151
|
Abstract
Much progress has been made in understanding how behavioral experience and neural activity can modify the structure and function of neural circuits during development and in the adult brain. Studies of physiological and molecular mechanisms underlying activity-dependent plasticity in animal models have suggested potential therapeutic approaches for a wide range of brain disorders in humans. Physiological and electrical stimulations as well as plasticity-modifying molecular agents may facilitate functional recovery by selectively enhancing existing neural circuits or promoting the formation of new functional circuits. Here, we review the advances in basic studies of neural plasticity mechanisms in developing and adult nervous systems and current clinical treatments that harness neural plasticity, and we offer perspectives on future development of plasticity-based therapy.
Collapse
Affiliation(s)
- Karunesh Ganguly
- Department of Neurology & Rehabilitation, San Francisco VA Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA; Department of Neurology, University of California, San Francisco, 400 Parnassus Avenue, San Francisco, CA 94122, USA.
| | | |
Collapse
|
152
|
Lindau NT, Bänninger BJ, Gullo M, Good NA, Bachmann LC, Starkey ML, Schwab ME. Rewiring of the corticospinal tract in the adult rat after unilateral stroke and anti-Nogo-A therapy. Brain 2013; 137:739-56. [DOI: 10.1093/brain/awt336] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
153
|
Morecraft RJ, Ge J, Stilwell-Morecraft KS, McNeal DW, Pizzimenti MA, Darling WG. Terminal distribution of the corticospinal projection from the hand/arm region of the primary motor cortex to the cervical enlargement in rhesus monkey. J Comp Neurol 2013; 521:4205-35. [PMID: 23840034 PMCID: PMC3894926 DOI: 10.1002/cne.23410] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/08/2013] [Accepted: 06/28/2013] [Indexed: 12/16/2022]
Abstract
To further our understanding of the corticospinal projection (CSP) from the hand/arm representation of the primary motor cortex (M1), high-resolution anterograde tracing methodology and stereology were used to investigate the terminal distribution of this connection at spinal levels C5 to T1. The highest number of labeled terminal boutons occurred contralaterally (98%) with few ipsilaterally (2%). Contralaterally, labeled boutons were located within laminae I-X, with the densest distribution found in lamina VII and, to a lesser extent, laminae IX and VI. Fewer terminals were found in other contralateral laminae. Within lamina VII, terminal boutons were most prominent in the dorsomedial, dorsolateral, and ventrolateral subsectors. Within lamina IX, the heaviest terminal labeling was distributed dorsally. Ipsilaterally, boutons were found in laminae V-X. The most pronounced distribution occurred in the dorsomedial and ventromedial sectors of lamina VII and fewer labeled boutons were located in other ipsilateral laminae. Segmentally, contralateral lamina VII labeling was highest at levels C5-C7. In contrast, lamina IX labeling was highest at C7-T1 and more widely dispersed among the quadrants at C8-T1. Our findings suggest dominant contralateral influence of the M1 hand/arm CSP, a contralateral innervation pattern in lamina VII supporting Kuypers (1982) conceptual framework of a "lateral motor system," and a projection to lamina IX indicating significant influence on motoneurons innervating flexors acting on the shoulder and elbow rostrally (C5-C7), along with flexors, extensors, abductors and adductors acting on the digits, hand and wrist caudally (C8-T1).
Collapse
Affiliation(s)
- Robert J. Morecraft
- Division of Basic Biomedical Sciences, Laboratory of Neurological Sciences, The University of South Dakota, Sanford School of Medicine, Vermillion, South Dakota 57069
| | - Jizhi Ge
- Division of Basic Biomedical Sciences, Laboratory of Neurological Sciences, The University of South Dakota, Sanford School of Medicine, Vermillion, South Dakota 57069
| | - Kimberly S. Stilwell-Morecraft
- Division of Basic Biomedical Sciences, Laboratory of Neurological Sciences, The University of South Dakota, Sanford School of Medicine, Vermillion, South Dakota 57069
| | - David W. McNeal
- Division of Basic Biomedical Sciences, Laboratory of Neurological Sciences, The University of South Dakota, Sanford School of Medicine, Vermillion, South Dakota 57069
| | - Marc A. Pizzimenti
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, 52242
| | - Warren G. Darling
- Department of Health and Human Physiology, Motor Control Laboratories, The University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
154
|
d’Errico P, Boido M, Piras A, Valsecchi V, De Amicis E, Locatelli D, Capra S, Vagni F, Vercelli A, Battaglia G. Selective vulnerability of spinal and cortical motor neuron subpopulations in delta7 SMA mice. PLoS One 2013; 8:e82654. [PMID: 24324819 PMCID: PMC3855775 DOI: 10.1371/journal.pone.0082654] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/04/2013] [Indexed: 11/18/2022] Open
Abstract
Loss of the survival motor neuron gene (SMN1) is responsible for spinal muscular atrophy (SMA), the most common inherited cause of infant mortality. Even though the SMA phenotype is traditionally considered as related to spinal motor neuron loss, it remains debated whether the specific targeting of motor neurons could represent the best therapeutic option for the disease. We here investigated, using stereological quantification methods, the spinal cord and cerebral motor cortex of ∆7 SMA mice during development, to verify extent and selectivity of motor neuron loss. We found progressive post-natal loss of spinal motor neurons, already at pre-symptomatic stages, and a higher vulnerability of motor neurons innervating proximal and axial muscles. Larger motor neurons decreased in the course of disease, either for selective loss or specific developmental impairment. We also found a selective reduction of layer V pyramidal neurons associated with layer V gliosis in the cerebral motor cortex. Our data indicate that in the ∆7 SMA model SMN loss is critical for the spinal cord, particularly for specific motor neuron pools. Neuronal loss, however, is not selective for lower motor neurons. These data further suggest that SMA pathogenesis is likely more complex than previously anticipated. The better knowledge of SMA models might be instrumental in shaping better therapeutic options for affected patients.
Collapse
Affiliation(s)
- Paolo d’Errico
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Marina Boido
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano (Torino), Italy
| | - Antonio Piras
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano (Torino), Italy
| | - Valeria Valsecchi
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano (Torino), Italy
| | - Elena De Amicis
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano (Torino), Italy
| | - Denise Locatelli
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Silvia Capra
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Francesco Vagni
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Alessandro Vercelli
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano (Torino), Italy
| | - Giorgio Battaglia
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
- * E-mail:
| |
Collapse
|
155
|
Decrease in muscle contraction time complements neural maturation in the development of dynamic manipulation. J Neurosci 2013; 33:15050-5. [PMID: 24048835 DOI: 10.1523/jneurosci.1968-13.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Developmental improvements in dynamic manipulation abilities are typically attributed to neural maturation, such as myelination of corticospinal pathways, neuronal pruning, and synaptogenesis. However the contributions from changes in the peripheral motor system are less well understood. Here we investigated whether there are developmental changes in muscle activation-contraction dynamics and whether these changes contribute to improvements in dynamic manipulation in humans. We compared pinch strength, dynamic manipulation ability, and contraction time of the first dorsal interosseous muscle in typically developing preadolescent, adolescent, and young adults. Both strength and dynamic manipulation ability increased with age (p < 0.0001 and p < 0.00001, respectively). Surprisingly, adults had a 33% lower muscle contraction time compared with preadolescents (p < 0.01), and contraction time showed a significant (p < 0.005) association with dynamic manipulation abilities. Whereas decreases in muscle contraction time during development have been reported in the animal literature, our finding, to our knowledge, is the first report of this phenomenon in humans and the first finding of its association with manipulation. Consequently, the changes in the muscle contractile properties could be an important complement to neural maturation in the development of dynamic manipulation. These findings have important implications for understanding central and peripheral contributors to deficits in manipulation in atypical development, such as in children with cerebral palsy.
Collapse
|
156
|
Hunanyan AS, Petrosyan HA, Alessi V, Arvanian VL. Combination of chondroitinase ABC and AAV-NT3 promotes neural plasticity at descending spinal pathways after thoracic contusion in rats. J Neurophysiol 2013; 110:1782-92. [DOI: 10.1152/jn.00427.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transmission through descending pathways to lumbar motoneurons, although important for voluntary walking in humans and rats, has not been fully understood at the cellular level in contusion models. Major descending pathways innervating lumbar motoneurons include those at corticospinal tract (CST) and ventrolateral funiculus (VLF). We examined transmission and plasticity at synaptic pathways from dorsal (d)CST and VLF to individual motoneurons located in ventral horn and interneurons located in dorsomedial gray matter at lumbar segments after thoracic chronic contusion in adult anesthetized rats. To accomplish this, we used intracellular electrophysiological recordings and performed acute focal spinal lesions during the recordings. We directly demonstrate that after thoracic T10 chronic contusion the disrupted dCST axons spontaneously form new synaptic contacts with individual motoneurons, extending around the contusion cavity, through spared ventrolateral white matter. These detour synaptic connections are very weak, and strengthening these connections in order to improve function may be a target for therapeutic interventions after spinal cord injury (SCI). We found that degradation of scar-related chondroitin sulfate proteoglycans with the enzyme chondroitinase ABC (ChABC) combined with adeno-associated viral (AAV) vector-mediated prolonged delivery of neurotrophin NT-3 (AAV-NT3) strengthened these spontaneously formed connections in contused spinal cord. Moreover, ChABC/AAV-NT3 treatment induced the appearance of additional detour synaptic pathways innervating dorsomedial interneurons. Improved transmission in ChABC/AAV-NT3-treated animals was associated with increased immunoreactivity of 5-HT-positive fibers in lumbar dorsal and ventral horns. Improved locomotor function assessed with automated CatWalk highlights the physiological significance of these novel connections.
