151
|
Tel J, Lambeck AJA, Cruz LJ, Tacken PJ, de Vries IJM, Figdor CG. Human plasmacytoid dendritic cells phagocytose, process, and present exogenous particulate antigen. THE JOURNAL OF IMMUNOLOGY 2010; 184:4276-83. [PMID: 20304825 DOI: 10.4049/jimmunol.0903286] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) play a major role in shaping both innate and adaptive immune responses, mainly via their production of large amounts of type I IFNs. pDCs are considered to primarily present endogenous Ags and are thought not to participate in the uptake and presentation of Ags from the extracellular environment, in contrast to their myeloid counterparts, which efficiently endocytose extracellular particulates. In this study, we show that human pDCs are able to phagocytose and process particulate forms of Ag entrapped in poly(lactic-coglycolic acid) microparticles. Furthermore, pDCs were also able to sense TLR ligands (TLR-Ls) incorporated in these particles, resulting in rapid pDC activation and high IFN-alpha secretion. Combining a tetanus toxoid peptide and TLR-Ls (CpG C and R848) in these microparticles resulted in efficient pDC activation and concomitant Ag-specific T cell stimulation. Moreover, particulate Ag was phagocytosed and presented more efficiently than soluble Ag, indicating that microparticles can be exploited to facilitate efficient delivery of antigenic cargo and immunostimulatory molecules to pDCs. Together, our results show that in addition to their potency to stimulate innate immunity, pDCs can polarize adaptive immune responses against exogenous particulate Ag. These results may have important consequences for the development of new immunotherapeutic strategies exploiting Ag and TLR-Ls encapsulated in microparticles to target APC subsets.
Collapse
Affiliation(s)
- Jurjen Tel
- Department of Tumor Immunology, , Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
152
|
Swiecki M, Colonna M. Unraveling the functions of plasmacytoid dendritic cells during viral infections, autoimmunity, and tolerance. Immunol Rev 2010; 234:142-62. [PMID: 20193017 PMCID: PMC3507434 DOI: 10.1111/j.0105-2896.2009.00881.x] [Citation(s) in RCA: 304] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are bone marrow-derived cells that secrete large amounts of type I interferon (IFN) in response to viruses. Type I IFNs are pleiotropic cytokines with antiviral activity that also enhance innate and adaptive immune responses. Viruses trigger activation of pDCs and type I IFN responses mainly through the Toll-like receptor pathway. However, a variety of activating and inhibitory pDC receptors fine tune the amplitude of type I IFN responses. Chronic activation and secretion of type I IFN in the absence of infection can promote autoimmune diseases. Furthermore, while activated pDCs promote immunity and autoimmunity, resting or alternatively activated pDCs may be tolerogenic. The various roles of pDCs have been extensively studied in vitro and in vivo with depleting antibodies. However, depleting antibodies cross-react with other cell types that are critical for eliciting protective immunity, potentially yielding ambiguous phenotypes. Here we discuss new approaches to assess pDC functions in vivo and provide preliminary data on their potential roles during viral infections. Such approaches would also prove useful in the more specific evaluation of how pDCs mediate tolerance and autoimmunity. Finally, we discuss the emergent role of pDCs and one of their receptors, tetherin, in human immunodeficiency virus pathogenesis.
Collapse
Affiliation(s)
- Melissa Swiecki
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
153
|
Crozat K, Guiton R, Guilliams M, Henri S, Baranek T, Schwartz-Cornil I, Malissen B, Dalod M. Comparative genomics as a tool to reveal functional equivalences between human and mouse dendritic cell subsets. Immunol Rev 2010; 234:177-98. [DOI: 10.1111/j.0105-2896.2009.00868.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
154
|
|
155
|
Fitzgerald-Bocarsly P, Jacobs ES. Plasmacytoid dendritic cells in HIV infection: striking a delicate balance. J Leukoc Biol 2010; 87:609-20. [PMID: 20145197 DOI: 10.1189/jlb.0909635] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
pDC are the most potent IFN-alpha-producing cells in the body and serve as a vital link between innate and adaptive immunity. Deficiencies in pDC function were among the earliest observations of immune dysfunction in HIV-1 infection. Herein, we review the status of pDC in individuals with HIV-1 infection and the potential role of these cells in pathogenesis. We begin by reviewing the basic properties of pDC and then discuss the compromise in circulating pDC numbers and function in early and viremic HIV-1 infection and mechanisms that might account for their depletion in HIV-infected patients. In addition, we review the evidence that chronic production of IFN-alpha, probably through the chronic activation of pDC, is central to the immune activation that is so detrimental in HIV infection. Finally, we discuss the importance of balance in pDC numbers and function and the potential value of using absolute pDC counts and function as a biomarker, along with CD4(+) cell counts and VL in HIV-1-infected patients.
Collapse
|
156
|
Lande R, Gilliet M. Plasmacytoid dendritic cells: key players in the initiation and regulation of immune responses. Ann N Y Acad Sci 2010; 1183:89-103. [DOI: 10.1111/j.1749-6632.2009.05152.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
157
|
Jørgensen TN, Alfaro J, Enriquez HL, Jiang C, Loo WM, Atencio S, Bupp MRG, Mailloux CM, Metzger T, Flannery S, Rozzo SJ, Kotzin BL, Rosemblatt M, Bono MR, Erickson LD. Development of murine lupus involves the combined genetic contribution of the SLAM and FcgammaR intervals within the Nba2 autoimmune susceptibility locus. THE JOURNAL OF IMMUNOLOGY 2009; 184:775-86. [PMID: 20018631 DOI: 10.4049/jimmunol.0901322] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Autoantibodies are of central importance in the pathogenesis of Ab-mediated autoimmune disorders. The murine lupus susceptibility locus Nba2 on chromosome 1 and the syntenic human locus are associated with a loss of immune tolerance that leads to antinuclear Ab production. To identify gene intervals within Nba2 that control the development of autoantibody-producing B cells and to determine the cellular components through which Nba2 genes accomplish this, we generated congenic mice expressing various Nba2 intervals where genes for the FcgammaR, SLAM, and IFN-inducible families are encoded. Analysis of congenic strains demonstrated that the FcgammaR and SLAM intervals independently controlled the severity of autoantibody production and renal disease, yet are both required for lupus susceptibility. Deregulated homeostasis of terminally differentiated B cells was found to be controlled by the FcgammaR interval where FcgammaRIIb-mediated apoptosis of germinal center B cells and plasma cells was impaired. Increased numbers of activated plasmacytoid dendritic cells that were distinctly CD19+ and promoted plasma cell differentiation via the proinflammatory cytokines IL-10 and IFNalpha were linked to the SLAM interval. These findings suggest that SLAM and FcgammaR intervals act cooperatively to influence the clinical course of disease through supporting the differentiation and survival of autoantibody-producing cells.
Collapse
Affiliation(s)
- Trine N Jørgensen
- Division of Allergy and Clinical Immunology, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Ly D, Tohn R, Rubin B, Blumenfeld H, Besra GS, Veerapen N, Porcelli SA, Delovitch TL. An alpha-galactosylceramide C20:2 N-acyl variant enhances anti-inflammatory and regulatory T cell-independent responses that prevent type 1 diabetes. Clin Exp Immunol 2009; 160:185-98. [PMID: 20015094 DOI: 10.1111/j.1365-2249.2009.04074.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Protection from type 1 diabetes (T1D), a T helper type 1 (Th1)-mediated disease, is achievable in non-obese diabetic (NOD) mice by treatment with alpha-galactosylceramide (alpha-GalCer) glycolipids that stimulate CD1d-restricted invariant natural killer T (iNK T) cells. While we have reported previously that the C20:2 N-acyl variant of alpha-GalCer elicits a Th2-biased cytokine response and protects NOD mice from T1D more effectively than a form of alpha-GalCer that induces mixed Th1 and Th2 responses, it remained to determine whether this protection is accompanied by heightened anti-inflammatory responses. We show that treatment of NOD mice with C20:2 diminished the activation of 'inflammatory' interleukin (IL)-12 producing CD11c(high)CD8+ myeloid dendritic cells (mDCs) and augmented the function of 'tolerogenic' DCs more effectively than treatment with the prototypical iNKT cell activator KRN7000 (alpha-GalCer C26:0) that induces Th1- and Th2-type responses. These findings correlate with a reduced capacity of C20:2 to sustain the early transactivation of T, B and NK cells. They may also explain our observation that C20:2 activated iNK T cells depend less than KRN7000 activated iNK T cells upon regulation by regulatory T cells for cytokine secretion and protection from T1D. The enhanced anti-inflammatory properties of C20:2 relative to KRN7000 suggest that C20:2 should be evaluated further as a drug to induce iNK T cell-mediated protection from T1D in humans.
