151
|
Wu CH, Mohammadmoradi S, Chen JZ, Sawada H, Daugherty A, Lu HS. Renin-Angiotensin System and Cardiovascular Functions. Arterioscler Thromb Vasc Biol 2018; 38:e108-e116. [PMID: 29950386 PMCID: PMC6039412 DOI: 10.1161/atvbaha.118.311282] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Chia-Hua Wu
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
- Department of Pharmacology and Nutritional Sciences (C.-H.W., S.M., A.D., H.S.L.)
| | - Shayan Mohammadmoradi
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
- Department of Pharmacology and Nutritional Sciences (C.-H.W., S.M., A.D., H.S.L.)
| | - Jeff Z Chen
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
- Department of Physiology (J.Z.C., A.D., H.S.L.), University of Kentucky, Lexington
| | - Hisashi Sawada
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
- Department of Pharmacology and Nutritional Sciences (C.-H.W., S.M., A.D., H.S.L.)
- Department of Physiology (J.Z.C., A.D., H.S.L.), University of Kentucky, Lexington
| | - Hong S Lu
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
- Department of Pharmacology and Nutritional Sciences (C.-H.W., S.M., A.D., H.S.L.)
- Department of Physiology (J.Z.C., A.D., H.S.L.), University of Kentucky, Lexington
| |
Collapse
|
152
|
Tang W, Yao L, Hoogeveen RC, Alonso A, Couper DJ, Lutsey PL, Steenson CC, Guan W, Hunter DW, Lederle FA, Folsom AR. The Association of Biomarkers of Inflammation and Extracellular Matrix Degradation With the Risk of Abdominal Aortic Aneurysm: The ARIC Study. Angiology 2018; 70:130-140. [PMID: 29945457 DOI: 10.1177/0003319718785278] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Animal and human laboratory studies suggest that the pathogenesis of abdominal aortic aneurysms (AAAs) involves inflammation and degradation and remodeling of the extracellular matrix. This study prospectively assessed the association between biomarkers for these mechanisms and the presence of AAA during 24 years of follow-up in the Atherosclerosis Risk in Communities (ARIC) study. The ARIC prospectively identified clinically diagnosed AAAs in 15 792 men and women from baseline in 1987 to 1989 to 2011 using hospital discharge codes and death records. Additional asymptomatic AAAs were detected by an abdominal ultrasound scan in 2011 to 2013. Matrix metalloproteinase (MMP)-3, MMP-9, interleukin 6 (IL-6), N-terminal propeptide of Type III procollagen (PIIINP), and osteopontin were measured in blood samples collected between 1987 and 1992 in participants with AAA (544 clinically diagnosed AAAs and 72 ultrasound-detected AAAs) and a random sample of 723 participants selected from baseline and matched with AAAs by age, race and sex. Higher concentrations of MMP-9 and IL-6 were associated with future risk of clinically diagnosed AAA (hazard ratios [95% confidence intervals]: 1.55 [1.22-1.97] and 1.87 [1.48-2.35], respectively, comparing highest versus lowest tertiles) after multivariable adjustment ( P for trend < .001). Matrix metalloproteinase-9 was also associated with ultrasound-detected AAA. In conclusion, blood concentrations of MMP-9 and IL-6 measured in middle age predicted the risk of AAA during 24 years of follow-up.
Collapse
Affiliation(s)
- Weihong Tang
- 1 Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Lu Yao
- 1 Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Ron C Hoogeveen
- 2 Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Alvaro Alonso
- 3 Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - David J Couper
- 4 Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, NC, USA
| | - Pamela L Lutsey
- 1 Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Carol C Steenson
- 5 Department of Imaging, Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - Weihua Guan
- 6 Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - David W Hunter
- 7 Department of Medicine, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Frank A Lederle
- 8 Minneapolis VA Health Care System and Department of Medicine, School of Medicine, University of Minnesota, Minneapolis, MN, USA.,Frank A. Lederle, Deceased January 2018
| | - Aaron R Folsom
- 1 Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
153
|
Lareyre F, Moratal C, Chikande J, Jean-Baptiste E, Hassen-Khodja R, Neels J, Chinetti G, Raffort J. Investigation of Plasma Inflammatory Profile in Diabetic Patients With Abdominal Aortic Aneurysm: A Pilot Study. Vasc Endovascular Surg 2018; 52:597-601. [PMID: 29940819 DOI: 10.1177/1538574418784717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION: Clinical studies have unraveled a negative association between diabetes and abdominal aortic aneurysm (AAA), but the mechanisms involved are still poorly understood. The aim of this study was to determine whether diabetic patients with AAA had a distinct plasma inflammatory profile compared to nondiabetic patients. METHODS: Plasma samples were obtained from 10 diabetic patients with AAA and 10 nondiabetic patients with AAA. The relative protein expression of 92 inflammatory-related human protein biomarkers was assessed by proximity extension assay technology using Proseek Multiplex Inflammation I kit (Olink). RESULTS: Clinical characteristics were similar in diabetic patients with AAA compared to nondiabetic patients with AAA, the median ages being 67 and 73 years, respectively ( P = .61). The AAA diameters were, respectively, 50 and 49 mm ( P = .72). Among the 92 markers screened, 67 (72.8%) were detected in all samples. Diabetic patients had significantly lower protein expression of C-C motif chemokine 19 (CCL19) and C-C motif chemokine 23 (CCL23; 542.3 vs 980.3, P = .01 and 1236 vs 1406, P = .04, respectively). They tended to have higher expression of tumor necrosis factor ligand superfamily member 14 (TNFSF14) compared to controls (14.6 vs 10.8, P = .05). CONCLUSION: Diabetic patients with AAA differentially expressed CCL19, CCL23 and TNFSF14 in plasma compared to nondiabetic patients with AAA. Further studies are required to determine whether the markers identified could play a role in the negative association between diabetes and AAA pathogenesis.
Collapse
Affiliation(s)
- Fabien Lareyre
- 1 Department of Vascular Surgery, University Hospital of Nice, Nice, France.,2 Université Côte d'Azur, CHU, Nice, France
| | | | - Julien Chikande
- 1 Department of Vascular Surgery, University Hospital of Nice, Nice, France
| | - Elixène Jean-Baptiste
- 1 Department of Vascular Surgery, University Hospital of Nice, Nice, France.,2 Université Côte d'Azur, CHU, Nice, France
| | - Réda Hassen-Khodja
- 1 Department of Vascular Surgery, University Hospital of Nice, Nice, France.,2 Université Côte d'Azur, CHU, Nice, France
| | - Jaap Neels
- 2 Université Côte d'Azur, CHU, Nice, France
| | - Giulia Chinetti
- 2 Université Côte d'Azur, CHU, Nice, France.,3 Department of Clinical Biochemistry, University Hospital of Nice, Nice, France
| | - Juliette Raffort
- 2 Université Côte d'Azur, CHU, Nice, France.,3 Department of Clinical Biochemistry, University Hospital of Nice, Nice, France
| |
Collapse
|
154
|
Giraud A, Zeboudj L, Vandestienne M, Joffre J, Esposito B, Potteaux S, Vilar J, Cabuzu D, Kluwe J, Seguier S, Tedgui A, Mallat Z, Lafont A, Ait-Oufella H. Gingival fibroblasts protect against experimental abdominal aortic aneurysm development and rupture through tissue inhibitor of metalloproteinase-1 production. Cardiovasc Res 2018; 113:1364-1375. [PMID: 28582477 DOI: 10.1093/cvr/cvx110] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/31/2017] [Indexed: 11/14/2022] Open
Abstract
Aims Abdominal aortic aneurysm (AAA), frequently diagnosed in old patients, is characterized by chronic inflammation, vascular cell apoptosis and metalloproteinase-mediated extracellular matrix destruction. Despite improvement in the understanding of the pathophysiology of aortic aneurysm, no pharmacological treatment is yet available to limit dilatation and/or rupture. We previously reported that human gingival fibroblasts (GFs) can reduce carotid artery dilatation in a rabbit model of elastase-induced aneurysm. Here, we sought to investigate the mechanisms of GF-mediated vascular protection in two different models of aortic aneurysm growth and rupture in mice. Methods and results In vitro, mouse GFs proliferated and produced large amounts of anti-inflammatory cytokines and tissue inhibitor of metalloproteinase-1 (Timp-1). GFs deposited on the adventitia of abdominal aorta survived, proliferated, and organized as a layer structure. Furthermore, GFs locally produced Il-10, TGF-β, and Timp-1. In a mouse elastase-induced AAA model, GFs prevented both macrophage and lymphocyte accumulations, matrix degradation, and aneurysm growth. In an Angiotensin II/anti-TGF-β model of aneurysm rupture, GF cell-based treatment limited the extent of aortic dissection, prevented abdominal aortic rupture, and increased survival. Specific deletion of Timp-1 in GFs abolished the beneficial effect of cell therapy in both AAA mouse models. Conclusions GF cell-based therapy is a promising approach to inhibit aneurysm progression and rupture through local production of Timp-1.
Collapse
Affiliation(s)
- Andreas Giraud
- Inserm U970, Paris Cardiovascular Research Center, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Lynda Zeboudj
- Inserm U970, Paris Cardiovascular Research Center, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Marie Vandestienne
- Inserm U970, Paris Cardiovascular Research Center, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jérémie Joffre
- Inserm U970, Paris Cardiovascular Research Center, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Bruno Esposito
- Inserm U970, Paris Cardiovascular Research Center, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Stéphane Potteaux
- Inserm U970, Paris Cardiovascular Research Center, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - José Vilar
- Inserm U970, Paris Cardiovascular Research Center, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Daniela Cabuzu
- Inserm U970, Paris Cardiovascular Research Center, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Johannes Kluwe
- Department of Gastroenterology & Hepatology, Hamburg University Medical Center, Hamburg, Germany
| | - Sylvie Seguier
- Inserm U970, Paris Cardiovascular Research Center, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Alain Tedgui
- Inserm U970, Paris Cardiovascular Research Center, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Ziad Mallat
- Inserm U970, Paris Cardiovascular Research Center, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Antoine Lafont
- Inserm U970, Paris Cardiovascular Research Center, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Hafid Ait-Oufella
- Inserm U970, Paris Cardiovascular Research Center, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Medical Intensive Care Unit, Hôpital Saint-Antoine, AP-HP, Université Pierre-et-Marie Curie, Paris, France
| |
Collapse
|
155
|
Carino D, Sarac TP, Ziganshin BA, Elefteriades JA. Abdominal Aortic Aneurysm: Evolving Controversies and Uncertainties. Int J Angiol 2018; 27:58-80. [PMID: 29896039 PMCID: PMC5995687 DOI: 10.1055/s-0038-1657771] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is defined as a permanent dilatation of the abdominal aorta that exceeds 3 cm. Most AAAs arise in the portion of abdominal aorta distal to the renal arteries and are defined as infrarenal. Most AAAs are totally asymptomatic until catastrophic rupture. The strongest predictor of AAA rupture is the diameter. Surgery is indicated to prevent rupture when the risk of rupture exceeds the risk of surgery. In this review, we aim to analyze this disease comprehensively, starting from an epidemiological perspective, exploring etiology and pathophysiology, and concluding with surgical controversies. We will pursue these goals by addressing eight specific questions regarding AAA: (1) Is the incidence of AAA increasing? (2) Are ultrasound screening programs for AAA effective? (3) What causes AAA: Genes versus environment? (4) Animal models: Are they really relevant? (5) What pathophysiology leads to AAA? (6) Indications for AAA surgery: Are surgeons over-eager to operate? (7) Elective AAA repair: Open or endovascular? (8) Emergency AAA repair: Open or endovascular?
Collapse
Affiliation(s)
- Davide Carino
- Aortic Institute at Yale-New Haven, Yale University School of Medicine, New Haven, Connecticut
| | - Timur P. Sarac
- Section of Vascular and Endovascular Surgery, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Bulat A. Ziganshin
- Aortic Institute at Yale-New Haven, Yale University School of Medicine, New Haven, Connecticut
- Department of Surgical Diseases # 2, Kazan State Medical University, Kazan, Russia
| | - John A. Elefteriades
- Aortic Institute at Yale-New Haven, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
156
|
Tilson MD. Autoimmunity in the Abdominal Aortic Aneurysm and its Association with Smoking. AORTA : OFFICIAL JOURNAL OF THE AORTIC INSTITUTE AT YALE-NEW HAVEN HOSPITAL 2018; 5:159-167. [PMID: 29766007 DOI: 10.12945/j.aorta.2017.17.693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 12/05/2017] [Indexed: 11/18/2022]
Abstract
Smoking increases the risk of abdominal aortic aneurysm (AAA) in both humans and mice, although the underlying mechanisms are not completely understood. An adventitial aortic antigen, AAAP-40, has been partially sequenced. It has motifs with similarities to all three fibrinogen chains and appears to be connected in evolution to a large family of proteins called fibrinogen-related proteins. Fibrinogen may undergo non-enzymatic nitration, which may result from exposure to nitric oxide in cigarette smoke. Nitration of proteins renders them more immunogenic. It has recently been reported that anti-fibrinogen antibody promotes AAA development in mice. Also, anti-fibrinogen antibodies are present in patients with AAA. These matters are reviewed in the overall context of autoimmunity in AAA. The evidence suggests that smoking amplifies an auto-immune reaction that is critical to the pathogenesis of AAA.