Collapse
Affiliation(s)
- Arsen S. Hunanyan
- Northport Veterans Affairs Medical Center, Northport, New York; and
- Department of Neurobiology and Behavior, SUNY at Stony Brook, Stony Brook, New York
| | - Hayk A. Petrosyan
- Northport Veterans Affairs Medical Center, Northport, New York; and
- Department of Neurobiology and Behavior, SUNY at Stony Brook, Stony Brook, New York
| | - Valentina Alessi
- Northport Veterans Affairs Medical Center, Northport, New York; and
- Department of Neurobiology and Behavior, SUNY at Stony Brook, Stony Brook, New York
| | - Victor L. Arvanian
- Northport Veterans Affairs Medical Center, Northport, New York; and
- Department of Neurobiology and Behavior, SUNY at Stony Brook, Stony Brook, New York
| |
Collapse
|
157
|
Harel NY, Yigitkanli K, Fu Y, Cafferty WBJ, Strittmatter SM. Multimodal exercises simultaneously stimulating cortical and brainstem pathways after unilateral corticospinal lesion. Brain Res 2013; 1538:17-25. [PMID: 24055330 DOI: 10.1016/j.brainres.2013.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/05/2013] [Accepted: 07/08/2013] [Indexed: 12/16/2022]
Abstract
In the context of injury to the corticospinal tract (CST), brainstem-origin circuits may provide an alternative system of descending motor influence. However, subcortical circuits are largely under subconscious control. To improve volitional control over spared fibers after CST injury, we hypothesized that a combination of physical exercises simultaneously stimulating cortical and brainstem pathways above the injury would strengthen corticobulbar connections through Hebbian-like mechanisms. We sought to test this hypothesis in mice with unilateral CST lesions. Ten days after pyramidotomy, mice were randomized to four training groups: (1) postural exercises designed to stimulate brainstem pathways (BS); (2) distal limb-grip exercises preferentially stimulating CST pathways (CST); (3) simultaneous multimodal exercises (BS+CST); or (4) no training (NT). Behavioral and anatomical outcomes were assessed after 20 training sessions over 4 weeks. Mice in the BS+CST training group showed a trend toward greater improvements in skilled limb performance than mice in the other groups. There were no consistent differences between training groups in gait kinematics. Anatomically, multimodal BS+CST training neither increased corticobulbar fiber density of the lesioned CST rostral to the lesion nor collateral sprouting of the unlesioned CST caudal to the lesion. Further studies should incorporate electrophysiological assessment to gauge changes in synaptic strength of direct and indirect pathways between the cortex and spinal cord in response to multimodal exercises.
Collapse
Affiliation(s)
- Noam Y Harel
- Department of Neurology, and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, P.O. Box 208018, New Haven, CT 06520, USA.
| | | | | | | | | |
Collapse
|
158
|
Sukal-Moulton T, Krosschell KJ, Gaebler-Spira DJ, Dewald JPA. Motor impairments related to brain injury timing in early hemiparesis. Part II: abnormal upper extremity joint torque synergies. Neurorehabil Neural Repair 2013; 28:24-35. [PMID: 23911972 DOI: 10.1177/1545968313497829] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Extensive neuromotor development occurs early in human life, and the timing of brain injury may affect the resulting motor impairment. In Part I of this series, it was demonstrated that the distribution of weakness in the upper extremity depended on the timing of brain injury in individuals with childhood-onset hemiparesis. OBJECTIVE The goal of this study was to characterize how timing of brain injury affects joint torque synergies, or losses of independent joint control. METHOD Twenty-four individuals with hemiparesis were divided into 3 groups based on the timing of their injury: before birth (PRE-natal, n = 8), around the time of birth (PERI-natal, n = 8), and after 6 months of age (POST-natal, n = 8). Individuals with hemiparesis and 8 typically developing peers participated in maximal isometric shoulder, elbow, wrist, and finger torque generation tasks while their efforts were recorded by a multiple degree-of-freedom load cell. Motor output in 4 joints of the upper extremity was concurrently measured during 8 primary torque generation tasks to quantify joint torque synergies. RESULTS There were a number of significant coupling patterns identified in individuals with hemiparesis that differed from the typically developing group. POST-natal differences were most noted in the coupling of shoulder abductors with elbow, wrist, and finger flexors, while the PRE-natal group demonstrated significant distal joint coupling with elbow flexion. CONCLUSION The torque synergies measured provide indirect evidence for the use of bulbospinal pathways in the POST-natal group, while those with earlier injury may use relatively preserved ipsilateral corticospinal motor pathways.
Collapse
Affiliation(s)
- Theresa Sukal-Moulton
- 1Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| | | | | | | |
Collapse
|
159
|
Yang JF, Livingstone D, Brunton K, Kim D, Lopetinsky B, Roy F, Zewdie E, Patrick SK, Andersen J, Kirton A, Watt JM, Yager J, Gorassini M. Training to enhance walking in children with cerebral palsy: are we missing the window of opportunity? Semin Pediatr Neurol 2013; 20:106-15. [PMID: 23948685 DOI: 10.1016/j.spen.2013.06.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The objective of this paper is to (1) identify from the literature a potential critical period for the maturation of the corticospinal tract (CST) and (2) report pilot data on an intensive, activity-based therapy applied during this period, in children with lesions to the CST. The best estimate of the CST critical period for the legs is when the child is younger than 2 years of age. Previous interventions for walking in children with CST damage were mainly applied after this age. Our preliminary results with training children younger than 2 years showed improvements in walking that exceeded all previous reports. Further, we refined techniques for measuring motor and sensory pathways to and from the legs, so that changes can be measured at this young age. Previous activity-based therapies may have been applied too late in development. A randomized controlled trial is now underway to determine if intensive leg therapy improves the outcome of children with early stroke.
Collapse
Affiliation(s)
- Jaynie F Yang
- Department of Physical Therapy, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Li G, Nie J, Wang L, Shi F, Lin W, Gilmore JH, Shen D. Mapping region-specific longitudinal cortical surface expansion from birth to 2 years of age. Cereb Cortex 2012; 23:2724-33. [PMID: 22923087 DOI: 10.1093/cercor/bhs265] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The human cerebral cortex develops rapidly and dynamically in the first 2 years of life. It has been shown that cortical surface expansion from term infant to adult is highly nonuniform in a cross-sectional study. However, little is known about the longitudinal cortical surface expansion during early postnatal stages. In this article, we generate the first longitudinal surface-based atlases of human cortical structures at 0, 1, and 2 years of age from 73 healthy subjects. On the basis of the surface-based atlases, we study the longitudinal cortical surface expansion in the first 2 years of life and find that cortical surface expansion is age related and region specific. In the first year, cortical surface expands dramatically, with an average expansion of 1.80 times. In particular, regions of superior and medial temporal, superior parietal, medial orbitofrontal, lateral anterior prefrontal, occipital cortices, and postcentral gyrus expand relatively larger than other regions. In the second year, cortical surface still expands substantially, with an average expansion of 1.20 times. In particular, regions of superior and middle frontal, orbitofrontal, inferior temporal, inferior parietal, and superior parietal cortices expand relatively larger than other regions. These region-specific patterns of cortical surface expansion are related to cognitive and functional development at these stages.
Collapse
Affiliation(s)
- Gang Li
- Department of Radiology and BRIC and
| | | | | | | | | | | | | |
Collapse
|
161
|
Development of rotational movements, hand shaping, and accuracy in advance and withdrawal for the reach-to-eat movement in human infants aged 6–12 months. Infant Behav Dev 2012; 35:543-60. [PMID: 22728335 DOI: 10.1016/j.infbeh.2012.05.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 02/28/2012] [Accepted: 05/11/2012] [Indexed: 11/23/2022]
|
162
|
Pape KE. Developmental and maladaptive plasticity in neonatal SCI. Clin Neurol Neurosurg 2012; 114:475-82. [DOI: 10.1016/j.clineuro.2012.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 01/05/2012] [Indexed: 10/14/2022]
|
163
|
Gough M, Shortland AP. Could muscle deformity in children with spastic cerebral palsy be related to an impairment of muscle growth and altered adaptation? Dev Med Child Neurol 2012; 54:495-9. [PMID: 22364585 DOI: 10.1111/j.1469-8749.2012.04229.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Skeletal muscle deformity is common in children with spastic cerebral palsy (CP), but the underlying mechanisms are unclear. This review explores some possible factors which may influence the development of muscle deformity in CP. Normal muscle function and growth appear to depend on the interaction of neuronal, endocrinal, nutritional, and mechanical factors, and also on the development of an appropriate balance between muscle protein synthesis and degradation, and between the development of contractile and non-contractile components. In this context, the changes seen in muscle in children with CP are reviewed and discussed. It is suggested that the development of muscle deformity in children with CP may be related to a multifactorial impairment of muscle growth, on which adaptation of the extracellular matrix due to altered loading may be imposed.