Collapse
Affiliation(s)
- D Ly
- Laboratory of Autoimmune Diabetes, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Baranek T, Zucchini N, Dalod M. Plasmacytoid dendritic cells and the control of herpesvirus infections. Viruses 2009; 1:383-419. [PMID: 21994554 PMCID: PMC3185500 DOI: 10.3390/v1030383] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 10/01/2009] [Accepted: 10/08/2009] [Indexed: 01/04/2023] Open
Abstract
Type-I interferons (IFN-I) are cytokines essential for vertebrate antiviral defense, including against herpesviruses. IFN-I have potent direct antiviral activities and also mediate a multiplicity of immunoregulatory functions, which can either promote or dampen antiviral adaptive immune responses. Plasmacytoid dendritic cells (pDCs) are the professional producers of IFN-I in response to many viruses, including all of the herpesviruses tested. There is strong evidence that pDCs could play a major role in the initial orchestration of both innate and adaptive antiviral immune responses. Depending on their activation pattern, pDC responses may be either protective or detrimental to the host. Here, we summarize and discuss current knowledge regarding pDC implication in the physiopathology of mouse and human herpesvirus infections, and we discuss how pDC functions could be manipulated in immunotherapeutic settings to promote health over disease.
Collapse
Affiliation(s)
- Thomas Baranek
- Université de la Méditerranée, Centre d’Immunologie de Marseille-Luminy, Parc Scientifique & Technologique de Luminy, Case 906, F13288 Marseille, Cedex 09, France; E-Mails: (T.B.); (N.Z.)
- Institut National de la Santé et de la Recherche Médicale (INSERM), U631, Centre d’Immunologie de Marseille-Luminy, Parc Scientifique & Technologique de Luminy, Case 906, F13288 Marseille, Cedex 09, France
- Centre National de la Recherche Scientifique (CNRS), UMR6102, Centre d’Immunologie de Marseille-Luminy, Parc Scientifique & Technologique de Luminy, Case 906, F13288 Marseille, Cedex 09, France
| | - Nicolas Zucchini
- Université de la Méditerranée, Centre d’Immunologie de Marseille-Luminy, Parc Scientifique & Technologique de Luminy, Case 906, F13288 Marseille, Cedex 09, France; E-Mails: (T.B.); (N.Z.)
- Institut National de la Santé et de la Recherche Médicale (INSERM), U631, Centre d’Immunologie de Marseille-Luminy, Parc Scientifique & Technologique de Luminy, Case 906, F13288 Marseille, Cedex 09, France
- Centre National de la Recherche Scientifique (CNRS), UMR6102, Centre d’Immunologie de Marseille-Luminy, Parc Scientifique & Technologique de Luminy, Case 906, F13288 Marseille, Cedex 09, France
| | - Marc Dalod
- Université de la Méditerranée, Centre d’Immunologie de Marseille-Luminy, Parc Scientifique & Technologique de Luminy, Case 906, F13288 Marseille, Cedex 09, France; E-Mails: (T.B.); (N.Z.)
- Institut National de la Santé et de la Recherche Médicale (INSERM), U631, Centre d’Immunologie de Marseille-Luminy, Parc Scientifique & Technologique de Luminy, Case 906, F13288 Marseille, Cedex 09, France
- Centre National de la Recherche Scientifique (CNRS), UMR6102, Centre d’Immunologie de Marseille-Luminy, Parc Scientifique & Technologique de Luminy, Case 906, F13288 Marseille, Cedex 09, France
| |
Collapse
|
160
|
Flores M, Desai DD, Downie M, Liang B, Reilly MP, McKenzie SE, Clynes R. Dominant expression of the inhibitory FcgammaRIIB prevents antigen presentation by murine plasmacytoid dendritic cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:7129-39. [PMID: 19917701 DOI: 10.4049/jimmunol.0901169] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are key regulators of the innate immune response, yet their direct role as APCs in the adaptive immune response is unclear. We found that unlike conventional DCs, immune complex (IC) exposed murine pDCs neither up-regulated costimulatory molecules nor activated Ag-specific CD4(+) and CD8(+) T cells. The inability of murine pDCs to promote T cell activation was due to inefficient proteolytic processing of internalized ICs. This defect in the IC processing capacity of pDCs results from a lack of activating FcgammaR expression (FcgammaRI, III, IV) and the dominant expression of the inhibitory receptor FcgammaRIIB. Consistent with this idea, transgenic expression of the activating human FcgammaRIIA gene, not present in the mouse genome, recapitulated the human situation and rescued IC antigenic presentation capacity by murine pDCs. The selective expression of FcgammaRIIB by murine pDCs was not strain dependent and was maintained even following stimulation with TLR ligands and inflammatory cytokines. The unexpected difference between the mouse and human in the expression of activating/inhibitory FcgammaRs has implications for the role of pDCs in Ab-modulated autoimmunity and anti-viral immunity.
Collapse
Affiliation(s)
- Marcella Flores
- Department of Medicine and Microbiology, Columbia-Presbyterian Medical Center, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
161
|
Nikolic T, Welzen-Coppens JMC, Leenen PJM, Drexhage HA, Versnel MA. Plasmacytoid dendritic cells in autoimmune diabetes - potential tools for immunotherapy. Immunobiology 2009; 214:791-9. [PMID: 19628297 DOI: 10.1016/j.imbio.2009.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which a T-cell-mediated attack destroys the insulin-producing cells of the pancreatic islets. Despite insulin supplementation severe complications ask for novel treatments that aim at cure or delay of the onset of the disease. In spontaneous animal models for diabetes like the nonobese diabetic (NOD) mouse, distinct steps in the pathogenesis of the disease can be distinguished. In the past 10 years it became evident that DC and macrophages play an important role in all three phases of the pathogenesis of T1D. In phase 1, dendritic cells (DC) and macrophages accumulate at the islet edges. In phase 2, DC and macrophages are involved in the activation of autoreactive T cells that accumulate in the pancreas. In the third phase the islets are invaded by macrophages, DC and NK cells followed by the destruction of the beta-cells. Recent data suggest a role for a new member of the DC family: the plasmacytoid DC (pDC). pDC have been found to induce tolerance in experimental models of asthma. Several studies in humans and the NOD mouse support a similar role for pDC in diabetes. Mechanisms found to be involved in tolerance induction by pDC are inhibition of effector T cells, induction of regulatory T cells, production of cytokines and indoleamine 2,3-dioxygenase (IDO). The exact mechanism of tolerance induction by pDC in diabetes remains to be established but the intrinsic tolerogenic properties of pDC provide a promising, yet underestimated target for therapeutic intervention.
