151
|
Can adjunctive therapies augment the efficacy of endovascular thrombolysis? A potential role for activated protein C. Neuropharmacology 2017; 134:293-301. [PMID: 28923278 DOI: 10.1016/j.neuropharm.2017.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/13/2017] [Indexed: 12/11/2022]
Abstract
In the management of acute ischemic stroke, vessel recanalization correlates with functional status, mortality, cost, and other outcome measures. Thrombolysis with intravenous tissue plasminogen activator has many limitations that restrict its applicability, but recent advances in the development of mechanical thrombectomy devices as well as improved systems of stroke care have resulted in greater likelihood of vessel revascularization. Nonetheless, there remains substantial discrepancy between rates of recanalization and rates of favorable outcome. The poor neurological recovery among some stroke patients despite successful recanalization confirms the need for adjuvant pharmacological therapy for neuroprotection and/or neurorestoration. Prior clinical trials of such drugs may have failed due to the inability of the agent to access the ischemic tissue beyond the occluded artery. A protocol that couples revascularization with concurrent delivery of a neuroprotectant drug offers the potential to enhance the benefit of thrombolysis. Analogs of activated protein C (APC) exert pleiotropic anti-inflammatory, anti-apoptotic, antithrombotic, cytoprotective, and neuroregenerative effects in ischemic stroke and thus appear to be promising candidates for this novel approach. A multicenter, prospective, double-blinded, dose-escalation Phase 2 randomized clinical trial has enrolled 110 patients to assess the safety, pharmacokinetics, and efficacy of human recombinant 3K3A-APC following endovascular thrombolysis. This article is part of the Special Issue entitled 'Cerebral Ischemia'.
Collapse
|
152
|
de Paula LÍS, Urban Paffaro A, Costa DSP, de Paula EV, Annichino - Bizzacchi JM. The role of clotting factor IX in the development of atherosclerosis. Thromb Res 2017; 157:79-81. [DOI: 10.1016/j.thromres.2017.04.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 04/20/2017] [Accepted: 04/25/2017] [Indexed: 11/29/2022]
|
153
|
Ma Y, Zhao Y, Zhang R, Liang X, Yin Z, Geng Y, Shu G, Song X, Zou Y, Li L, Yin L, Yue G, Li Y, Ye G, He C. α-Cyperone Inhibits PMA-Induced EPCR Shedding through PKC Pathway. Biol Pharm Bull 2017; 40:1678-1685. [PMID: 28804104 DOI: 10.1248/bpb.b17-00183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
α-Cyperone, a sesquiterpene compound represents 25.23% of the total oil and is the most abundant compound in Cyperus rotundus oil. Endothelial cell protein C receptor (EPCR) is a main member in protein C (PC) anti-coagulation system. EPCR could be shed from cell surface, and is mediated by tumor necrosis factor-α converting enzyme (TACE). Nothing that EPCR is a marker of vascular barrier integrity in vascular inflammatory disease and takes part in systemic inflammatory disease. In this study, we investigated whether α-cyperone could inhibit EPCR shedding. To observe the effect, we investigated this issue by detection the effect of α-cyperone on phorbol-12-myristate 13-acetate (PMA)-induced EPCR shedding in human umbilical vein endothelial cells (HUVECs). The cells were pretreated with α-cyperone for 12 h, and then stimulated by PMA for 1 h. The solute EPCR (sEPCR) and expression of membrane EPCR (mEPCR) were measured by enzyme-linked immunosorbent assay (ELISA) and Western blot. The mRNA, protein level and activity of TACE were tested by quantitative (q)RT-PCR, Western blot and InnoZyme TACE activity assay kit. Furthermore, we measured the protein level of mitogen-activated protein kinase (MAPK) signaling and protein kinase C (PKC) pathway under this condition by Western blot. The results showed that α-cyperone could suppress PMA-induced EPCR shedding through inhibiting the expression and activity of TACE. In addition, α-cyperone could inhibit PKC translocation, but not have an effect on phosphorylation of c-Jun N-terminal kinase (JNK), p38 and extracellular regulated protein kinases (ERK) 1/2. Given these results, α-cyperone inhibits PMA-induced EPCR shedding through PKC pathway, which will provide an experimental basis for further research on α-cyperone.
Collapse
Affiliation(s)
- Yu Ma
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University
| | - Yi Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University
| | - Ran Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University
| | - Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University
| | - Yi Geng
- Department of Pharmacy, Sichuan Agricultural University
| | - Gang Shu
- Department of Pharmacy, Sichuan Agricultural University
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University
| | - Guizhou Yue
- College of Science, Sichuan Agricultural University
| | - Yinglun Li
- Department of Pharmacy, Sichuan Agricultural University
| | - Gang Ye
- Department of Pharmacy, Sichuan Agricultural University
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University
| |
Collapse
|
154
|
Activated protein C light chain provides an extended binding surface for its anticoagulant cofactor, protein S. Blood Adv 2017; 1:1423-1426. [PMID: 29296783 DOI: 10.1182/bloodadvances.2017007005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/02/2017] [Indexed: 12/13/2022] Open
Abstract
Protein S anticoagulant cofactor sensitivity and PAR1 cleavage activity were assayed for 9 recombinant APC mutants.Residues L38, K43, I73, F95, and W115 on one face of the APC light chain define an extended surface containing the protein S binding site.
Collapse
|
155
|
Simon TP, Mueckenheim H, Wagner T, Sponholz C, Claus RA, Saenger J, Marx G, Schuerholz T. Organ-specific effects on inflammation and apoptosis of recombinant human activated protein C in a murine model of sepsis. EUR J INFLAMM 2017. [DOI: 10.1177/1721727x17721088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
There is legitimate interest in the effects of recombinant human activated protein C (rhAPC) on various organs and individual patients, but the specific effects on organ tissues during early sepsis remain unknown. Differences in the levels of organ damage may influence responses to drug therapy. We aimed to investigate whether rhAPC induces organ-specific effects on inflammation and apoptosis using randomized, experimental trials with male NMRI mice. Animals underwent caecal ligation and puncture, and after 12 h, sepsis inflammation and apoptosis were assessed by plasma cytokines, gene expression ratios and immunohistochemistry (IHC). RhAPC-treated animals exhibited increased physical activity and decreased cytokine release compared to untreated animals (interleukin-6 reduction 58%, P < 0.001). CD14 expression was higher in the heart and liver and decreased upon rhAPC application in the heart (−35%), liver and kidney (both −60%). Macrophage inflammatory protein 2 (MIP2) expression decreased in the heart (−58%) but not in the liver or kidney. IHC revealed decreased cleaved caspase-3 in the heart and kidney due to rhAPC intervention. Preservation of the endothelial PC receptor was significant only in the heart during sepsis ( P = 0.007). In early polymicrobial sepsis, inflammation was more pronounced in the heart and liver compared to the kidney. RhAPC exhibited protective effects, especially in the heart tissue, and led to reduced plasma levels of pro-inflammatory cytokines and improved physical activity.