Collapse
Affiliation(s)
- Martin Gough
- One Small Step Gait Analysis Laboratory, Guy's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK.
| | | |
Collapse
|
164
|
Shim S, Kwan KY, Li M, Lefebvre V, Sestan N. Cis-regulatory control of corticospinal system development and evolution. Nature 2012; 486:74-9. [PMID: 22678282 PMCID: PMC3375921 DOI: 10.1038/nature11094] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 03/28/2012] [Indexed: 02/07/2023]
Abstract
The co-emergence of a six-layered cerebral neocortex and its corticospinal output system is one of the evolutionary hallmarks of mammals. However, the genetic programs that underlie their development and evolution remain poorly understood. Here we identify a conserved non-exonic element (E4) that acts as a cortex-specific enhancer for the nearby gene Fezf2 (also known as Fezl and Zfp312), which is required for the specification of corticospinal neuron identity and connectivity. We find that SOX4 and SOX11 functionally compete with the repressor SOX5 in the transactivation of E4. Cortex-specific double deletion of Sox4 and Sox11 leads to the loss of Fezf2 expression, failed specification of corticospinal neurons and, independent of Fezf2, a reeler-like inversion of layers. We show evidence supporting the emergence of functional SOX-binding sites in E4 during tetrapod evolution, and their subsequent stabilization in mammals and possibly amniotes. These findings reveal that SOX transcription factors converge onto a cis-acting element of Fezf2 and form critical components of a regulatory network controlling the identity and connectivity of corticospinal neurons.
Collapse
Affiliation(s)
- Sungbo Shim
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | |
Collapse
|
165
|
Abstract
The corticospinal tract (CST) is a major descending pathway contributing to the control of voluntary movement in mammals. During the last decades anatomical and electrophysiological studies have demonstrated significant reorganization in the CST after spinal cord injury (SCI) in animals and humans. In animal models of SCI, anatomical evidence showed corticospinal sprouts rostral and caudal to the lesion and their integration into intraspinal axonal circuits. Electrophysiological data suggested that indirect connections from the primary motor cortex to forelimb motoneurons, via brainstem nuclei and spinal cord interneurons, or direct connections from slow uninjured corticospinal axons, might contribute to the control of movement after a CST injury. In humans with SCI, post mortem spinal cord tissue revealed anatomical changes in the CST some of which were similar but others markedly different from those found in animal models of SCI. Human electrophysiological studies have provided ample evidence for corticospinal reorganization after SCI that may contribute to functional recovery. Together these studies have revealed a large plastic capacity of the CST after SCI. There is also a limited understanding of the relationship between anatomical and electrophysiological changes in the CST and control of movement after SCI. Increasing our knowledge of the role of CST plasticity in functional restoration after SCI may support the development of more effective repair strategies.
Collapse
Affiliation(s)
- Martin Oudega
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, 4074 BST3, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
166
|
Lacquaniti F, Ivanenko YP, Zago M. Development of human locomotion. Curr Opin Neurobiol 2012; 22:822-8. [PMID: 22498713 DOI: 10.1016/j.conb.2012.03.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/18/2012] [Accepted: 03/22/2012] [Indexed: 01/28/2023]
Abstract
Neural control of locomotion in human adults involves the generation of a small set of basic patterned commands directed to the leg muscles. The commands are generated sequentially in time during each step by neural networks located in the spinal cord, called Central Pattern Generators. This review outlines recent advances in understanding how motor commands are expressed at different stages of human development. Similar commands are found in several other vertebrates, indicating that locomotion development follows common principles of organization of the control networks. Movements show a high degree of flexibility at all stages of development, which is instrumental for learning and exploration of variable interactions with the environment.
Collapse
Affiliation(s)
- Francesco Lacquaniti
- Department of Systems Medicine, Neuroscience Section, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | | | | |
Collapse
|
167
|
Abstract
There is much experimental evidence for the existence of biomechanical constraints which simplify the problem of control of multi-segment movements. In addition, it has been hypothesized that movements are controlled using a small set of basic temporal components or activation patterns, shared by several different muscles and reflecting global kinematic and kinetic goals. Here we review recent studies on human locomotion showing that muscle activity is accounted for by a combination of few basic patterns, each one timed at a different phase of the gait cycle. Similar patterns are involved in walking and running at different speeds, walking forwards or backwards, and walking under different loading conditions. The corresponding weights of distribution to different muscles may change as a function of the condition, allowing highly flexible control. Biomechanical correlates of each activation pattern have been described, leading to the hypothesis that the co-ordination of limb and body segments arises from the coupling of neural oscillators between each other and with limb mechanical oscillators. Muscle activations need only intervene during limited time epochs to force intrinsic oscillations of the system when energy is lost.
Collapse
Affiliation(s)
- Francesco Lacquaniti
- Department of Systems Medicine, Neuroscience Section, University of Rome Tor Vergata, 00133 Rome, Italy.
| | | | | |
Collapse
|
168
|
Gonzenbach RR, Zoerner B, Schnell L, Weinmann O, Mir AK, Schwab ME. Delayed Anti-Nogo-A Antibody Application after Spinal Cord Injury Shows Progressive Loss of Responsiveness. J Neurotrauma 2012; 29:567-78. [DOI: 10.1089/neu.2011.1752] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
| | - Bjoern Zoerner
- Brain Research Institute, University of Zurich, Switzerland, Zürich, Switzerland
| | - Lisa Schnell
- Brain Research Institute, University of Zurich, Switzerland, Zürich, Switzerland
| | - Oliver Weinmann
- Brain Research Institute, University of Zurich, Switzerland, Zürich, Switzerland
| | | | - Martin E. Schwab
- University and ETH Zurich, University of Zurich, Switzerland, Zürich, Switzerland
| |
Collapse
|
169
|
Lang C, Guo X, Kerschensteiner M, Bareyre FM. Single collateral reconstructions reveal distinct phases of corticospinal remodeling after spinal cord injury. PLoS One 2012; 7:e30461. [PMID: 22291960 PMCID: PMC3265484 DOI: 10.1371/journal.pone.0030461] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 12/21/2011] [Indexed: 01/20/2023] Open
Abstract
Background Injuries to the spinal cord often result in severe functional deficits that, in case of incomplete injuries, can be partially compensated by axonal remodeling. The corticospinal tract (CST), for example, responds to a thoracic transection with the formation of an intraspinal detour circuit. The key step for the formation of the detour circuit is the sprouting of new CST collaterals in the cervical spinal cord that contact local interneurons. How individual collaterals are formed and refined over time is incompletely understood. Methodology/Principal Findings We traced the hindlimb corticospinal tract at different timepoints after lesion to show that cervical collateral formation is initiated in the first 10 days. These collaterals can then persist for at least 24 weeks. Interestingly, both major and minor CST components contribute to the formation of persistent CST collaterals. We then developed an approach to label single CST collaterals based on viral gene transfer of the Cre recombinase to a small number of cortical projection neurons in Thy1-STP-YFP or Thy1-Brainbow mice. Reconstruction and analysis of single collaterals for up to 12 weeks after lesion revealed that CST remodeling evolves in 3 phases. Collateral growth is initiated in the first 10 days after lesion. Between 10 days and 3–4 weeks after lesion elongated and highly branched collaterals form in the gray matter, the complexity of which depends on the CST component they originate from. Finally, between 3–4 weeks and 12 weeks after lesion the size of CST collaterals remains largely unchanged, while the pattern of their contacts onto interneurons matures. Conclusions/Significance This study provides a comprehensive anatomical analysis of CST reorganization after injury and reveals that CST remodeling occurs in distinct phases. Our results and techniques should facilitate future efforts to unravel the mechanisms that govern CST remodeling and to promote functional recovery after spinal cord injury.
Collapse
Affiliation(s)
- Claudia Lang
- Research Unit Therapy Development, Institute of Clinical Neuroimmunology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Xiaoli Guo
- Research Unit Therapy Development, Institute of Clinical Neuroimmunology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin Kerschensteiner
- Research Unit Therapy Development, Institute of Clinical Neuroimmunology, Ludwig-Maximilians-Universität München, Munich, Germany
- * E-mail: (FMB); (MK)
| | - Florence M. Bareyre
- Research Unit Therapy Development, Institute of Clinical Neuroimmunology, Ludwig-Maximilians-Universität München, Munich, Germany
- * E-mail: (FMB); (MK)
| |
Collapse
|
170
|
Savastano P, Nolfi S. Incremental Learning in a 14 DOF Simulated iCub Robot: Modeling Infant Reach/Grasp Development. BIOMIMETIC AND BIOHYBRID SYSTEMS 2012. [DOI: 10.1007/978-3-642-31525-1_22] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
171
|
Volk HA, Shihab N, Matiasek K. Neuromuscular disorders in the cat: clinical approach to weakness. J Feline Med Surg 2011; 13:837-49. [PMID: 22063208 PMCID: PMC10911292 DOI: 10.1016/j.jfms.2011.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
PRACTICAL RELEVANCE Weakness is a relatively common clinical presentation in feline medicine and can be caused by primary neuromuscular disease or by diseases of other body systems affecting the neuromuscular system secondarily. Successful work-up relies on a thorough clinical and neurological examination, and logical problem solving, based on an understanding of the underlying neuroanatomical and pathophysiological mechanisms. CLINICAL CHALLENGES Feline neuromuscular diseases can be a diagnostic challenge. On initial inspection, the presenting signs can mimic disorders of other body systems, particularly cardiovascular, pulmonary and orthopaedic disease, or may be confused with systemic illnesses. Additionally, because many different pathologies of the feline neuromuscular system converge to a similar clinical phenotype, further diagnostic steps such as electrodiagnostics, cerebrospinal fluid analysis, and muscle and nerve biopsies must be considered even after neuromuscular dysfunction has been identified. AUDIENCE This review provides a framework for the clinical approach to the weak cat and gives a practical summary of neuromuscular diseases for the general practitioner and specialist alike. EVIDENCE BASE Many diseases affecting the feline neuromuscular system have been well described in the veterinary literature, mostly based on retrospective case reports and series. The evidence base for the treatment of feline neuromuscular diseases remains very limited.