Collapse
Affiliation(s)
- Tatjana Nikolic
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
162
|
Erdmann H, Steeg C, Koch-Nolte F, Fleischer B, Jacobs T. Sialylated ligands on pathogenic Trypanosoma cruzi interact with Siglec-E (sialic acid-binding Ig-like lectin-E). Cell Microbiol 2009; 11:1600-11. [PMID: 19552697 DOI: 10.1111/j.1462-5822.2009.01350.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Trypanosoma cruzi causes a suppression of the immune system leading to persistence in host cells. The trans-sialidase expressed by T. cruzi is a major virulence factor and transfers sialic acid from host glycoconjugates to mucin-like molecules on the parasite. Here we demonstrate that these sialylated structures play a role in the immunosuppression. We used two T. cruzi strains, whose TS activity correlated with their pathogenicity. The Tulahuen strain, characterized by a high TS activity efficiently infected mice, whereas the Tehuantepec strain showing a reduced TS activity could not establish a patent parasitemia. In vitro analysis revealed that these two strains invaded phagocytic and non-phagocytic host cells at a comparable rate, but they exhibited different potentials to modulate dendritic cell function. In contrast to Tehuantepec, the Tulahuen strain suppressed the production of the proinflammatory cytokine IL-12 and subsequent T-cell activation. This inhibitory effect was absent upon desialylation of the parasite. Therefore, we analysed whether sialylated structures of T. cruzi interact with the inhibitory sialic acid-binding protein Siglec-E on DC. Indeed, Siglec-E interacted with the pathogenic Tulahuen strain, but showed a diminished binding to the Tehuantepec strain. Ligation of Siglec-E on DC using antibodies confirmed this inhibitory effect on DC function.
Collapse
Affiliation(s)
- Hanna Erdmann
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | | | | |
Collapse
|
163
|
Revilla C, Poderoso T, Martínez P, Alvarez B, López-Fuertes L, Alonso F, Ezquerra A, Domínguez J. Targeting to porcine sialoadhesin receptor improves antigen presentation to T cells. Vet Res 2009; 40:14. [PMID: 19081005 PMCID: PMC2695033 DOI: 10.1051/vetres:2008052] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 12/10/2008] [Indexed: 11/15/2022] Open
Abstract
Antibody-mediated targeting of antigen to specific antigen presenting cells (APC) receptors is an attractive strategy to enhance T cell immune responses to weak immunogenic antigens. Here, we describe the characterization of two monoclonal antibodies (mAb) against different epitopes of porcine sialoadhesin (Sn) and evaluate in vitro the potential of targeting this receptor for delivery of antigens to APC for T cell stimulation. The specificity of these mAb was determined by amino acid sequence analysis of peptides derived from the affinity purified antigen. Porcine Sn is expressed by macrophages present in the border between white and red pulp of the spleen and in the subcapsular sinus of lymph nodes, an appropriate location for trapping blood and lymph-borne antigens. It is also expressed by alveolar macrophages and monocyte-derived dendritic cells (MoDC). Blood monocytes are negative for this molecule, but its expression can be induced by treatment with IFN-alpha. MAb bound to Sn is rapidly endocytosed. MAb to sialoadhesin induced in vitro T cell proliferation at concentrations 100-fold lower than the non-targeting control mAb when using T lymphocytes from pigs immunized with mouse immunoglobulins as responder cells and IFN-alpha treated monocytes or MoDC as APC, suggesting a role of sialoadhesin in antigen uptake and/or delivery into the presentation pathway in APC.
Collapse
Affiliation(s)
- Concepción Revilla
- Dpto. Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040, Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
164
|
Cao H, de Bono B, Belov K, Wong ES, Trowsdale J, Barrow AD. Comparative genomics indicates the mammalian CD33rSiglec locus evolved by an ancient large-scale inverse duplication and suggests all Siglecs share a common ancestral region. Immunogenetics 2009; 61:401-17. [PMID: 19337729 DOI: 10.1007/s00251-009-0372-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 03/20/2009] [Indexed: 12/27/2022]
Abstract
The CD33-related sialic acid binding Ig-like lectins (CD33rSiglecs) are predominantly inhibitory receptors expressed on leukocytes. They are distinguishable from conserved Siglecs, such as Sialoadhesin and MAG, by their rapid evolution. A comparison of the CD33rSiglec gene cluster in different mammalian species showed that it can be divided into subclusters, A and B. The two subclusters, inverted in relation to each other, each encode a set of CD33rSiglec genes arranged head-to-tail. Two regions of strong correspondence provided evidence for a large-scale inverse duplication, encompassing the framework CEACAM-18 (CE18) and ATPBD3 (ATB3) genes that seeded the mammalian CD33rSiglec cluster. Phylogenetic analysis was consistent with the predicted inversion. Rodents appear to have undergone wholesale loss of CD33rSiglec genes after the inverse duplication. In contrast, CD33rSiglecs expanded in primates and many are now pseudogenes with features consistent with activating receptors. In contrast to mammals, the fish CD33rSiglecs clusters show no evidence of an inverse duplication. They display greater variation in cluster size and structure than mammals. The close arrangement of other Siglecs and CD33rSiglecs in fish is consistent with a common ancestral region for Siglecs. Expansion of mammalian CD33rSiglecs appears to have followed a large inverse duplication of a smaller primordial cluster over 180 million years ago, prior to eutherian/marsupial divergence. Inverse duplications in general could potentially have a stabilizing effect in maintaining the size and structure of large gene clusters, facilitating the rapid evolution of immune gene families.
Collapse
Affiliation(s)
- Huan Cao
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building Addenbrooke's Hospital, Cambridge, UK.
| | | | | | | | | | | |
Collapse
|
165
|
O’Reilly MK, Paulson JC. Siglecs as targets for therapy in immune-cell-mediated disease. Trends Pharmacol Sci 2009; 30:240-8. [PMID: 19359050 PMCID: PMC2830709 DOI: 10.1016/j.tips.2009.02.005] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 02/18/2009] [Accepted: 02/19/2009] [Indexed: 01/02/2023]
Abstract
The sialic-acid-binding immunoglobulin-like lectins (siglecs) comprise a family of receptors that are differentially expressed on leukocytes and other immune cells. The restricted expression of several siglecs to one or a few cell types makes them attractive targets for cell-directed therapies. The anti-CD33 (also known as Siglec-3) antibody gemtuzumab (Mylotarg) is approved for the treatment of acute myeloid leukemia, and antibodies targeting CD22 (Siglec-2) are currently in clinical trials for treatment of B cell non-Hodgkins lymphomas and autoimmune diseases. Because siglecs are endocytic receptors, they are well suited for a 'Trojan horse' strategy, whereby therapeutic agents conjugated to an antibody, or multimeric glycan ligand, bind to the siglec and are efficiently carried into the cell. Although the rapid internalization of unmodified siglec antibodies reduces their utility for induction of antibody-dependent cellular cytotoxicity or complement-mediated cytotoxicity, antibody binding of Siglec-8, Siglec-9 and CD22 has been demonstrated to induce apoptosis of eosinophils, neutrophils and depletion of B cells, respectively. Here, we review the properties of siglecs that make them attractive for cell-targeted therapies.
Collapse
Affiliation(s)
- Mary K. O’Reilly
- Departments of Chemical Physiology and Molecular Biology The Scripps Research Institute, La Jolla CA 92037
| | - James C. Paulson
- Departments of Chemical Physiology and Molecular Biology The Scripps Research Institute, La Jolla CA 92037
| |
Collapse
|
166
|
McCullough KC, Summerfield A. Targeting the porcine immune system--particulate vaccines in the 21st century. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:394-409. [PMID: 18771683 PMCID: PMC7103233 DOI: 10.1016/j.dci.2008.07.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 07/11/2008] [Accepted: 07/11/2008] [Indexed: 05/15/2023]
Abstract
During the last decade, the propagation of immunological knowledge describing the critical role of dendritic cells (DC) in the induction of efficacious immune responses has promoted research and development of vaccines systematically targeting DC. Based on the promise for the rational design of vaccine platforms, the current review will provide an update on particle-based vaccines of both viral and synthetic origin, giving examples of recombinant virus carriers such as adenoviruses and biodegradable particulate carriers. The viral carriers carry pathogen-associated molecular patterns (PAMP), used by the original virus for targeting DC, and are particularly efficient and versatile gene delivery vectors. Efforts in the field of synthetic vaccine carriers are focussing on decorating the particle surface with ligands for DC receptors such as heparan sulphate glycosaminoglycan structures, integrins, Siglecs, galectins, C-type lectins and toll-like receptors. The emphasis of this review will be placed on targeting the porcine immune system, but reference will be made to advances with murine and human vaccine delivery systems where information on DC targeting is available.