Collapse
Affiliation(s)
- Tim-Philipp Simon
- Department of Intensive Care and Intermediate Care, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Hendrik Mueckenheim
- Department of Intensive Care and Intermediate Care, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Tobias Wagner
- Department of Anesthesiology and Intensive Care, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Christoph Sponholz
- Department of Anesthesiology and Intensive Care, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Ralf Alexander Claus
- Department of Anesthesiology and Intensive Care, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | | | - Gernot Marx
- Department of Intensive Care and Intermediate Care, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Tobias Schuerholz
- Department of Anesthesiology and Intensive Care, University of Rostock, Rostock, Germany
| |
Collapse
|
156
|
Gorbacheva LR, Kiseleva EV, Savinkova IG, Strukova SM. A new concept of action of hemostatic proteases on inflammation, neurotoxicity, and tissue regeneration. BIOCHEMISTRY (MOSCOW) 2017; 82:778-790. [DOI: 10.1134/s0006297917070033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
157
|
Variable phenotypic penetrance of thrombosis in adult mice after tissue-selective and temporally controlled Thbd gene inactivation. Blood Adv 2017; 1:1148-1158. [PMID: 28920104 DOI: 10.1182/bloodadvances.2017005058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Thrombomodulin (Thbd) exerts pleiotropic effects on blood coagulation, fibrinolysis, and complement system activity by facilitating the thrombin-mediated activation of protein C and thrombin-activatable fibrinolysis inhibitor and may have additional thrombin- and protein C (pC)-independent functions. In mice, complete Thbd deficiency causes embryonic death due to defective placental development. In this study, we used tissue-selective and temporally controlled Thbd gene ablation to examine the function of Thbd in adult mice. Selective preservation of Thbd function in the extraembryonic ectoderm and primitive endoderm via the Meox2Cre-transgene enabled normal intrauterine development of Thbd-deficient (Thbd-/-) mice to term. Half of the Thbd-/- offspring expired perinatally due to thrombohemorrhagic lesions. Surviving Thbd-/- animals only rarely developed overt thrombotic lesions, exhibited low-grade compensated consumptive coagulopathy, and yet exhibited marked, sudden-onset mortality. A corresponding pathology was seen in mice in which the Thbd gene was ablated after reaching adulthood. Supplementation of activated PC by transgenic expression of a partially Thbd-independent murine pC zymogen prevented the pathologies of Thbd-/- mice. However, Thbd-/- females expressing the PC transgene exhibited pregnancy-induced morbidity and mortality with near-complete penetrance. These findings suggest that Thbd function in nonendothelial embryonic tissues of the placenta and yolk sac affects through as-yet-unknown mechanisms the penetrance and severity of thrombosis after birth and provide novel opportunities to study the role of the natural Thbd-pC pathway in adult mice and during pregnancy.
Collapse
|
158
|
Stansborough RL, Bateman EH, Al-Dasooqi N, Bowen JM, Keefe DMK, Yeoh ASJ, Logan RM, Yeoh EEK, Stringer AM, Gibson RJ. Fractionated abdominal irradiation induces intestinal microvascular changes in an in vivo model of radiotherapy-induced gut toxicity. Support Care Cancer 2017; 25:1973-1983. [PMID: 28175996 DOI: 10.1007/s00520-017-3601-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 01/23/2017] [Indexed: 11/28/2022]
Abstract
PURPOSE Radiotherapy-induced gut toxicity (RIGT) is associated with diarrhoea, pain and rectal bleeding and can occur as an acute or chronic toxicity. The microvasculature has been shown to be altered in the development of RIGT; however, the features are not yet characterized. We hypothesized that apoptosis of microvascular cells would occur early in the gastrointestinal tract following fractionated irradiation, followed by late microvascular changes, including sclerosis and telangiectasis. METHODS Female Dark Agouti rats were treated with a 6-week fractionated radiation schedule of 3 × 2.5 Gy doses per week localized to the abdomen. At 3, 6 and 15 weeks, the intestines were assessed for markers of acute and chronic injury including morphological changes, collagen deposition, apoptosis and proliferation. RESULTS Apoptosis of microvascular cells significantly increased at 6 and 15 weeks in the jejunum (p = 0.0026 and p = 0.0062, respectively) and at 6 and 15 weeks in the colon (p < 0.0001 and p = 0.0005, respectively) in rats receiving fractionated radiation to the abdomen. Histopathological changes of the colon microvasculature were also seen from week 3, including thickening of the lamina propria and dilated, thickened, telangiectatic vessels. CONCLUSIONS Findings of this study provide evidence of regional and timing-specific changes in the intestinal microvasculature in response to fractionated radiotherapy which may play a role in development of both acute and chronic RIGT.
Collapse
Affiliation(s)
- Romany L Stansborough
- School of Medicine, University of Adelaide, North Terrace, Adelaide, 5005, Australia.
| | - Emma H Bateman
- School of Medicine, University of Adelaide, North Terrace, Adelaide, 5005, Australia
| | - Noor Al-Dasooqi
- School of Medicine, University of Adelaide, North Terrace, Adelaide, 5005, Australia
- Division of Health Sciences, University of South Australia, Adelaide, Australia
| | - Joanne M Bowen
- School of Medicine, University of Adelaide, North Terrace, Adelaide, 5005, Australia
| | - Dorothy M K Keefe
- School of Medicine, University of Adelaide, North Terrace, Adelaide, 5005, Australia
| | - Ann S J Yeoh
- School of Medicine, University of Adelaide, North Terrace, Adelaide, 5005, Australia
| | - Richard M Logan
- School of Medicine, University of Adelaide, North Terrace, Adelaide, 5005, Australia
| | - Eric E K Yeoh
- School of Medicine, University of Adelaide, North Terrace, Adelaide, 5005, Australia
| | - Andrea M Stringer
- School of Medicine, University of Adelaide, North Terrace, Adelaide, 5005, Australia
- Division of Health Sciences, University of South Australia, Adelaide, Australia
| | - Rachel J Gibson
- School of Medicine, University of Adelaide, North Terrace, Adelaide, 5005, Australia
- Division of Health Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
159
|
Scarlatescu E, Tomescu D, Arama SS. Anticoagulant Therapy in Sepsis. The Importance of Timing. ACTA ACUST UNITED AC 2017; 3:63-69. [PMID: 29967873 PMCID: PMC5769917 DOI: 10.1515/jccm-2017-0011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/24/2017] [Indexed: 11/25/2022]
Abstract
Sepsis associated coagulopathy is due to the inflammation-induced activation of coagulation pathways concomitant with dysfunction of anticoagulant and fibrinolytic systems, leading to different degrees of haemostasis dysregulation. This response is initially beneficial, contributing to antimicrobial defence, but when control is lost coagulation activation leads to widespread microvascular thrombosis and subsequent organ failure. Large clinical trials of sepsis-related anticoagulant therapies failed to show survival benefits, but posthoc analysis of databases and several smaller studies showed beneficial effects of anticoagulants in subgroups of patients with early sepsis-induced disseminated intravascular coagulation. A reasonable explanation could be the difference in timing of anticoagulant therapy and patient heterogeneity associated with large trials. Proper selection of patients and adequate timing are required for treatment to be successful. The time when coagulation activation changes from advantageous to detrimental represents the right moment for the administration of coagulation-targeted therapy. In this way, the defence function of the haemostatic system is preserved, and the harmful effects of overwhelming coagulation activation are avoided.
Collapse
Affiliation(s)
- Ecaterina Scarlatescu
- Department of Anesthesiology and Intensive Care III, Fundeni Clinical Institute, Bucharest, Romania
| | - Dana Tomescu
- Department of Anesthesiology and Intensive Care III, Fundeni Clinical Institute, Bucharest, Romania.,University of Medicine and Pharmacy, "Carol Davila", Bucharest, Romania
| | | |
Collapse
|
160
|
Depleted nitric oxide and prostaglandin E 2 levels are correlated with endothelial dysfunction in β-thalassemia/HbE patients. Int J Hematol 2017; 106:366-374. [PMID: 28474291 DOI: 10.1007/s12185-017-2247-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/01/2017] [Accepted: 05/01/2017] [Indexed: 01/22/2023]
Abstract
Mechanisms of vascular disorders in β-thalassemia/HbE patients remain poorly understood. In the present study, we aimed to determine the presence of endothelial dysfunction and its association with altered vascular mediators in this population. Forty-three β-thalassemia/HbE patients without clinically documented vascular symptoms and 43 age-sex-matched healthy controls were enrolled. Endothelial function was assessed using flow-mediated dilatation (FMD) before and after administration of nitroglycerine (NTG). β-Thalassemia/HbE patients showed a significant endothelial dysfunction using FMD. The percentage change in the brachial artery diameter before NTG was significantly lower in the thalassemia group compared to the control (5.0 ± 5.9 vs. 9.0 ± 4.0%, p < 0.01) while no significant differences after NTG (18.4 ± 8.3 vs. 17.8 ± 6.3%, p = 0.71). Plasma nitric oxide metabolites (NO x ) and prostaglandin E2 (PGE2) levels were significantly decreased in β-thalassemia/HbE (117.2 ± 27.3 vs. 135.8 ± 11.3 µmol/L, p < 0.01) and (701.9 ± 676.0 vs. 1374.7 ± 716.5 pg/mL, p < 0.01), respectively, while a significant elevation in soluble thrombomodulin levels in β-thalassemia/HbE (3587.7 ± 1310.0 vs. 3093.9 ± 583.8 pg/mL, p = 0.028). NO x and PGE2 levels were significantly correlated with FMD (r = 0.27, p = 0.025) and (r = 0.35, p = 0.003), respectively. These findings suggest roles for endothelial mediators and a new mechanism underlying endothelial dysfunction in β-thalassemia/HbE patients.