Collapse
Affiliation(s)
- Holger A Volk
- Department of Veterinary Clinical Sciences, Royal Veterinary College, Hatfield, UK.
| | | | | |
Collapse
|
172
|
Birtles D, Anker S, Atkinson J, Shellens R, Briscoe A, Mahoney M, Braddick O. Bimanual strategies for object retrieval in infants and young children. Exp Brain Res 2011; 211:207-18. [DOI: 10.1007/s00221-011-2672-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 03/30/2011] [Indexed: 10/18/2022]
|
173
|
Chiang MC, McMahon KL, de Zubicaray GI, Martin NG, Hickie I, Toga AW, Wright MJ, Thompson PM. Genetics of white matter development: a DTI study of 705 twins and their siblings aged 12 to 29. Neuroimage 2011; 54:2308-17. [PMID: 20950689 PMCID: PMC3197836 DOI: 10.1016/j.neuroimage.2010.10.015] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 09/18/2010] [Accepted: 10/05/2010] [Indexed: 11/15/2022] Open
Abstract
White matter microstructure is under strong genetic control, yet it is largely unknown how genetic influences change from childhood into adulthood. In one of the largest brain mapping studies ever performed, we determined whether the genetic control over white matter architecture depends on age, sex, socioeconomic status (SES), and intelligence quotient (IQ). We assessed white matter integrity voxelwise using diffusion tensor imaging at high magnetic field (4-Tesla), in 705 twins and their siblings (age range 12-29; 290 M/415 F). White matter integrity was quantified using a widely accepted measure, fractional anisotropy (FA). We fitted gene-environment interaction models pointwise, to visualize brain regions where age, sex, SES and IQ modulate heritability of fiber integrity. We hypothesized that environmental factors would start to outweigh genetic factors during late childhood and adolescence. Genetic influences were greater in adolescence versus adulthood, and greater in males than in females. Socioeconomic status significantly interacted with genes that affect fiber integrity: heritability was higher in those with higher SES. In people with above-average IQ, genetic factors explained over 80% of the observed FA variability in the thalamus, genu, posterior internal capsule, and superior corona radiata. In those with below-average IQ, however, only around 40% FA variability in the same regions was attributable to genetic factors. Genes affect fiber integrity, but their effects vary with age, sex, SES and IQ. Gene-environment interactions are vital to consider in the search for specific genetic polymorphisms that affect brain integrity and connectivity.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Department of Neurology, UCLA School of Medicine, Los Angeles, CA 90095-7332, USA
| | | | | | | | | | | | | | | |
Collapse
|
174
|
TBR1 directly represses Fezf2 to control the laminar origin and development of the corticospinal tract. Proc Natl Acad Sci U S A 2011; 108:3041-6. [PMID: 21285371 DOI: 10.1073/pnas.1016723108] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The corticospinal (CS) tract is involved in controlling discrete voluntary skilled movements in mammals. The CS tract arises exclusively from layer (L) 5 projection neurons of the cerebral cortex, and its formation requires L5 activity of Fezf2 (Fezl, Zfp312). How this L5-specific pattern of Fezf2 expression and CS axonal connectivity is established with such remarkable fidelity had remained elusive. Here we show that the transcription factor TBR1 directly binds the Fezf2 locus and represses its activity in L6 corticothalamic projection neurons to restrict the origin of the CS tract to L5. In Tbr1 null mutants, CS axons ectopically originate from L6 neurons in a Fezf2-dependent manner. Consistently, misexpression of Tbr1 in L5 CS neurons suppresses Fezf2 expression and effectively abolishes the CS tract. Taken together, our findings show that TBR1 is a direct transcriptional repressor of Fezf2 and a negative regulator of CS tract formation that restricts the laminar origin of CS axons specifically to L5.
Collapse
|
175
|
Abstract
AbstractOne of the most remarkable observations in developmental neuroscience is the plasticity of the developing brain. Although recent findings suggest that the developing brain possesses substantial compensatory potential, the mechanisms of reorganization and its limitations remain largely unknown. This review includes studies elucidating the complexities of brain reorganization in response to early brain injury. It describes the factors influencing the pattern and degree of brain plasticity, provides insight into the patterns of reorganization in different brain systems and offers guidelines for clinicians in the field of neurorehabilitation. This knowledge is crucial in clinical work when designing the appropriate type and timing of interventions for children with early brain injuries
Collapse
|
176
|
Fairley JA, Sejdić E, Chau T. The effect of treadmill walking on the stride interval dynamics of children. Hum Mov Sci 2010; 29:987-98. [DOI: 10.1016/j.humov.2010.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 04/01/2010] [Accepted: 07/30/2010] [Indexed: 11/29/2022]
|
177
|
Dye CA, El Shawa H, Huffman KJ. A lifespan analysis of intraneocortical connections and gene expression in the mouse II. ACTA ACUST UNITED AC 2010; 21:1331-50. [PMID: 21060113 DOI: 10.1093/cercor/bhq213] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The mammalian neocortex contains an intricate processing network of multiple sensory and motor areas that allows the animal to engage in complex behaviors. These anatomically and functionally unique areas and their distinct connections arise during early development, through a process termed arealization. Both intrinsic, activity-independent and extrinsic, activity-dependent mechanisms drive arealization, much of which occurs during the areal patterning period (APP) from late embryogenesis to early postnatal life. How areal boundaries and their connections develop and change from infancy to adulthood is not known. Additionally, the adult patterns of sensory and motor ipsilateral intraneocortical connections (INCs) have not been thoroughly characterized in the mouse. In this report and its companion (I), we present the first lifespan analysis of ipsilateral INCs among multiple sensory and motor regions in mouse. We describe the neocortical expression patterns of several developmentally regulated genes that are of central importance to studies investigating the molecular regulation of arealization, from postnatal day (P) 6 to P50. In this study, we correlate the boundaries of gene expression patterns with developing areal boundaries across a lifespan, in order to better understand the nature of gene-areal relationships from early postnatal life to adulthood.
Collapse
Affiliation(s)
- Catherine A Dye
- Department of Psychology and Interdepartmental Neuroscience Program, University of California-Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | | | | |
Collapse
|
178
|
Carmel JB, Kim S, Brus-Ramer M, Martin JH. Feed-forward control of preshaping in the rat is mediated by the corticospinal tract. Eur J Neurosci 2010; 32:1678-85. [PMID: 21044175 DOI: 10.1111/j.1460-9568.2010.07440.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Rats are used to model human corticospinal tract (CST) injury and repair. We asked whether rats possess the ability to orient their paw to the reaching target and whether the CST mediates this skill, as it does in primates. To test this ability, called preshaping, we trained rats to reach for pieces of pasta oriented either vertically or horizontally. We measured paw angle relative to the target and asked whether rats used target information attained before contact to preshape the paw, indicating feed-forward control. We also determined whether preshaping improved with practice. We then selectively lesioned the CST in the medullary pyramid contralateral to the reaching forepaw to test whether preshaping relies on the CST. Rats significantly oriented their paw to the pasta orientation before contact, demonstrating feed-forward control. Both preshaping and reaching efficiency improved with practice, while selective CST lesion abrogated both. The loss of preshaping was greatest for pasta oriented vertically, suggesting loss of supination, as seen with human CST injury. The degree of preshaping loss strongly correlated with the amount of skill acquired at baseline, suggesting that the CST mediates the learned component of preshaping. Finally, the amount of preshaping lost after injury strongly correlated with reduced retrieval success, showing an important functional consequence for preshaping. We have thus demonstrated, for the first time, preshaping in the rat and dependence of this skill on the CST. Understanding the basis for this skill and measuring its recovery after injury will be important for studying higher-level motor control in rats.
Collapse
Affiliation(s)
- Jason B Carmel
- Burke-Cornell Medical Research Institute, White Plains, NY, USA.
| | | | | | | |
Collapse
|
179
|
Zhang Y, Xiong Y, Mahmood A, Meng Y, Liu Z, Qu C, Chopp M. Sprouting of corticospinal tract axons from the contralateral hemisphere into the denervated side of the spinal cord is associated with functional recovery in adult rat after traumatic brain injury and erythropoietin treatment. Brain Res 2010; 1353:249-57. [PMID: 20654589 PMCID: PMC2933297 DOI: 10.1016/j.brainres.2010.07.046] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 07/12/2010] [Accepted: 07/14/2010] [Indexed: 12/24/2022]
Abstract
Erythropoietin (EPO) promotes functional recovery after traumatic brain injury (TBI). This study was designed to investigate whether EPO treatment promotes contralateral corticospinal tract (CST) plasticity in the spinal cord in rats after TBI. Biotinylated dextran amine (BDA) was injected into the right sensorimotor cortex to anterogradely label the CST. TBI was induced by controlled cortical impact over the left parietal cortex immediately after BDA injections. EPO (5000 U/kg) or saline was administered intraperitoneally at Days 1, 2, and 3 post-injury. Neurological function was assessed using a modified neurological severity score (mNSS) and footfault tests. Animals were sacrificed 35 days after injury and brain sections stained for histological analysis. Compared to the saline treatment, EPO treatment significantly improved sensorimotor functional outcome (lower mNSS and reduced footfaults) from Days 7 to 35 post-injury. TBI alone significantly stimulated contralateral CST axon sprouting toward the denervated gray matter of the cervical and lumbar spinal cord; however, EPO treatment further significantly increased the axon sprouting in TBI rats although EPO treatment did not significantly affect axon sprouting in sham animals. The contralesional CST sprouting was highly and positively correlated with sensorimotor recovery after TBI. These data demonstrate that CST fibers originating from the contralesional intact cerebral hemisphere are capable of sprouting into the denervated spinal cord after TBI and EPO treatment, which may at least partially contribute to functional recovery.