Collapse
Affiliation(s)
- Kenneth C McCullough
- Institute of Virology and Immunoprophylaxis, Sensemattstrasse 293, CH-3147 Mittelhäusern, Switzerland.
| | | |
Collapse
|
167
|
Abstract
Siglecs are cell-surface proteins found primarily on hematopoietic cells. By definition, they are members of the immunoglobulin gene super-family and bind sialic acid. Most contain cytoplasmic tyrosine motifs implicated in cell signaling. This review will first summarize characteristics common and unique to Siglecs, followed by a discussion of each human Siglec in numerical order, mentioning in turn its closest murine ortholog or paralog. Each section will describe its pattern of cellular expression, latest known immune functions, ligands, and signaling pathways, with the focus being predominantly on CD33-related Siglecs. Potential clinical and therapeutic implications of each Siglec will also be covered.
Collapse
Affiliation(s)
- Stephan von Gunten
- Department of Medicine, Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Johns Hopkins Asthma and Allergy Center, Baltimore, MD 21224-6821, USA
| | | |
Collapse
|
168
|
Ford JW, McVicar DW. TREM and TREM-like receptors in inflammation and disease. Curr Opin Immunol 2009; 21:38-46. [PMID: 19230638 PMCID: PMC2723941 DOI: 10.1016/j.coi.2009.01.009] [Citation(s) in RCA: 359] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 01/21/2009] [Accepted: 01/22/2009] [Indexed: 12/13/2022]
Abstract
Since the discovery of triggering receptor expressed on myeloid cells (TREM)-1 in 2000, evidence documenting the profound ability of the TREM and TREM-like receptors to regulate inflammation has rapidly accumulated. Monocytes, macrophages, myeloid dendritic cells, plasmacytoid dendritic cells, neutrophils, microglia, osteoclasts, and platelets all express at least one member of the TREM family, underscoring the importance of these proteins in the regulation of innate resistance. Recent work on the TREM family includes: characterization of a new receptor expressed on plasmacytoid dendritic cells; definition of a key role for TREM in inflammatory bowel disease and multiple sclerosis; an expanded list of diseases associated with the release of soluble forms of TREM proteins; and identification of the first well characterized TREM ligand: B7-H3, a ligand for TREM-like Transcript (TLT)-2. Moreover, analysis of TREM signaling has now identified key regulatory components and defined pathways that may be responsible for the complex functional interactions between the TREM and toll-like receptors. In addition, there is expanding evidence of a role for TREM in the regulation of integrin function via Plexin-A1. Together these new findings define the TREM and TREM-like receptors as pluripotent modifiers of disease through the integration of inflammatory signals with those associated with leukocyte adhesion.
Collapse
Affiliation(s)
- Jill W Ford
- Cancer and Inflammation Program, National Cancer Institute-Frederick, MD 21702, USA
| | | |
Collapse
|
169
|
Abstract
Dendritic cells (DCs) are a heterogeneous fraction of rare hematopoietic cells that coevolved with the formation of the adaptive immune system. DCs efficiently process and present antigen, move from sites of antigen uptake to sites of cellular interactions, and are critical in the initiation of immune responses as well as in the maintenance of self-tolerance. DCs are distributed throughout the body and are enriched in lymphoid organs and environmental contact sites. Steady-state DC half-lives account for days to up to a few weeks, and they need to be replaced via proliferating hematopoietic progenitors, monocytes, or tissue resident cells. In this review, we integrate recent knowledge on DC progenitors, cytokines, and transcription factor usage to an emerging concept of in vivo DC homeostasis in steady-state and inflammatory conditions. We furthermore highlight how knowledge of these maintenance mechanisms might impact on understanding of DC malignancies as well as posttransplant immune reactions and their respective therapies.
Collapse
|
170
|
Abstract
On the basis of experimental models and some human data, we can assume that tumor outgrowth results from the balance between immunosurveillance (the extrinsic tumor suppressor mechanisms) and immunosubversion dictated by transformed cells and/or the corrupted surrounding microenvironment. Cancer immunosurveillance relies mainly upon conventional lymphocytes exerting either lytic or secretory functions, whereas immunosubversion results from the activity of regulatory T or suppressor myeloid cells and soluble mediators. Although specific tools to target or ablate dendritic cells (DCs) became only recently available, accumulating evidence points to the critical role of the specialized DC system in dictating most of the conventional and regulatory functions of tumor-specific T lymphocytes. Although DC can be harnessed to silence tumor development, tumors in turn can exploit DC to evade immunity. Indeed, DCs harbor defects in their differentiation and stimulatory functions in cancer-bearing hosts and can actively promote T-cell tolerance to self-tumor antigens. In this review, we will focus on the dual role of DC during tumor progression and discuss pharmacoimmunological strategies to harness DC against cancer.
Collapse
|
171
|
Differential MHC class II synthesis and ubiquitination confers distinct antigen-presenting properties on conventional and plasmacytoid dendritic cells. Nat Immunol 2008; 9:1244-52. [DOI: 10.1038/ni.1665] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 09/12/2008] [Indexed: 01/09/2023]
|
172
|
GENINI SEM, MALINVERNI ROBERTO, DELPUTTE PETERL, FIORENTINI SILVIA, STELLA ALESSANDRA, BOTTI SARA, NAUWYNCK HANSJ, GIUFFRA ELISABETTA. Gene Expression Profiling of Porcine Alveolar Macrophages After Antibody-Mediated Cross-Linking of Sialoadhesin (Sn, Siglec-1). J Recept Signal Transduct Res 2008; 28:185-243. [DOI: 10.1080/10799890802084226] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
173
|
Björck P, Beilhack A, Herman EI, Negrin RS, Engleman EG. Plasmacytoid dendritic cells take up opsonized antigen leading to CD4+ and CD8+ T cell activation in vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:3811-7. [PMID: 18768834 PMCID: PMC2884144 DOI: 10.4049/jimmunol.181.6.3811] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Plasmacytoid dendritic cells (pDC) are the body's main source of IFN-alpha, but, unlike classical myeloid DC (myDC), they lack phagocytic activity and are generally perceived as playing only a minor role in Ag processing and presentation. We show that murine pDC, as well as myDC, express Fcgamma receptors (CD16/CD32) and can use these receptors to acquire Ag from immune complexes (IC), resulting in the induction of robust Ag-specific CD4(+) and CD8(+) T cell responses. IC-loaded pDC stimulate CD4(+) T cells to proliferate and secrete a mixture of IL-4 and IFN-gamma, and they induce CD8(+) T cells to secrete IL-10 as well as IFN-gamma. In contrast, IC-loaded myDC induce both CD4(+) and CD8(+) T cells to secrete mainly IFN-gamma. These results indicate that pDC can shape an immune response by acquiring and processing opsonized Ag, leading to a predominantly Th2 response.
Collapse
Affiliation(s)
- Pia Björck
- Department of Pathology/Stanford Blood Center, Division of Blood and Marrow Transplantation, Stanford University, Palo Alto, CA 94304, USA.
| | | | | | | | | |
Collapse
|
174
|
|
175
|
CD300a/c regulate type I interferon and TNF-α secretion by human plasmacytoid dendritic cells stimulated with TLR7 and TLR9 ligands. Blood 2008; 112:1184-94. [DOI: 10.1182/blood-2007-12-127951] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
Activation of human plasmacytoid dendritic cells (pDCs) with ligands for Toll-like receptors (TLRs) 7 and 9 induces the secretion of type I interferons and other inflammatory cytokines as well as pDC differentiation. Transcripts for 2 members of the CD300 gene family, CD300a and CD300c, were identified on pDCs during gene expression studies to identify new immunoregulatory molecules on pDCs. We therefore investigated the expression of CD300a and CD300c and their potential regulation of pDC function. CD300a/c RNA and surface expression were downregulated after stimulation of pDCs with TLR7 and TLR9 ligands. Exogenous interferon (IFN)-α down-regulated CD300a/c expression, whereas neutralizing IFN-α abolished TLR ligand–induced CD300a/c down-regulation. This implicates IFN-α in regulating CD300a/c expression in pDCs. In addition, IFN-α favored tumor necrosis factor (TNF)-α secretion by CpG-induced pDCs. CD300a/c triggering by cross-linking antibody reduced TNF-α and increased IFN-α secretion by pDCs. Furthermore, CD300a/c triggering, in the presence of neutralizing IFN-α, further reduced TNF-α secretion. These data indicate that CD300a and CD300c play an important role in the cross-regulation of TNF-α and IFN-α secretion from pDCs.
