located at the epithelium of the choroid plexuses. Although both barriers develop extensive surface areas of exchange between the blood and the neuropil or the CSF, the molecular fluxes across these interfaces are tightly regulated. Cerebral microvessels acquire a barrier phenotype early during cerebral vasculogenesis under the influence of the Wnt/β-catenin pathway, and of recruited pericytes. Later in development, astrocytes also play a role in blood-brain barrier maintenance. The tight choroid plexus epithelium develops very early during embryogenesis. It is specified by various signaling molecules from the embryonic dorsal midline, such as bone morphogenic proteins, and grows under the influence of Sonic hedgehog protein. Tight junctions at each barrier comprise a distinctive set of claudins from the pore-forming and tightening categories that determine their respective paracellular barrier characteristics. Vesicular traffic is limited in the cerebral endothelium and abundant in the choroidal epithelium, yet without evidence of active fluid phase transcytosis. Inorganic ion transport is highly regulated across the barriers. Small organic compounds such as nutrients, micronutrients and hormones are transported into the brain by specific solute carriers. Other bioactive metabolites, lipophilic toxic xenobiotics or pharmacological agents are restrained from accumulating in the brain by several ATP-binding cassette efflux transporters, multispecific solute carriers, and detoxifying enzymes. These various molecular effectors differently distribute between the two barriers. Receptor-mediated endocytotic and transcytotic mechanisms are active in the barriers. They enable brain penetration of selected polypeptides and proteins, or inversely macromolecule efflux as it is the case for immnoglobulins G. An additional mechanism specific to the BCSFB mediates the transport of selected plasma proteins from blood into CSF in the developing brain. All these mechanisms could be explored and manipulated to improve macromolecule delivery to the brain.
Collapse
Affiliation(s)
- N Strazielle
- Brain-i, Lyon Neuroscience Research Center, Lyon, France.
| | | |
Collapse
|
169
|
Gan Z, Ram S, Ober RJ, Ward ES. Using multifocal plane microscopy to reveal novel trafficking processes in the recycling pathway. J Cell Sci 2013; 126:1176-88. [PMID: 23345403 DOI: 10.1242/jcs.116327] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A major outstanding issue in cell biology is the lack of understanding of the contribution of tubulovesicular transport carriers (TCs) to intracellular trafficking pathways within 3D cellular environments. This is primarily due to the challenges associated with the use of microscopy techniques to track these highly motile, small compartments. In the present study we have used multifocal plane microscopy with localized photoactivation to overcome these limitations. Using this approach, we have characterized individual components constituting the recycling pathway of the receptor FcRn. Specifically, several different pathways followed by TCs that intersect with larger, relatively static sorting endosomes have been defined. These pathways include a novel 'looping' process in which TCs leave and return to the same sorting endosome. Significantly, TCs with different itineraries can be identified by associations with distinct complements of Rab GTPases, APPL1 and SNX4. These studies provide a framework for further analyses of the recycling pathway.
Collapse
Affiliation(s)
- Zhuo Gan
- Department of Immunology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
170
|
Andersen JT, Gonzalez-Pajuelo M, Foss S, Landsverk OJB, Pinto D, Szyroki A, de Haard HJ, Saunders M, Vanlandschoot P, Sandlie I. Selection of nanobodies that target human neonatal Fc receptor. Sci Rep 2013; 3:1118. [PMID: 23346375 PMCID: PMC3552320 DOI: 10.1038/srep01118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 12/19/2012] [Indexed: 01/17/2023] Open
Abstract
FcRn is a key player in several immunological and non-immunological processes, as it mediates maternal-fetal transfer of IgG, regulates the serum persistence of IgG and albumin, and transports both ligands between different cellular compartments. In addition, FcRn enhances antigen presentation. Thus, there is an intense interest in studies of how FcRn binds and transports its cargo within and across several types of cells, and FcRn detection reagents are in high demand. Here we report on phage display-selected Nanobodies that target human FcRn. The Nanobodies were obtained from a variable-domain repertoire library isolated from a llama immunized with recombinant human FcRn. One candidate, Nb218-H4, was shown to bind FcRn with high affinity at both acidic and neutral pH, without competing ligand binding and interfering with FcRn functions, such as transcytosis of IgG. Thus, Nb218-H4 can be used as a detection probe and as a tracker for visualization of FcRn-mediated cellular transport.
Collapse
Affiliation(s)
- Jan Terje Andersen
- Centre for Immune Regulation (CIR) and Department of Molecular Biosciences, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Kunisawa J, Kiyono H. Immune regulation and monitoring at the epithelial surface of the intestine. Drug Discov Today 2013; 18:87-92. [DOI: 10.1016/j.drudis.2012.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 07/06/2012] [Accepted: 08/02/2012] [Indexed: 02/08/2023]
|
172
|
Xu S, Olenyuk BZ, Okamoto CT, Hamm-Alvarez SF. Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances. Adv Drug Deliv Rev 2013; 65:121-38. [PMID: 23026636 PMCID: PMC3565049 DOI: 10.1016/j.addr.2012.09.041] [Citation(s) in RCA: 324] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 09/13/2012] [Accepted: 09/20/2012] [Indexed: 12/22/2022]
Abstract
Targeting of drugs and their carrier systems by using receptor-mediated endocytotic pathways was in its nascent stages 25 years ago. In the intervening years, an explosion of knowledge focused on design and synthesis of nanoparticulate delivery systems as well as elucidation of the cellular complexity of what was previously-termed receptor-mediated endocytosis has now created a situation when it has become possible to design and test the feasibility of delivery of highly specific nanoparticle drug carriers to specific cells and tissue. This review outlines the mechanisms governing the major modes of receptor-mediated endocytosis used in drug delivery and highlights recent approaches using these as targets for in vivo drug delivery of nanoparticles. The review also discusses some of the inherent complexity associated with the simple shift from a ligand-drug conjugate versus a ligand-nanoparticle conjugate, in terms of ligand valency and its relationship to the mode of receptor-mediated internalization.