Collapse
Affiliation(s)
- M David Tilson
- Department of Surgery, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
157
|
Seto SW, Chang D, Kiat H, Wang N, Bensoussan A. Chinese Herbal Medicine as a Potential Treatment of Abdominal Aortic Aneurysm. Front Cardiovasc Med 2018; 5:33. [PMID: 29732374 PMCID: PMC5919947 DOI: 10.3389/fcvm.2018.00033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/20/2018] [Indexed: 12/19/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is an irreversible condition where the abdominal aorta is dilated leading to potentially fatal consequence of aortic rupture. Multiple mechanisms are involved in the development and progression of AAA, including chronic inflammation, oxidative stress, vascular smooth muscle (VSMC) apoptosis, immune cell infiltration and extracellular matrix (ECM) degradation. Currently surgical therapies, including minimally invasive endovascular aneurysm repair (EVAR), are the only viable interventions for AAAs. However, these treatments are not appropriate for the majority of AAAs, which measure <50 mm. Substantial effort has been invested to identify and develop pharmaceutical treatments such as statins and doxycycline for this potentially lethal condition but these interventions failed to offer a cure or to retard the progression of AAA. Chinese herbal medicine (CHM) has been used for the management of cardiovascular diseases for thousands of years in China and other Asian countries. The unique multi-component and multi-target property of CHMs makes it a potentially ideal therapy for multifactorial diseases such as AAA. In this review, we review the current scientific evidence to support the use of CHMs for the treatment of AAA. Mechanisms of action underlying the effects of CHMs on AAA are also discussed.
Collapse
Affiliation(s)
- Sai Wang Seto
- NICM Health Research Institute, Western Sydney University, Penrith, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, Australia
| | - Hosen Kiat
- Faculty of Medicine, University of New South Wales, Sydney, Australia.,School of Medicine, Western Sydney University, Penrith, Australia.,Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Ning Wang
- NICM Health Research Institute, Western Sydney University, Penrith, Australia.,Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Alan Bensoussan
- NICM Health Research Institute, Western Sydney University, Penrith, Australia
| |
Collapse
|
158
|
RANKL-mediated osteoclastogenic differentiation of macrophages in the abdominal aorta of angiotensin II-infused apolipoprotein E knockout mice. J Vasc Surg 2018; 68:48S-59S.e1. [PMID: 29685509 DOI: 10.1016/j.jvs.2017.11.091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 11/17/2017] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Osteoclastogenic activation of macrophages (OCG) occurs in human abdominal aortic aneurysms (AAAs) and in calcium chloride-induced degenerative AAAs in mice, which have increased matrix metalloproteinase activity. As the activity of OCG in dissecting aneurysms is not clear, we tested the hypothesis that OCG contributes to angiotensin II (Ang II)-induced dissecting aneurysm (Ang II-induced AAA) in apolipoprotein E knockout mice. METHODS AAAs were produced in apolipoprotein E knockout mice via the administration of Ang II. Additionally, receptor activator of nuclear factor kB ligand (RANKL)-neutralizing antibody (5 mg/kg) was administered to one group of mice 7 days prior to Ang II infusion. Aneurysmal sections were probed for presence of RANKL and tartrate-resistant acid phosphatase via immunohistochemistry and immunofluorescence staining. Mouse aortas were also examined for RANKL and matrix metalloproteinase 9 expression via Western blot. In vitro murine vascular smooth muscle cells (MOVAS) and murine macrophages (RAW 264.7) were analyzed for the expression of osteogenic factors via Western blot, qPCR, and flow cytometry in response to Ang II or RANKL stimulation. The signaling pathway that mediates Ang II-induced RANKL expression in MOVAS cells was also investigated via application of TG101348, a Janus kinase 2 (JAK2) inhibitor, and Western blot analysis. RESULTS Immunohistochemical staining of Ang II-induced AAA sections revealed OCG as evidenced by increased RANKL and tartrate-resistant acid phosphatase expression compared with control mice. Immunofluorescence staining of AAA sections revealed co-localization of vascular smooth muscle cells and RANKL, revealing vascular smooth muscle cells as one potential source of RANKL. Systemic administration of RANKL-neutralizing antibody suppressed Ang II-induced AAA, with significant reduction of the maximum diameter of the abdominal aorta compared with vehicle controls (1.5 ± 0.4 mm vs 2.2 ± 0.2 mm). Ang II (1 μM) treatment induced a significant increase in RANKL messenger RNA expression levels in MOVAS cells compared with the vehicle control (1.0 ± 0.2 vs 2.8 ± 0.2). The activities of JAK2 and signal transducer and activator of transcription 5 (STAT5) were also significantly increased by Ang II treatment. Inhibition of JAK2/STAT5 suppressed Ang II-induced RANKL expression, suggesting the involvement of the JAK2/STAT5 signaling pathway. CONCLUSIONS OCG with increased RANKL expression was present in Ang II-induced AAA, and neutralization of RANKL suppressed AAA formation. As neutralization of RANKL has been used clinically to treat osteoporosis and other osteoclast-related diseases, additional study of the effectiveness of RANKL neutralization in AAA is warranted.
Collapse
|
159
|
The oral administration of clarithromycin prevents the progression and rupture of aortic aneurysm. J Vasc Surg 2018; 68:82S-92S.e2. [PMID: 29550174 DOI: 10.1016/j.jvs.2017.12.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The pathogenesis of aortic aneurysm (AA) is associated with chronic inflammation in the aortic wall with increased levels of matrix metalloproteinases (MMPs). Clarithromycin (CAM) has been reported to suppresses MMP activity. In this study, we investigated whether CAM could prevent the formation and rupture of AA. METHODS Male apolipoprotein E-deficient mice (28-30 weeks of age) were infused with angiotensin II for 28 days. CAM (100 mg/kg/d) or saline (as a control) was administered orally to the mice every day (CAM group, n = 13; control group, n = 13). After the administration period, the aortic diameter, elastin content, macrophage infiltration, MMP levels, and levels of inflammatory cytokines, including nuclear factor κB (NF-κB), were measured. RESULTS The aortic diameter was significantly suppressed in the CAM group (P < .001). No rupture death was observed in the CAM group in contrast to five deaths (38%) in the control group (P < .01). CAM significantly suppressed the degradation of aortic elastin (56.3% vs 16.5%; P < .001) and decreased the infiltration of inflammatory macrophages (0.05 vs 0.16; P < .01). Compared with the controls, the enzymatic activity of MMP-2 and MMP-9 was significantly reduced in the CAM group (MMP-2, 0.15 vs 0.56 [P < .01]; MMP-9, 0.12 vs 0.60 [P < .01]), and the levels of interleukin 1β (346.6 vs 1066.0; P < .05), interleukin 6 (128.4 vs 346.2; P < .05), and phosphorylation of NF-κB were also decreased (0.3 vs 2.0; P < .01). CONCLUSIONS CAM suppressed the progression and rupture of AA through the suppression of inflammatory macrophage infiltration, a reduction in MMP-2 and MMP-9 activity, and the inhibition of elastin degradation associated with the suppression of NF-κB phosphorylation.
Collapse
|
160
|
Matrix Metalloproteinase-9 Is a Predictive Factor for Systematic Hypertension and Heart Dysfunction in Patients with Obstructive Sleep Apnea Syndrome. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1569701. [PMID: 29693002 PMCID: PMC5859852 DOI: 10.1155/2018/1569701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/20/2018] [Accepted: 02/04/2018] [Indexed: 11/30/2022]
Abstract
Patients with obstructive sleep apnea syndrome (OSAS) showed higher prevalence in cardiovascular diseases due to aberrant hypoxia and oxidative stress. However, not all OSAS patients end up with cardiovascular disorders, and identification of novel biomarker will be invaluable for differentiating patients at risk. Here we tested the serum matrix metalloproteinase-9 (MMP-9) levels in 47 untreated OSAS patients and found that the MMP-9 level was positively correlated with severity of OSAS, which was consistent with hypoxia degree and duration. Besides, the MMP-9 level was higher in patients complicated with systematic hypertension (P < 0.001). Furthermore, we selected those OSAS patients without any cardiovascular dysfunction (n = 35) and followed up for up to five years. By the end of follow-up, 12 patients had hypertension onset and 3 patients had left ventricular hypertrophy. By analyzing the clinical outcomes with MMP-9 expression, we demonstrated that high serum MMP-9 in OSAS patients was a risk factor for occurrence of cardiovascular diseases. In addition, we cultured the vascular endothelial cells (VEC) from rat aorta in hypoxia condition to investigate whether MMP-9 was elevated due to hypoxia in OSAS patients. Cellular results revealed that the expression, secretion, and activity of MMP-9 were all upregulated by hypoxia and can cleave the beta2-adrenergic receptor (β2AR) on VEC surface. Our results not only determined MMP-9 as a risk factor for cardiovascular diseases in OSAS patients, but also showed the possible involvement of hypoxia-MMP-9-β2AR signaling axis.
Collapse
|
161
|
Umebayashi R, Uchida HA, Kakio Y, Subramanian V, Daugherty A, Wada J. Cilostazol Attenuates Angiotensin II-Induced Abdominal Aortic Aneurysms but Not Atherosclerosis in Apolipoprotein E-Deficient Mice. Arterioscler Thromb Vasc Biol 2018; 38:903-912. [PMID: 29437572 DOI: 10.1161/atvbaha.117.309707] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 01/25/2018] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Abdominal aortic aneurysm (AAA) is a permanent dilation of the abdominal aorta associated with rupture, which frequently results in fatal consequences. AAA tissue is commonly characterized by localized structural deterioration accompanied with inflammation and profound accumulation of leukocytes, although the specific function of these cells is unknown. Cilostazol, a phosphodiesterase III inhibitor, is commonly used for patients with peripheral vascular disease or stroke because of its anti-platelet aggregation effect and anti-inflammatory effect, which is vasoprotective effect. In this study, we evaluated the effects of cilostazol on angiotensin II-induced AAA formation. APPROACH AND RESULTS Male apolipoprotein E-deficient mice were fed either normal diet or a diet containing cilostazol (0.1% wt/wt). After 1 week of diet consumption, mice were infused with angiotensin II (1000 ng/kg per minute) for 4 weeks. Angiotensin II infusion increased maximal diameters of abdominal aortas, whereas cilostazol administration significantly attenuated dilatation of abdominal aortas, thereby, reducing AAA incidence. Cilostazol also reduced macrophage accumulation, matrix metalloproteinases activation, and inflammatory gene expression in the aortic media. In cultured vascular endothelial cells, cilostazol reduced expression of inflammatory cytokines and adhesive molecules through activation of the cAMP-PKA (protein kinase A) pathway. CONCLUSIONS Cilostazol attenuated angiotensin II-induced AAA formation by its anti-inflammatory effect through phosphodiesterase III inhibition in the aortic wall. Cilostazol may be a promising new therapeutic option for AAAs.