Collapse
|
176
|
Barrow AD, Trowsdale J. The extended human leukocyte receptor complex: diverse ways of modulating immune responses. Immunol Rev 2008; 224:98-123. [PMID: 18759923 DOI: 10.1111/j.1600-065x.2008.00653.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The leukocyte receptor complex (LRC) and its extended region comprise a large set of genes encoding immunoglobulin superfamily (IgSF) receptors, interspersed with other loci. Although the external Ig-like domains of these molecules are related, they have evolved to bind a wide array of different ligands. Comparison of the organization and functions of the different receptors encoded in the LRC provides insight into their roles in immune recognition, their evolution, and their relevance to disease. In addition, these molecules provide classic examples of inhibitory receptors paired, side by side, with activating receptors that couple with adapter proteins, such as DAP12. Some of these activating receptors can be considered as bifunctional sensors that can perceive changes in the state of their ligands that favors an inhibitory rather than activating response, whereas other receptors have evolved different means, acting as transporters or even molecular chaperones to achieve immune repression. We briefly summarize the complement of receptors encoded in this region of chromosome 19 and discuss the many diverse and versatile mechanisms they have evolved to restrain immune responses.
Collapse
|
177
|
Cao H, Lakner U, de Bono B, Traherne JA, Trowsdale J, Barrow AD. SIGLEC16 encodes a DAP12-associated receptor expressed in macrophages that evolved from its inhibitory counterpart SIGLEC11 and has functional and non-functional alleles in humans. Eur J Immunol 2008; 38:2303-15. [PMID: 18629938 DOI: 10.1002/eji.200738078] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Sialic acid binding immunoglobulin-like lectins (Siglec) are important components of immune recognition. The organization of Siglec genes in different species is consistent with rapid selection imposed by pathogens. We studied SIGLEC11 genes in human, rodent, dog, cow and non-human primates. The lineages of SIGLEC11 genes in these species have undergone dynamic gene duplication and conversion, forming a potential inhibitory (SIGLEC11)/activating (SIGLEC16) receptor pair in chimpanzee and humans. A cDNA encoding human Siglec-16, currently classed as a pseudogene in the databases (SIGLECP16), is expressed in various cell lines and tissues. A polymorphism screen for the two alleles (wild type and four-base pair deletion, 4bpDelta) of SIGLEC16 found their frequencies to be 50% amongst the UK population. A search for donor sequences for SIGLEC16 revealed a subfamily of activating Siglec with charged transmembrane domains predicted to associate with ITAM-encoding adaptor proteins. In support of this, Siglec-16 was expressed at the cell surface in the presence of DAP12, but not the FcRgamma chain. Using antisera specific to the cytoplasmic tail of Siglec-16, we identified Siglec-16 expression in CD14(+) tissue macrophages and in normal human brain, cancerous oesophagus and lung. This is the first activating human Siglec receptor found to have functional and non-functional alleles within the population.
Collapse
Affiliation(s)
- Huan Cao
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Addenbrooke's Hospital, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
178
|
Pascual DW, Wang X, Kochetkova I, Callis G, Riccardi C. The absence of lymphoid CD8+ dendritic cell maturation in L-selectin-/- respiratory compartment attenuates antiviral immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:1345-56. [PMID: 18606689 PMCID: PMC2601724 DOI: 10.4049/jimmunol.181.2.1345] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Intratracheal instillation of L-selectin-deficient (L-Sel(-/-)) mice with an adenovirus 2 (Ad2) vector resulted in the lack of respiratory Ad2- or beta-galactosidase-specific CTLs with concomitant long-lived beta-galactosidase transgene expression in the lungs. The absence of Ag-specific CTLs was attributed to a deficiency in lymphoid CD11c(+)CD8(+) dendritic cells (DCs) in the lower respiratory lymph nodes (LRLNs). To enable L-Sel(-/-) CTL activity, cell-sorted L-Sel(-/-)CD8(+) T cells were cocultured with cell-sorted L-Sel(+/+)CD8(+) or CD8(-) DCs or L-Sel(-/-)CD8(-) DCs. Only the CD8(+) DCs restored CTL activity; L-Sel(-/-)CD8(-) DCs failed to support L-Sel(+/+) CTLs because these remained immature, lacking the ability to express costimulatory molecules CD40, CD80, or CD86. Although no lung CD8(+) DCs were detected, the DC environment remained suppressive in L-Sel(-/-) mice evident by the lack of CTL responses following adenoviral challenge with OVA in recipient L-Sel(-/-) adoptively transferred with OT-1 CD8(+) T cells. To assess whether the L-Sel(-/-)CD8(-) DCs could be induced into maturity, microbial stimulation studies were performed showing the failure of L-Sel(-/-) LRLN to make matured DCs. When L-Sel(-/-) mice were subjected in vivo to microbial activation before Ad2 vector dosing, CTL activity was restored stimulating the renewed presence of LRLN CD8(+) DCs in L-Sel(-/-) mice. These studies show that impairment of L-Sel(-/-) DC maturation results in insufficient mature DCs that require microbial activation to restore increases in respiratory CD8(+) DCs to support CTL responses.
Collapse
Affiliation(s)
- David W Pascual
- Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717-3610, USA.
| | | | | | | | | |
Collapse
|
179
|
Randolph GJ, Ochando J, Partida-Sánchez S. Migration of dendritic cell subsets and their precursors. Annu Rev Immunol 2008; 26:293-316. [PMID: 18045026 DOI: 10.1146/annurev.immunol.26.021607.090254] [Citation(s) in RCA: 351] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The ability of dendritic cells (DCs) to initiate and orchestrate immune responses is a consequence of their localization within tissues and their specialized capacity for mobilization. The migration of a given DC subset is typified by a restricted capacity for recirculation, contrasting markedly with T cells. Routes of DC migration into lymph nodes differ notably for distinct DC subsets. Here, we compare the distinct migratory patterns of plasmacytoid DCs (pDCs), CD8alpha(+) DCs, Langerhans cells, and conventional myeloid DCs and discuss how the highly regulated patterns of DC migration in vivo may affect their roles in immunity. Finally, to gain a more molecular appreciation of the specialized migratory properties of DCs, we review the signaling cascades that govern the process of DC migration.