Collapse
Affiliation(s)
- Shi Xu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, USA 90033
| | - Bogdan Z. Olenyuk
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, USA 90033
| | - Curtis T. Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, USA 90033
| | - Sarah F. Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, USA 90033
| |
Collapse
|
173
|
Abstract
Biologics, including monoclonal antibodies (mAbs) and other therapeutic proteins such as cytokines and growth hormones, have unique characteristics compared to small molecules. This paper starts from an overview of the pharmacokinetics (PK) of biologics from a mechanistic perspective, the determination of a starting dose for first-in-human (FIH) studies, and dosing regimen optimisation for phase II/III clinical trials. Subsequently, typical clinical pharmacology issues along the corresponding pathways for biologics development are summarised, including drug-drug interactions, QTc prolongation, immunogenicity, and studies in specific populations. The relationships between the molecular structure of biologics, their pharmacokinetic and pharmacodynamic characteristics, and the corresponding clinical pharmacology strategies are summarised and depicted in a schematic diagram.
Collapse
|
174
|
Zhao L, Shang EY, Sahajwalla CG. Application of pharmacokinetics-pharmacodynamics/clinical response modeling and simulation for biologics drug development. J Pharm Sci 2012; 101:4367-82. [PMID: 23018763 DOI: 10.1002/jps.23330] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 08/27/2012] [Accepted: 09/07/2012] [Indexed: 01/21/2023]
Abstract
Biologics, specifically monoclonal antibody (mAb) drugs, have unique pharmacokinetic (PK) and pharmacodynamic (PD) characteristics as opposed to small molecules. Under the paradigm of model-based drug development, PK-PD/clinical response models offer critical insight in guiding biologics development at various stages. On the basis of the molecular structure and corresponding properties of biologics, typical mechanism-based [target-mediated drug disposition (TMDD)], physiologically based PK, PK-PD, and dose-response meta-analysis models are summarized. Examples of using TMDD, PK-PD, and meta-analysis in helping starting dose determination in first-in-human studies and dosing regimen optimization in phase II/III trials are discussed. Instead of covering the entirety of model-based biologics development, this review focuses on the guiding principles and the core mathematical descriptions underlying the PK or PK-PD models most used.
Collapse
Affiliation(s)
- Liang Zhao
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA.
| | | | | |
Collapse
|
175
|
Intestinal receptor targeting for peptide delivery: an expert's personal perspective on reasons for failure and new opportunities. Ther Deliv 2012; 2:1575-93. [PMID: 22833983 DOI: 10.4155/tde.11.129] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The technology has been available more than 25 years that would enable the oral delivery of vaccines, proteins and peptides, thus avoiding the need for injection. To this day, injection is still the mode of delivery, yet not the main mode of choice. This review focuses on several of the potential modes for oral delivery of peptides, proteins and vaccines. Additionally, the review will provide the reader with an insight into the problems and potential solutions for several of these modes of oral delivery of peptides and proteins.
Collapse
|
176
|
Berin MC. Mucosal antibodies in the regulation of tolerance and allergy to foods. Semin Immunopathol 2012; 34:633-42. [PMID: 22777546 DOI: 10.1007/s00281-012-0325-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Accepted: 06/20/2012] [Indexed: 01/01/2023]
Abstract
The intestinal mucosa is densely packed with antibody-secreting B cells, the majority of which produce IgA. Mucosal antibodies have traditionally been thought of as neutralizing antibodies that exclude antigens, but they also function in antigen sampling, allowing for selective transcytosis of antigens from the intestinal lumen. IgE-mediated antigen uptake can facilitate the development of allergic reactions to foods, but emerging evidence indicates that IgG-mediated antigen uptake may also play an important role in the development of immune tolerance to foods, particularly in the neonate. This review will focus on the role of intestinal immunoglobulins in the development of clinical tolerance and allergy to food antigens.
Collapse
Affiliation(s)
- M Cecilia Berin
- Division of Allergy and Immunology, Department of Pediatrics, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
177
|
Yuji M, Fujimoto M, Qi WM, Takahara EI, Mantani Y, Udayanga KGS, Takeuchi T, Warita K, Yokoyama T, Hoshi N, Kitagawa H. Persorption of IgG-Fc-coated particulates from intestinal lumen into portal blood via villous columnar epithelial cells in rat small intestine. J Vet Med Sci 2012; 74:1447-52. [PMID: 22785330 DOI: 10.1292/jvms.12-0111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously, the specific antibody-mediated persorption of antigenic molecules and particulates from the small-intestinal lumen into the peripheral blood was clarified in rats, but the intermediation of the receptor for the specific antibodies was not. In this study, the existence of receptor for the specific antibody was experimentally examined in the rat small intestine. Glutaraldehyde-fixed sheep erythrocytes (SEs) coated by Fc-fragments of IgG (IgG-Fc), (Fab')(2)-fragments of IgG (IgG-Fab) or bovine serum albumin (BSA), were injected into 3 jejunal loops each 2 cm in length in non-orally pre-immunized rats, respectively. Thirty minutes after the injection, IgG-Fc-coated SEs were significantly more engulfed by villous columnar epithelial cells than Fab- or BSA-coated SEs. The most frequent absorption sites were the intestinal villous apices. The IgG-Fc-coated SEs were adhered to the striated borders and were engulfed by villous columnar epithelial cells. IgG-Fc-coated SEs passing through the epithelial cells were also detected in the subepithelial blood capillaries just beneath the villous epithelium, but not in the connective tissue and the lymph vessels. These findings suggest that the absorption of luminal antigenic particulates is probably mediated by the Fc-receptor, and that the absorbed antigenic particulates are directly transferred to the hepatic portal blood by passing through the endothelium of the subepithelial blood capillaries.