Collapse
|
161
|
Garbuzova-Davis S, Kurien C, Thomson A, Falco D, Ahmad S, Staffetti J, Steiner G, Abraham S, James G, Mahendrasah A, Sanberg PR, Borlongan CV. Endothelial and Astrocytic Support by Human Bone Marrow Stem Cell Grafts into Symptomatic ALS Mice towards Blood-Spinal Cord Barrier Repair. Sci Rep 2017; 7:884. [PMID: 28408761 PMCID: PMC5429840 DOI: 10.1038/s41598-017-00993-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/17/2017] [Indexed: 12/11/2022] Open
Abstract
Vascular pathology, including blood-CNS barrier (B-CNS-B) damage via endothelial cell (EC) degeneration, is a recently recognized hallmark of Amyotrophic Lateral Sclerosis (ALS) pathogenesis. B-CNS-B repair may be a new therapeutic approach for ALS. This study aimed to determine effects of transplanted unmodified human bone marrow CD34+ (hBM34+) cells into symptomatic G93A mice towards blood-spinal cord barrier (BSCB) repair. Thirteen weeks old G93A mice intravenously received one of three different doses of hBM34+ cells. Cell-treated, media-treated, and control mice were euthanized at 17 weeks of age. Immunohistochemical (anti-human vWF, CD45, GFAP, and Iba-1) and motor neuron histological analyses were performed in cervical and lumbar spinal cords. EB levels in spinal cord parenchyma determined capillary permeability. Transplanted hBM34+ cells improved behavioral disease outcomes and enhanced motor neuron survival, mainly in high-cell-dose mice. Transplanted cells differentiated into ECs and engrafted within numerous capillaries. Reduced astrogliosis, microgliosis, and enhanced perivascular end-feet astrocytes were also determined in spinal cords, mostly in high-cell-dose mice. These mice also showed significantly decreased parenchymal EB levels. EC differentiation, capillary engraftment, reduced capillary permeability, and re-established perivascular end-feet astrocytes in symptomatic ALS mice may represent BSCB repair processes, supporting hBM34+ cell transplantation as a future therapeutic strategy for ALS patients.
Collapse
Affiliation(s)
- Svitlana Garbuzova-Davis
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America. .,Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America. .,Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America. .,Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America.
| | - Crupa Kurien
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America
| | - Avery Thomson
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America
| | - Dimitri Falco
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America
| | - Sohaib Ahmad
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America
| | - Joseph Staffetti
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America
| | - George Steiner
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America
| | - Sophia Abraham
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America
| | - Greeshma James
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America
| | - Ajay Mahendrasah
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America
| | - Paul R Sanberg
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America.,Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America.,Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America.,Department of Psychiatry, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America
| | - Cesario V Borlongan
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America.,Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, United States of America
| |
Collapse
|
162
|
Chen C, Yang L, Villoutreix BO, Wang X, Ding Q, Rezaie AR. Gly74Ser mutation in protein C causes thrombosis due to a defect in protein S-dependent anticoagulant function. Thromb Haemost 2017; 117:1358-1369. [PMID: 28405673 DOI: 10.1160/th17-01-0043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/25/2017] [Indexed: 12/30/2022]
Abstract
Protein C is a vitamin K-dependent serine protease zymogen in plasma which upon activation by thrombin in complex with thrombomodulin (TM) down-regulates the clotting cascade by a feedback loop inhibition mechanism. Activated protein C (APC) exerts its anticoagulant function through protein S-dependent degradation of factors Va and VIIIa. We recently identified a venous thrombosis patient whose plasma level of protein C antigen is normal, but its anticoagulant activity is only 34 % of the normal level. Genetic analysis revealed that the proband and her younger brother carry a novel heterozygous mutation c.346G>A, p.Gly74Ser (G74S) in PROC. Thrombin generation assay indicated that the TM-dependent anticoagulant activity of the proband's plasma has been significantly impaired. We expressed protein C-G74S in mammalian cells and characterised its properties in established coagulation assays. We demonstrate that the protein C variant can be normally activated by the thrombin-TM complex and the resulting APC mutant also exhibits normal amidolytic and proteolytic activities toward both FVa and FVIIIa. However, it was discovered the protein S-dependent catalytic activity of APC variant toward both procoagulant cofactors has been significantly impaired. Protein S concentration-dependence of FVa degradation revealed that the capacity of APC variant to interact with the cofactor has been markedly impaired. The same results were obtained for inactivation of FVa-Leiden suggesting that the protein S-dependent activity of APC variant toward cleavage of Arg-306 site has been adversely affected. These results provide insight into the mechanism through which G74S substitution in APC causes thrombosis in the proband carrying this mutation.
Collapse
Affiliation(s)
| | | | | | | | | | - Alireza R Rezaie
- Alireza R. Rezaie, PhD, Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA, Tel: +1 405 271 4711, E-mail: , or, Qiulan Ding, PhD, Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025 China, Tel.: +86 21 54667770, Fax: +86 21 64333548, E-mail:
| |
Collapse
|
163
|
Waasdorp M, Duitman J, Spek CA. Plasmin reduces fibronectin deposition by mesangial cells in a protease-activated receptor-1 independent manner. Biochem Biophys Rep 2017; 10:152-156. [PMID: 29114573 PMCID: PMC5637235 DOI: 10.1016/j.bbrep.2017.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/17/2017] [Accepted: 03/28/2017] [Indexed: 12/31/2022] Open
Abstract
Background Protease-activated receptor-1 (PAR-1) potentiates diabetic nephropathy (DN) as evident from reduced kidney injury in diabetic PAR-1 deficient mice. Although thrombin is the prototypical PAR-1 agonist, anticoagulant treatment does not limit DN in experimental animal models suggesting that thrombin is not the endogenous PAR-1 agonist driving DN. Objectives To identify the endogenous PAR-1 agonist potentiating diabetes-induced nephropathy. Methods Unbiased protease expression profiling in glomeruli from human kidneys with DN was performed using publically available microarray data. The identified prime candidate PAR-1 agonist was subsequently analysed for PAR-1-dependent induction of fibrosis in vitro. Results Of the 553 proteases expressed in the human genome, 247 qualified as potential PAR-1 agonists of which 71 were significantly expressed above background in diabetic glomeruli. The recently identified PAR-1 agonist plasmin(ogen), together with its physiological activator tissue plasminogen activator, were among the highest expressed proteases. Plasmin did however not induce mesangial proliferation and/or fibronectin deposition in vitro. In a PAR-1 independent manner, plasmin even reduced fibronectin deposition. Conclusion Expression profiling identified plasmin as potential endogenous PAR-1 agonist driving DN. Instead of inducing fibronectin expression, plasmin however reduced mesangial fibronectin deposition in vitro. Therefore we conclude that plasmin may not be the endogenous PAR-1 agonist potentiating DN. Plasmin is highly expressed in kidneys of diabetic nephropathy patients. Plasmin limits fibronectin deposition by mesangial cells. Plasmin-dependent PAR-1 activation does not drive diabetic nephropathy.