Collapse
Affiliation(s)
- Yanlu Zhang
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI 48202
| | - Ye Xiong
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI 48202
| | - Asim Mahmood
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI 48202
| | - Yuling Meng
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI 48202
| | - Zhongwu Liu
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202
| | - Changsheng Qu
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI 48202
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202
- Department of Physics, Oakland University, Rochester, MI 48309
| |
Collapse
|
180
|
Similar patterns of cortical expansion during human development and evolution. Proc Natl Acad Sci U S A 2010; 107:13135-40. [PMID: 20624964 DOI: 10.1073/pnas.1001229107] [Citation(s) in RCA: 490] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cerebral cortex of the human infant at term is complexly folded in a similar fashion to adult cortex but has only one third the total surface area. By comparing 12 healthy infants born at term with 12 healthy young adults, we demonstrate that postnatal cortical expansion is strikingly nonuniform: regions of lateral temporal, parietal, and frontal cortex expand nearly twice as much as other regions in the insular and medial occipital cortex. This differential postnatal expansion may reflect regional differences in the maturity of dendritic and synaptic architecture at birth and/or in the complexity of dendritic and synaptic architecture in adults. This expression may also be associated with differential sensitivity of cortical circuits to childhood experience and insults. By comparing human and macaque monkey cerebral cortex, we infer that the pattern of human evolutionary expansion is remarkably similar to the pattern of human postnatal expansion. To account for this correspondence, we hypothesize that it is beneficial for regions of recent evolutionary expansion to remain less mature at birth, perhaps to increase the influence of postnatal experience on the development of these regions or to focus prenatal resources on regions most important for early survival.
Collapse
|
181
|
Plowman EK, Kleim JA. Motor cortex reorganization across the lifespan. JOURNAL OF COMMUNICATION DISORDERS 2010; 43:286-294. [PMID: 20478572 DOI: 10.1016/j.jcomdis.2010.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 12/03/2009] [Accepted: 12/03/2009] [Indexed: 05/29/2023]
Abstract
UNLABELLED The brain is a highly dynamic structure with the capacity for profound structural and functional change. Such neural plasticity has been well characterized within motor cortex and is believed to represent one of the neural mechanisms for acquiring and modifying motor behaviors. A number of behavioral and neural signals have been identified that modulate motor cortex plasticity throughout the lifespan in both the intact and damaged brain. Specific signals discussed in this review include: motor learning in the intact brain, motor relearning in the damaged brain, cortical stimulation, stage of development and genotype. Clinicians are encouraged to harness these signals in the development and implementation of treatment so as to maximally drive neural plasticity and functional improvements in speech, language and swallowing. LEARNING OUTCOMES Readers will be able to: (1) describe a set of behavioral and neural signals that modulate motor cortex plasticity in the intact and damaged brain; (2) describe the influence of stage of development on plasticity and functional outcomes; and (3) identify a known genotype that alters the capacity for motor learning and brain plasticity.
Collapse
Affiliation(s)
- Emily K Plowman
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
182
|
Giszter SF, Hockensmith G, Ramakrishnan A, Udoekwere UI. How spinalized rats can walk: biomechanics, cortex, and hindlimb muscle scaling--implications for rehabilitation. Ann N Y Acad Sci 2010; 1198:279-93. [PMID: 20536943 PMCID: PMC3587114 DOI: 10.1111/j.1749-6632.2010.05534.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Neonatal spinalized (NST) rats can achieve autonomous weight-supported locomotion never seen after adult injury. Mechanisms that support function in NST rats include increased importance of cortical trunk control and altered biomechanical control strategies for stance and locomotion. Hindlimbs are isolated from perturbations in quiet stance and act in opposition to forelimbs in locomotion in NST rats. Control of roll and yaw of the hindlimbs is crucial in their locomotion. The biomechanics of the hind limbs of NST rats are also likely crucial. We present new data showing the whole leg musculature scales proportional to normal rat musculature in NST rats, regardless of function. This scaling is a prerequisite for the NST rats to most effectively use pattern generation mechanisms and motor patterns that are similar to those present in intact rats. Pattern generation may be built into the lumbar spinal cord by evolution and matched to the limb biomechanics, so preserved muscle scaling may be essential to the NST function observed.
Collapse
Affiliation(s)
- Simon F Giszter
- Neurobiology and Anatomy, School of Bioengineering, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.
| | | | | | | |
Collapse
|
183
|
Sala F, Manganotti P, Grossauer S, Tramontanto V, Mazza C, Gerosa M. Intraoperative neurophysiology of the motor system in children: a tailored approach. Childs Nerv Syst 2010; 26:473-90. [PMID: 20145936 DOI: 10.1007/s00381-009-1081-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 12/30/2009] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Intraoperative neurophysiology has moved giant steps forward over the past 15 years thanks to the advent of techniques aimed to reliably assess the functional integrity of motor areas and pathways. INTRAOPERATIVE NEUROPHYSIOLOGICAL TECHNIQUES Motor evoked potentials recorded from the muscles and/or the spinal cord (D-wave) after transcranial electrical stimulation allow to preserve the integrity of descending pathways, especially the corticospinal tract (CT), during brain and spinal cord surgery. Mapping techniques allow to identify the motor cortex through direct cortical stimulation and to localize the CT at subcortical levels during brain and brainstem surgery. These techniques are extensively used in adult neurosurgery and, in their principles, can be applied to children. However, especially in younger children, the motor system is still under development, making both mapping and monitoring techniques more challenging. In this paper, we review intraoperative neurophysiological techniques commonly used in adult neurosurgery and discuss their application to pediatric neurosurgery, in the light of preliminary experience from our and other centers. The principles of development and maturation of the motor system, and especially of the CT, are reviewed focusing on clinical studies with transcranial magnetical stimulation.
Collapse
Affiliation(s)
- Francesco Sala
- Section of Neurosurgery, Department of Neurological and Visual Sciences, University Hospital, Piazzale Stefani 1, 37124 Verona, Italy.
| | | | | | | | | | | |
Collapse
|
184
|
Fowler EG, Staudt LA, Greenberg MB. Lower-extremity selective voluntary motor control in patients with spastic cerebral palsy: increased distal motor impairment. Dev Med Child Neurol 2010; 52:264-9. [PMID: 20089048 DOI: 10.1111/j.1469-8749.2009.03586.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM Multiple impairments contribute to motor deficits in spastic cerebral palsy (CP). Selective voluntary motor control (SVMC), namely isolation of joint movement upon request, is important, but frequently overlooked. This study evaluated the proximal to distal distribution of SVMC impairment among lower extremity joints. METHOD Using a recently developed tool, the Selective Control Assessment of the Lower Extremity (SCALE), we evaluated the SVMC of the hip, knee, ankle, subtalar joint, and toes in a cross-sectional, observational study of 47 participants with spastic, diplegic, hemiplegic, and quadriplegic CP (22 males, 25 females; mean age 11 y 9 mo, SD 4 y 8 mo; Gross Motor Function Classification System levels I-IV). RESULTS Statistically significant decreases in SCALE scores from hip to toes were found using the Page statistical test for trend (p<0.001). Statistically significant differences (p<0.05) were found between all joint pairs, except toes versus subtalar, toes versus ankle, and right ankle versus subtalar joints. Cross-tabulation of score frequencies for all pairs revealed that proximal joint scores were higher or equal to distal ones 81 to 100% of the time. Excluding toes versus subtalar joints, proximal scores exceeded distal ones 94 to 100% of the time. INTERPRETATION We confirmed increasing proximal to distal SVMC impairment, which may have implications for treatment and research.
Collapse
Affiliation(s)
- Eileen G Fowler
- UCLA/Orthopaedic Hospital Center for Cerebral Palsy, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1795, USA.
| | | | | |
Collapse
|
185
|
Shafir T, Angulo-Barroso R, Su J, Jacobson SW, Lozoff B. Iron deficiency anemia in infancy and reach and grasp development. Infant Behav Dev 2009; 32:366-75. [PMID: 19592115 PMCID: PMC2783819 DOI: 10.1016/j.infbeh.2009.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 03/12/2009] [Accepted: 06/04/2009] [Indexed: 10/20/2022]
Abstract
This study assessed 9 kinematic characteristics of infants' reach and grasp to test the hypothesis that iron deficiency anemia (IDA) delays upper extremity motor development. Reach and grasp movements, recorded with a 3D-motion capture system, were compared in 9- to 10-month-old infants (4 IDA vs. 5 iron-sufficient [IS]). Based on normative motor development data available for 6 characteristics, the results indicated poorer upper extremity control in IDA infants: 2 characteristics showed statistically significant group differences despite small n, and the other 4 had strong indications for such results (effect sizes [Cohen's d]>1.2). The remaining 3 measures, for which normative studies do not show developmental changes in this age period, showed significant or moderate-to-large effect differences. Poorer upper-extremity control in IDA infants in the short-term in this study and in the long-term despite iron therapy in other studies suggests that a motor intervention may be warranted when IDA is detected in infancy.