Collapse
Affiliation(s)
- Midori Yuji
- Department of Bioresource and Agrobiosciences, Graduate School of Science and Technology, Kobe University, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Crossing the barrier: Targeting epithelial receptors for enhanced oral vaccine delivery. J Control Release 2012; 160:431-9. [DOI: 10.1016/j.jconrel.2012.02.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 02/02/2012] [Indexed: 01/09/2023]
|
179
|
Poletaev A, Churilov L, Stroev Y, Agapov M. Immunophysiology versus immunopathology: Natural autoimmunity in human health and disease. PATHOPHYSIOLOGY 2012; 19:221-31. [DOI: 10.1016/j.pathophys.2012.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 12/16/2022] Open
|
180
|
Vugmeyster Y, Xu X, Theil FP, Khawli LA, Leach MW. Pharmacokinetics and toxicology of therapeutic proteins: Advances and challenges. World J Biol Chem 2012; 3:73-92. [PMID: 22558487 PMCID: PMC3342576 DOI: 10.4331/wjbc.v3.i4.73] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/18/2012] [Accepted: 01/25/2012] [Indexed: 02/05/2023] Open
Abstract
Significant progress has been made in understanding pharmacokinetics (PK), pharmacodynamics (PD), as well as toxicity profiles of therapeutic proteins in animals and humans, which have been in commercial development for more than three decades. However, in the PK arena, many fundamental questions remain to be resolved. Investigative and bioanalytical tools need to be established to improve the translation of PK data from animals to humans, and from in vitro assays to in vivo readouts, which would ultimately lead to a higher success rate in drug development. In toxicology, it is known, in general, what studies are needed to safely develop therapeutic proteins, and what studies do not provide relevant information. One of the major complicating factors in nonclinical and clinical programs for therapeutic proteins is the impact of immunogenicity. In this review, we will highlight the emerging science and technology, as well as the challenges around the pharmacokinetic- and safety-related issues in drug development of mAbs and other therapeutic proteins.
Collapse
Affiliation(s)
- Yulia Vugmeyster
- Yulia Vugmeyster, Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Andover, MA 01810, United States
| | | | | | | | | |
Collapse
|
181
|
Deng R, Jin F, Prabhu S, Iyer S. Monoclonal antibodies: what are the pharmacokinetic and pharmacodynamic considerations for drug development? Expert Opin Drug Metab Toxicol 2012; 8:141-60. [PMID: 22248267 DOI: 10.1517/17425255.2012.643868] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The number of monoclonal antibodies available for clinical use and under development has dramatically increased in the last 10 years. Understanding their pharmacokinetics and pharmacodynamics is essential for selecting the right clinical candidate, correct dose and regimen for a target indication. AREAS COVERED This article reviews the existing literature and knowledge of monoclonal antibodies. Specifically, the authors discuss monoclonal antibodies with respect to their pharmacokinetics (including absorption, distribution and elimination) and their pharmacodynamics. The authors also look at the pharmacokinetic/pharmacodynamic relationship, scaling from preclinical to clinical studies and selection of the first-in-human dose. EXPERT OPINION Monoclonal antibodies have complex pharmacokinetic and pharmacodynamic characteristics that are dependent on several factors. Therefore, it is important to improve our understanding of the pharmacokinetics and pharmacodynamics of monoclonal antibodies from a basic research standpoint. It is also equally important to apply mechanistic pharmacokinetic/pharmacodynamic models to interpret the experimental results and facilitate efforts to predict the safety and efficacy of monoclonal antibodies.
Collapse
Affiliation(s)
- Rong Deng
- Department of Pharmacokinetic and Pharmacodynamic Sciences, Genentech, Inc., 1 DNA Way, Mail Stop 463A, South San Francisco, California 94080, USA.
| | | | | | | |
Collapse
|
182
|
Babiuch K, Gottschaldt M, Werz O, Schubert US. Particulate transepithelial drug carriers: barriers and functional polymers. RSC Adv 2012. [DOI: 10.1039/c2ra20726e] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
183
|
Ben Suleiman Y, Yoshida M, Nishiumi S, Tanaka H, Mimura T, Nobutani K, Yamamoto K, Takenaka M, Aoganghua A, Miki I, Ota H, Takahashi S, Matsui H, Nakamura M, Blumberg RS, Azuma T. Neonatal Fc receptor for IgG (FcRn) expressed in the gastric epithelium regulates bacterial infection in mice. Mucosal Immunol 2012; 5:87-98. [PMID: 22089027 PMCID: PMC3964614 DOI: 10.1038/mi.2011.53] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neonatal Fc receptors for immunoglobulin (Ig)G (FcRn) assume a central role in regulating host IgG levels and IgG transport across polarized epithelial barriers. We have attempted to elucidate the contribution of FcRn in controlling Helicobacter infection in the stomach. C57BL/6J wild-type or FcRn(-/-) mice were infected with Helicobacter heilmannii, and gastric lesions, bacterial load and the levels of antigen-specific IgG in serum and gastric juice were analyzed. The elevated levels of anti-H. heimannii IgG in gastric juice were observed exclusively in wild-type mice but not in FcRn(-/-) mice. In contrast, an increase in lymphoid follicles and bacterial loads along with deeper gastric epithelium invasion were noted in FcRn(-/-) mice. C57BL/6J wild-type or FcRn(-/-) mice were also infected with Helicobacter pylori SS1, and the results of the bacterial load in stomachs of these mice and the anti-H. pylori IgG levels in serum and gastric juice were similar to those from H. heilmannii infection. Our data suggest that FcRn can be functionally expressed in the stomach, which is involved in transcytosis of IgG, and prevent colonization by H. heilmannii and the associated pathological consequences of infection.