Collapse
Affiliation(s)
- Ryoko Umebayashi
- From the Department of Nephrology, Rheumatology, Endocrinology and Metabolism (R.U., H.A.U., Y.K., J.W.) and Department of Chronic Kidney Disease and Cardiovascular Disease (H.A.U.), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan; and Saha Cardiovascular Research Center (V.S., A.D.) and Department of Physiology (V.S., A.D.), University of Kentucky, Lexington
| | - Haruhito A Uchida
- From the Department of Nephrology, Rheumatology, Endocrinology and Metabolism (R.U., H.A.U., Y.K., J.W.) and Department of Chronic Kidney Disease and Cardiovascular Disease (H.A.U.), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan; and Saha Cardiovascular Research Center (V.S., A.D.) and Department of Physiology (V.S., A.D.), University of Kentucky, Lexington.
| | - Yuki Kakio
- From the Department of Nephrology, Rheumatology, Endocrinology and Metabolism (R.U., H.A.U., Y.K., J.W.) and Department of Chronic Kidney Disease and Cardiovascular Disease (H.A.U.), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan; and Saha Cardiovascular Research Center (V.S., A.D.) and Department of Physiology (V.S., A.D.), University of Kentucky, Lexington
| | - Venkateswaran Subramanian
- From the Department of Nephrology, Rheumatology, Endocrinology and Metabolism (R.U., H.A.U., Y.K., J.W.) and Department of Chronic Kidney Disease and Cardiovascular Disease (H.A.U.), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan; and Saha Cardiovascular Research Center (V.S., A.D.) and Department of Physiology (V.S., A.D.), University of Kentucky, Lexington
| | - Alan Daugherty
- From the Department of Nephrology, Rheumatology, Endocrinology and Metabolism (R.U., H.A.U., Y.K., J.W.) and Department of Chronic Kidney Disease and Cardiovascular Disease (H.A.U.), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan; and Saha Cardiovascular Research Center (V.S., A.D.) and Department of Physiology (V.S., A.D.), University of Kentucky, Lexington
| | - Jun Wada
- From the Department of Nephrology, Rheumatology, Endocrinology and Metabolism (R.U., H.A.U., Y.K., J.W.) and Department of Chronic Kidney Disease and Cardiovascular Disease (H.A.U.), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan; and Saha Cardiovascular Research Center (V.S., A.D.) and Department of Physiology (V.S., A.D.), University of Kentucky, Lexington
| |
Collapse
|
162
|
Robinet P, Milewicz DM, Cassis LA, Leeper NJ, Lu HS, Smith JD. Consideration of Sex Differences in Design and Reporting of Experimental Arterial Pathology Studies-Statement From ATVB Council. Arterioscler Thromb Vasc Biol 2018; 38:292-303. [PMID: 29301789 DOI: 10.1161/atvbaha.117.309524] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022]
Abstract
There are many differences in arterial diseases between men and women, including prevalence, clinical manifestations, treatments, and prognosis. The new policy of the National Institutes of Health, which requires the inclusion of sex as a biological variable for preclinical studies, aims to foster new mechanistic insights and to enhance our understanding of sex differences in human diseases. The purpose of this statement is to suggest guidelines for designing and reporting sex as a biological variable in animal models of atherosclerosis, thoracic and abdominal aortic aneurysms, and peripheral arterial disease. We briefly review sex differences of these human diseases and their animal models, followed by suggestions on experimental design and reporting of animal studies for these vascular pathologies.
Collapse
Affiliation(s)
- Peggy Robinet
- From the Department of Cellular and Molecular Medicine, Cleveland Clinic, OH (P.R., J.D.S.); Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston (D.M.M.); Department of Pharmacology and Nutritional Sciences (L.A.C.) and Saha Cardiovascular Research Center and Department of Physiology (H.S.L.), University of Kentucky, Lexington; and Division of Vascular Surgery, Department of Surgery, Stanford University, CA (N.J.L.)
| | - Dianna M Milewicz
- From the Department of Cellular and Molecular Medicine, Cleveland Clinic, OH (P.R., J.D.S.); Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston (D.M.M.); Department of Pharmacology and Nutritional Sciences (L.A.C.) and Saha Cardiovascular Research Center and Department of Physiology (H.S.L.), University of Kentucky, Lexington; and Division of Vascular Surgery, Department of Surgery, Stanford University, CA (N.J.L.)
| | - Lisa A Cassis
- From the Department of Cellular and Molecular Medicine, Cleveland Clinic, OH (P.R., J.D.S.); Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston (D.M.M.); Department of Pharmacology and Nutritional Sciences (L.A.C.) and Saha Cardiovascular Research Center and Department of Physiology (H.S.L.), University of Kentucky, Lexington; and Division of Vascular Surgery, Department of Surgery, Stanford University, CA (N.J.L.)
| | - Nicholas J Leeper
- From the Department of Cellular and Molecular Medicine, Cleveland Clinic, OH (P.R., J.D.S.); Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston (D.M.M.); Department of Pharmacology and Nutritional Sciences (L.A.C.) and Saha Cardiovascular Research Center and Department of Physiology (H.S.L.), University of Kentucky, Lexington; and Division of Vascular Surgery, Department of Surgery, Stanford University, CA (N.J.L.)
| | - Hong S Lu
- From the Department of Cellular and Molecular Medicine, Cleveland Clinic, OH (P.R., J.D.S.); Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston (D.M.M.); Department of Pharmacology and Nutritional Sciences (L.A.C.) and Saha Cardiovascular Research Center and Department of Physiology (H.S.L.), University of Kentucky, Lexington; and Division of Vascular Surgery, Department of Surgery, Stanford University, CA (N.J.L.)
| | - Jonathan D Smith
- From the Department of Cellular and Molecular Medicine, Cleveland Clinic, OH (P.R., J.D.S.); Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston (D.M.M.); Department of Pharmacology and Nutritional Sciences (L.A.C.) and Saha Cardiovascular Research Center and Department of Physiology (H.S.L.), University of Kentucky, Lexington; and Division of Vascular Surgery, Department of Surgery, Stanford University, CA (N.J.L.).
| |
Collapse
|
163
|
PATELIS N, MORIS D, SCHIZAS D, DAMASKOS C, PERREA D, BAKOYIANNIS C, LIAKAKOS T, GEORGOPOULOS S. Animal Models in the Research of Abdominal Aortic Aneurysms Development. Physiol Res 2017; 66:899-915. [DOI: 10.33549/physiolres.933579] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a prevalent and potentially life threatening disease. Many animal models have been developed to simulate the natural history of the disease or test preclinical endovascular devices and surgical procedures. The aim of this review is to describe different methods of AAA induction in animal models and report on the effectiveness of the methods described in inducing an analogue of a human AAA. The PubMed database was searched for publications with titles containing the following terms “animal” or ‘‘animal model(s)’’ and keywords “research”, “aneurysm(s)’’, “aorta”, “pancreatic elastase’’, “Angiotensin”, “AngII” “calcium chloride” or “CaCl2”. Starting date for this search was set to 2004, since previously bibliography was already covered by the review of Daugherty and Cassis (2004). We focused on animal studies that reported a model of aneurysm development and progression. A number of different approaches of AAA induction in animal models has been developed, used and combined since the first report in the 1960’s. Although specific methods are successful in AAA induction in animal models, it is necessary that these methods and their respective results are in line with the pathophysiology and the mechanisms involved in human AAA development. A researcher should know the advantages/disadvantages of each animal model and choose the appropriate model.
Collapse
Affiliation(s)
- N. PATELIS
- First Department of Surgery, Vascular Unit, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
164
|
Hashimoto M, Kuriiwa S, Kojima A, Minagawa S, Numata T, Hara H, Araya J, Kaneko Y, Nakayama K, Owada M, Aizawa D, Yorozu T, Suzuki M, Kuwano K. Aortic rupture involving matrix metalloproteinases 8 and 9 during Staphylococcus aureus pneumonia. Thorax 2017; 73:397-398. [PMID: 29123018 DOI: 10.1136/thoraxjnl-2017-210784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 11/04/2022]
Affiliation(s)
- Mitsuo Hashimoto
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Saki Kuriiwa
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Ayako Kojima
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Shunsuke Minagawa
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takanori Numata
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiromichi Hara
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Jun Araya
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yumi Kaneko
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Katsutoshi Nakayama
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Mamiko Owada
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Daisuke Aizawa
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Yorozu
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Masafumi Suzuki
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazuyoshi Kuwano
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
165
|
Kashyap S, Warner G, Hu Z, Gao F, Osman M, Al Saiegh Y, Lien KR, Nath K, Grande JP. Cardiovascular phenotype in Smad3 deficient mice with renovascular hypertension. PLoS One 2017; 12:e0187062. [PMID: 29073282 PMCID: PMC5658153 DOI: 10.1371/journal.pone.0187062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/12/2017] [Indexed: 11/18/2022] Open
Abstract
Renovascular hypertension (RVH) has deleterious effects on both the kidney and the heart. TGF-β signaling through Smad3 directs tissue fibrosis in chronic injury models. In the 2-kidney 1-clip (2K1C) model of RVH, employing mice on the 129 genetic background, Smad3 deficiency (KO) protects the stenotic kidney (STK) from development of interstitial fibrosis. However, these mice have an increased incidence of sudden cardiac death following 2K1C surgery. The purpose of this study was to characterize the cardiovascular phenotype of these mice. Renal artery stenosis (RAS) was established in Wild-type (WT) and Smad3 KO mice (129 genetic background) by placement of a polytetrafluoroethylene cuff on the right renal artery. Mortality was 25.5% for KO mice with RAS, 4.1% for KO sham mice, 1.2% for WT with RAS, and 1.8% for WT sham mice. Myocardial tissue of mice studied at 3 days following surgery showed extensive myocyte necrosis in KO but not WT mice. Myocyte necrosis was associated with a rapid induction of Ccl2 expression, macrophage influx, and increased MMP-9 activity. At later time points, both KO and WT mice developed myocardial fibrosis. No aortic aneurysms or dissections were observed at any time point. Smad3 KO mice were backcrossed to the C57BL/6J strain and subjected to RAS. Sudden death was observed at 10-14 days following surgery in 62.5% of mice; necropsy revealed aortic dissections as the cause of death. As observed in the 129 mice, the STK of Smad3 KO mice on the C57BL/6J background did not develop significant chronic renal damage. We conclude that the cardiovascular manifestations of Smad3 deficient mice are strain-specific, with myocyte necrosis in 129 mice and aortic rupture in C57BL/6J mice. Future studies will define mechanisms underlying this strain-specific effect on the cardiovascular system.
Collapse
Affiliation(s)
- Sonu Kashyap
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Gina Warner
- Kogod Aging Center, Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Zeng Hu
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Feng Gao
- UT Southwestern Medical School, Dallas, Texas, United States of America
| | - Mazen Osman
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | | | - Karen R. Lien
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Karl Nath
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Joseph P. Grande
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
166
|
Meng X, Zhang K, Kong J, Xu L, An G, Qin W, Li J, Zhang Y. Deletion of resistin-like molecule-beta attenuates angiotensin II-induced abdominal aortic aneurysm. Oncotarget 2017; 8:104171-104181. [PMID: 29262630 PMCID: PMC5732796 DOI: 10.18632/oncotarget.22042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/03/2017] [Indexed: 11/25/2022] Open
Abstract
In the present study, we want to test whether deletion of resistin-like molecule-beta (RELMβ) attenuates angiotensin II (Ang II)-induced formation of abdominal aortic aneurysm (AAA). RELMβ gene expression was inhibited by siRNA both in vivo and in vitro. Apolipoprotein E-knockout (ApoE−/−) mice were randomly divided into saline, Ang II, siRNA negative control (si-NC) and siRNA RELMβ (si-RELMβ) groups (n=15 each), and mice in the last three groups underwent Ang II infusion for 4 weeks to induce AAA. RELMβ gene deficiency significantly decreased AAA incidence and severity, which was associated with reduced macrophage accumulation and decreased expression of proinflammatory cytokines (monocyte chemoattractant protein 1 and interleukin 6), matrix metalloproteinase 2 (MMP-2) and MMP-9 in the aortic wall. In cultured macrophages, RELMβ deficiency blunted the response of macrophages to Ang II and downregulated the levels of proinflammatory cytokines, MMP-2 and MMP-9. Recombinant RELMβ promoted the secretion of proinflammatory cytokines, MMP-2 and MMP-9 in macrophages and activated extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK) signaling, which was reversed with pretreatment with inhibitors of ERK1/2 and JNK. Deletion of RELMβ attenuated Ang II-induced AAA formation in ApoE−/− mice. The inherent mechanism may involve the reduced expression of proinflammatory cytokines, MMP-2 and MMP-9, which was mediated by ERK1/2 and JNK activation. Therefore, inhibiting RELMβ secretion may be a novel approach for anti-aneurysm treatment.