Collapse
Affiliation(s)
- Maaike Waasdorp
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam 1105 AZ, The Netherlands
| | - JanWillem Duitman
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam 1105 AZ, The Netherlands.,INSERM, UMR1152, Medical School Xavier Bichat, Paris, France.,Paris Diderot University, Sorbonne Paris Cité, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling), LabEx Inflamex, Paris, France
| | - C Arnold Spek
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
164
|
Griffin JH, Fernández JA, Lyden PD, Zlokovic BV. Activated protein C promotes neuroprotection: mechanisms and translation to the clinic. Thromb Res 2017; 141 Suppl 2:S62-4. [PMID: 27207428 DOI: 10.1016/s0049-3848(16)30368-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Activated protein C (APC) is a plasma serine protease that is capable of antithrombotic, anti-inflammatory, anti-apoptotic, and cell-signaling activities. Animal injury studies show that recombinant APC and some of its mutants are remarkably therapeutic for a wide range of injuries. In particular, for neurologic injuries, APC reduces damage caused by ischemia/reperfusion in the brain, by acute brain trauma, and by chronic neurodegenerative conditions. For these neuroprotective effects, APC requires endothelial cell protein C receptor. APC activates cell signaling networks with alterations in gene expression profiles by activating protease activated receptors 1 and 3. To minimize APC-induced bleeding risk, APC variants were engineered to lack > 90% anticoagulant activity but retain normal cell signaling. The neuroprotective APC mutant, 3K3A-APC which has Lys191-193 mutated to Ala191-193, is very neuroprotective and it is currently in clinical trials for ischemic stroke.
Collapse
Affiliation(s)
- John H Griffin
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA; Department of Medicine, Division of Hematology/Oncology, University of California San Diego, San Diego, CA, USA.
| | - José A Fernández
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Patrick D Lyden
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Berislav V Zlokovic
- Department of Neurosurgery, University of Southern California, Keck School of Medicine, Los Angeles, CA; Department of Neurosurgery, Zilkha Neurogenetic Institute, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
165
|
Ebrahimi S, Rahmani F, Behnam-Rassouli R, Hoseinkhani F, Parizadeh MR, Keramati MR, Khazaie M, Avan A, Hassanian SM. Proinflammatory signaling functions of thrombin in cancer. J Cell Physiol 2017; 232:2323-2329. [PMID: 28004386 DOI: 10.1002/jcp.25753] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022]
Abstract
Thrombin-induced activation of protease-activated receptors (PARs) represents a link between inflammation and cancer. Proinflammatory signaling functions of thrombin are associated with several inflammatory diseases including neurodegenerative, cardiovascular, and of special interest in this review cancer. Thrombin-induced inflammatory responses up-regulates expression of cytokines, adhesion molecules, angiogenic factors, and matrix-degrading proteases that facilitate tumor cells proliferation, angiogenesis, invasion, and metastasis. This review summarizes the current knowledge about the mechanisms of thrombin-mediated proinflammatory responses in cancer pathology for a better understanding and hence a better management of this disease.
Collapse
Affiliation(s)
- Safieh Ebrahimi
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Rahmani
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Fatemeh Hoseinkhani
- Department of Medical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Parizadeh
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Keramati
- Cancer Molecular Pathology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaie
- Department of Medical Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Molecular Medicine Group, Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
166
|
Okoye HC, Eweputanna LI, Okpani AOU, Ejele OA. Associations between pre-eclampsia and protein C and protein S levels among pregnant Nigerian women. Int J Gynaecol Obstet 2017; 137:26-30. [PMID: 28092096 DOI: 10.1002/ijgo.12085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 11/01/2016] [Accepted: 12/13/2016] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To evaluate levels of protein C and free protein S among women with pre-eclampsia, and determine whether there is a relationship between deficiencies and pre-eclampsia. METHODS A cross-sectional study was conducted at a hospital in Nigeria from July 2013 to March 2014 among 90 pregnant women with pre-eclampsia (blood pressure ≥140/90 mm Hg, proteinuria ≥300 mg in 24 hours) and 90 normotensive pregnant women (control group). Plasma levels of protein C and free protein S were analyzed by enzyme-linked immunosorbent assay, and protein C activity by a chromogenic method. RESULTS Mean protein C antigen and activity levels did not differ between groups (P=0.639 and P=0.444, respectively). The incidence of protein C antigen and activity deficiency also did not differ (P=0.288 and P>0.99, respectively). The mean free protein S antigen level was higher among women with pre-eclampsia (54.48%±19.58%) than in the control group (47.23%±10.27%; P=0.004). No woman in the control group had protein S deficiency, as compared with 2 (2%) of the women with pre-eclampsia (P=0.497). No association was found between deficiencies of these proteins and pre-eclampsia. CONCLUSION Deficiencies of protein C and free protein S are unlikely to be etiopathogenetic for pre-eclampsia; therefore, therapeutic intervention should focus on other potential pathogenetic pathways.
Collapse
Affiliation(s)
- Helen C Okoye
- Department of Hematology and Immunology, University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu, Nigeria
| | - Lisa I Eweputanna
- Department of Radiology, University of Port Harcourt Teaching Hospital, Port Harcourt, Nigeria
| | - Anthony O U Okpani
- Department of Obstetrics and Gynecology, University of Port Harcourt Teaching Hospital, Port Harcourt, Nigeria
| | - Oseikhuemen A Ejele
- Department of Hematology and Blood Transfusion, University of Port Harcourt Teaching Hospital, Port Harcourt, Nigeria
| |
Collapse
|
167
|
Pathogenicity Determinants of the Human Malaria Parasite Plasmodium falciparum Have Ancient Origins. mSphere 2017; 2:mSphere00348-16. [PMID: 28101534 PMCID: PMC5227068 DOI: 10.1128/msphere.00348-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 12/21/2016] [Indexed: 11/20/2022] Open
Abstract
Cytoadhesion of P. falciparum-infected erythrocytes in the microcirculation is a major virulence determinant. P. falciparum is descended from a subgenus of parasites that also infect chimpanzees and gorillas and exhibits strict host species specificity. Despite their high genetic similarity to P. falciparum, it is unknown whether ape parasites encode adhesion properties similar to those of P. falciparum or are as virulent in their natural hosts. Consequently, it has been unclear when virulent adhesion traits arose in P. falciparum and how long they have been present in the parasite population. It is also unknown whether cytoadhesive interactions pose a barrier to cross-species transmission. We show that parasite domains from the chimpanzee malaria parasite P. reichenowi bind human receptors with specificity similar to that of P. falciparum. Our findings suggest that parasite adhesion traits associated with both mild and severe malaria have much earlier origins than previously appreciated and have important implications for virulence evolution in a major human pathogen. Plasmodium falciparum, the most deadly of the human malaria parasites, is a member of the Laverania subgenus that also infects African Great Apes. The virulence of P. falciparum is related to cytoadhesion of infected erythrocytes in microvasculature, but the origin of dangerous parasite adhesion traits is poorly understood. To investigate the evolutionary history of the P. falciparum cytoadhesion pathogenicity determinant, we studied adhesion domains from the chimpanzee malaria parasite P. reichenowi. We demonstrate that the P. reichenowi var gene repertoire encodes cysteine-rich interdomain region (CIDR) domains which bind human CD36 and endothelial protein C receptor (EPCR) with the same levels of affinity and at binding sites similar to those bound by P. falciparum. Moreover, P. reichenowi domains interfere with the protective function of the activated protein C-EPCR pathway on endothelial cells, a presumptive virulence trait in humans. These findings provide evidence for ancient evolutionary origins of two key cytoadhesion properties of P. falciparum that contribute to human infection and pathogenicity. IMPORTANCE Cytoadhesion of P. falciparum-infected erythrocytes in the microcirculation is a major virulence determinant. P. falciparum is descended from a subgenus of parasites that also infect chimpanzees and gorillas and exhibits strict host species specificity. Despite their high genetic similarity to P. falciparum, it is unknown whether ape parasites encode adhesion properties similar to those of P. falciparum or are as virulent in their natural hosts. Consequently, it has been unclear when virulent adhesion traits arose in P. falciparum and how long they have been present in the parasite population. It is also unknown whether cytoadhesive interactions pose a barrier to cross-species transmission. We show that parasite domains from the chimpanzee malaria parasite P. reichenowi bind human receptors with specificity similar to that of P. falciparum. Our findings suggest that parasite adhesion traits associated with both mild and severe malaria have much earlier origins than previously appreciated and have important implications for virulence evolution in a major human pathogen.