Collapse
Affiliation(s)
- Y Ben Suleiman
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - M Yoshida
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
,The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Japan.
,Division of Metabolomics Research, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - S Nishiumi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - H Tanaka
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - T Mimura
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - K Nobutani
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - K Yamamoto
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - M Takenaka
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - A Aoganghua
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - I Miki
- Department of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Japan.
| | - H Ota
- Department of Biomedical Laboratory Sciences, School of Health Sciences, Shinshu University School of Medicine, Nagano, Japan.
| | - S Takahashi
- Third Department of Internal Medicine, Kyorin University, Tokyo, Japan.
| | - H Matsui
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitsato University, Tokyo, Japan.
| | - M Nakamura
- Center for Clinical Pharmacy and Clinical Sciences, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.
| | - RS Blumberg
- Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | - T Azuma
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
184
|
Vllasaliu D, Alexander C, Garnett M, Eaton M, Stolnik S. Fc-mediated transport of nanoparticles across airway epithelial cell layers. J Control Release 2011; 158:479-86. [PMID: 22200577 DOI: 10.1016/j.jconrel.2011.12.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 12/08/2011] [Accepted: 12/10/2011] [Indexed: 01/29/2023]
Abstract
In a study directed towards non-invasive delivery of therapeutic biomacromolecules, we examined whether surface modification of sub-200 nm model nanoparticles with the Fc portion of IgG promotes their cell uptake and transport across the airway epithelial cells. The study initially confirms the expression of the relevant receptor, namely neonatal Fc receptor (FcRn), by Calu-3 cell layers simulating the airway epithelium and demonstrates FcRn-mediated cell association, internalization and transcellular transport of molecular IgG. Surface decoration of nanoparticles with the Fc portion of IgG enhanced both cell uptake and translocation of the particulate system across the cell layers, in a manner strongly suggesting FcRn involvement in these processes. The study further demonstrates the potential of Fc-modified nanoparticles to 'shuttle' a model therapeutic antibody fragment across the epithelial cell layers. Fc-modified nanoparticles are transported in the μg/h/cm(2) range, presenting a substantial increase in transport capacity in comparison to molecular IgG (ng/h/cm(2) range), therefore warranting consideration of the FcRn transcytotic pathway for further investigation as a means to achieve transmucosal delivery of nanoparticulate systems that could act as carriers of a range of biotherapeutics.
Collapse
Affiliation(s)
- Driton Vllasaliu
- Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| | | | | | | | | |
Collapse
|
185
|
Barrier characteristics of epithelial cultures modelling the airway and intestinal mucosa: a comparison. Biochem Biophys Res Commun 2011; 415:579-85. [PMID: 22079636 DOI: 10.1016/j.bbrc.2011.10.108] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 10/25/2011] [Indexed: 02/02/2023]
Abstract
The barrier characteristics of polarized layers of Calu-3 and Caco-2 cell lines, as commonly used in vitro models of intestinal and airway mucosa, respectively, were investigated by assessing the translocation of model macromolecules and nanoparticles. The barrier capacity of the cell layers towards the movement of macromolecules and nanoparticulates differed considerably between the cell lines. Permeability studies revealed the existence of a notably larger solute molecular weight limit for paracellular diffusion in Caco-2 monolayers compared to Calu-3 cells. Removal of mucus in Calu-3 cells resulted in cell layers exhibiting a larger macromolecular permeability, in addition to improved nanoparticle translocation. Microscopic examination of the tight junctions, as cellular features that play a major role in preventing transepithelial movement of macromolecules, revealed that the appearance of cell-cell boundaries was notably different in the two cell lines, which could explain the differences in macromolecular permeability. The data overall showed that epithelial layers of airway Calu-3 and intestinal Caco-2 cell cultures in vitro exhibit a different level of restrictiveness and this is due to the cell morphology and the presence of mucus.