Collapse
Affiliation(s)
- Xiao Meng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Kai Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Jing Kong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Long Xu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Guipeng An
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Weidong Qin
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Jifu Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, 250012, China
| |
Collapse
|
167
|
Ren P, Hughes M, Krishnamoorthy S, Zou S, Zhang L, Wu D, Zhang C, Curci JA, Coselli JS, Milewicz DM, LeMaire SA, Shen YH. Critical Role of ADAMTS-4 in the Development of Sporadic Aortic Aneurysm and Dissection in Mice. Sci Rep 2017; 7:12351. [PMID: 28955046 PMCID: PMC5617887 DOI: 10.1038/s41598-017-12248-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 09/04/2017] [Indexed: 01/28/2023] Open
Abstract
Sporadic aortic aneurysm and dissections (AADs) are common vascular diseases that carry a high mortality rate. ADAMTS-4 (a disintegrin-like and metalloproteinase with thrombospondin motifs-4) is a secreted proteinase involved in inflammation and matrix degradation. We previously showed ADAMTS-4 levels were increased in human sporadic descending thoracic AAD (TAAD) samples. Here, we provide evidence that ADAMTS-4 contributes to aortic destruction and sporadic AAD development. In a mouse model of sporadic AAD induced by a high-fat diet and angiotensin II infusion, ADAMTS-4 deficiency (Adamts-4−/−) significantly reduced challenge-induced aortic diameter enlargement, aneurysm formation, dissection and aortic rupture. Aortas in Adamts-4−/− mice showed reduced elastic fibre destruction, versican degradation, macrophage infiltration, and apoptosis. Interestingly, ADAMTS-4 was directly involved in smooth muscle cell (SMC) apoptosis. Under stress, ADAMTS-4 translocated to the nucleus in SMCs, especially in apoptotic SMCs. ADAMTS-4 directly cleaved and degraded poly ADP ribose polymerase-1 (a key molecule in DNA repair and cell survival), leading to SMC apoptosis. Finally, we showed significant ADAMTS-4 expression in aortic tissues from patients with sporadic ascending TAAD, particularly in SMCs. Our findings indicate that ADAMTS-4 induces SMC apoptosis, degrades versican, promotes inflammatory cell infiltration, and thus contributes to sporadic AAD development.
Collapse
Affiliation(s)
- Pingping Ren
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Michael Hughes
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Swapna Krishnamoorthy
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Sili Zou
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA.,Department of Vascular Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lin Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Darrell Wu
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Chen Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - John A Curci
- Division of Vascular Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Joseph S Coselli
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA.,Department of Cardiovascular Surgery, Texas Heart Institute, Houston, Texas, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Dianna M Milewicz
- Division of Medical Genetics, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA. .,Department of Cardiovascular Surgery, Texas Heart Institute, Houston, Texas, USA. .,Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, USA. .,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA.
| | - Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA. .,Department of Cardiovascular Surgery, Texas Heart Institute, Houston, Texas, USA. .,Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
168
|
Wang X, Khalil RA. Matrix Metalloproteinases, Vascular Remodeling, and Vascular Disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 81:241-330. [PMID: 29310800 DOI: 10.1016/bs.apha.2017.08.002] [Citation(s) in RCA: 361] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that degrade various proteins in the extracellular matrix (ECM). Typically, MMPs have a propeptide sequence, a catalytic metalloproteinase domain with catalytic zinc, a hinge region or linker peptide, and a hemopexin domain. MMPs are commonly classified on the basis of their substrates and the organization of their structural domains into collagenases, gelatinases, stromelysins, matrilysins, membrane-type (MT)-MMPs, and other MMPs. MMPs are secreted by many cells including fibroblasts, vascular smooth muscle (VSM), and leukocytes. MMPs are regulated at the level of mRNA expression and by activation through removal of the propeptide domain from their latent zymogen form. MMPs are often secreted in an inactive proMMP form, which is cleaved to the active form by various proteinases including other MMPs. MMPs degrade various protein substrates in ECM including collagen and elastin. MMPs could also influence endothelial cell function as well as VSM cell migration, proliferation, Ca2+ signaling, and contraction. MMPs play a role in vascular tissue remodeling during various biological processes such as angiogenesis, embryogenesis, morphogenesis, and wound repair. Alterations in specific MMPs could influence arterial remodeling and lead to various pathological disorders such as hypertension, preeclampsia, atherosclerosis, aneurysm formation, as well as excessive venous dilation and lower extremity venous disease. MMPs are often regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs), and the MMP/TIMP ratio often determines the extent of ECM protein degradation and tissue remodeling. MMPs may serve as biomarkers and potential therapeutic targets for certain vascular disorders.
Collapse
Affiliation(s)
- Xi Wang
- Vascular Surgery Research Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
169
|
Gamboa NT, Taussky P, Park MS, Couldwell WT, Mahan MA, Kalani MYS. Neurovascular patterning cues and implications for central and peripheral neurological disease. Surg Neurol Int 2017; 8:208. [PMID: 28966815 PMCID: PMC5609400 DOI: 10.4103/sni.sni_475_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 06/28/2017] [Indexed: 12/20/2022] Open
Abstract
The highly branched nervous and vascular systems run along parallel trajectories throughout the human body. This stereotyped pattern of branching shared by the nervous and vascular systems stems from a common reliance on specific cues critical to both neurogenesis and angiogenesis. Continually emerging evidence supports the notion of later-evolving vascular networks co-opting neural molecular mechanisms to ensure close proximity and adequate delivery of oxygen and nutrients to nervous tissue. As our understanding of these biologic pathways and their phenotypic manifestations continues to advance, identification of where pathways go awry will provide critical insight into central and peripheral nervous system pathology.
Collapse
Affiliation(s)
- Nicholas T Gamboa
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Philipp Taussky
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Min S Park
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - William T Couldwell
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Mark A Mahan
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - M Yashar S Kalani
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
170
|
Li G, Qin L, Wang L, Li X, Caulk AW, Zhang J, Chen PY, Xin S. Inhibition of the mTOR pathway in abdominal aortic aneurysm: implications of smooth muscle cell contractile phenotype, inflammation, and aneurysm expansion. Am J Physiol Heart Circ Physiol 2017; 312:H1110-H1119. [PMID: 28213405 DOI: 10.1152/ajpheart.00677.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 12/18/2022]
Abstract
The development of effective pharmacological treatment of abdominal aortic aneurysm (AAA) potentially offers great benefit to patients with preaneurysmal aortic dilation by slowing the expansion of aneurysms and reducing the need for surgery. To date, therapeutic targets for slowing aortic dilation have had low efficacy. Thus, in this study, we aim to elucidate possible mechanisms driving aneurysm progression to identify potential targets for pharmacological intervention. We demonstrate that mechanistic target of rapamycin (mTOR) signaling is overactivated in aortic smooth muscle cells (SMCs), which contributes to murine AAA. Rapamycin, a typical mTOR pathway inhibitor, dramatically limits the expansion of the abdominal aorta following intraluminal elastase perfusion. Furthermore, reduction of aortic diameter is achieved by inhibition of the mTOR pathway, which preserves and/or restores the contractile phenotype of SMCs and downregulates macrophage infiltration, matrix metalloproteinase expression, and inflammatory cytokine production. Taken together, these results highlight the important role of the mTOR cascade in aneurysm progression and the potential application of rapamycin as a therapeutic candidate for AAA. NEW & NOTEWORTHY This study provides novel observations that mechanistic target of rapamycin (mTOR) signaling is overactivated in aortic smooth muscle cells and contributes to mouse abdominal aortic aneurysm (AAA) and that rapamycin protects against aneurysm development. Our data highlight the importance of preservation and/or restoration of the smooth muscle cell contractile phenotype and reduction of inflammation by mTOR inhibition in AAA.
Collapse
Affiliation(s)
- Guangxin Li
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Lingfeng Qin
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Lei Wang
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Xuan Li
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Alexander W. Caulk
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut; and
| | - Jian Zhang
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Pei-Yu Chen
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut
| | - Shijie Xin
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
171
|
MESH Headings
- Animals
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aorta, Abdominal/physiopathology
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Aortic Aneurysm, Abdominal/epidemiology
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/physiopathology
- Aortic Aneurysm, Thoracic/epidemiology
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/physiopathology
- Disease Models, Animal
- Humans
- Risk Factors
- Signal Transduction
- Vascular Remodeling
Collapse
Affiliation(s)
- Hong Lu
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington.
| | - Alan Daugherty
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington
| |
Collapse
|
172
|
Matrix Metalloproteinase Inhibitors as Investigational and Therapeutic Tools in Unrestrained Tissue Remodeling and Pathological Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:355-420. [PMID: 28662828 DOI: 10.1016/bs.pmbts.2017.04.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent proteolytic enzymes that degrade various proteins in the extracellular matrix (ECM). MMPs may also regulate the activity of membrane receptors and postreceptor signaling mechanisms and thereby affect cell function. The MMP family includes collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and other MMPs. Inactive proMMPs are cleaved by other MMPs or proteases into active MMPs, which interact with various protein substrates in ECM and cell surface. MMPs regulate important biological processes such as vascular remodeling and angiogenesis and may be involved in the pathogenesis of cardiovascular disorders such as hypertension, atherosclerosis, and aneurysm. The role of MMPs is often assessed by measuring their mRNA expression, protein levels, and proteolytic activity using gel zymography. MMP inhibitors are also used to assess the role of MMPs in different biological processes and pathological conditions. MMP activity is regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs), and the MMP/TIMP balance could determine the net MMP activity, ECM turnover, and tissue remodeling. Also, several synthetic MMP inhibitors have been developed. Synthetic MMP inhibitors include a large number of zinc-binding globulins (ZBGs), in addition to non-ZBGs and mechanism-based inhibitors. MMP inhibitors have been proposed as potential tools in the management of osteoarthritis, cancer, and cardiovascular disorders. However, most MMP inhibitors have broad-spectrum actions on multiple MMPs and could cause undesirable musculoskeletal side effects. Currently, doxycycline is the only MMP inhibitor approved by the Food and Drug Administration. New generation biological and synthetic MMP inhibitors may show greater MMP specificity and fewer side effects and could be useful in targeting specific MMPs, reducing unrestrained tissue remodeling, and the management of MMP-related pathological disorders.
Collapse
|
173
|
Xuan H, Xu B, Wang W, Tanaka H, Fujimura N, Miyata M, Michie SA, Dalman RL. Inhibition or deletion of angiotensin II type 1 receptor suppresses elastase-induced experimental abdominal aortic aneurysms. J Vasc Surg 2017; 67:573-584.e2. [PMID: 28434702 DOI: 10.1016/j.jvs.2016.12.110] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 12/15/2016] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Angiotensin (Ang) II type 1 receptor (AT1) activation is essential for the development of exogenous Ang II-induced abdominal aortic aneurysms (AAAs) in hyperlipidemic animals. Experimental data derived from this modeling system, however, provide limited insight into the role of endogenous Ang II in aneurysm pathogenesis. Consequently, the potential translational value of AT1 inhibition in clinical AAA disease management remains incompletely understood on the basis of the existing literature. METHODS AAAs were created in wild-type (WT) and AT1a knockout (KO) mice by intra-aortic infusion of porcine pancreatic elastase (PPE). WT mice were treated with the AT1 receptor antagonist telmisartan, 10 mg/kg/d in chow, or the peroxisome proliferator-activated receptor γ (PPARγ) antagonist GW9662, 3 mg/kg/d through oral gavage, beginning 1 week before or 3 days after PPE infusion. Influences on aneurysm progression as well as mechanistic insights into AT1-mediated pathogenic processes were determined using noninvasive ultrasound imaging, histopathology, aortic gene expression profiling, and flow cytometric analysis. RESULTS After PPE infusion, aortic enlargement was almost completely abrogated in AT1a KO mice compared with WT mice. As defined by a ≥50% increase in aortic diameter, no PPE-infused, AT1a KO mouse actually developed an AAA. On histologic evaluation, medial smooth muscle cellularity and elastic lamellae were preserved in AT1a KO mice compared with WT mice, with marked attenuation of mural angiogenesis and leukocyte infiltration. In WT mice, telmisartan administration effectively suppressed aneurysm pathogenesis after PPE infusion as well, regardless of whether treatment was initiated before or after aneurysm creation or continued for a limited or extended time. Telmisartan treatment was associated with reduced messenger RNA levels for CCL5 and matrix metalloproteinases 2 and 9 in aneurysmal aortae, with no apparent effect on PPARγ-regulated gene expression. Administration of the PPARγ antagonist GW9662 failed to "rescue" the aneurysm phenotype in telmisartan-treated, PPE-infused WT mice. Neither effector T-cell differentiation nor regulatory T-cell cellularity was affected by telmisartan treatment status. CONCLUSIONS Telmisartan effectively suppresses the progression of elastase-induced AAAs without apparent effect on PPARγ activation or T-cell differentiation. These findings reinforce the critical importance of endogenous AT1 activation in experimental AAA pathogenesis and reinforce the translational potential of AT1 inhibition in medical aneurysm disease management.