Collapse
Affiliation(s)
- Tal Shafir
- The Molecular & Behavioral Neuroscience Institute (MBNI), University of Michigan, 205 Zina Pitcher Pl, Rm 1066, Ann Arbor, MI 48109-0720, USA.
| | | | | | | | | |
Collapse
|
186
|
Benowitz LI, Carmichael ST. Promoting axonal rewiring to improve outcome after stroke. Neurobiol Dis 2009; 37:259-66. [PMID: 19931616 DOI: 10.1016/j.nbd.2009.11.009] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 11/07/2009] [Accepted: 11/12/2009] [Indexed: 01/15/2023] Open
Abstract
A limited amount of functional recovery commonly occurs in the weeks and months after stroke, and a number of studies show that such recovery is associated with changes in the brain's functional organization. Measures that augment this reorganization in a safe and effective way may therefore help improve outcome in stroke patients. Here we review some of the evidence for functional and anatomical reorganization under normal physiological conditions, along with strategies that augment these processes and improve outcome after brain injury in animal models. These strategies include counteracting inhibitors of axon growth associated with myelin, activating neurons' intrinsic growth state, enhancing physiological activity, and having behavioral therapy. These approaches represent a marked departure from the recent focus on neuroprotection and may provide a more effective way to improve outcome after stroke.
Collapse
Affiliation(s)
- Larry I Benowitz
- Laboratories for Neuroscience Research in Neurosurgery and F.M. Kirby Neurobiology Program, Children's Hospital, USA.
| | | |
Collapse
|
187
|
Brus-Ramer M, Carmel JB, Martin JH. Motor cortex bilateral motor representation depends on subcortical and interhemispheric interactions. J Neurosci 2009; 29:6196-206. [PMID: 19439597 PMCID: PMC2715912 DOI: 10.1523/jneurosci.5852-08.2009] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 03/13/2009] [Accepted: 03/16/2009] [Indexed: 01/16/2023] Open
Abstract
The corticospinal tract is a predominantly crossed pathway. Nevertheless, the primary motor cortex (M1) is activated bilaterally during unilateral movements and several animal studies showed that M1 has a bilateral motor representation. A better understanding of the uncrossed corticospinal system is especially important for elucidating its role in recovery of limb control after unilateral injury. We used intracortical microstimulation (ICMS) to determine the representation of contralateral and ipsilateral forelimb joints at single M1 sites in the rat. Most sites representing an ipsilateral joint corepresented the same joint contralaterally. We next determined whether ipsilateral responses evoked in one hemisphere depended on the function of M1 in the opposite hemisphere using reversible inactivation and pyramidal tract lesion. Ipsilateral responses were eliminated when the homotopic forelimb area of M1 in the opposite hemisphere was inactivated or when the pyramidal tract on the nonstimulated side was sectioned. To determine the role of transfer between M1 in each hemisphere we sectioned the corpus callosum, which produced a 33% increase in ipsilateral ICMS thresholds. Neither M1 inactivation nor callosal section changed contralateral response thresholds, indicating the absence of tonic excitatory or inhibitory drive to the opposite M1. Finally, ipsilateral responses following M1 inactivation and pyramidal tract lesion could be evoked after systemic administration of the K(+) channel blocker 4-aminopyridine, suggesting the presence of latent connections. Our findings show important interactions between the corticospinal systems from each side, especially at the spinal level. This has important implications for recruiting the ipsilateral corticospinal system after injury.
Collapse
Affiliation(s)
| | | | - John H. Martin
- Departments of Neuroscience
- Neurological Surgery and Psychiatry, Columbia University, and
- New York State Psychiatric Institute, New York, New York 10032
| |
Collapse
|
188
|
Chakrabarty S, Friel KM, Martin JH. Activity-dependent plasticity improves M1 motor representation and corticospinal tract connectivity. J Neurophysiol 2008; 101:1283-93. [PMID: 19091920 DOI: 10.1152/jn.91026.2008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Motor cortex (M1) activity between postnatal weeks 5 and 7 is essential for normal development of the corticospinal tract (CST) and visually guided movements. Unilateral reversible inactivation of M1, by intracortical muscimol infusion, during this period permanently impairs development of the normal dorsoventral distribution of CST terminations and visually guided motor skills. These impairments are abrogated if this M1 inactivation is followed by inactivation of the contralateral, initially active M1, from weeks 7 to 11 (termed alternate inactivation). This later period is when the M1 motor representation normally develops. The purpose of this study was to determine the effects of alternate inactivation on the motor representation of the initially inactivated M1. We used intracortical microstimulation to map the left M1 1 to 2 mo after the end of left M1 muscimol infusion. We compared representations in the unilateral inactivation and alternate inactivation groups. Alternate inactivation converted the sparse proximal M1 motor representation produced by unilateral inactivation to a complete and high-resolution proximal-distal representation. The motor map was restored by week 11, the same age that our present and prior studies demonstrated that alternate inactivation restored CST spinal connectivity. Thus M1 motor map developmental plasticity closely parallels plasticity of CST spinal terminations. After alternate inactivation reestablished CST connections and the motor map, an additional 3 wk was required for motor skill recovery. Since motor map recovery preceded behavioral recovery, our findings suggest that the representation is necessary for recovering motor skills, but additional time, or experience, is needed to learn to take advantage of the restored CST connections and motor map.
Collapse
Affiliation(s)
- S Chakrabarty
- Department of Neuroscience, Columbia University, New York, NY, USA
| | | | | |
Collapse
|
189
|
Neonatal hypertonia: I. Classification and structural-functional correlates. Pediatr Neurol 2008; 39:301-6. [PMID: 18940552 DOI: 10.1016/j.pediatrneurol.2008.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 08/29/2008] [Indexed: 11/22/2022]
Abstract
Neonatal hypertonic states can be encountered as expressions of abnormal tone and posture. It would be useful for the neonatal neurointensivist to more precisely describe the various presentations of neonatal hypertonia, taking into consideration a classification scheme adopted for hypertonia in children at older ages. An understanding of the ontogeny of muscle tone and posture during fetal and postnatal preterm time periods with maturation to full-term ages will help conceptualize the developmental structural-functional correlates that subserve the evolving expression of this abnormal clinical sign. In the future, a more accurate description of neonatal hypertonic states should be part of the complete clinical examination to help integrate etiology, timing of injury, and neurologic localization before choosing the appropriate therapeutic intervention.
Collapse
|
190
|
Faulkner RL, Low LK, Liu XB, Coble J, Jones EG, Cheng HJ. Dorsal turning of motor corticospinal axons at the pyramidal decussation requires plexin signaling. Neural Dev 2008; 3:21. [PMID: 18727829 PMCID: PMC2532682 DOI: 10.1186/1749-8104-3-21] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 08/26/2008] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The development of the corticospinal tract (CST) in higher vertebrates relies on a series of axon guidance decisions along its long projection pathway. Several guidance molecules are known to be involved at various decision points to regulate the projection of CST axons. However, previous analyses of the CST guidance defects in mutant mice lacking these molecules have suggested that there are other molecules involved in CST axon guidance that are yet to be identified. In this study, we investigate the role of plexin signaling in the guidance of motor CST axons in vivo. RESULTS Expression pattern studies show that plexin-A3, plexin-A4, and neuropilin-1 are expressed in the developing cerebral cortex when the motor CST axons originating from layer V cortical neurons are guided down to the spinal cord. By analyzing mutant mice, we show that motor CST axons that turn dorsally to cross the midline at the pyramidal decussation require plexin-A3 and plexin-A4 signaling. Although other CST guidance defects are found in neuropilin-1 mutants, this dorsal turning defect is not observed in either neuropilin-1 or neuropilin-2 mutants, suggesting that the local cues that activate plexin signaling at the dorsal turning point are membrane-bound semaphorins. Further expression pattern study and mutant analysis indicate that Sema6A is one of the local cues for motor CST axon turning at the pyramidal decussation. CONCLUSION Dorsal turning and midline crossing at the pyramidal decussation is a crucial step to properly direct CST axons into the dorsal spinal cord. We show that the signaling of plexin-A3, plexin-A4, and Sema6A is at least partially required for dorsal turning of the CST axons, while neuropilin-1 is required for proper fasciculation of the tract at midline crossing. Together with previous reports, these results demonstrate that several guidance cues are specifically utilized to regulate the dorsal turning and midline crossing of developing CST axons.
Collapse
Affiliation(s)
- Regina L Faulkner
- Center for Neuroscience, University of California, Davis, California, 95618, USA.
| | | | | | | | | | | |
Collapse
|
191
|
Giszter S, Davies MR, Ramakrishnan A, Udoekwere UI, Kargo WJ. Trunk sensorimotor cortex is essential for autonomous weight-supported locomotion in adult rats spinalized as P1/P2 neonates. J Neurophysiol 2008; 100:839-51. [PMID: 18509082 PMCID: PMC2525706 DOI: 10.1152/jn.00866.2007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 05/28/2008] [Indexed: 11/22/2022] Open
Abstract
Unlike adult spinalized rats, approximately 20% of rats spinalized as postnatal day 1 or 2 (P1/P2) neonates achieve autonomous hindlimb weight support. Cortical representations of mid/low trunk occur only in such rats with high weight support. However, the importance of hindlimb/trunk motor cortex in function of spinalized rats remains unclear. We tested the importance of trunk sensorimotor cortex in their locomotion using lesions guided by cortical microstimulation in P1/P2 weight-supporting neonatal spinalized rats and controls. In four intact control rats, lesions of hindlimb/trunk cortex caused no treadmill deficits. All spinalized rats lesioned in trunk cortex (n = 16: 4 transplant, 6 transect, 6 transect + fibrin glue) lost an average of about 40% of their weight support. Intact trunk cortex was essential to their level of function. Lesion of trunk cortex substantially increased roll of the hindquarters, which correlated to diminished weight support, but other kinematic stepping parameters showed little change. Embryonic day 14 (E14) transplants support development of the trunk motor representations in their normal location. We tested the role of novel relay circuits arising from the grafts in such cortical representations in E14 transplants using the rats that received (noncellular) fibrin glue grafting at P1/P2 (8 allografts and 32 xenografts). Fibrin-repaired rats with autonomous weight support also had trunk cortical representations similar to those of E14 transplant rats. Thus acellular repair and intrinsic plasticity were sufficient to support the observed features. Our data show that effective cortical mechanisms for trunk control are essential for autonomous weight support in P1/P2 spinalized rats and these can be achieved by intrinsic plasticity.