Collapse
|
186
|
Kono M, Hotomi M, Hollingshead SK, Briles DE, Yamanaka N. Maternal immunization with pneumococcal surface protein A protects against pneumococcal infections among derived offspring. PLoS One 2011; 6:e27102. [PMID: 22073127 PMCID: PMC3205068 DOI: 10.1371/journal.pone.0027102] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 10/10/2011] [Indexed: 11/25/2022] Open
Abstract
Pathogen-specific antibody plays an important role in protection against pneumococcal carriage and infections. However, neonates and infants exhibit impaired innate and adaptive immune responses, which result in their high susceptibility to pneumococci. To protect neonates and infants against pneumococcal infection it is important to elicit specific protective immune responses at very young ages. In this study, we investigated the protective immunity against pneumococcal carriage, pneumonia, and sepsis induced by maternal immunization with pneumococcal surface protein A (PspA). Mother mice were intranasally immunized with recombinant PspA (rPspA) and cholera toxin B subunit (CTB) prior to being mated. Anti-PspA specific IgG, predominantly IgG1, was present at a high level in the serum and milk of immunized mothers and in the sera of their pups. The pneumococcal densities in washed nasal tissues and in lung homogenate were significantly reduced in pups delivered from and/or breast-fed by PspA-immunized mothers. Survival after fatal systemic infections with various types of pneumococci was significantly extended in the pups, which had received anti-PspA antibody via the placenta or through their milk. The current findings strongly suggest that maternal immunization with PspA is an attractive strategy against pneumococcal infections during early childhood. (191 words)
Collapse
Affiliation(s)
- Masamitsu Kono
- Department of Otolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama-city, Wakayama, Japan
| | - Muneki Hotomi
- Department of Otolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama-city, Wakayama, Japan
- * E-mail:
| | - Susan K. Hollingshead
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - David E. Briles
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Noboru Yamanaka
- Department of Otolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama-city, Wakayama, Japan
| |
Collapse
|
187
|
Cianga C, Cianga P, Plamadeala P, Amalinei C. Nonclassical major histocompatibility complex I-like Fc neonatal receptor (FcRn) expression in neonatal human tissues. Hum Immunol 2011; 72:1176-87. [PMID: 21978715 DOI: 10.1016/j.humimm.2011.08.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 08/16/2011] [Accepted: 08/25/2011] [Indexed: 11/17/2022]
Abstract
The neonatal Fc receptor (FcRn) was demonstrated to play a role both in the recycling and thus the protection of immunoglobulin G (IgG) from catabolism and in the maternal-fetal transfer of IgG. The expression of this particular receptor was evidenced in a variety of cell types, but the endothelial cell was considered the main cell able to perform both recycling and IgG catabolism. Based on preliminary data obtained in adult human mammary glands and skin, this study focused on a number of neonatal human tissues, targeting FcRn expression mainly in epithelial versus endothelial cells. Our results demonstrate that in most of the investigated tissues, the neonatal Fc receptor is not detectable in the endothelial cells lining the capillaries, whereas most epithelial cells are positive. We could also observe the receptor's expression in most macrophages, smooth muscle cells, and neurons. Taken together, these data suggest that the main sites of IgG catabolism might in fact be other than endothelial cells in human neonates.
Collapse
Affiliation(s)
- Corina Cianga
- Department of Immunology, Gr T Popa University of Medicine and Pharmacy, and Laboratory of Immunology and Genetics, Sf. Spiridon Hospital, Iasi, Romania
| | | | | | | |
Collapse
|
188
|
Kagan L, Turner MR, Balu-Iyer SV, Mager DE. Subcutaneous absorption of monoclonal antibodies: role of dose, site of injection, and injection volume on rituximab pharmacokinetics in rats. Pharm Res 2011; 29:490-9. [PMID: 21887597 DOI: 10.1007/s11095-011-0578-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 08/22/2011] [Indexed: 01/06/2023]
Abstract
PURPOSE To determine the effect of dose, the anatomical site of injection, and the injection volume on subcutaneous absorption of rituximab in rats and to explore absorption mechanisms using pharmacokinetic modeling. METHODS Rituximab serum concentrations were measured following intravenous and subcutaneous administration at the back, abdomen, and foot of rats. Several pharmacokinetic models were developed that included linear and saturable absorption, and degradation and/or protective binding at the injection site. RESULTS Rituximab exhibited linear kinetics following intravenous administration; however, bioavailability following subcutaneous injection was inversely related to the dose level. For the 1 mg/kg dose, bioavailability was approximately 70% at all tested injection sites, with faster absorption from the foot (T(max) = 12 h for foot vs. 4.6 days for back). Bioavailability for the 10 mg/kg dose was 44 and 31% for the abdomen and back sites and 18% for 40 mg/kg injected at the back. A pharmacokinetic model that included binding as part of the absorption mechanism successfully captured the nonlinearities in rituximab absorption. CONCLUSION The anatomical site of subcutaneous injection influences the rate of absorption and bioavailability of rituximab in rats. Saturable binding may be a major determinant of the nonlinear absorptive transport of monoclonal antibodies.
Collapse
Affiliation(s)
- Leonid Kagan
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, 363 Hochstetter Hall, Buffalo, New York 14260, USA.
| | | | | | | |
Collapse
|
189
|
Abstract
The majority of potent new biologics today are IgG-based molecules that have demonstrated tissue-targeting specificity with favorable clinical response. Several factors determine the efficacy of these products, including target specificity, serum half-life and effector functions via complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity or drug conjugates. In this review, we will focus on the interaction between therapeutic antibody and neonatal Fc receptor (FcRn), which is one of the critical factors in determining the circulating antibody half-life. Specifically, we will review the fundamental biology of FcRn, FcRn functions in various organs, Fc mutations designed to modulate binding to FcRn, IgG-based therapeutics that directly exploit FcRn functions and tools and strategies used to study FcRn-IgG interactions. Comprehensive understanding of FcRn-IgG interactions not only allows for development of effective therapeutics, but also avoidance of potential adverse effects.
Collapse
Affiliation(s)
- Timothy T Kuo
- Division of Gastroenterology, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
190
|
A neonatal Fc receptor-targeted mucosal vaccine strategy effectively induces HIV-1 antigen-specific immunity to genital infection. J Virol 2011; 85:10542-53. [PMID: 21849464 DOI: 10.1128/jvi.05441-11] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Strategies to prevent the sexual transmission of HIV include vaccines that elicit durable, protective mucosal immune responses. A key to effective mucosal immunity is the capacity for antigens administered locally to cross epithelial barriers. Given the role of neonatal Fc receptor (FcRn) in transferring IgG across polarized epithelial cells which line mucosal surfaces, FcRn might be useful for delivering HIV vaccine antigens across mucosal epithelial barriers to the underlying antigen-presenting cells. Chimeric proteins composed of HIV Gag (p24) fused to the Fc region of IgG (Gag-Fc) bind efficiently to airway mucosa and are transported across this epithelial surface. Mice immunized intranasally with Gag-Fc plus CpG adjuvant developed local and systemic immunity, including durable B and T cell memory. Gag-specific immunity was sufficiently potent to protect against an intravaginal challenge with recombinant vaccinia virus expressing the HIV Gag protein. Intranasal administration of a Gag-Fc/CpG vaccine protected at a distal mucosal site. Our data suggest that targeting of FcRn with chimeric immunogens may be an important strategy for mucosal immunization and should be considered a new approach for preventive HIV vaccines.