Collapse
Affiliation(s)
- Haojun Xuan
- Department of Surgery, Stanford University School of Medicine, Stanford, Calif; Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - Baohui Xu
- Department of Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Wei Wang
- Department of Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Hiroki Tanaka
- Department of Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Naoki Fujimura
- Department of Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Masaaki Miyata
- Department of Cardiovascular Medicine and Hypertension, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Sara A Michie
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif
| | - Ronald L Dalman
- Department of Surgery, Stanford University School of Medicine, Stanford, Calif.
| |
Collapse
|
174
|
Howatt DA, Dajee M, Xie X, Moorleghen J, Rateri DL, Balakrishnan A, Da Cunha V, Johns DG, Gutstein DE, Daugherty A, Lu H. Relaxin and Matrix Metalloproteinase-9 in Angiotensin II-Induced Abdominal Aortic Aneurysms. Circ J 2017; 81:888-890. [PMID: 28420827 DOI: 10.1253/circj.cj-17-0229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND This study determined whether relaxin or matrix metalloproteinase (MMP)-9 influences angiotensin II (AngII)-induced abdominal aortic aneurysms (AAA).Methods and Results:Male C57BL/6 or apolipoprotein E-/-mice were infused with AngII with or without relaxin. Relaxin did not influence AngII-induced AAA in either mouse strain. Infusion of AngII reduced, but relaxin increased, MMP-9 mRNA in macrophages. We then determined the effects of MMP-9 deficiency on AAA in apolipoprotein E-/-mice. MMP-9 deficiency led to AAA formation in the absence of AngII, and augmented AngII-induced aortic rupture and AAA incidence. CONCLUSIONS MMP-9 deficiency augmented AngII-induced AAA.
Collapse
Affiliation(s)
| | - Maya Dajee
- Cardio-Metabolic Diseases, Merck Research Laboratories, Cardiovascular Research Center, Merck & Co., Inc
| | - Xiaojie Xie
- Saha Cardiovascular Research Center, University of Kentucky.,Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine
| | | | - Debra L Rateri
- Saha Cardiovascular Research Center, University of Kentucky
| | | | - Valdeci Da Cunha
- Cardio-Metabolic Diseases, Merck Research Laboratories, Cardiovascular Research Center, Merck & Co., Inc
| | - Douglas G Johns
- Cardio-Metabolic Diseases, Merck Research Laboratories, Cardiovascular Research Center, Merck & Co., Inc
| | - David E Gutstein
- Cardio-Metabolic Diseases, Merck Research Laboratories, Cardiovascular Research Center, Merck & Co., Inc
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky.,Department of Physiology, University of Kentucky
| | - Hong Lu
- Saha Cardiovascular Research Center, University of Kentucky.,Department of Physiology, University of Kentucky
| |
Collapse
|
175
|
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening disease associated with high morbidity, and high mortality in the event of aortic rupture. Major advances in open surgical and endovascular repair of AAA have been achieved during the past 2 decades. However, drug-based therapies are still lacking, highlighting a real need for better understanding of the molecular and cellular mechanisms involved in AAA formation and progression. The main pathological features of AAA include extracellular matrix remodelling associated with degeneration and loss of vascular smooth muscle cells and accumulation and activation of inflammatory cells. The inflammatory process has a crucial role in AAA and substantially influences many determinants of aortic wall remodelling. In this Review, we focus specifically on the involvement of monocytes and macrophages, summarizing current knowledge on the roles, origin, and functions of these cells in AAA development and its complications. Furthermore, we show and propose that distinct monocyte and macrophage subsets have critical and differential roles in initiation, progression, and healing of the aneurysmal process. On the basis of experimental and clinical studies, we review potential translational applications to detect, assess, and image macrophage subsets in AAA, and discuss the relevance of these applications for clinical practice.
Collapse
|
176
|
Kamal A, Elgengehy FT, Abd Elaziz MM, Gamal SM, Sobhy N, Medhat A, El Dakrony AHM. Matrix Metalloproteinase-9 rs17576 Gene Polymorphism and Behçet’s Disease: Is There an Association? Immunol Invest 2017; 46:460-468. [DOI: 10.1080/08820139.2017.1296857] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Asmaa Kamal
- Department of Clinical & Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Fatema T. Elgengehy
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Sherif M. Gamal
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nesreen Sobhy
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Amira Medhat
- Complementary Medicine Department, National Research Center, Cairo, Egypt
| | - Al Hussein M. El Dakrony
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
177
|
Gresele P, Falcinelli E, Sebastiano M, Momi S. Matrix Metalloproteinases and Platelet Function. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 147:133-165. [PMID: 28413027 DOI: 10.1016/bs.pmbts.2017.01.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Platelets contain and release several matrix metalloproteinases (MMPs) and their tissue inhibitors of matrix metalloproteinases (TIMPs), including MMP-1, -2, -3, -9, and -14 and TIMP-1, -2, and -4. Although devoid of a nucleus, platelets also synthesize TIMP-2 upon activation. Platelet-released MMPs/TIMPs, as well as MMPs generated by other cells within the cardiovascular system, modulate platelet function in health and disease. In particular, a normal hemostatic platelet response to vessel wall injury may be transformed into pathologic thrombus formation by the release from platelets and/or by the local generation of some MMPs. Moreover, platelets may localize the production of leukocyte-derived MMPs to sites of vascular damage, contributing to atherosclerosis development and complications and to arterial aneurysm formation. Finally, the interaction between platelets and tumor cells is strongly influenced by MMPs/TIMPs. All these mechanisms are emerging as important in atherothrombosis, inflammatory disease, and cancer growth and dissemination. Increasing knowledge of these mechanisms may open the way to novel therapeutic approaches.
Collapse
Affiliation(s)
- Paolo Gresele
- Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy.
| | - Emanuela Falcinelli
- Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Manuela Sebastiano
- Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Stefania Momi
- Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
178
|
Sénémaud J, Caligiuri G, Etienne H, Delbosc S, Michel JB, Coscas R. Translational Relevance and Recent Advances of Animal Models of Abdominal Aortic Aneurysm. Arterioscler Thromb Vasc Biol 2017; 37:401-410. [DOI: 10.1161/atvbaha.116.308534] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 12/21/2016] [Indexed: 01/11/2023]
Abstract
Human abdominal aortic aneurysm (AAA) pathophysiology is not yet completely understood. In conductance arteries, the insoluble extracellular matrix, synthesized by vascular smooth muscle cells, assumes the function of withstanding the intraluminal arterial blood pressure. Progressive loss of this function through extracellular matrix proteolysis is a main feature of AAAs. As most patients are now treated via endovascular approaches, surgical AAA specimens have become rare. Animal models provide valuable complementary insights into AAA pathophysiology. Current experimental AAA models involve induction of intraluminal dilation (nondissecting AAAs) or a contained intramural rupture (dissecting models). Although the ideal model should reproduce the histological characteristics and natural history of the human disease, none of the currently available animal models perfectly do so. Experimental models try to represent the main pathophysiological determinants of AAAs: genetic or acquired defects in extracellular matrix, loss of vascular smooth muscle cells, and innate or adaptive immune response. Nevertheless, most models are characterized by aneurysmal stabilization and healing after a few weeks because of cessation of the initial stimulus. Recent studies have focused on ways to optimize existing models to allow continuous aneurysmal growth. This review aims to discuss the relevance and recent advances of current animal AAA models.
Visual Overview—
An online visual overview is available for this article.
Collapse
Affiliation(s)
- Jean Sénémaud
- From the UMR 1148, Inserm-Paris7 - Denis Diderot University, Xavier Bichat Hospital, Paris, France (J.S., G.C., H.E., S.D., J.-B.M., R.C.); UMR 1173, Inserm-Paris11 - Faculty of Health Sciences Simone Veil, Versailles Saint-Quentin-en-Yvelines University, Paris-Saclay University, Montigny-le-Bretonneux, France (R.C.); Department of Vascular Surgery, Ambroise Paré University Hospital, AP-HP, Boulogne-Billancourt, France (R.C.); and UMR 1018, Inserm-Paris11 - CESP, Versailles Saint-Quentin-en-Yvelines
| | - Giuseppina Caligiuri
- From the UMR 1148, Inserm-Paris7 - Denis Diderot University, Xavier Bichat Hospital, Paris, France (J.S., G.C., H.E., S.D., J.-B.M., R.C.); UMR 1173, Inserm-Paris11 - Faculty of Health Sciences Simone Veil, Versailles Saint-Quentin-en-Yvelines University, Paris-Saclay University, Montigny-le-Bretonneux, France (R.C.); Department of Vascular Surgery, Ambroise Paré University Hospital, AP-HP, Boulogne-Billancourt, France (R.C.); and UMR 1018, Inserm-Paris11 - CESP, Versailles Saint-Quentin-en-Yvelines
| | - Harry Etienne
- From the UMR 1148, Inserm-Paris7 - Denis Diderot University, Xavier Bichat Hospital, Paris, France (J.S., G.C., H.E., S.D., J.-B.M., R.C.); UMR 1173, Inserm-Paris11 - Faculty of Health Sciences Simone Veil, Versailles Saint-Quentin-en-Yvelines University, Paris-Saclay University, Montigny-le-Bretonneux, France (R.C.); Department of Vascular Surgery, Ambroise Paré University Hospital, AP-HP, Boulogne-Billancourt, France (R.C.); and UMR 1018, Inserm-Paris11 - CESP, Versailles Saint-Quentin-en-Yvelines
| | - Sandrine Delbosc
- From the UMR 1148, Inserm-Paris7 - Denis Diderot University, Xavier Bichat Hospital, Paris, France (J.S., G.C., H.E., S.D., J.-B.M., R.C.); UMR 1173, Inserm-Paris11 - Faculty of Health Sciences Simone Veil, Versailles Saint-Quentin-en-Yvelines University, Paris-Saclay University, Montigny-le-Bretonneux, France (R.C.); Department of Vascular Surgery, Ambroise Paré University Hospital, AP-HP, Boulogne-Billancourt, France (R.C.); and UMR 1018, Inserm-Paris11 - CESP, Versailles Saint-Quentin-en-Yvelines
| | - Jean-Baptiste Michel
- From the UMR 1148, Inserm-Paris7 - Denis Diderot University, Xavier Bichat Hospital, Paris, France (J.S., G.C., H.E., S.D., J.-B.M., R.C.); UMR 1173, Inserm-Paris11 - Faculty of Health Sciences Simone Veil, Versailles Saint-Quentin-en-Yvelines University, Paris-Saclay University, Montigny-le-Bretonneux, France (R.C.); Department of Vascular Surgery, Ambroise Paré University Hospital, AP-HP, Boulogne-Billancourt, France (R.C.); and UMR 1018, Inserm-Paris11 - CESP, Versailles Saint-Quentin-en-Yvelines
| | - Raphaël Coscas
- From the UMR 1148, Inserm-Paris7 - Denis Diderot University, Xavier Bichat Hospital, Paris, France (J.S., G.C., H.E., S.D., J.-B.M., R.C.); UMR 1173, Inserm-Paris11 - Faculty of Health Sciences Simone Veil, Versailles Saint-Quentin-en-Yvelines University, Paris-Saclay University, Montigny-le-Bretonneux, France (R.C.); Department of Vascular Surgery, Ambroise Paré University Hospital, AP-HP, Boulogne-Billancourt, France (R.C.); and UMR 1018, Inserm-Paris11 - CESP, Versailles Saint-Quentin-en-Yvelines
| |
Collapse
|
179
|
Klaus V, Tanios-Schmies F, Reeps C, Trenner M, Matevossian E, Eckstein HH, Pelisek J. Association of Matrix Metalloproteinase Levels with Collagen Degradation in the Context of Abdominal Aortic Aneurysm. Eur J Vasc Endovasc Surg 2017; 53:549-558. [PMID: 28209269 DOI: 10.1016/j.ejvs.2016.12.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 12/24/2016] [Indexed: 10/20/2022]
Abstract
OBJECTIVE/BACKGROUND Matrix metalloproteinases (MMPs) have already been identified as key players in the pathogenesis of abdominal aortic aneurysm (AAA). However, the current data remain inconclusive. In this study, the expression of MMPs at mRNA and protein levels were investigated in relation to the degradation of collagen I and collagen III. METHODS Tissue samples were obtained from 40 patients with AAA undergoing open aortic repair, and from five healthy controls during kidney transplantation. Expression of MMPs 1, 2, 3, 7, 8, 9, and 12, and tissue inhibitor of metalloproteinase (TIMP)1, and TIMP2 were measured at the mRNA level using quantitative reverse transcription polymerase chain reaction. At the protein level, MMPs, collagen I, and collagen III, and their degradation products carboxy-terminal collagen cross-links (CTX)-I and CTX-III, were quantified via enzyme linked immunosorbent assay. In addition, immunohistochemistry and gelatine zymography were performed. RESULTS In AAA, significantly enhanced mRNA expression was observed for MMPs 3, 9, and 12 compared with controls (p ≤ .001). MMPs 3, 9, and 12 correlated significantly with macrophages (p = .007, p = .018, and p = .015, respectively), and synthetic smooth muscle cells with MMPs 1, 2, and 9 (p = .020, p = .018, and p = .027, respectively). At the protein level, MMPs 8, 9, and 12 were significantly elevated in AAA (p = .006, p = .0004, and p < .001, respectively). No significant correlation between mRNA and protein was observed for any MMP. AAA contained significantly reduced intact collagen I (twofold; p = .002), whereas collagen III was increased (4.6 fold; p < .001). Regarding degraded collagen I and III relative to intact collagens, observations were inverse (1.4 fold increase for CTX-1 [p < .001]; fivefold decrease for CTX-III [p = .004]). MMPs 8, 9, and 12 correlated with collagen I (p = .019, p < .001, and p = 0.003, respectively), collagen III (p = .015, p < .001, and p < .001, respectively), and degraded collagen I (p = .012, p = .049, and p = .001, respectively). CONCLUSION No significant relationship was found between mRNA and protein and MMP levels. MMPs 9 and 12 were overexpressed in AAA at the mRNA and protein level, and MMP-8 at the protein level. MMP-2 was detected in synthetic SMCs. Collagen I and III showed inverse behaviour in AAA. In particular, MMPs 8, 9, and 12 appear to be associated with collagen I, collagen III, and their degradation products.