Collapse
Affiliation(s)
- Gwendalyn J Randolph
- Department of Gene and Cell Medicine, Immunology Institute, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | |
Collapse
|
180
|
Marafioti T, Paterson JC, Ballabio E, Reichard KK, Tedoldi S, Hollowood K, Dictor M, Hansmann ML, Pileri SA, Dyer MJ, Sozzani S, Dikic I, Shaw AS, Petrella T, Stein H, Isaacson PG, Facchetti F, Mason DY. Novel markers of normal and neoplastic human plasmacytoid dendritic cells. Blood 2008; 111:3778-92. [PMID: 18218851 DOI: 10.1182/blood-2007-10-117531] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are involved in innate immunity (eg, by secreting interferons) and also give rise to CD4+CD56+ hematodermic neoplasms. We report extensive characterization of human pDCs in routine tissue samples, documenting the expression of 19 immunohistologic markers, including signaling molecules (eg, BLNK), transcription factors (eg, ICSBP/IRF8 and PU.1), and Toll-like receptors (TLR7, TLR9). Many of these molecules are expressed in other cell types (principally B cells), but the adaptor protein CD2AP was essentially restricted to pDCs, and is therefore a novel immunohistologic marker for use in tissue biopsies. We found little evidence for activation-associated morphologic or phenotypic changes in conditions where pDCs are greatly increased (eg, Kikuchi disease). Most of the molecules were retained in the majority of pDC neoplasms, and 3 (BCL11A, CD2AP, and ICSBP/IRF8) were also commonly negative in leukemia cutis (acute myeloid leukemia in the skin), a tumor that may mimic pDC neoplasia. In summary, we have documented a range of molecules (notably those associated with B cells) expressed by pDCs in tissues and peripheral blood (where pDCs were detectable in cytospins at a frequency of <1% of mononuclear cells) and also defined potential new markers (in particular CD2AP) for the diagnosis of pDC tumors.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/metabolism
- Biopsy
- Carrier Proteins/metabolism
- Cytoskeletal Proteins/metabolism
- Dendritic Cells/metabolism
- Dendritic Cells/pathology
- Diagnosis, Differential
- Female
- Hematologic Neoplasms/diagnosis
- Hematologic Neoplasms/metabolism
- Hematologic Neoplasms/pathology
- Humans
- Interferon Regulatory Factors/metabolism
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Male
- Middle Aged
- Neoplasms, Plasma Cell/diagnosis
- Neoplasms, Plasma Cell/metabolism
- Neoplasms, Plasma Cell/pathology
- Nuclear Proteins/metabolism
- Plasma Cells/metabolism
- Plasma Cells/pathology
- Proto-Oncogene Proteins/metabolism
- Repressor Proteins
- Skin Neoplasms/diagnosis
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Toll-Like Receptor 7/metabolism
- Toll-Like Receptor 9/metabolism
- Trans-Activators/metabolism
Collapse
Affiliation(s)
- Teresa Marafioti
- Leukaemia Research Fund Immunodiagnostics Unit, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
McMillan SJ, Crocker PR. CD33-related sialic-acid-binding immunoglobulin-like lectins in health and disease. Carbohydr Res 2008; 343:2050-6. [PMID: 18279844 DOI: 10.1016/j.carres.2008.01.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 01/09/2008] [Indexed: 01/21/2023]
Abstract
Sialic-acid-binding immunoglobulin-like lectins (Siglecs) are members of the Ig superfamily that bind sialic acids in different linkages in a wide variety of glycoconjugates. These membrane receptors are expressed in a highly specific manner, predominantly within the haematopoietic system. The CD33-related Siglecs represent a distinct subgroup that is undergoing rapid evolution. The structural features of CD33-related Siglecs and the frequent presence of conserved cytoplasmic signalling motifs point to roles in regulating leukocyte functions that are important during inflammatory and immune responses. In this review, we summarise ligand binding preferences and describe recent progress in elucidating the functional roles of CD33-related Siglecs in the immune system. We also discuss the potential for targeting novel therapeutics against these surface receptors.
Collapse
Affiliation(s)
- Sarah J McMillan
- Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | |
Collapse
|
182
|
A genome-wide analysis of LPS tolerance in macrophages. Immunobiology 2008; 212:723-37. [DOI: 10.1016/j.imbio.2007.09.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 09/28/2007] [Indexed: 11/20/2022]
|
183
|
Tacken PJ, de Vries IJM, Torensma R, Figdor CG. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat Rev Immunol 2007; 7:790-802. [PMID: 17853902 DOI: 10.1038/nri2173] [Citation(s) in RCA: 590] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The realization that dendritic cells (DCs) orchestrate innate and adaptive immune responses has stimulated research on harnessing DCs to create more effective vaccines. Early clinical trials exploring autologous DCs that were loaded with antigens ex vivo to induce T-cell responses have provided proof of principle. Here, we discuss how direct targeting of antigens to DC surface receptors in vivo might replace laborious and expensive ex vivo culturing, and facilitate large-scale application of DC-based vaccination therapies.
Collapse
Affiliation(s)
- Paul J Tacken
- Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Tumour Immunology, Postbox 9101, Nijmegen, 6500HB, Netherlands
| | | | | | | |
Collapse
|
184
|
Zucchini N, Bessou G, Robbins SH, Chasson L, Raper A, Crocker PR, Dalod M. Individual plasmacytoid dendritic cells are major contributors to the production of multiple innate cytokines in an organ-specific manner during viral infection. Int Immunol 2007; 20:45-56. [PMID: 18000008 PMCID: PMC7110020 DOI: 10.1093/intimm/dxm119] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are an important source of IFN-α/β in response to a variety of viruses in vivo, including murine cytomegalovirus (MCMV). However, the respective contributions of various infected organs, and within these of pDCs, conventional dendritic cells and other cells, to the systemic production of IFN-α/β or other innate cytokines during viral infections in vivo is largely unknown. Whether a specialization of pDC subsets in the production of different patterns of innate cytokines exists in vivo in response to a viral infection has not been investigated. Here, by analyzing for the first time directly ex vivo, at the single-cell level, the simultaneous production of up to three cytokines in pDCs isolated from MCMV-infected mice, we show that (i) pDCs are the quasi-exclusive source of IFN-α/β, IL-12 and tumor necrosis factor (TNF)-α, early during MCMV infection, in two immunocompetent mouse lines and with two viral strains, (ii) pDC activation for IFN-α/β production is organ specific and (iii) a significant proportion of pDCs simultaneously produce IFN-α/β, TNF-α and IL-12, although TNF-α and IFN-α/β appear more often co-expressed with one another than each of them with IL-12. Altogether, these results show a broad and non-redundant role of pDCs in early innate detection of, and defense against, viral infection. The data also show differences in the responsiveness of pDCs from different tissues and suggest distinct molecular requirements for pDC production of various cytokines. These observations must be taken into account when designing new antiviral vaccination strategies aimed at harnessing pDC responses.
Collapse
Affiliation(s)
- Nicolas Zucchini
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Case 906, 13288 Marseille cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
185
|
Abstract
Crosspriming and crosspresentation are performed by specialized subsets of dendritic cells. In this issue, Hoeffel et al. (2007) show that human plasmacytoid dendritic cells can crosspresent HIV-derived peptides conjugated to a lipopeptide or HIV-infected cells undergoing apoptosis.
Collapse
Affiliation(s)
- Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA.
| | | |
Collapse
|
186
|
Hoeffel G, Ripoche AC, Matheoud D, Nascimbeni M, Escriou N, Lebon P, Heshmati F, Guillet JG, Gannagé M, Caillat-Zucman S, Casartelli N, Schwartz O, De la Salle H, Hanau D, Hosmalin A, Marañón C. Antigen crosspresentation by human plasmacytoid dendritic cells. Immunity 2007; 27:481-92. [PMID: 17869134 DOI: 10.1016/j.immuni.2007.07.021] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 04/12/2007] [Accepted: 07/23/2007] [Indexed: 02/07/2023]
Abstract
Crosspresentation is a specialized function of myeloid dendritic cells (mDCs), allowing them to induce CD8+ T cell responses against exogenous antigens that are not directly produced in their cytotosol. Human plasmacytoid DCs (pDCs) are not considered so far as able to perform crosspresentation. We showed here that purified human pDCs crosspresented vaccinal lipopeptides and HIV-1 antigens from apoptotic cells to specific CD8+ T lymphocytes. Apoptotic debris were internalized by phagocytosis and the lipopeptide LPPol reached nonacidic endosomes. This crosspresentation was amplified upon influenza virus infection. Importantly, the efficiency of crosspresentation by pDCs was comparable to that of mDCs. This property of human pDCs needs to be taken into account to understand the pathogenesis of infectious, allergic, or autimmune diseases and to help achieve desired responses during vaccination by targeting specifically either type of DCs.