Collapse
|
168
|
Nik Kamarudin NAA, Mohammed NA, Mustaffa KMF. Aptamer Technology: Adjunct Therapy for Malaria. Biomedicines 2017; 5:biomedicines5010001. [PMID: 28536344 PMCID: PMC5423489 DOI: 10.3390/biomedicines5010001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/08/2016] [Accepted: 12/16/2016] [Indexed: 02/07/2023] Open
Abstract
Malaria is a life-threatening parasitic infection occurring in the endemic areas, primarily in children under the age of five, pregnant women, and patients with human immunodeficiency virus and acquired immunodeficiency syndrome (HIV)/(AIDS) as well as non-immune individuals. The cytoadherence of infected erythrocytes (IEs) to the host endothelial surface receptor is a known factor that contributes to the increased prevalence of severe malaria cases due to the accumulation of IEs, mainly in the brain and other vital organs. Therefore, further study is needed to discover a new potential anti-adhesive drug to treat severe malaria thus reducing its mortality rate. In this review, we discuss how the aptamer technology could be applied in the development of a new adjunct therapy for current malaria treatment.
Collapse
Affiliation(s)
- Nik Abdul Aziz Nik Kamarudin
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, Kubang Kerian, 16150 Kelantan, Malaysia.
| | - Nurul Adila Mohammed
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, Kubang Kerian, 16150 Kelantan, Malaysia.
| | - Khairul Mohd Fadzli Mustaffa
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, Kubang Kerian, 16150 Kelantan, Malaysia.
| |
Collapse
|
169
|
Radioprotection as a Method to Enhance the Therapeutic Ratio of Radiotherapy. CANCER DRUG DISCOVERY AND DEVELOPMENT 2017. [DOI: 10.1007/978-3-319-40854-5_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
170
|
Margaritopoulos GA, Antoniou KM. Reply: Heparin versus Warfarin in Interstitial Pulmonary Fibrosis: The Quest for the Right Anticoagulant Continues. Am J Respir Crit Care Med 2017; 195:142-143. [DOI: 10.1164/rccm.201606-1323le] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
171
|
Ding Q, Yang L, Zhao X, Wu W, Wang X, Rezaie AR. Paradoxical bleeding and thrombotic episodes of dysprothrombinaemia due to a homozygous Arg382His mutation. Thromb Haemost 2016; 117:479-490. [PMID: 27975099 DOI: 10.1160/th16-10-0750] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/20/2016] [Indexed: 12/26/2022]
Abstract
We have characterised the pathogenic basis of dysprothrombinaemia in a patient exhibiting paradoxical bleeding and thrombotic defects during pregnancy and postpartum. Genetic analysis revealed that the proband is homozygous for the prothrombin Arg382His mutation, possessing only ~1 % clotting activity. The proband experienced severe bleeding episodes during her pregnancy, which required treatment with prothrombin complex concentrates, and then pulmonary embolism and deep-vein thrombosis at 28 days postpartum, which required treatment with LMWH and fresh frozen plasma. Analysis of haemostatic parameters revealed that the subject had elevated FDP and DD and decreased fibrinogen levels, indicating the presence of hyperfibrinolysis. Thrombin generation and clotting assays with the proband's plasma in the presence of soluble thrombomodulin and tissue-type plasminogen activator indicated a defect in activation of both protein C and thrombin activatable fibrinolysis inhibitor (TAFI). Unlike normal plasma, no TAFI activation could be detected in the patient's plasma. The expression and characterisation of recombinant prothrombin Arg382His indicated that zymogen activation by prothrombinase was markedly impaired and the activation of protein C and TAFI by thrombin-Arg382His was impaired 600-fold and 2500-fold, respectively. The recombinant thrombin mutant exhibited impaired catalytic activity toward both fibrinogen and PAR1 as determined by clotting and signalling assays. However, the mutant activated factor XI normally in both the absence and presence of polyphosphates. Arg382 is a key residue on (pro)exosite-1 of prothrombin and kinetic analysis of substrate activation suggested that the poor zymogenic activity of the mutant is due to its inability to bind factor Va in the prothrombinase complex.
Collapse
Affiliation(s)
| | | | | | | | - Xuefeng Wang
- Xuefeng Wang, MD, Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025 China, Tel.: +86 21 54667770, Fax: +86 21 64333548, E-mail:
| | - Alireza R Rezaie
- Alireza R. Rezaie, PhD, Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK 73104, USA, Tel.: +1 405 271 4711, Fax: +1 405 271 3137, E-mail:
| |
Collapse
|
172
|
EXTENDED CYTOPROTECTIVE EFFECT OF AUTOPHAGY IN THE LATE STAGES OF SEPSIS AND FLUCTUATIONS IN SIGNAL TRANSDUCTION PATHWAYS IN A RAT EXPERIMENTAL MODEL OF KIDNEY INJURY. Shock 2016; 45:139-47. [PMID: 26513702 DOI: 10.1097/shk.0000000000000505] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The impact of a potential autophagy (LC3a/b) deregulation in hyper and in hypo stages during sepsis-induced kidney injury and the temporal profile of phosphorylated extracellular signal-related kinase, P38 (pP38), Akt (pAKT), and 13-3-3β protein were investigated in the current study, using a rat cecal ligation and puncture (CLP) model, by means of flow cytometry and immunohistochemistry. Cell viability was assessed by protein C zymogen concentrate (PC), 7-aminoactinomycin D (7-AAD) staining and inflammation by S100 protein immunostaining. The impact of reduced kidney inflammation in autophagy was assessed by PC administration, an anti-inflammatory and cytoprotective substance. Sepsis induction increased LC3a/b expression, which presented two peaks at 6 and 36 h after CLP, both in the percentage of positive cells (P = 0.024, P = 0.025, respectively) and in fluorescence intensity. At 6 h when inflammation was already apparent, LC3a/b increase was escorted by phosphorylated extracellular signal-related kinase stimulation and high cell viability (65%), designating autophagy as a cytoprotective mechanism against microbial infection. The phosphorylation of P38 was delayed to 12 h after CLP, when autophagy was reduced. pAkt and 14-3-3β expression was stimulated between 6 and 36 h after CLP, although a slight inhibition of pAkt within each cell was detected (lower MnIX value). During the second peak, inflammation was intensified, necrosis was significantly increased with LC3a/b+/7-AAD + cells to present a 1.5-fold increase. Protein C zymogen concentrate administration declined autophagy at 6 and 36 h after CLP and reduced necrosis, whereas double positive LC3a/b and 7-AAD cells were increased by 1.68 and 2.78-fold, respectively. These data open new prospectives in sepsis treatment, since they further support that autophagy represents a cytoprotective mechanism triggered by stress conditions, rather than an alternative cell death pathway.
Collapse
|
173
|
Zhao R, Liang H, Clarke E, Jackson C, Xue M. Inflammation in Chronic Wounds. Int J Mol Sci 2016; 17:ijms17122085. [PMID: 27973441 PMCID: PMC5187885 DOI: 10.3390/ijms17122085] [Citation(s) in RCA: 544] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 12/26/2022] Open
Abstract
Non-healing chronic wounds present a major biological, psychological, social, and financial burden on both individual patients and the broader health system. Pathologically extensive inflammation plays a major role in the disruption of the normal healing cascade. The causes of chronic wounds (venous, arterial, pressure, and diabetic ulcers) can be examined through a juxtaposition of normal healing and the rogue inflammatory response created by the common components within chronic wounds (ageing, hypoxia, ischaemia-reperfusion injury, and bacterial colonisation). Wound bed care through debridement, dressings, and antibiotics currently form the basic mode of treatment. Despite recent setbacks, pharmaceutical adjuncts form an interesting area of research.