Collapse
|
191
|
Origin of the apical transcytic membrane system in jejunal absorptive cells of neonates. Med Mol Morphol 2011; 44:71-8. [PMID: 21717309 DOI: 10.1007/s00795-010-0506-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 03/12/2010] [Indexed: 01/15/2023]
Abstract
We investigated the origin of the apical transcytic membrane system in jejunal absorptive cells of neonatal rats using light, electron, and immunofluorescence microscopy. In rats just after birth, intraluminally injected horseradish peroxidase (HRP), used as a macromolecular tracer, was observed only in the apical endocytic membrane system including the lysosomes, of jejunal absorptive cells in vivo. No tracer, however, was found in the intercellular space between the jejunal absorptive cells and the submucosa. Immunoreactive neonatal Fc receptor (FcRn) was localized in the perinuclear region of these absorptive cells whereas immunoglobulin G (IgG) was not found in these absorptive cells. In contrast, in rats 2 h after breast-feeding, intraluminally injected HRP was observed in the apical endocytic membrane system and in the apical transcytic membrane system of the absorptive cells. Moreover, HRP was found in the intercellular space between the jejunal absorptive cells and the submucosa. Furthermore, FcRn and IgG were widely distributed throughout the absorptive cells, and IgG was detected in both the intercellular space and the submucosa. These data suggest that initiation of breast-feeding induces the transportation of membrane-incorporated FcRn from its perinuclear localization to the apical plasma membrane domain. This transportation is achieved through the membrane system, which mediates apical receptor-mediated transcytosis via the trans-Golgi network. Subsequently, the apical plasma membrane containing the FcRn binds to maternal IgG, is endocytosed into the absorptive cells, and is transported to the basolateral membrane domain.
Collapse
|
192
|
Hurley WL, Theil PK. Perspectives on immunoglobulins in colostrum and milk. Nutrients 2011; 3:442-74. [PMID: 22254105 PMCID: PMC3257684 DOI: 10.3390/nu3040442] [Citation(s) in RCA: 440] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 03/21/2011] [Accepted: 04/12/2011] [Indexed: 12/11/2022] Open
Abstract
Immunoglobulins form an important component of the immunological activity found in milk and colostrum. They are central to the immunological link that occurs when the mother transfers passive immunity to the offspring. The mechanism of transfer varies among mammalian species. Cattle provide a readily available immune rich colostrum and milk in large quantities, making those secretions important potential sources of immune products that may benefit humans. Immune milk is a term used to describe a range of products of the bovine mammary gland that have been tested against several human diseases. The use of colostrum or milk as a source of immunoglobulins, whether intended for the neonate of the species producing the secretion or for a different species, can be viewed in the context of the types of immunoglobulins in the secretion, the mechanisms by which the immunoglobulins are secreted, and the mechanisms by which the neonate or adult consuming the milk then gains immunological benefit. The stability of immunoglobulins as they undergo processing in the milk, or undergo digestion in the intestine, is an additional consideration for evaluating the value of milk immunoglobulins. This review summarizes the fundamental knowledge of immunoglobulins found in colostrum, milk, and immune milk.
Collapse
Affiliation(s)
- Walter L. Hurley
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Peter K. Theil
- Department of Animal Health and Bioscience, Aarhus University, DK-8830 Tjele, Denmark;
| |
Collapse
|
193
|
Liu X, Lu L, Yang Z, Palaniyandi S, Zeng R, Gao LY, Mosser DM, Roopenian DC, Zhu X. The neonatal FcR-mediated presentation of immune-complexed antigen is associated with endosomal and phagosomal pH and antigen stability in macrophages and dendritic cells. THE JOURNAL OF IMMUNOLOGY 2011; 186:4674-86. [PMID: 21402891 DOI: 10.4049/jimmunol.1003584] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The FcγRs found on macrophages (Ms) and dendritic cells (DCs) efficiently facilitate the presentation or cross-presentation of immune-complexed Ags to T cells. We found that the MHC class I-related neonatal FcR for IgG (FcRn) in both Ms and DCs failed to have a strong effect on the cross-presentation of immune complex (IC) OVA Ag to CD8(+) T cells. Interestingly, endosomal FcRn enhanced the presentation of the monomeric OVA-IC to CD4(+) T cells robustly, whereas FcRn in phagosomes exerted distinctive effects on Ag presentation between Ms and DCs. The presentation of phagocytosed OVA-ICs to CD4(+) T cells was considerably enhanced on wild-type versus FcRn-deficient Ms, but was not affected in FcRn-deficient DCs. This functional discrepancy was associated with the dependence of IgG-FcRn binding in an acidic pH. Following phagocytosis, the phagosomal pH dropped rapidly to <6.5 in Ms but remained in the neutral range in DCs. This disparity in pH determined the rate of degradation of phagocytosed ICs. Thus, our findings reveal that FcRn expression has a different effect on Ag processing and presentation of ICs to CD4(+) T cells in the endosomal versus phagosomal compartments of Ms versus DCs.