Collapse
Affiliation(s)
- V Klaus
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - F Tanios-Schmies
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - C Reeps
- Universitätsklinikum Carl Gustav Carus Dresden, Klinik für Viszeral-, Thorax- und Gefäßchirurgie, Dresden, Germany
| | - M Trenner
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - E Matevossian
- Department of Surgery, Munich Transplant Centre, Munich, Germany
| | - H-H Eckstein
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - J Pelisek
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
180
|
Inhibition of Receptor-Interacting Protein Kinase 1 with Necrostatin-1s ameliorates disease progression in elastase-induced mouse abdominal aortic aneurysm model. Sci Rep 2017; 7:42159. [PMID: 28186202 PMCID: PMC5301478 DOI: 10.1038/srep42159] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 01/09/2017] [Indexed: 01/30/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a common aortic disease with a progressive nature. There is no approved pharmacological treatment to effectively slow aneurysm growth or prevent rupture. Necroptosis is a form of programmed necrosis that is regulated by receptor-interacting protein kinases (RIPs). We have recently demonstrated that the lack of RIP3 in mice prevented aneurysm formation. The goal of the current study is to test whether perturbing necroptosis affects progression of existing aneurysm using the RIP1 inhibitors Necrostatin-1 (Nec-1) and an optimized form of Nec-1, 7-Cl-O-Nec-1 (Nec-1s). Seven days after aneurysm induction by elastase perfusion, mice were randomly administered DMSO, Nec-1 (3.2 mg/kg/day) and Nec-1s (1.6 mg/kg/day) via intraperitoneal injection. Upon sacrifice on day 14 postaneurysm induction, the aortic expansion in the Nec-1s group (64.12 ± 4.80%) was significantly smaller than that of the DMSO group (172.80 ± 13.68%) (P < 0.05). The mean aortic diameter of Nec-1 treated mice appeared to be smaller (121.60 ± 10.40%) than the DMSO group, though the difference was not statistically significant (P = 0.1). Histologically, the aortic structure of Nec-1s-treated mice appeared normal, with continuous and organized elastin laminae and abundant αActin-expressing SMCs. Moreover, Nect-1s treatment diminished macrophage infiltration and MMP9 accumulation and increased aortic levels of tropoelastin and lysyl oxidase. Together, our data suggest that pharmacological inhibition of necroptosis with Nec-1s stabilizes pre-existing aneurysms by diminishing inflammation and promoting connective tissue repair.
Collapse
|
181
|
Shen YH, LeMaire SA. Molecular pathogenesis of genetic and sporadic aortic aneurysms and dissections. Curr Probl Surg 2017; 54:95-155. [PMID: 28521856 DOI: 10.1067/j.cpsurg.2017.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/16/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX.
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
182
|
Yrineo AA, Adelsperger AR, Durkes AC, Distasi MR, Voytik-Harbin SL, Murphy MP, Goergen CJ. Murine ultrasound-guided transabdominal para-aortic injections of self-assembling type I collagen oligomers. J Control Release 2017; 249:53-62. [PMID: 28126527 DOI: 10.1016/j.jconrel.2016.12.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/30/2016] [Accepted: 12/28/2016] [Indexed: 01/13/2023]
Abstract
Abdominal aortic aneurysms (AAAs) represent a potentially life-threatening condition that predominantly affects the infrarenal aorta. Several preclinical murine models that mimic the human condition have been developed and are now widely used to investigate AAA pathogenesis. Cell- or pharmaceutical-based therapeutics designed to prevent AAA expansion are currently being evaluated with these animal models, but more minimally invasive strategies for delivery could improve their clinical translation. The purpose of this study was to investigate the use of self-assembling type I collagen oligomers as an injectable therapeutic delivery vehicle in mice. Here we show the success and reliability of a para-aortic, ultrasound-guided technique for injecting quickly-polymerizing collagen oligomer solutions into mice to form a collagen-fibril matrix at body temperature. A commonly used infrarenal mouse AAA model was used to determine the target location of these collagen injections. Ultrasound-guided, closed-abdominal injections supported consistent delivery of collagen to the area surrounding the infrarenal abdominal aorta halfway between the right renal artery and aortic trifurcation into the iliac and tail arteries. This minimally invasive approach yielded outcomes similar to open-abdominal injections into the same region. Histological analysis on tissue removed on day 14 post-operatively showed minimal in vivo degradation of the self-assembled fibrillar collagen and the majority of implants experienced minimal inflammation and cell invasion, further confirming this material's potential as a method for delivering therapeutics. Finally, we showed that the typical length and position of this infrarenal AAA model was statistically similar to the length and targeted location of the injected collagen, increasing its feasibility as a localized therapeutic delivery vehicle. Future preclinical and clinical studies are needed to determine if specific therapeutics incorporated into the self-assembling type I collagen matrix described here can be delivered near the aorta and locally limit AAA expansion.
Collapse
Affiliation(s)
- Alexa A Yrineo
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Amelia R Adelsperger
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Abigail C Durkes
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | - Matthew R Distasi
- IU Health Center for Aortic Disease, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sherry L Voytik-Harbin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States; Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States
| | - Michael P Murphy
- IU Health Center for Aortic Disease, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States; Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States; Center for Cancer Research, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
183
|
Optical imaging of MMP-12 active form in inflammation and aneurysm. Sci Rep 2016; 6:38345. [PMID: 27917892 PMCID: PMC5137160 DOI: 10.1038/srep38345] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/08/2016] [Indexed: 01/08/2023] Open
Abstract
Matrix metalloproteinase (MMP)-12 plays a key role in the development of aneurysm. Like other members of MMP family, MMP-12 is produced as a proenzyme, mainly by macrophages, and undergoes proteolytic activation to generate an active form. Accordingly, molecular imaging of the MMP-12 active form can inform of the pathogenic process in aneurysm. Here, we developed a novel family of fluorescent probes based on a selective MMP-12 inhibitor, RXP470.1 to target the active form of MMP-12. These probes were stable in complex media and retained the high affinity and selectivity of RXP470.1 for MMP-12. Amongst these, probe 3 containing a zwitterionic fluorophore, ZW800-1, combined a favorable affinity profile toward MMP-12 and faster blood clearance. In vivo binding of probe 3 was observed in murine models of sterile inflammation and carotid aneurysm. Binding specificity was demonstrated using a non-binding homolog. Co-immunostaining localized MMP-12 probe binding to MMP-12 positive areas and F4/80 positive macrophages in aneurysm. In conclusion, the active form of MMP-12 can be detected by optical imaging using RXP470.1-based probes. This is a valuable adjunct for pathophysiology research, drug development, and potentially clinical applications.
Collapse
|
184
|
Harada T, Yoshimura K, Yamashita O, Ueda K, Morikage N, Sawada Y, Hamano K. Focal Adhesion Kinase Promotes the Progression of Aortic Aneurysm by Modulating Macrophage Behavior. Arterioscler Thromb Vasc Biol 2016; 37:156-165. [PMID: 27856458 DOI: 10.1161/atvbaha.116.308542] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/31/2016] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease that is associated with persistent inflammation and extracellular matrix degradation. The molecular mechanisms underlying the macrophage-mediated progression of AAA remain largely unclear. APPROACH AND RESULTS We show that focal adhesion kinase (FAK) expression and activity are enhanced in macrophages that are recruited to AAA tissue. FAK potentiates tumor necrosis factor-α-induced secretion of matrix-degrading enzymes and chemokines by cultured macrophages. FAK also promotes macrophage chemotaxis. In mice, the administration of a FAK inhibitor that tempers local macrophage accumulation markedly suppresses the development and progression of chemically induced AAA. CONCLUSIONS FAK plays a key role in macrophage behavior, which underlies the chronic progression of AAA. These findings provide insights into AAA progression and identify FAK as a novel therapeutic target.
Collapse
Affiliation(s)
- Takasuke Harada
- From the Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan (T.H., K.Y., O.Y., K.U., N.M., K.H.); Graduate School of Health and Welfare, Yamaguchi Prefectural University, Japan (K.Y.); Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan (Y.S.)
| | - Koichi Yoshimura
- From the Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan (T.H., K.Y., O.Y., K.U., N.M., K.H.); Graduate School of Health and Welfare, Yamaguchi Prefectural University, Japan (K.Y.); Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan (Y.S.).
| | - Osamu Yamashita
- From the Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan (T.H., K.Y., O.Y., K.U., N.M., K.H.); Graduate School of Health and Welfare, Yamaguchi Prefectural University, Japan (K.Y.); Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan (Y.S.)
| | - Koshiro Ueda
- From the Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan (T.H., K.Y., O.Y., K.U., N.M., K.H.); Graduate School of Health and Welfare, Yamaguchi Prefectural University, Japan (K.Y.); Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan (Y.S.)
| | - Noriyasu Morikage
- From the Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan (T.H., K.Y., O.Y., K.U., N.M., K.H.); Graduate School of Health and Welfare, Yamaguchi Prefectural University, Japan (K.Y.); Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan (Y.S.)
| | - Yasuhiro Sawada
- From the Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan (T.H., K.Y., O.Y., K.U., N.M., K.H.); Graduate School of Health and Welfare, Yamaguchi Prefectural University, Japan (K.Y.); Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan (Y.S.)
| | - Kimikazu Hamano
- From the Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan (T.H., K.Y., O.Y., K.U., N.M., K.H.); Graduate School of Health and Welfare, Yamaguchi Prefectural University, Japan (K.Y.); Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan (Y.S.)
| |
Collapse
|
185
|
Animal Models Used to Explore Abdominal Aortic Aneurysms: A Systematic Review. Eur J Vasc Endovasc Surg 2016; 52:487-499. [DOI: 10.1016/j.ejvs.2016.07.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 07/01/2016] [Indexed: 01/09/2023]
|
186
|
Elevated Adiponectin Levels Suppress Perivascular and Aortic Inflammation and Prevent AngII-induced Advanced Abdominal Aortic Aneurysms. Sci Rep 2016; 6:31414. [PMID: 27659201 PMCID: PMC5034224 DOI: 10.1038/srep31414] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/19/2016] [Indexed: 12/26/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a degenerative disease characterized by aortic dilation and rupture leading to sudden death. Currently, no non-surgical treatments are available and novel therapeutic targets are needed to prevent AAA. We investigated whether increasing plasma levels of adiponectin (APN), a pleiotropic adipokine, provides therapeutic benefit to prevent AngII-induced advanced AAA in a well-established preclinical model. In the AngII-infused hyperlipidemic low-density lipoprotein receptor-deficient mouse (LDLR-/-) model, we induced plasma APN levels using a recombinant adenovirus expressing mouse APN (AdAPN) and as control, adenovirus expressing green florescent protein (AdGFP). APN expression produced sustained and significant elevation of total and high-molecular weight APN levels and enhanced APN localization in the artery wall. AngII infusion for 8 weeks induced advanced AAA development in AdGFP mice. Remarkably, APN inhibited the AAA development in AdAPN mice by suppressing aortic inflammatory cell infiltration, medial degeneration and elastin fragmentation. APN inhibited the angiotensin type-1 receptor (AT1R), inflammatory cytokine and mast cell protease expression, and induced lysyl oxidase (LOX) in the aortic wall, improved systemic cytokine profile and attenuated adipose inflammation. These studies strongly support APN therapeutic actions through multiple mechanisms inhibiting AngII-induced AAA and increasing plasma APN levels as a strategy to prevent advanced AAA.