Collapse
Affiliation(s)
- Ruilong Zhao
- Sutton Arthritis Research Laboratory, Kolling Institute of Medical Research, University of Sydney, NSW 2065, Australia.
| | - Helena Liang
- Sutton Arthritis Research Laboratory, Kolling Institute of Medical Research, University of Sydney, NSW 2065, Australia.
| | - Elizabeth Clarke
- Murray Maxwell Biomechanics Laboratory, Kolling Institute of Medical Research, University of Sydney, NSW 2065, Australia.
| | - Christopher Jackson
- Sutton Arthritis Research Laboratory, Kolling Institute of Medical Research, University of Sydney, NSW 2065, Australia.
| | - Meilang Xue
- Sutton Arthritis Research Laboratory, Kolling Institute of Medical Research, University of Sydney, NSW 2065, Australia.
| |
Collapse
|
174
|
Bernabeu M, Smith JD. EPCR and Malaria Severity: The Center of a Perfect Storm. Trends Parasitol 2016; 33:295-308. [PMID: 27939609 DOI: 10.1016/j.pt.2016.11.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 12/20/2022]
Abstract
Severe malaria due to Plasmodium falciparum infection causes nearly half a million deaths per year. The different symptomatology and disease manifestations among patients have hampered understanding of severe malaria pathology and complicated efforts to develop targeted disease interventions. Infected erythrocyte sequestration in the microvasculature plays a critical role in the development of severe disease, and there is increasing evidence that cytoadherent parasites interact with host factors to enhance the damage caused by the parasite. The recent discovery that parasite binding to endothelial protein C receptor (EPCR) is associated with severe disease has suggested new mechanisms of pathology and provided new avenues for severe malaria adjunctive therapy research.
Collapse
Affiliation(s)
- Maria Bernabeu
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | - Joseph D Smith
- Center for Infectious Disease Research, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
175
|
Ku SK, Kim J, Kim SC, Bae JS. Suppressive effects of dabrafenib on endothelial protein C receptor shedding. Arch Pharm Res 2016; 40:282-290. [DOI: 10.1007/s12272-016-0869-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/27/2016] [Indexed: 11/30/2022]
|
176
|
Keshava S, Rao LVM, Pendurthi UR. Intrapleural Adenoviral-mediated Endothelial Cell Protein C Receptor Gene Transfer Suppresses the Progression of Malignant Pleural Mesothelioma in a Mouse Model. Sci Rep 2016; 6:36829. [PMID: 27833109 PMCID: PMC5104979 DOI: 10.1038/srep36829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/21/2016] [Indexed: 12/29/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive thoracic cancer with a high mortality rate as it responds poorly to standard therapeutic interventions. Our recent studies showed that expression of endothelial cell protein C receptor (EPCR) in MPM cells suppresses tumorigenicity. The present study was aimed to investigate the mechanism by which EPCR suppresses MPM tumor growth and evaluate whether EPCR gene therapy could suppress the progression of MPM in a mouse model of MPM. Measurement of cytokines from the pleural lavage showed that mice implanted with MPM cells expressing EPCR had elevated levels of IFNγ and TNFα compared to mice implanted with MPM cells lacking EPCR. In vitro studies demonstrated that EPCR expression renders MPM cells highly susceptible to IFNγ + TNFα-induced apoptosis. Intrapleural injection of Ad.EPCR into mice with an established MPM originating from MPM cells lacking EPCR reduced the progression of tumor growth. Ad.EPCR treatment elicited recruitment of macrophages and NK cells into the tumor microenvironment and increased IFNγ and TNFα levels in the pleural space. Ad.EPCR treatment resulted in a marked increase in tumor cell apoptosis. In summary, our data show that EPCR expression in MPM cells promotes tumor cell apoptosis, and intrapleural EPCR gene therapy suppresses MPM progression.
Collapse
Affiliation(s)
- Shiva Keshava
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Texas, USA
| | - L Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Texas, USA
| | - Usha R Pendurthi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Texas, USA
| |
Collapse
|
177
|
Carnemolla R, Villa CH, Greineder CF, Zaitsev S, Patel KR, Kowalska MA, Atochin DN, Cines DB, Siegel DL, Esmon CT, Muzykantov VR. Targeting thrombomodulin to circulating red blood cells augments its protective effects in models of endotoxemia and ischemia-reperfusion injury. FASEB J 2016; 31:761-770. [PMID: 27836986 DOI: 10.1096/fj.201600912r] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/24/2016] [Indexed: 12/11/2022]
Abstract
Endothelial thrombomodulin (TM) regulates coagulation and inflammation via several mechanisms, including production of activated protein C (APC). Recombinant APC and soluble fragments of TM (sTM) have been tested in settings associated with insufficiency of the endogenous TM/APC pathway, such as sepsis. We previously designed a fusion protein of TM [single-chain variable fragment antibody (scFv)/TM] targeted to red blood cells (RBCs) to improve pharmacokinetics and antithrombotic effects without increasing bleeding. Here, scFv/TM was studied in mouse models of systemic inflammation and ischemia-reperfusion injury. Injected concomitantly with or before endotoxin, scFv/TM provided more potent protection against liver injury and release of pathological mediators than sTM, showing similar efficacy at up to 50-fold lower doses. scFv/TM provided protection when injected after endotoxin, whereas sTM did not, and augmented APC production by thrombin ∼50-fold more than sTM. However, scFv/TM injected after endotoxin did not reduce thrombin/antithrombin complexes; nor did antibodies that block APC anticoagulant activity suppress the prophylactic anti-inflammatory effect of scFv/TM. Therefore, similar to endogenous TM, RBC-anchored scFv/TM activates several protective pathways. Finally, scFv/TM was more effective at reducing cerebral infarct volume and alleviated neurological deficits than sTM after cerebral ischemia/reperfusion injury. These results indicate that RBC-targeted scFv/TM exerts multifaceted cytoprotective effects and may find utility in systemic and focal inflammatory and ischemic disorders.-Carnemolla, R., Villa, C. H., Greineder, C. F., Zaitseva, S., Patel, K. R., Kowalska, M. A., Atochin, D. N., Cines, D. B., Siegel, D. L., Esmon, C. T., Muzykantov, V. R. Targeting thrombomodulin to circulating red blood cells augments its protective effects in models of endotoxemia and ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Ronald Carnemolla
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; USA.,Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; USA
| | - Carlos H Villa
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; USA.,Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; USA.,Department of Pathology and Laboratory Medicine, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; USA
| | - Colin F Greineder
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; USA.,Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; USA
| | - Sergei Zaitsev
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; USA.,Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; USA.,Department of Pathology and Laboratory Medicine, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; USA
| | - Kruti R Patel
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - M Anna Kowalska
- Division of Hematology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Dmitriy N Atochin
- Division of Cardiology, Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Douglas B Cines
- Department of Pathology and Laboratory Medicine, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; USA
| | - Don L Siegel
- Department of Pathology and Laboratory Medicine, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; USA
| | - Charles T Esmon
- Department of Pathology, Coagulation Biology Laboratory, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA; and.,Department of Biochemistry and Molecular Biology, Coagulation Biology Laboratory, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Vladimir R Muzykantov
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; USA; .,Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; USA
| |
Collapse
|
178
|
Griffin JH, Mosnier LO, Fernández JA, Zlokovic BV. 2016 Scientific Sessions Sol Sherry Distinguished Lecturer in Thrombosis: Thrombotic Stroke: Neuroprotective Therapy by Recombinant-Activated Protein C. Arterioscler Thromb Vasc Biol 2016; 36:2143-2151. [PMID: 27758767 PMCID: PMC5119536 DOI: 10.1161/atvbaha.116.308038] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 09/21/2016] [Indexed: 01/19/2023]
Abstract
APC (activated protein C), derived from the plasma protease zymogen, is antithrombotic and anti-inflammatory. In preclinical injury models, recombinant APC provides neuroprotection for multiple injuries, including ischemic stroke. APC acts directly on brain endothelial cells and neurons by initiating cell signaling that requires multiple receptors. Two or more major APC receptors mediate APC's neuroprotective cell signaling. When bound to endothelial cell protein C receptor, APC can cleave protease-activated receptor 1, causing biased cytoprotective signaling that reduces ischemia-induced injury. Pharmacological APC alleviates bleeding induced by tissue-type plasminogen activator in murine ischemic stroke studies. Remarkably, APC's signaling promotes neurogenesis. The signaling-selective recombinant variant of APC, 3K3A-APC, was engineered to lack most of the APC's anticoagulant activity but retain APC's cell signaling actions. Recombinant 3K3A-APC is in ongoing National Institutes of Health (NIH)-funded clinical trials for ischemic stroke.