Collapse
Affiliation(s)
- Xindong Liu
- Laboratory of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Transfer of IgG in the female genital tract by MHC class I-related neonatal Fc receptor (FcRn) confers protective immunity to vaginal infection. Proc Natl Acad Sci U S A 2011; 108:4388-93. [PMID: 21368166 DOI: 10.1073/pnas.1012861108] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
IgG is a major Ig subclass in mucosal secretions of the human female genital tract, where it predominates over the IgA isotype. Despite the abundance of IgG, surprisingly little is known about where and how IgG enters the lumen of the genital tract and the exact role local IgG plays in preventing sexually transmitted diseases. We demonstrate here that the neonatal Fc receptor, FcRn, is expressed in female genital tract epithelial cells of humans and mice and binds IgG in a pH-dependent manner. In vitro we show that FcRn mediates bidirectional IgG transport across polarized human endometrial HEC-1-A monolayers and primary human genital epithelial cells. Furthermore, endosomal acidification appears to be a prerequisite for FcRn-mediated IgG transcytosis; IgG transcytosis was demonstrated in vivo by translocation of systemically administered IgG into the genital lumen in WT but not FcRn-KO mice. The biological relevance of FcRn-transported IgG was demonstrated by passive immunization using herpes simplex virus-2 (HSV-2)-specific polyclonal serum, which conferred significantly higher protection against intravaginal challenge infection by the HSV-2 186 strain in WT mice than in FcRn-KO mice. These studies demonstrate that FcRn-mediated transport is a mechanism by which IgG can act locally in the female genital tract in immune surveillance and in host defense against sexually transmitted diseases.
Collapse
|
195
|
Palaniyandi S, Tomei E, Li Z, Conrad DH, Zhu X. CD23-dependent transcytosis of IgE and immune complex across the polarized human respiratory epithelial cells. THE JOURNAL OF IMMUNOLOGY 2011; 186:3484-96. [PMID: 21307287 DOI: 10.4049/jimmunol.1002146] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
IgE-mediated allergic inflammation occurs when allergens cross-link IgE on the surface of immune cells, thereby triggering the release of inflammatory mediators as well as enhancing Ag presentations. IgE is frequently present in airway secretions, and its level can be enhanced in human patients with allergic rhinitis and bronchial asthma. However, it remains completely unknown how IgE appears in the airway secretions. In this study, we show that CD23 (FcεRII) is constitutively expressed in established or primary human airway epithelial cells, and its expression is significantly upregulated when airway epithelial cells were subjected to IL-4 stimulation. In a transcytosis assay, human IgE or IgE-derived immune complex (IC) was transported across a polarized Calu-3 monolayer. Exposure of the Calu-3 monolayer to IL-4 stimulation also enhanced the transcytosis of either human IgE or the IC. A CD23-specific Ab or soluble CD23 significantly reduced the efficiency of IgE or IC transcytosis, suggesting a specific receptor-mediated transport by CD23. Transcytosis of both IgE and the IC was further verified in primary human airway epithelial cell monolayers. Furthermore, the transcytosed Ag-IgE complexes were competent in inducing degranulation of the cultured human mast cells. Because airway epithelial cells are the first cell layer to come into contact with inhaled allergens, our study implies CD23-mediated IgE transcytosis in human airway epithelial cells may play a critical role in initiating and contributing to the perpetuation of airway allergic inflammation.
Collapse
Affiliation(s)
- Senthilkumar Palaniyandi
- Laboratory of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|
196
|
Ye L, Zeng R, Bai Y, Roopenian DC, Zhu X. Efficient mucosal vaccination mediated by the neonatal Fc receptor. Nat Biotechnol 2011; 29:158-63. [PMID: 21240266 PMCID: PMC3197702 DOI: 10.1038/nbt.1742] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/01/2010] [Indexed: 11/09/2022]
Abstract
Almost all infectious diseases are initiated at mucosal surfaces, yet intramuscular or subcutaneous vaccination usually provides only minimal protection at sites of infection owing to suboptimal activation of the mucosal immune system. The neonatal Fc receptor (FcRn) mediates the transport of IgG across polarized epithelial cells lining mucosal surfaces. We mimicked this process by fusing a model antigen, herpes simplex virus type-2 (HSV-2) glycoprotein gD, to an IgG Fc fragment. Intranasal immunization, together with the adjuvant CpG, completely protected wild-type, but not FcRn knockout, mice after intravaginal challenge with virulent HSV-2 186. This immunization strategy induced efficient mucosal and systemic antibody, B- and T-cell immune responses, with stable protection for at least 6 months after vaccination in most of the immunized animals. The FcRn-IgG transcellular transport pathway may provide a general delivery route for subunit vaccines against many mucosal pathogens.