Collapse
|
187
|
Blasius AL, Barchet W, Cella M, Colonna M. Development and function of murine B220+CD11c+NK1.1+ cells identify them as a subset of NK cells. ACTA ACUST UNITED AC 2007; 204:2561-8. [PMID: 17923504 PMCID: PMC2118497 DOI: 10.1084/jem.20070991] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lymphoid organs contain a B220+CD11c+NK1.1+ cell population that was recently characterized as a novel dendritic cell (DC) subset that functionally overlaps with natural killer (NK) cells and plasmacytoid DCs (PDCs). Using Siglec-H and NK1.1 markers, we unambiguously dissected B220+CD11c+ cells and found that PDCs are the only professional interferon (IFN)-α–producing cells within this heterogeneous population. In contrast, B220+CD11c+NK1.1+ cells are a discrete NK cell subset capable of producing higher levels of IFN-γ than conventional NK cells. Unlike DCs, only a minute fraction of B220+CD11c+NK1.1+ cells in the spleen expressed major histocompatibility complex class II ex vivo or after stimulation with CpG. Consistent with being a NK cell subset, B220+CD11c+NK1.1+ cells depended primarily on interleukin 15 and common cytokine receptor γ chain signaling for their development. In terms of function, expression of distinctive cell surface receptors, and location in lymphoid organs, NK1.1+B220+CD11c+ appear to be the murine equivalent of human CD56bright NK cells.
Collapse
Affiliation(s)
- Amanda L Blasius
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
188
|
Sapoznikov A, Fischer JAA, Zaft T, Krauthgamer R, Dzionek A, Jung S. Organ-dependent in vivo priming of naive CD4+, but not CD8+, T cells by plasmacytoid dendritic cells. ACTA ACUST UNITED AC 2007; 204:1923-33. [PMID: 17646404 PMCID: PMC2118686 DOI: 10.1084/jem.20062373] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plasmacytoid dendritic cells (PDCs) play a pivotal role as cytokine-secreting accessory cells in the antimicrobial immune defense. In contrast, the capacity of PDCs to act as antigen-presenting cells in naive T cell priming remains unclear. By studying T cell responses in mice that lack conventional DCs (cDCs), and by the use of a PDC-specific antigen-targeting strategy, we show that PDCs can initiate productive naive CD4+ T cell responses in lymph nodes, but not in the spleen. PDC-triggered CD4+ T cell responses differed from cDC-driven responses in that they were not associated with concomitant CD8+ T cell priming. Our results establish PDCs as a bona fide DC subset that initiates unique CD4+ Th cell–dominated primary immune responses.
Collapse
Affiliation(s)
- Anita Sapoznikov
- Department of Immunology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
189
|
Merad M, Collin M, Bromberg J. Dendritic cell homeostasis and trafficking in transplantation. Trends Immunol 2007; 28:353-9. [PMID: 17618832 DOI: 10.1016/j.it.2007.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 05/22/2007] [Accepted: 06/20/2007] [Indexed: 10/23/2022]
Abstract
Hematopoietic cell transplantation and solid organ transplantation are definitive therapies for several otherwise fatal conditions. Post-transplant immune reactions are the major cause of morbidity after transplantation and limit the extended use of these critical therapies. Post-transplant immune complications include graft rejection by the host and injury to the host mediated by the graft. Dendritic cells (DCs), a population of professional antigen-presenting cells, are thought to be crucial in triggering primary immune responses against both the graft and the host. Here, we review studies on DC homeostasis and trafficking after transplantation, and examine the role of the host and graft DC in post-transplant immune responses. We also discuss the therapeutic implications of these studies.
Collapse
Affiliation(s)
- Miriam Merad
- Department of Gene and Cell Medicine, Mount Sinai Medical School, 1425 Madison Avenue, New York, NY 10029, USA.
| | | | | |
Collapse
|
190
|
Tateno H, Li H, Schur MJ, Bovin N, Crocker PR, Wakarchuk WW, Paulson JC. Distinct endocytic mechanisms of CD22 (Siglec-2) and Siglec-F reflect roles in cell signaling and innate immunity. Mol Cell Biol 2007; 27:5699-710. [PMID: 17562860 PMCID: PMC1952126 DOI: 10.1128/mcb.00383-07] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sialic acid-binding immunoglobulin-like lectins (siglecs) are predominately expressed on immune cells. They are best known as regulators of cell signaling mediated by cytoplasmic tyrosine motifs and are increasingly recognized as receptors for pathogens that bear sialic acid-containing glycans. Most siglec proteins undergo endocytosis, an activity tied to their roles in cell signaling and innate immunity. Here, we investigate the endocytic pathways of two siglec proteins, CD22 (Siglec-2), a regulator of B-cell signaling, and mouse eosinophil Siglec-F, a member of the rapidly evolving CD33-related siglec subfamily that are expressed on cells of the innate immune system. CD22 exhibits hallmarks of clathrin-mediated endocytosis and traffics to recycling compartments, consistent with previous reports demonstrating its localization to clathrin domains. Like CD22, Siglec-F mediates endocytosis of anti-Siglec-F and sialoside ligands, a function requiring intact tyrosine-based motifs. In contrast, however, we find that Siglec-F endocytosis is clathrin and dynamin independent, requires ADP ribosylation factor 6, and traffics to lysosomes. The results suggest that these two siglec proteins have evolved distinct endocytic mechanisms consistent with roles in cell signaling and innate immunity.
Collapse
Affiliation(s)
- Hiroaki Tateno
- Department of Molecular Biology and Molecular and Experimental Medicine, The Scripps Research Institute, San Diego, CA, USA
| | | | | | | | | | | | | |
Collapse
|
191
|
Crocker PR, Paulson JC, Varki A. Siglecs and their roles in the immune system. Nat Rev Immunol 2007; 7:255-66. [PMID: 17380156 DOI: 10.1038/nri2056] [Citation(s) in RCA: 1559] [Impact Index Per Article: 86.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell surfaces in the immune system are richly equipped with a complex mixture of glycans, which can be recognized by diverse glycan-binding proteins. The Siglecs are a family of sialic-acid-binding immunoglobulin-like lectins that are thought to promote cell-cell interactions and regulate the functions of cells in the innate and adaptive immune systems through glycan recognition. In this Review, we describe recent studies on signalling mechanisms and discuss the potential role of Siglecs in triggering endocytosis and in pathogen recognition. Finally, we discuss the postulated functions of the recently discovered CD33-related Siglecs and consider the factors that seem to be driving their rapid evolution.
Collapse
Affiliation(s)
- Paul R Crocker
- Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee DD 15EH, UK.
| | | | | |
Collapse
|
192
|
Avril T, Attrill H, Zhang J, Raper A, Crocker PR. Negative regulation of leucocyte functions by CD33-related siglecs. Biochem Soc Trans 2007; 34:1024-7. [PMID: 17073742 DOI: 10.1042/bst0341024] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The siglecs (sialic acid-binding Ig-like lectins) are a family of transmembrane receptors expressed in the haemopoietic, immune and nervous systems. The CD33-related siglecs are a distinct subset mostly expressed in the innate immune system where they can function as inhibitory receptors by suppressing the signalling mediated by receptors coupled with ITAMs (immunoreceptor tyrosine-based activation motifs). CD33-related siglecs contain ITIMs (immunoreceptor tyrosine-based inhibitory motifs) that recruit and activate SHP-1 [SH2 (Src homology 2) domain-containing phosphatase-1] and SHP-2. In addition, the ITIMs of CD33-related siglecs can suppress siglec-dependent adhesion of sialylated ligands and mediate endocytosis. Siglec-H is a recently characterized murine CD33-related endocytic receptor that lacks intrinsic tyrosine-based signalling motifs and is expressed selectively on PDCs (plasmacytoid dendritic cells). Siglec-H depends on DAP12 (DNAX-activating protein of 12 kDa) for surface expression and cross-linking with anti-siglec-H antibodies can selectively inhibit interferon-alpha production by PDCs following TLR9 (Toll-like receptor 9) ligation. Thus CD33-related siglecs are able to mediate diverse inhibitory functions of leucocytes in the innate immune system via both ITIM-dependent and -independent pathways.