Collapse
Affiliation(s)
- John H Griffin
- From the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA (J.H.G., L.O.M., J.A.F.); Division of Hematology/Oncology, Department of Medicine, University of California, San Diego (J.H.G.); and Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles (B.V.Z.).
| | - Laurent O Mosnier
- From the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA (J.H.G., L.O.M., J.A.F.); Division of Hematology/Oncology, Department of Medicine, University of California, San Diego (J.H.G.); and Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles (B.V.Z.)
| | - José A Fernández
- From the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA (J.H.G., L.O.M., J.A.F.); Division of Hematology/Oncology, Department of Medicine, University of California, San Diego (J.H.G.); and Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles (B.V.Z.)
| | - Berislav V Zlokovic
- From the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA (J.H.G., L.O.M., J.A.F.); Division of Hematology/Oncology, Department of Medicine, University of California, San Diego (J.H.G.); and Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles (B.V.Z.)
| |
Collapse
|
179
|
Gavlovsky PJ, Tonnerre P, Guitton C, Charreau B. Expression of MHC class I-related molecules MICA, HLA-E and EPCR shape endothelial cells with unique functions in innate and adaptive immunity. Hum Immunol 2016; 77:1084-1091. [PMID: 26916837 DOI: 10.1016/j.humimm.2016.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 02/03/2016] [Accepted: 02/18/2016] [Indexed: 10/22/2022]
Abstract
Endothelial cells (ECs) located at the interface of blood and tissues display regulatory activities toward coagulation, inflammation and vascular homeostasis. By expressing MHC class I and II antigens, ECs also contribute to immune responses. In transplantation, graft ECs are both trigger and target of alloimmune responses. ECs express a set of MHC class I-like or structural related molecules such as HLA-E, MHC class I related chain A (MICA) and the endothelial protein C receptor (EPCR) that provide multiple and unique functions to ECs. HLA-E is a low polymorphic ligand for the CD94/NKG2A/C receptors, and triggers HLA-E-restricted CD8+αβT cell responses against viral and bacterial peptides. MICA is a highly polymorphic ligand for NKG2D activating NK and costimulating CD8+T cells and a ligand for tissue-resident Vδ1 γδ T subsets. More intriguing is the role of EPCR, a key regulator of coagulation, as a ligand for a circulating subset of Vδ2- γδ T cells. Coexpression of this set of MHC class I-related molecules that allow ECs to activate a subtle array of immune responses upon stress and infection may also influence transplant outcome. Here, the respective structure, expression, and functions of HLA-E, MICA and EPCR as well as the impact of their polymorphism are reviewed.
Collapse
Affiliation(s)
- Pierre-Jean Gavlovsky
- INSERM, UMR1064, LabEx Transplantex, Nantes F44000, France; CHU Nantes, Institut de Transplantation et de Recherche en Transplantation-Urologie-Néphrologie, ITUN, Nantes F44000, France; LUNAM Université de Nantes, Faculté de Médecine, Nantes F44000, France; IHU-CESTI, Nantes F44000, France
| | - Pierre Tonnerre
- INSERM, UMR1064, LabEx Transplantex, Nantes F44000, France; LUNAM Université de Nantes, Faculté de Médecine, Nantes F44000, France
| | - Christophe Guitton
- INSERM, UMR1064, LabEx Transplantex, Nantes F44000, France; CHU Nantes, Institut de Transplantation et de Recherche en Transplantation-Urologie-Néphrologie, ITUN, Nantes F44000, France; LUNAM Université de Nantes, Faculté de Médecine, Nantes F44000, France
| | - Béatrice Charreau
- INSERM, UMR1064, LabEx Transplantex, Nantes F44000, France; CHU Nantes, Institut de Transplantation et de Recherche en Transplantation-Urologie-Néphrologie, ITUN, Nantes F44000, France; LUNAM Université de Nantes, Faculté de Médecine, Nantes F44000, France.
| |
Collapse
|
180
|
Hamedani NS, Rühl H, Zimmermann JJ, Heiseler T, Oldenburg J, Mayer G, Pötzsch B, Müller J. In Vitro Evaluation of Aptamer-Based Reversible Inhibition of Anticoagulant Activated Protein C as a Novel Supportive Hemostatic Approach. Nucleic Acid Ther 2016; 26:355-362. [PMID: 27736370 DOI: 10.1089/nat.2016.0645] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Activated protein C (APC) is a critical regulator of thrombin formation and thereby protects against thrombosis. On the other hand, overwhelming formation of APC increases the risk of bleeding such as in trauma-induced coagulopathy. Thus, pharmacological inhibition of APC activity may improve blood clottability in certain clinical situations. In this study, we demonstrate that the DNA aptamer HS02-52G binds with fast onset (1.118 ± 0.013 × 105 M-1 s-1) to APC and possesses a long residence time of 13.5 min within the aptamer-APC complex. Functional analysis revealed HS02-52G as a highly potent and specific inhibitor of APC in plasma and whole blood with IC50 values ≤30 nM, whose activity can be readily neutralized by the short complementary DNA molecule AD22. These features qualify the novel aptamer-antidote pair as a candidate treatment option for acute APC-related bleedings.
Collapse
Affiliation(s)
- Nasim Shahidi Hamedani
- 1 Institute of Experimental Hematology and Transfusion Medicine, University of Bonn Medical Center , Bonn, Germany
| | - Heiko Rühl
- 1 Institute of Experimental Hematology and Transfusion Medicine, University of Bonn Medical Center , Bonn, Germany
| | - Julia Janina Zimmermann
- 1 Institute of Experimental Hematology and Transfusion Medicine, University of Bonn Medical Center , Bonn, Germany
| | | | - Johannes Oldenburg
- 1 Institute of Experimental Hematology and Transfusion Medicine, University of Bonn Medical Center , Bonn, Germany
| | - Günter Mayer
- 3 Life and Medical Sciences Institute, University of Bonn , Bonn, Germany
| | - Bernd Pötzsch
- 1 Institute of Experimental Hematology and Transfusion Medicine, University of Bonn Medical Center , Bonn, Germany
| | - Jens Müller
- 1 Institute of Experimental Hematology and Transfusion Medicine, University of Bonn Medical Center , Bonn, Germany
| |
Collapse
|
181
|
Abstract
BACKGROUND Previously, we found that plasma protein C (PC) activity ≤10% significantly increased the probability of the occurrence of death during neonatal sepsis. Accordingly, if the activity of plasma PC declined during the course of sepsis to ≤10%, we administered a nonactivated PC zymogen to increase a PC activity. The aim of that retrospective analysis was to explore treatment effects of PC zymogen supplementation in septic infants, with plasma PC activity ≤10%. METHODS A database was used to locate 85 newborns treated with PC from among 458 analyzed infants with confirmed sepsis. RESULTS The median birth weight and gestational age of treated infants were, respectively, 1010.0 g and 29 weeks. In 47 infants, early-onset sepsis developed, whereas in 38 neonates, late-onset sepsis was recognized. PC was given as a single dose of 200 IU/kg. Among 458 septic patients, death occurred in 19 newborns (4.2%), exclusively in infants with plasma PC activity ≤10%. In 15 infants, death occurred in the course of early-onset sepsis and 4 newborns died of late-onset sepsis (early-onset sepsis vs. late-onset sepsis; P = 0.036; χ with the Yates correction). CONCLUSIONS An increased risk of death in septic neonates with plasma PC activity ≤10% suggests the necessity for its evaluation and possibility of supplementation of PC zymogen.