Collapse
Affiliation(s)
- Lilin Ye
- Laboratory of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Rongyu Zeng
- Laboratory of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Yu Bai
- Laboratory of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | | | - Xiaoping Zhu
- Laboratory of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
197
|
Dirks NL, Meibohm B. Population pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet 2011; 49:633-59. [PMID: 20818831 DOI: 10.2165/11535960-000000000-00000] [Citation(s) in RCA: 380] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A growing number of population pharmacokinetic analyses of therapeutic monoclonal antibodies (mAbs) have been published in the scientific literature. The aims of this article are to summarize the findings from these studies and to relate the findings to the general pharmacokinetic and structural characteristics of therapeutic mAbs. A two-compartment model was used in the majority of the population analyses to describe the disposition of the mAb. Population estimates of the volumes of distribution in the central (V(1)) and peripheral (V(2)) compartments were typically small, with median (range) values of 3.1 (2.4-5.5) L and 2.8 (1.3-6.8) L, respectively. The estimated between-subject variability in the V(1) was usually moderate, with a median (range) coefficient of variation (CV) of 26% (12-84%). Between-subject variability in other distribution-related parameters such as the V(2) and intercompartmental clearance were often not estimated. Although the pharmacokinetic models used most frequently in the population analyses were models with linear clearance, other models with nonlinear, or parallel linear and nonlinear clearance pathways were also applied, as many therapeutic mAbs are eliminated via saturable target-mediated mechanisms. Population estimates of the maximum elimination rate (V(max)) and the mAb concentration at which elimination was at half maximum for Michaelis-Menten-type elimination pathways varied considerably among the different therapeutic mAbs. However, estimates of the total clearance (CL) of mAbs with linear clearance characteristics and of the clearance of mAbs via the linear clearance pathway (CL(L)) with parallel linear and nonlinear clearance were quite similar for the different mAbs and typically ranged from 0.2 to 0.5 L/day, which is relatively close to the estimated clearance of endogenous IgG of 0.21 L/day. The between-subject variability in the V(max), CL and CL(L) was moderate to high, with estimated CVs ranging from 15% to 65%. Measures of body size were the covariates most commonly identified as influencing the pharmacokinetics of therapeutic mAbs. In summary, many features of the population pharmacokinetics of currently used therapeutic mAbs are similar, despite differences in their pharmacological targets and studied patient populations.
Collapse
Affiliation(s)
- Nathanael L Dirks
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | |
Collapse
|
198
|
Neal LM, McCarthy EA, Morris CR, Mantis NJ. Vaccine-induced intestinal immunity to ricin toxin in the absence of secretory IgA. Vaccine 2011; 29:681-9. [PMID: 21115050 PMCID: PMC3034280 DOI: 10.1016/j.vaccine.2010.11.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 10/29/2010] [Accepted: 11/10/2010] [Indexed: 12/28/2022]
Abstract
The RNA N-glycosidase ribosome inactivating proteins (RIPs) constitute a ubiquitous family of plant- and bacterium-derived toxins that includes the category B select agents ricin, abrin and shiga toxin. While these toxins are potent inducers of intestinal epithelial cell death and inflammation, very little is known about the mechanisms underlying mucosal immunity to these toxins. In the present study, we report that secretory IgA (SIgA) antibodies are not required for intestinal immunity to ricin, as evidenced by the fact that mice devoid of SIgA, due to a mutation in the polymeric immunoglobulin receptor, were impervious to the effects of intragastric toxin challenge following ricin toxoid immunization. Furthermore, parenteral administration of ricin-specific monoclonal IgGs, directed against either ricin's enzymatic subunit (RTA) or ricin's binding subunit (RTB), to wild type mice was as effective as monoclonal IgAs with comparable specificities in imparting intestinal immunity to ricin. These data are consistent with reports from others demonstrating that immunization of mice by routes known not to induce mucosal antibody responses (e.g., intramuscular and intradermal) is sufficient to elicit protection against both systemic and mucosal ricin challenges.
Collapse
Affiliation(s)
- Lori M. Neal
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY 12208
| | - Elizabeth A. McCarthy
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY 12208
| | - Carolyn R. Morris
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY 12208
| | - Nicholas J. Mantis
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY 12208
| |
Collapse
|
199
|
Abstract
Understanding the mechanisms underlying the induction of immunity in the gastrointestinal mucosa following oral immunization and the cross-talk between mucosal and systemic immunity should expedite the development of vaccines to diminish the global burden caused by enteric pathogens. Identifying an immunological correlate of protection in the course of field trials of efficacy, animal models (when available), or human challenge studies is also invaluable. In industrialized country populations, live attenuated vaccines (e.g. polio, typhoid, and rotavirus) mimic natural infection and generate robust protective immune responses. In contrast, a major challenge is to understand and overcome the barriers responsible for the diminished immunogenicity and efficacy of the same enteric vaccines in underprivileged populations in developing countries. Success in developing vaccines against some enteric pathogens has heretofore been elusive (e.g. Shigella). Different types of oral vaccines can selectively or inclusively elicit mucosal secretory immunoglobulin A and serum immunoglobulin G antibodies and a variety of cell-mediated immune responses. Areas of research that require acceleration include interaction between the gut innate immune system and the stimulation of adaptive immunity, development of safe yet effective mucosal adjuvants, better understanding of homing to the mucosa of immunologically relevant cells, and elicitation of mucosal immunologic memory. This review dissects the immune responses elicited in humans by enteric vaccines.
Collapse
Affiliation(s)
- Marcela F Pasetti
- Center for Vaccine Development, University of Maryland School of Medicine, 685 West Baltimore St., Room 480, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
200
|
Roopenian DC, Sun VZ. Clinical ramifications of the MHC family Fc receptor FcRn. J Clin Immunol 2010; 30:790-7. [PMID: 20848168 PMCID: PMC3069705 DOI: 10.1007/s10875-010-9458-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 09/01/2010] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Knowledge that antibodies of the IgG isotype have remarkably extended persistence in circulation and are able to pass through cell barriers has substantial implications. While it is well established that so-called neonatal Fc receptor, FcRn, acts throughout life to confer these unusual properties, its ramifications on clinical medicine and therapeutic uses are not broadly appreciated. SCOPE Here we discuss basic principles and gaps in understanding of FcRn, including its management of IgG antibodies and along with albumin, its impact on use and design of antibody-based therapeutics, and its genetics.
Collapse
|