Collapse
Affiliation(s)
- T Avril
- Wellcome Trust Biocentre, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | | | | | | | | |
Collapse
|
193
|
Yrlid U, Cerovic V, Milling S, Jenkins CD, Zhang J, Crocker PR, Klavinskis LS, MacPherson GG. Plasmacytoid dendritic cells do not migrate in intestinal or hepatic lymph. THE JOURNAL OF IMMUNOLOGY 2006; 177:6115-21. [PMID: 17056538 DOI: 10.4049/jimmunol.177.9.6115] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) recognize pathogen-associated molecules, particularly viral, and represent an important mechanism in innate defense. They may however, also have roles in steady-state tolerogenic responses at mucosal sites. pDCs can be isolated from blood, mucosa, and lymph nodes (LNs). Although pDCs can express peripherally derived Ags in LNs and at mucosal sites, it is not clear whether pDCs actually migrate from the periphery in lymph or whether LN pDCs acquire Ags by other mechanisms. To determine whether pDCs migrate in lymph, intestine or liver-draining LNs were removed and thoracic duct leukocytes (TDLs) were collected. TDLs expressing MHC-II and CD45R, but not TCRalphabeta or CD45RA, were then analyzed. These enriched TDLs neither transcribe type I IFNs nor secrete inflammatory cytokines in response to viral stimuli in vitro or after a TLR7/8 stimulus in vivo. In addition, these TDLs do not express CD5, CD90, CD200, or Siglec-H, but do express Ig, and therefore represent B cells, despite their lack of CD45RA expression. Intestinal and hepatic lymph are hence devoid of bona fide pDCs under both steady-state conditions and after TLR7/8 stimulation. This shows that any role for pDCs in Ag-specific T cell activation or tolerance must differ from the roles of classical dendritic cells, because it cannot result from peripheral Ag capture, followed by migration of pDCs via lymph to the LN.
Collapse
Affiliation(s)
- Ulf Yrlid
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
194
|
Angata T, Hayakawa T, Yamanaka M, Varki A, Nakamura M. Discovery of Siglec-14, a novel sialic acid receptor undergoing concerted evolution with Siglec-5 in primates. FASEB J 2006; 20:1964-73. [PMID: 17012248 DOI: 10.1096/fj.06-5800com] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Immune receptors that show high mutual sequence similarity and have antagonizing signaling properties are called paired receptors, and are believed to fine-tune immune responses. Siglecs are sialic acid-recognizing receptors of the immunoglobulin (Ig) superfamily expressed on immune cells. Human Siglec-5, encoded by SIGLEC5 gene, has four extracellular Ig-like domains and a cytosolic inhibitory motif. We discovered human Siglec-14 with three Ig-like domains, encoded by the SIGLEC14 gene, adjacent to SIGLEC5. Human Siglec-14 has almost complete sequence identity with human Siglec-5 at the first two Ig-like domains, shows a glycan binding preference similar to that of human Siglec-5, and associates with the activating adapter protein DAP12. Thus, Siglec-14 and Siglec-5 appear to be the first glycan binding paired receptors. Near-complete sequence identity of the amino-terminal part of human Siglec-14 and Siglec-5 indicates partial gene conversion between SIGLEC14 and SIGLEC5. Remarkably, SIGLEC14 and SIGLEC5 in other primates also show evidence of gene conversions within each lineage. Evidently, balancing the interactions between Siglec-14, Siglec-5 and their common ligand(s) had selective advantage during the course of evolution. The "essential arginine" critical for sialic acid recognition in both Siglec-14 and Siglec-5 is present in humans but mutated in almost all great ape alleles.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Arginine/genetics
- Evolution, Molecular
- Gene Conversion
- Humans
- Lectins/genetics
- Lectins/metabolism
- Membrane Proteins
- Polysaccharides/metabolism
- Primates
- Protein Binding
- Protein Structure, Tertiary
- Receptors, Cell Surface/genetics
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
Collapse
Affiliation(s)
- Takashi Angata
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan.
| | | | | | | | | |
Collapse
|
195
|
Blasius AL, Giurisato E, Cella M, Schreiber RD, Shaw AS, Colonna M. Bone marrow stromal cell antigen 2 is a specific marker of type I IFN-producing cells in the naive mouse, but a promiscuous cell surface antigen following IFN stimulation. THE JOURNAL OF IMMUNOLOGY 2006; 177:3260-5. [PMID: 16920966 DOI: 10.4049/jimmunol.177.5.3260] [Citation(s) in RCA: 358] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Type I IFN-producing cells (IPC) are sentinels of viral infections. Identification and functional characterization of these cells have been difficult because of their small numbers in blood and tissues and their complex cell surface phenotype. To overcome this problem in mice, mAbs recognizing IPC-specific cell surface molecules have been generated. In this study, we report the identification of new Abs specific for mouse IPC, which recognize the bone marrow stromal cell Ag 2 (BST2). Interestingly, previously reported IPC-specific Abs 120G8 and plasmacytoid dendritic cell Ag-1 also recognize BST2. BST2 is predominantly specific for mouse IPC in naive mice, but is up-regulated on most cell types following stimulation with type I IFNs and IFN-gamma. The activation-induced promiscuous expression of BST2 described in this study has important implications for the use of anti-BST2 Abs in identification and depletion of IPC. Finally, we show that BST2 resides within an intracellular compartment corresponding to the Golgi apparatus, and may be involved in trafficking secreted cytokines in IPC.
Collapse
Affiliation(s)
- Amanda L Blasius
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
196
|
Collins BE, Blixt O, Han S, Duong B, Li H, Nathan JK, Bovin N, Paulson JC. High-affinity ligand probes of CD22 overcome the threshold set by cis ligands to allow for binding, endocytosis, and killing of B cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:2994-3003. [PMID: 16920935 DOI: 10.4049/jimmunol.177.5.2994] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
CD22 (Siglec-2) is a key regulator of B cell signaling whose function is modulated by interaction with extracellular glycan ligands mediated through its N-terminal Ig domain. Its preferred ligand is the sequence Sia alpha2-6Gal that is abundantly expressed on N-linked glycans of B cell glycoproteins, and by binding to CD22 in cis causes CD22 to appear "masked" from binding to synthetic sialoside probes. Yet, despite the presence of cis ligands, CD22 redistributes to sites of cell contact by binding to trans ligands on neighboring cells. In this study, we demonstrate the dynamic equilibrium that exists between CD22 and its cis and trans ligands, using a high-affinity multivalent sialoside probe that competes with cis ligands and binds to CD22 on native human and murine B cells. Consistent with the constitutive endocytosis reported for CD22, the probes are internalized once bound, demonstrating that CD22 is an endocytic receptor that can carry ligand-decorated "cargo" to intracellular compartments. Conjugation of the sialoside probes to the toxin saporin resulted in toxin uptake and toxin-mediated killing of B lymphoma cell lines, suggesting an alternative approach for targeting CD22 for treatment of B cell lymphomas.
Collapse
Affiliation(s)
- Brian E Collins
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92024, USA
| | | | | | | | | | | | | | | |
Collapse
|
197
|
Blasius AL, Cella M, Maldonado J, Takai T, Colonna M. Siglec-H is an IPC-specific receptor that modulates type I IFN secretion through DAP12. Blood 2005; 107:2474-6. [PMID: 16293595 PMCID: PMC1895736 DOI: 10.1182/blood-2005-09-3746] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Natural interferon (IFN)-producing cells are the primary cell type responsible for production of type I IFN in response to viruses. Herein we report the identification of the first molecular marker of mouse natural interferon-producing cells (IPCs), a novel member of the sialic acid-binding immunoglobulin (Ig)-like lectin (Siglec) family termed Siglec-H. Siglec-H is expressed exclusively on IPCs and is unique among Siglec proteins in that it associates with the adaptor protein DAP12. Moreover, we show that DAP12 modulates the type I IFN response of IPCs to a Toll-like receptor 9 (TLR9) agonist. This observation explains our previous finding that stimulation of IPCs with 440c, a Siglec-H-specific antibody, reduces IPC secretion of type I IFN. Moreover, it supports a model in which engagement of DNAX-activation protein 12 (DAP12)-associated receptors with antibodies or low avidity endogenous ligands interferes with TLR-mediated cellular activation.
Collapse
Affiliation(s)
- Amanda L Blasius
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|