Collapse
|
187
|
Bordenave T, Helle M, Beau F, Georgiadis D, Tepshi L, Bernes M, Ye Y, Levenez L, Poquet E, Nozach H, Razavian M, Toczek J, Stura EA, Dive V, Sadeghi MM, Devel L. Synthesis and in Vitro and in Vivo Evaluation of MMP-12 Selective Optical Probes. Bioconjug Chem 2016; 27:2407-2417. [PMID: 27564088 DOI: 10.1021/acs.bioconjchem.6b00377] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In designing new tracers consisting of a small peptide conjugated to a reporter of comparable size, particular attention needs to be paid to the selection of the reporter group, which can dictate both the in vitro and the in vivo performances of the whole conjugate. In the case of fluorescent tracers, this is particularly true given the large numbers of available dye moieties differing in their structures and properties. Here, we have investigated the in vitro and in vivo properties of a novel series of MMP-12 selective probes composed of cyanine dyes varying in their structure, net charge, and hydrophilic character, tethered through a linker to a potent and specific MMP-12 phosphinic pseudopeptide inhibitor. The impact of linker length has been also explored. The crystallographic structure of one tracer in complex with MMP-12 has been obtained, providing the first crystal structure of a Cy5.5-derived probe and confirming that the binding of the targeting moiety is unaffected. MMP-12 remains the tracers' privileged target, as attested by their affinity selectivity profile evaluated in solution toward a panel of 12 metalloproteases. In vivo assessment of four selected probes has highlighted not only the impact of the dye structure but also that of the linker length on the probes' blood clearance rates and their biodistributions. These experiments have also provided valuable data on the stability of the dye moieties in vivo. This has permitted the identification of one probe, which combines favorable binding to MMP-12 in solution and on cells with optimized in vivo performance including blood clearance rate suitable for short-time imaging. Through this series of tracers, we have identified various critical factors modulating the tracers' in vivo behavior, which is both useful for the development and optimization of MMP-12 selective radiolabeled tracers and informative for the design of fluorescent probes in general.
Collapse
Affiliation(s)
- Thomas Bordenave
- Service d'ingénierie moléculaire des protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay , Gif-sur-Yvette F-91191, France
| | - Marion Helle
- Service d'ingénierie moléculaire des protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay , Gif-sur-Yvette F-91191, France
| | - Fabrice Beau
- Service d'ingénierie moléculaire des protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay , Gif-sur-Yvette F-91191, France
| | - Dimitris Georgiadis
- Department of Chemistry, Laboratory of Organic Chemistry, University of Athens , Panepistimiopolis, Zografou, Athens 15771, Greece
| | - Livia Tepshi
- Service d'ingénierie moléculaire des protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay , Gif-sur-Yvette F-91191, France
| | - Mylène Bernes
- Service d'ingénierie moléculaire des protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay , Gif-sur-Yvette F-91191, France
| | - Yunpeng Ye
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine , New Haven, Connecticut 06511, United States.,Veterans Affairs Connecticut Healthcare System , West Haven, Connecticut 06516, United States
| | - Laure Levenez
- Service d'ingénierie moléculaire des protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay , Gif-sur-Yvette F-91191, France
| | - Enora Poquet
- Service d'ingénierie moléculaire des protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay , Gif-sur-Yvette F-91191, France
| | - Hervé Nozach
- Service d'ingénierie moléculaire des protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay , Gif-sur-Yvette F-91191, France
| | - Mahmoud Razavian
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine , New Haven, Connecticut 06511, United States.,Veterans Affairs Connecticut Healthcare System , West Haven, Connecticut 06516, United States
| | - Jakub Toczek
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine , New Haven, Connecticut 06511, United States.,Veterans Affairs Connecticut Healthcare System , West Haven, Connecticut 06516, United States
| | - Enrico A Stura
- Service d'ingénierie moléculaire des protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay , Gif-sur-Yvette F-91191, France
| | - Vincent Dive
- Service d'ingénierie moléculaire des protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay , Gif-sur-Yvette F-91191, France
| | - Mehran M Sadeghi
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine , New Haven, Connecticut 06511, United States.,Veterans Affairs Connecticut Healthcare System , West Haven, Connecticut 06516, United States
| | - Laurent Devel
- Service d'ingénierie moléculaire des protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay , Gif-sur-Yvette F-91191, France
| |
Collapse
|
188
|
Jung JJ, Razavian M, Kim HY, Ye Y, Golestani R, Toczek J, Zhang J, Sadeghi MM. Matrix metalloproteinase inhibitor, doxycycline and progression of calcific aortic valve disease in hyperlipidemic mice. Sci Rep 2016; 6:32659. [PMID: 27619752 PMCID: PMC5020643 DOI: 10.1038/srep32659] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/12/2016] [Indexed: 12/18/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is the most common cause of aortic stenosis. Currently, there is no non-invasive medical therapy for CAVD. Matrix metalloproteinases (MMPs) are upregulated in CAVD and play a role in its pathogenesis. Here, we evaluated the effect of doxycycline, a nonselective MMP inhibitor on CAVD progression in the mouse. Apolipoprotein (apo)E−/− mice (n = 20) were fed a Western diet (WD) to induce CAVD. After 3 months, half of the animals was treated with doxycycline, while the others continued WD alone. After 6 months, we evaluated the effect of doxycycline on CAVD progression by echocardiography, MMP-targeted micro single photon emission computed tomography (SPECT)/computed tomography (CT), and tissue analysis. Despite therapeutic blood levels, doxycycline had no significant effect on MMP activation, aortic valve leaflet separation or flow velocity. This lack of effect on in vivo images was confirmed on tissue analysis which showed a similar level of aortic valve gelatinase activity, and inflammation between the two groups of animals. In conclusion, doxycycline (100 mg/kg/day) had no effect on CAVD progression in apoE−/− mice with early disease. Studies with more potent and specific inhibitors are needed to establish any potential role of MMP inhibition in CAVD development and progression.
Collapse
Affiliation(s)
- Jae-Joon Jung
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, United States.,VA Connecticut Healthcare System, West Haven, CT, United States
| | - Mahmoud Razavian
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, United States.,VA Connecticut Healthcare System, West Haven, CT, United States
| | - Hye-Yeong Kim
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, United States.,VA Connecticut Healthcare System, West Haven, CT, United States
| | - Yunpeng Ye
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, United States.,VA Connecticut Healthcare System, West Haven, CT, United States
| | - Reza Golestani
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, United States.,VA Connecticut Healthcare System, West Haven, CT, United States
| | - Jakub Toczek
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, United States.,VA Connecticut Healthcare System, West Haven, CT, United States
| | - Jiasheng Zhang
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, United States.,VA Connecticut Healthcare System, West Haven, CT, United States
| | - Mehran M Sadeghi
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, United States.,VA Connecticut Healthcare System, West Haven, CT, United States
| |
Collapse
|
189
|
Liapis CD, Paraskevas KI. The pivotal role of matrix metalloproteinases in the development of human abdominal aortic aneurysms. Vasc Med 2016; 8:267-71. [PMID: 15125488 DOI: 10.1191/1358863x03vm504ra] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Abdominal aortic aneurysms (AAAs) represent a chronic degenerative condition and impart the risk of a life-threatening episode of rupture. Chronic inflammation and destructive remodeling of the extracellular matrix of the aortic wall constitute trademarks of this entity. Multiple studies have implicated a group of locally produced matrix endopeptidases-the matrix metalloproteinases (MMPs)-as the main culprits of this process. For this reason, extensive research on the Identification of the role of these enzymes, as well as possible alternative pharmacological treatments of AAAs, has taken place during the last few years. The exact role of the several members of the group of metalloproteinases has already been discovered, and conservative therapeutic strategies oriented towards these agents have been suggested, but a Definite treatment plan is still a controversial topic. The possible role of a genetic predisposition to AAAs is another crucial topic that remains to be determined, as it would render the confrontation of this condition much more efficient.
Collapse
Affiliation(s)
- Christos D Liapis
- Department of Vascular Surgery, Athens University Medical School, Athens, Greece
| | | |
Collapse
|
190
|
Uhrin P, Breuss JM. Protective role of the matricellular protein CCN3 in abdominal aortic aneurysm. J Thorac Dis 2016; 8:2365-2368. [PMID: 27746977 DOI: 10.21037/jtd.2016.09.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Pavel Uhrin
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Johannes M Breuss
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
191
|
Matrix Metalloproteinases in Non-Neoplastic Disorders. Int J Mol Sci 2016; 17:ijms17071178. [PMID: 27455234 PMCID: PMC4964549 DOI: 10.3390/ijms17071178] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/16/2016] [Accepted: 07/04/2016] [Indexed: 12/23/2022] Open
Abstract
The matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases belonging to the metzincin superfamily. There are at least 23 members of MMPs ever reported in human, and they and their substrates are widely expressed in many tissues. Recent growing evidence has established that MMP not only can degrade a variety of components of extracellular matrix, but also can cleave and activate various non-matrix proteins, including cytokines, chemokines and growth factors, contributing to both physiological and pathological processes. In normal conditions, MMP expression and activity are tightly regulated via interactions between their activators and inhibitors. Imbalance among these factors, however, results in dysregulated MMP activity, which causes tissue destruction and functional alteration or local inflammation, leading to the development of diverse diseases, such as cardiovascular disease, arthritis, neurodegenerative disease, as well as cancer. This article focuses on the accumulated evidence supporting a wide range of roles of MMPs in various non-neoplastic diseases and provides an outlook on the therapeutic potential of inhibiting MMP action.
Collapse
|
192
|
Takei Y, Tanaka T, Kent KC, Yamanouchi D. Osteoclastogenic Differentiation of Macrophages in the Development of Abdominal Aortic Aneurysms. Arterioscler Thromb Vasc Biol 2016; 36:1962-71. [PMID: 27386936 DOI: 10.1161/atvbaha.116.307715] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/27/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Arterial calcification is common and contributes to the pathogenesis of occlusive vascular disease. Similar to the dynamics of bone, it is a tightly controlled process that maintains a balance between osteogenesis and osteolysis. However, whether calcium homeostasis plays a role in the development of aneurysms has not been explored. We hypothesized that macrophages differentiate into osteoclasts in aneurysmal arteries and that protease byproducts contribute to aneurysm pathophysiology. APPROACH AND RESULTS We performed histological and immunohistochemical analyses and showed that macrophages positive for several osteoclast markers, including tartrate acid phosphatase, occur in great numbers in the human aneurysmal aorta, but very few occur in the human stenotic aorta and none in the nondiseased human aorta. Moreover, in situ zymography showed elevated protease activity in these cells compared with undifferentiated macrophages. Tumor necrosis factor-α and calcium phosphate stimulated this osteoclastogenic differentiation process through nuclear factor-κB, mitogen-activated protein kinases, and intracellular calcium signaling but not the receptor activator of the nuclear factor-κB ligand. Inhibition of osteoclastogenic differentiation by bisphosphonate inhibits aneurysm development in a mouse model. CONCLUSIONS These results suggest that differentiation of macrophages into osteoclasts contributes to the pathophysiology of aneurysmal disease.