Collapse
Affiliation(s)
- Simon Giszter
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA.
| | | | | | | | | |
Collapse
|
192
|
Salimi I, Friel KM, Martin JH. Pyramidal tract stimulation restores normal corticospinal tract connections and visuomotor skill after early postnatal motor cortex activity blockade. J Neurosci 2008; 28:7426-34. [PMID: 18632946 PMCID: PMC2567132 DOI: 10.1523/jneurosci.1078-08.2008] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/23/2008] [Accepted: 06/10/2008] [Indexed: 02/07/2023] Open
Abstract
Motor development depends on forming specific connections between the corticospinal tract (CST) and the spinal cord. Blocking CST activity in kittens during the critical period for establishing connections with spinal motor circuits results in permanent impairments in connectivity and function. The changes in connections are consistent with the hypothesis that the inactive tract is less competitive in developing spinal connections than the active tract. In this study, we tested the competition hypothesis by determining whether activating CST axons, after previous silencing during the critical period, abrogated development of aberrant corticospinal connections and motor impairments. In kittens, we inactivated motor cortex by muscimol infusion between postnatal weeks 5 and 7. Next, we electrically stimulated CST axons in the medullary pyramid 2.5 h daily, between weeks 7 and 10. In controls (n = 3), CST terminations were densest within the contralateral deeper, premotor, spinal layers. After previous inactivation (n = 3), CST terminations were densest within the dorsal, somatic sensory, layers. There were more ipsilateral terminations from the active tract. During visually guided locomotion, there was a movement endpoint impairment. Stimulation after inactivation (n = 6) resulted in significantly fewer terminations in the sensory layers and more in the premotor layers, and fewer ipsilateral connections from active cortex. Chronic stimulation reduced the current threshold for evoking contralateral movements by pyramidal stimulation, suggesting strengthening of connections. Importantly, stimulation significantly improved stepping accuracy. These findings show the importance of activity-dependent processes in specifying CST connections. They also provide a strategy for harnessing activity to rescue CST axons at risk of developing aberrant connections after CNS injury.
Collapse
Affiliation(s)
- Iran Salimi
- Department of Neuroscience, Columbia University, New York, New York 10032
- Department of Neurosurgery, Mount Sinai Medical School, New York, New York 10029, and
| | - Kathleen M. Friel
- Department of Neuroscience, Columbia University, New York, New York 10032
| | - John H. Martin
- Department of Neuroscience, Columbia University, New York, New York 10032
- Departments of Psychiatry and
- Neurological Surgery, and
- The New York State Psychiatric Institute, Columbia University, New York, New York 10032
| |
Collapse
|
193
|
Plexin signaling selectively regulates the stereotyped pruning of corticospinal axons from visual cortex. Proc Natl Acad Sci U S A 2008; 105:8136-41. [PMID: 18523013 DOI: 10.1073/pnas.0803849105] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Neurons in the developing CNS tend to send out long axon collaterals to multiple target areas. For these neurons to attain specific connections, some of their axon collaterals are subsequently pruned-a process called stereotyped axon pruning. One of the most striking examples of stereotyped pruning in the CNS is the pruning of corticospinal tract (CST) axons. The long CST collaterals from layer V neurons of the visual and motor cortices are differentially pruned during development. Here we demonstrate that select plexins and neuropilins, which serve as coreceptors for semaphorins, are expressed in visual cortical neurons at the time when CST axon collaterals are stereotypically pruned. By analyzing mutant mice, we find that the pruning of visual, but not motor, CST axon collaterals depends on plexin-A3, plexin-A4, and neuropilin-2. Expression pattern study suggests that Sema3F is a candidate local cue for the pruning of visual CST axons. Using electron microscopic analysis, we also show that visual CST axon collaterals form synaptic contacts in the spinal cord before pruning and that the unpruned collaterals in adult mutant mice are unmyelinated and maintain their synaptic contacts. Our results indicate that the stereotyped pruning of the visual and motor CST axon collaterals is differentially regulated and that this specificity arises from the differential expression of plexin receptors in the cortex.
Collapse
|
194
|
Evrard HC, Craig AD'B'. Retrograde analysis of the cerebellar projections to the posteroventral part of the ventral lateral thalamic nucleus in the macaque monkey. J Comp Neurol 2008; 508:286-314. [PMID: 18322920 DOI: 10.1002/cne.21674] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The organization of cerebellothalamic projections was investigated in macaque monkeys using injections of retrograde tracers (cholera toxin B and fluorescent dextrans) in the posteroventral part of the ventrolateral thalamic nucleus (VLpv), the main source of thalamic inputs to the primary motor cortex. Injections that filled all of VLpv labeled abundant neurons that were inhomogeneously distributed among many unlabeled cells in the deep cerebellar nuclei (DCbN). Single large pressure injections made in face-, forelimb-, or hindlimb-related portions of VLpv using physiological guidance labeled numerous neurons that were broadly dispersed within a coarse somatotopographic anteroposterior (foot to face) gradient in the dentate and interposed nuclei. Small iontophoretic injections labeled fewer neurons with the same somatotopographic gradient, but strikingly, the labeled neurons in these cases were as broadly dispersed as in cases with large injections. Simultaneous injections of multiple tracers in VLpv (one tracer per somatic region with no overlap between injections) confirmed the general somatotopography but also demonstrated clearly the overlapping distributions and the close intermingling of neurons labeled with different tracers. Significantly, very few neurons (<2%) were double-labeled. This organizational pattern contrasts with the concept of a segregated "point-to-point" somatotopy and instead resembles the complex patterns that have been observed throughout the motor pathway. These data support the idea that muscle synergies are represented anatomically in the DCbN by a general somatotopography in which intermingled neurons and dispersed but selective connections provide the basis for plastic, adaptable movement coordination of different parts of the body. Indexing terms:
Collapse
Affiliation(s)
- Henry C Evrard
- Atkinson Research Laboratory, Barrow Neurological Institute, Phoenix, Arizona 85013, USA.
| | | |
Collapse
|
195
|
Garcia LN, Silva AVD, Carrete H, Favero FM, Fontes SV, Moneiro MT, Oliveira ASBD. [Correlation between corticospinal tract degeneration through magnetic resonance imaging, and functional scale (ALSFRS) in patients with amyotrophic lateral sclerosis]. ARQUIVOS DE NEURO-PSIQUIATRIA 2008; 65:869-74. [PMID: 17952300 DOI: 10.1590/s0004-282x2007000500029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 06/23/2007] [Indexed: 11/22/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects the corticospinal tract. ALS functional rating scale (ALSFRS) is a questionnaire that quantifies motor deficits, while diffusion tensor imaging (DTI) evaluates the integrity of fibers through the fractional anisotropy (FA). In the present study, seven ALS patients were evaluated by ALSFRS and immediately submitted to DTI, getting FA values in the following regions: cerebral peduncle (PC), internal capsule (CI) and the white matter under the primary motor cortex (M1), secondary motor cortex (M2) and somesthetic cortex (SI). A control group was constituted by twelve healthy individuals. FA values in patients were significantly lower when compared with controls, with a tendency to higher reductions in the right hemisphere and more inferior regions. Interestingly, FA values were reduced in somesthetic area. No correlation was observed between symptoms duration and FA values. Despite the correlation observed between ALSFRS scores and degeneration in PC and CI, our results suggest that this subjective scale is not a good parameter for the evaluation of the structural damage in encephalic portions of the corticospinal tract.
Collapse
Affiliation(s)
- Larissa Nery Garcia
- Departamento de Neurologia / Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu 862, 04023-900 São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
196
|
Yu C, Li J, Liu Y, Qin W, Li Y, Shu N, Jiang T, Li K. White matter tract integrity and intelligence in patients with mental retardation and healthy adults. Neuroimage 2008; 40:1533-41. [PMID: 18353685 DOI: 10.1016/j.neuroimage.2008.01.063] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 01/06/2008] [Accepted: 01/25/2008] [Indexed: 11/30/2022] Open
Abstract
It is well known that brain structures correlate with intelligence but the association between the integrity of brain white matter tracts and intelligence in patients with mental retardation (MR) and healthy adults remains unknown. The aims of this study are to investigate whether the integrity of corpus callosum (CC), cingulum, uncinate fasciculus (UF), optic radiation (OR) and corticospinal tract (CST) are damaged in patients with MR, and to determine the correlations between the integrity of these tracts and full scale intelligence quotient (FSIQ) in both patients and controls. Fifteen MR patients and 79 healthy controls underwent intelligence tests and diffusion tensor imaging examinations. According to the FSIQ, all healthy controls were divided into general intelligence (GI: FSIQ<120; n=42) and high intelligence (HI: FSIQ> or =120; n=37) groups. Intelligence was assessed by Chinese Revised Wechsler Adult Intelligence Scale, and white matter tract integrity was assessed by fractional anisotropy (FA). MR patients showed significantly lower FA than healthy controls in the CC, UF, OR and CST. However, GI subjects only demonstrated lower FA than HI subjects in the right UF. Partial correlation analysis controlling for age and sex showed that FSIQ scores were significantly correlated with the FA of the bilateral UF, genu and truncus of CC, bilateral OR and left CST. While FSIQ scores were only significantly correlated with the FA of the right UF when further controlling for group. This study indicate that MR patients show extensive damage in the integrity of the brain white matter tracts, and the right UF is an important neural basis of human intelligence.