Collapse
Affiliation(s)
- Yuichiro Takei
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison
| | - Teruyoshi Tanaka
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison
| | - K Craig Kent
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison
| | - Dai Yamanouchi
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison.
| |
Collapse
|
193
|
Acute pancreatitis complicated by rupture of abdominal aortic aneurysm. GASTROENTEROLOGY REVIEW 2016; 11:136-8. [PMID: 27350843 PMCID: PMC4916239 DOI: 10.5114/pg.2016.57820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 06/14/2015] [Indexed: 01/18/2023]
|
194
|
Ding R, McGuinness CL, Burnand KG, Sullivan E, Smith A. Matrix Metalloproteinases in the Aneurysm Wall of Patients Treated with Low-Dose Doxycycline. Vascular 2016; 13:290-7. [PMID: 16288704 DOI: 10.1258/rsmvasc.13.5.290] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The purpose of this study was to determine the effect of low-dose doxycycline on matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP)-1 expression in the wall of abdominal aortic aneurysms. A double-blind, randomized study was conducted of patients treated with doxycycline (100 mg/d orally) or placebo for 1 month prior to surgery. MMP-2, -3, and -9 (zymogen and activity); MMP-1, -2, -3, -7, -9, -11, -12, and -14; and TIMP-1 (messenger ribonucleic acid [mRNA]) were measured in the aneurysm wall. No differences were found between the treatment and placebo groups in zymogen levels of MMP-2, -3, or -9 or in the free or total activities of MMP-2 and -9. Treatment with doxycycline also had no effect on the concentration of any mRNA measured. No relationship was found between the number of tablets taken and MMP or TIMP protein, mRNA, or activity levels in the aneurysm wall. Low-dose doxycycline treatment does not alter the expression or activity of metalloproteinases or their inhibitor, TIMP-1, in the aneurysm wall.
Collapse
Affiliation(s)
- Ren Ding
- Academic Department of Surgery, King's College, St Thomas' Campus, London, UK
| | | | | | | | | |
Collapse
|
195
|
Rentschler ME, Baxter B. Medical Therapy Approach for Treating Abdominal Aortic Aneurysm. Vascular 2016; 15:361-5. [DOI: 10.2310/6670.2007.00055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a common and deadly problem. The aortic diameter increases in association with a complex remodeling process that includes changes in the structure and content of key proteins, elastin and collagen. As these changes occur, the tissue mechanical properties also change. The natural history of AAA is progressive enlargement to a point of mechanical tissue failure, typically followed by death. Currently, the marker used to predict the risk of impending rupture is the largest transverse diameter. After reaching a diameter threshold of 5.5 cm, the aneurysm is surgically repaired. This criterion does not consider any patient-specific information or the known heterogeneity of the aneurysm that may, in some cases, lead to rupture before the aneurysm reaches the standard intervention threshold. Conversely, in many patients, continued observation beyond this threshold is safe. Although no medical treatment is yet approved, doxycycline has been shown to greatly reduce aortic aneurysm growth in animal models and has been shown to slow growth in several small clinical trials. Although larger prospective randomized trials are needed, one unknown is what effect doxycycline has on the structural integrity of the aortic wall. That is, does slowed aneurysm growth by doxycycline treatments, in fact, prevent rupture, or does the wall continue to weaken and the aneurysm instead ruptures at a smaller diameter? Research has begun to answer these questions before a large clinical trial begins.
Collapse
Affiliation(s)
- Mark E. Rentschler
- *Department of Surgery, University of Nebraska Medical Center, Omaha, NE
| | - B.Timothy Baxter
- *Department of Surgery, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
196
|
Tang L, Cong Z, Hao S, Li P, Huang H, Shen Y, Li K, Jing H. Protective effect of melatonin on the development of abdominal aortic aneurysm in a rat model. J Surg Res 2016; 209:266-278.e1. [PMID: 27392820 DOI: 10.1016/j.jss.2016.06.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 05/23/2016] [Accepted: 06/07/2016] [Indexed: 01/14/2023]
Abstract
BACKGROUND Oxidative injury, inflammation, and apoptosis are involved in the progression of abdominal aortic aneurysm (AAA). Melatonin (MLT) has been reported with an effective antioxidant activity. The objective of the present study was to investigate whether MLT could suppress the development of AAA. METHODS The AAA model was introduced by intraluminal perfusion of elastase in rats. All rats were divided into three groups as follows: (1) sham; (2) AAA + vehicle; and (3) AAA + MLT. Daily administration of MLT (10 mg/kg/d) or vehicle started 3 d before the perfusion and continued for 28 d after perfusion. An ultrasound system was applied to measure the dilation of the aorta. Histologic assays were performed to evaluate the structure, morphology, and apoptotic cells of the aortas; biochemical assays to determine the levels of proteins and lipid peroxide, activities of superoxide dismutase and NADPH oxidases, and cell viability; dihydroethidium fluorescence staining and flow cytometry to detect the presence of reactive oxygen species, and/or cell apoptosis; and electron microscopy to observe the ultrastructure of mitochondria. Cell lines A7R5 and RAW 264.7 were used for in vitro experiments. RESULTS MLT treatment inhibited dilation of the aorta very likely through its antioxidant property; significantly reduced the levels of lipid peroxide, activities of NADPH oxidases, and content of reactive oxygen species; remarkably inhibited NF-κB signaling pathway and activities of matrix metalloproteinases triggered by elastase perfusion. As a result, the mitochondrion-dependent apoptosis was suppressed, cellular energy (ATP) supply was recovered, and mitochondrial morphology remained intact. CONCLUSIONS Our results demonstrate the beneficial effects of MLT on inhibition of AAA formation, suggesting that MLT could be a potential agent for prevention of the development of human AAA.
Collapse
Affiliation(s)
- Li Tang
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhuangzhuang Cong
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shuangying Hao
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Peng Li
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hairong Huang
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yi Shen
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Kuanyu Li
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
| | - Hua Jing
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
197
|
Tarín C, Fernandez-Garcia CE, Burillo E, Pastor-Vargas C, Llamas-Granda P, Castejón B, Ramos-Mozo P, Torres-Fonseca MM, Berger T, Mak TW, Egido J, Blanco-Colio LM, Martín-Ventura JL. Lipocalin-2 deficiency or blockade protects against aortic abdominal aneurysm development in mice. Cardiovasc Res 2016; 111:262-73. [DOI: 10.1093/cvr/cvw112] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 05/21/2016] [Indexed: 11/13/2022] Open
|
198
|
Raaz U, Zöllner AM, Schellinger IN, Toh R, Nakagami F, Brandt M, Emrich FC, Kayama Y, Eken S, Adam M, Maegdefessel L, Hertel T, Deng A, Jagger A, Buerke M, Dalman RL, Spin JM, Kuhl E, Tsao PS. Response to Letters Regarding Article, "Segmental Aortic Stiffening Contributes to Experimental Abdominal Aortic Aneurysm Development". Circulation 2016; 133:e11-2. [PMID: 26719393 DOI: 10.1161/circulationaha.115.018759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Uwe Raaz
- Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, Stanford, CAVA Palo Alto Health Care System, Palo Alto, CAHeart Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Alexander M Zöllner
- Department of Mechanical Engineering, Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
| | - Isabel N Schellinger
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CAVA Palo Alto Health Care System, Palo Alto, CA
| | - Ryuji Toh
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA
| | - Futoshi Nakagami
- Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
| | - Moritz Brandt
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
| | - Fabian C Emrich
- Department of Cardiothoracic Surgery, Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
| | - Yosuke Kayama
- Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, Stanford, CAVA Palo Alto Health Care System, Palo Alto, CA
| | - Suzanne Eken
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Matti Adam
- Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, Stanford, CAVA Palo Alto Health Care System, Palo Alto, CA
| | | | | | - Alicia Deng
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CAVA Palo Alto Health Care System, Palo Alto, CA
| | - Ann Jagger
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CAVA Palo Alto Health Care System, Palo Alto, CA
| | - Michael Buerke
- Division of Cardiovascular Medicine and Intensive Care Medicine, Saint Mary's Hospital, Siegen, Germany
| | - Ronald L Dalman
- Division of Vascular Surgery, Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
| | - Joshua M Spin
- Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, Stanford, CAVA Palo Alto Health Care System, Palo Alto, CA
| | - Ellen Kuhl
- Department of Mechanical Engineering, Department of Bioengineering, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA
| | - Philip S Tsao
- Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, Stanford, CAVA Palo Alto Health Care System, Palo Alto, CA
| |
Collapse
|
199
|
Paraoxonase-1 overexpression prevents experimental abdominal aortic aneurysm progression. Clin Sci (Lond) 2016; 130:1027-38. [DOI: 10.1042/cs20160185] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/16/2016] [Indexed: 01/23/2023]
Abstract
Decreased paraoxonase-1 (PON1) activity is associated with human and experimental abdominal aortic aneurysm (AAA). Overexpression of PON1 protected mice from AAA development induced by elastase, decreasing oxidative stress, apoptosis and inflammation. PON1 may provide a novel therapeutic target for AAA prevention.
Collapse
|
200
|
Galán M, Varona S, Orriols M, Rodríguez JA, Aguiló S, Dilmé J, Camacho M, Martínez-González J, Rodriguez C. Induction of histone deacetylases (HDACs) in human abdominal aortic aneurysm: therapeutic potential of HDAC inhibitors. Dis Model Mech 2016; 9:541-52. [PMID: 26989193 PMCID: PMC4892665 DOI: 10.1242/dmm.024513] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/14/2016] [Indexed: 02/01/2023] Open
Abstract
Clinical management of abdominal aortic aneurysm (AAA) is currently limited to elective surgical repair because an effective pharmacotherapy is still awaited. Inhibition of histone deacetylase (HDAC) activity could be a promising therapeutic option in cardiovascular diseases. We aimed to characterise HDAC expression in human AAA and to evaluate the therapeutic potential of class I and IIa HDAC inhibitors in the AAA model of angiotensin II (Ang II)-infused apolipoprotein-E-deficient (ApoE−/−) mice. Real-time PCR, western blot and immunohistochemistry evidenced an increased expression of HDACs 1, 2 (both class I), 4 and 7 (both class IIa) in abdominal aorta samples from patients undergoing AAA open repair (n=22) compared with those from donors (n=14). Aortic aneurysms from Ang-II-infused ApoE−/− mice exhibited a similar HDAC expression profile. In these animals, treatment with a class I HDAC inhibitor (MS-275) or a class IIa inhibitor (MC-1568) improved survival, reduced the incidence and severity of AAA and limited aneurysmal expansion evaluated by Doppler ultrasonography. These beneficial effects were more potent in MC-1568-treated mice. The disorganisation of elastin and collagen fibres and lymphocyte and macrophage infiltration were effectively reduced by both inhibitors. Additionally, HDAC inhibition attenuated the exacerbated expression of pro-inflammatory markers and the increase in metalloproteinase-2 and -9 activity induced by Ang II in this model. Therefore, our data evidence that HDAC expression is deregulated in human AAA and that class-selective HDAC inhibitors limit aneurysm expansion in an AAA mouse model. New-generation HDAC inhibitors represent a promising therapeutic approach to overcome human aneurysm progression. Summary: This study reports the upregulation of HDACs in human AAA, evidences that HDAC inhibitors limit aneurysm progression in a preclinical model and suggests the therapeutic interest of HDAC inhibition in AAA.
Collapse
Affiliation(s)
- María Galán
- Centro de Investigación Cardiovascular (CSIC-ICCC), Instituto de Investigación Biomédica (IIB-Sant Pau), 08025 Barcelona, Spain
| | - Saray Varona
- Centro de Investigación Cardiovascular (CSIC-ICCC), Instituto de Investigación Biomédica (IIB-Sant Pau), 08025 Barcelona, Spain
| | - Mar Orriols
- Centro de Investigación Cardiovascular (CSIC-ICCC), Instituto de Investigación Biomédica (IIB-Sant Pau), 08025 Barcelona, Spain
| | - José Antonio Rodríguez
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, Center for Applied Medical Research, University of Navarra, 31008 Pamplona, Spain
| | - Silvia Aguiló
- Centro de Investigación Cardiovascular (CSIC-ICCC), Instituto de Investigación Biomédica (IIB-Sant Pau), 08025 Barcelona, Spain
| | - Jaume Dilmé
- Laboratorio de Angiología, Biología Vascular e Inflamación y Servicio de Cirugía Vascular, Instituto de Investigación Biomédica (IIB-Sant Pau), 08025 Barcelona, Spain
| | - Mercedes Camacho
- Laboratorio de Angiología, Biología Vascular e Inflamación y Servicio de Cirugía Vascular, Instituto de Investigación Biomédica (IIB-Sant Pau), 08025 Barcelona, Spain
| | - José Martínez-González
- Centro de Investigación Cardiovascular (CSIC-ICCC), Instituto de Investigación Biomédica (IIB-Sant Pau), 08025 Barcelona, Spain
| | - Cristina Rodriguez
- Centro de Investigación Cardiovascular (CSIC-ICCC), Instituto de Investigación Biomédica (IIB-Sant Pau), 08025 Barcelona, Spain
| |
Collapse
|