Collapse
Affiliation(s)
- Chunshui Yu
- Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing 100053, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
197
|
Abstract
A range of passive and active devices are under development or are already in clinical use to partially restore function after spinal cord injury (SCI). Prosthetic devices to promote host tissue regeneration and plasticity and reconnection are under development, comprising bioengineered bridging materials free of cells. Alternatively, artificial electrical stimulation and robotic bridges may be used, which is our focus here. A range of neuroprostheses interfacing either with CNS or peripheral nervous system both above and below the lesion are under investigation and are at different stages of development or translation to the clinic. In addition, there are orthotic and robotic devices which are being developed and tested in the laboratory and clinic that can provide mechanical assistance, training or substitution after SCI. The range of different approaches used draw on many different aspects of our current but limited understanding of neural regeneration and plasticity, and spinal cord function and interactions with the cortex. The best therapeutic practice will ultimately likely depend on combinations of these approaches and technologies and on balancing the combined effects of these on the biological mechanisms and their interactions after injury. An increased understanding of plasticity of brain and spinal cord, and of the behavior of innate modular mechanisms in intact and injured systems, will likely assist in future developments. We review the range of device designs under development and in use, the basic understanding of spinal cord organization and plasticity, the problems and design issues in device interactions with the nervous system, and the possible benefits of active motor devices.
Collapse
Affiliation(s)
- Simon F Giszter
- Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA.
| |
Collapse
|
198
|
Eyre JA, Smith M, Dabydeen L, Clowry GJ, Petacchi E, Battini R, Guzzetta A, Cioni G. Is hemiplegic cerebral palsy equivalent to amblyopia of the corticospinal system? Ann Neurol 2007; 62:493-503. [PMID: 17444535 DOI: 10.1002/ana.21108] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Subjects with severe hemiplegic cerebral palsy have increased ipsilateral corticospinal projections from their noninfarcted cortex. We investigated whether their severe impairment might, in part, be caused by activity-dependent, competitive displacement of surviving contralateral corticospinal projections from the affected cortex by more active ipsilateral corticospinal projections from the nonaffected cortex, thereby compounding the impairment. METHODS Transcranial magnetic stimulation (TMS) characterized corticospinal tract development from each hemisphere over the first 2 years in 32 healthy children, 14 children with unilateral stroke, and 25 with bilateral lesions. Magnetic resonance imaging and anatomic studies compared corticospinal tract growth in 13 patients with perinatal stroke with 46 healthy subjects. RESULTS Infants with unilateral lesions initially had responses after TMS of the affected cortex, which became progressively more abnormal, and seven were eventually lost. There was associated hypertrophy of the ipsilateral corticospinal axons projecting from the noninfarcted cortex. Magnetic resonance imaging and anatomic studies demonstrated hypertrophy of the corticospinal tract from the noninfarcted hemisphere. TMS findings soon after the stroke did not predict impairment; subsequent loss of responses and hypertrophy of ipsilateral corticospinal axons from the noninfarcted cortex predicted severe impairment at 2 years. Infants with bilateral lesions maintained responses to TMS from both hemispheres with a normal pattern of development. INTERPRETATION Rather than representing "reparative plasticity," increased ipsilateral projections from the noninfarcted cortex compound disability by competitively displacing surviving contralateral corticospinal projections from the infarcted cortex. This may provide a pathophysiological explanation for why signs of hemiplegic cerebral palsy appear late and progress over the first 2 years of life.
Collapse
Affiliation(s)
- Janet A Eyre
- Department of Developmental Neuroscience, School of Clinical Medical Sciences, University of Newcastle, Newcastle upon Tyne, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
199
|
Brus-Ramer M, Carmel JB, Chakrabarty S, Martin JH. Electrical stimulation of spared corticospinal axons augments connections with ipsilateral spinal motor circuits after injury. J Neurosci 2007; 27:13793-801. [PMID: 18077691 PMCID: PMC6673617 DOI: 10.1523/jneurosci.3489-07.2007] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 08/30/2007] [Accepted: 09/25/2007] [Indexed: 11/21/2022] Open
Abstract
Activity-dependent competition shapes corticospinal (CS) axon outgrowth in the spinal cord during development. An important question in neural repair is whether activity can be used to promote outgrowth of CS axons in maturity. After injury, spared CS axons sprout and make new connections, but often not enough to restore function. We propose that electrically stimulating spared axons after injury will enhance sprouting and strengthen connections with spinal motor circuits. To study the effects of activity, we electrically stimulated CS tract axons in the medullary pyramid. To study the effects of injury, one pyramid was lesioned. We studied sparse ipsilateral CS projections of the intact pyramid as a model of the sparse connections preserved after CNS injury. We determined the capacity of CS axons to activate ipsilateral spinal motor circuits and traced their spinal projections. To understand the separate and combined contributions of injury and activity, we examined animals receiving stimulation only, injury only, and injury plus stimulation. Both stimulation and injury alone strengthened CS connectivity and increased outgrowth into the ipsilateral gray matter. Stimulation of spared axons after injury promoted outgrowth that reflected the sum of effects attributable to activity and injury alone. CS terminations were densest within the ventral motor territories of the cord, and connections in these animals were significantly stronger than after injury alone, indicating that activity augments injury-induced plasticity. We demonstrate that activity promotes plasticity in the mature CS system and that the interplay between activity and injury preferentially promotes connections with ventral spinal motor circuits.
Collapse
Affiliation(s)
| | | | | | - John H. Martin
- Departments of Neuroscience
- Neurological Surgery, and
- Psychiatry, Columbia University and New York State Psychiatric Institute, New York, New York 10032
| |
Collapse
|
200
|
Chauvet S, Cohen S, Yoshida Y, Fekrane L, Livet J, Gayet O, Segu L, Buhot MC, Jessell TM, Henderson CE, Mann F. Gating of Sema3E/PlexinD1 signaling by neuropilin-1 switches axonal repulsion to attraction during brain development. Neuron 2007; 56:807-22. [PMID: 18054858 PMCID: PMC2700040 DOI: 10.1016/j.neuron.2007.10.019] [Citation(s) in RCA: 189] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 08/10/2007] [Accepted: 10/01/2007] [Indexed: 12/31/2022]
Abstract
The establishment of functional neural circuits requires the guidance of axons in response to the actions of secreted and cell-surface molecules such as the semaphorins. Semaphorin 3E and its receptor PlexinD1 are expressed in the brain, but their functions are unknown. Here, we show that Sema3E/PlexinD1 signaling plays an important role in initial development of descending axon tracts in the forebrain. Early errors in axonal projections are reflected in behavioral deficits in Sema3E null mutant mice. Two distinct signaling mechanisms can be distinguished downstream of Sema3E. On corticofugal and striatonigral neurons expressing PlexinD1 but not Neuropilin-1, Sema3E acts as a repellent. In contrast, on subiculo-mammillary neurons coexpressing PlexinD1 and Neuropilin-1, Sema3E acts as an attractant. The extracellular domain of Neuropilin-1 is sufficient to convert repulsive signaling by PlexinD1 to attraction. Our data therefore reveal a "gating" function of neuropilins in semaphorin-plexin signaling during the assembly of forebrain neuronal circuits.
Collapse
Affiliation(s)
- Sophie Chauvet
- Developmental Biology Institute of Marseille Luminy, CNRS UMR 6216, University of Mediterranee, Case 907, Parc Scientifique de Luminy, 13288 Marseille cedex 09, France
| | - Samia Cohen
- Developmental Biology Institute of Marseille Luminy, CNRS UMR 6216, University of Mediterranee, Case 907, Parc Scientifique de Luminy, 13288 Marseille cedex 09, France
| | - Yutaka Yoshida
- Howard Hughes Medical Institute, Departments of Biochemistry & Molecular Biophysics, and Neuroscience, Columbia University, 701 West 168th Street, New York, NY 10032, USA
- Center for Motor Neuron Biology and Disease, Columbia University, 701 West 168th Street, New York, NY 10032, USA
| | - Lylia Fekrane
- Developmental Biology Institute of Marseille Luminy, CNRS UMR 6216, University of Mediterranee, Case 907, Parc Scientifique de Luminy, 13288 Marseille cedex 09, France
| | - Jean Livet
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Odile Gayet
- INSERM U624, Case 915, Parc Scientifique de Luminy, 13288 Marseille cedex 09, France
| | - Louis Segu
- Laboratoire de Neurosciences Cognitives, CNRS UMR 5106, Avenue des Facultés, 33405 Talence cedex, France
| | - Marie-Christine Buhot
- Laboratoire de Neurosciences Cognitives, CNRS UMR 5106, Avenue des Facultés, 33405 Talence cedex, France
| | - Thomas M. Jessell
- Howard Hughes Medical Institute, Departments of Biochemistry & Molecular Biophysics, and Neuroscience, Columbia University, 701 West 168th Street, New York, NY 10032, USA
- Center for Motor Neuron Biology and Disease, Columbia University, 701 West 168th Street, New York, NY 10032, USA
| | - Christopher E. Henderson
- Departments of Pathology, Neurology and Neuroscience, Columbia University, 701 West 168th Street, New York, NY 10032, USA
- Center for Motor Neuron Biology and Disease, Columbia University, 701 West 168th Street, New York, NY 10032, USA
| | - Fanny Mann
- Developmental Biology Institute of Marseille Luminy, CNRS UMR 6216, University of Mediterranee, Case 907, Parc Scientifique de Luminy, 13288 Marseille cedex 09, France
| |
Collapse
|