Collapse
|
182
|
Gock H, Lee KFE, Murray-Segal L, Mysore TB, d'Apice AJF, Salvaris EJ, Cowan PJ. Human Endothelial Protein C Receptor Overexpression Protects Intraportal Islet Grafts in Mice. Transplant Proc 2016; 48:2200-7. [PMID: 27569971 DOI: 10.1016/j.transproceed.2016.02.080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 02/02/2016] [Indexed: 02/06/2023]
Abstract
Islet transplantation can potentially cure type 1 diabetes mellitus, but it is limited by a shortage of human donors as well as by islet graft destruction by inflammatory and thrombotic mechanisms. A possible solution to these problems is to use genetically modified pig islets. Endothelial protein C receptor (EPCR) enhances protein C activation and regulates coagulation, inflammation, and apoptosis. We hypothesized that human EPCR (hEPCR) expression on donor islets would improve graft survival and function. Islets from an hEPCR transgenic mouse line strongly expressed the transgene, and hEPCR expression was maintained after islet isolation. Islets were transplanted from hEPCR mice and wild-type (WT) littermates into diabetic mice in a marginal-dose syngeneic intraportal islet transplantation model. The blood glucose level normalized within 5 days in 5 of 7 recipients of hEPCR islets, compared with only 2 of 7 recipients of WT islets (P < .05). Transplanted hEPCR islets had better preserved morphology and more intense insulin staining than WT grafts, and they retained transgene expression. The improved engraftment compared with WT islets suggests that inflammation and coagulation associated with the transplant process can be reduced by hEPCR expression on donor tissue.
Collapse
Affiliation(s)
- H Gock
- Immunology Research Centre, St Vincent's Hospital, Melbourne, Australia; Department of Medicine, University of Melbourne, Melbourne, Australia
| | - K F E Lee
- Immunology Research Centre, St Vincent's Hospital, Melbourne, Australia; Department of Medicine, University of Melbourne, Melbourne, Australia
| | - L Murray-Segal
- Immunology Research Centre, St Vincent's Hospital, Melbourne, Australia
| | - T B Mysore
- Immunology Research Centre, St Vincent's Hospital, Melbourne, Australia; Department of Medicine, University of Melbourne, Melbourne, Australia
| | - A J F d'Apice
- Immunology Research Centre, St Vincent's Hospital, Melbourne, Australia; Department of Medicine, University of Melbourne, Melbourne, Australia
| | - E J Salvaris
- Immunology Research Centre, St Vincent's Hospital, Melbourne, Australia
| | - P J Cowan
- Immunology Research Centre, St Vincent's Hospital, Melbourne, Australia; Department of Medicine, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
183
|
Ebrahimi S, Jaberi N, Avan A, Ryzhikov M, Keramati MR, Parizadeh MR, Hassanian SM. Role of thrombin in the pathogenesis of central nervous system inflammatory diseases. J Cell Physiol 2016; 232:482-485. [PMID: 27458694 DOI: 10.1002/jcp.25501] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 07/25/2016] [Indexed: 12/13/2022]
Abstract
Thrombin initiates proinflammatory signaling responses through activation of protease-activated receptors (PARs) in in vitro and in vivo systems. Proinflammatory signaling function of thrombin increases secretion of proinflammatory cytokines and chemokines, triggers vascular permeability, promotes leukocyte migration, and induces adhesion molecule expression. Thrombin as a potent signaling molecule is strongly implicated in a number of proinflammatory disorders including severe sepsis, cancer, cardiovascular disease, and of special interest in this review neurodegenerative disorders. This review summarizes the role of thrombin in the pathogenesis of central nervous system (CNS) inflammatory diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), promoting greater understanding and clinical management of these diseases. J. Cell. Physiol. 232: 482-485, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Safieh Ebrahimi
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Najme Jaberi
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Molecular Medicine Group, Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Cancer Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mikhail Ryzhikov
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, Saint Louis, Missouri
| | - Mohammad Reza Keramati
- Cancer Molecular Pathology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Parizadeh
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Biochemistry of Nutrition Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, Saint Louis, Missouri.,Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
184
|
Occupancy of human EPCR by protein C induces β-arrestin-2 biased PAR1 signaling by both APC and thrombin. Blood 2016; 128:1884-1893. [PMID: 27561318 DOI: 10.1182/blood-2016-06-720581] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/23/2016] [Indexed: 01/09/2023] Open
Abstract
Activation of protease-activated receptor 1 (PAR1) by activated protein C (APC) and thrombin elicits paradoxical cytoprotective and cytotoxic signaling responses in vascular endothelial cells through cleavage of the receptor at Arg-46 and Arg-41 protease recognition sites, respectively. It has been reported that unlike a disruptive G-protein-mediated PAR1 signaling by thrombin, APC induces a protective β-arrestin-2 biased PAR1 signaling by unknown mechanisms. We hypothesize that the occupancy of endothelial protein C receptor (EPCR) by the Gla-domain of protein C/APC is responsible for the β-arrestin-2 biased PAR1 signaling independent of the protease cleavage site. To test this hypothesis, we monitored the signaling specificity of thrombin in endothelial cells in response to lipopolysaccharide (LPS) with or without pretreatment of cells with protein C-S195A. The PAR1-dependent recruitment of β-arrestin-2 in response to LPS by both APC and thrombin was analyzed by functional, gene silencing, and signaling assays. Results indicate that similar to APC, thrombin exerts cytoprotective effects via β-arrestin-2 biased PAR1 signaling. Similar to APC, thrombin triggered β-arrestin-2-dependent recruitment of disheveled 2 (Dvl-2) in PC-S195A pretreated cells. Further studies in HeLa cells transfected with PAR1 constructs revealed that EPCR occupancy initiates β-arrestin-2 biased PAR1 signaling independent of the protease cleavage sites. We demonstrate that EPCR occupancy recruits G-protein coupled receptor kinase 5, thereby inducing β-arrestin-2 biased PAR1 signaling by both APC and thrombin. In support of a physiological relevance for these results, intraperitoneal administration of PC-S195A conferred a cytoprotective effect for thrombin in an in vivo inflammatory model.
Collapse
|
185
|
Majewska A, Gajewska M, Dembele K, Maciejewski H, Prostek A, Jank M. Lymphocytic, cytokine and transcriptomic profiles in peripheral blood of dogs with atopic dermatitis. BMC Vet Res 2016; 12:174. [PMID: 27553600 PMCID: PMC4995625 DOI: 10.1186/s12917-016-0805-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/18/2016] [Indexed: 02/06/2023] Open
Abstract
Background Canine atopic dermatitis (cAD) is a common chronic and pruritic skin disease in dogs. The development of cAD involves complex interactions between environmental antigens, genetic predisposition and a number of disparate cell types. The aim of the present study was to perform comprehensive analyses of peripheral blood of AD dogs in relation to healthy subjects in order to determine the changes which would be characteristic for cAD. Results The number of cells in specific subpopulations of lymphocytes was analyzed by flow cytometry, concentration of chosen pro- and anti-inflammatory cytokines (IL-4, IL-10, IL-13, TNF-α, TGF-β1) was determined by ELISA; and microarray analysis was performed on RNA samples isolated from peripheral blood nuclear cells of AD and healthy dogs. The number of Th cells (CD3+CD4+) in AD and healthy dogs was similar, whereas the percentage of Tc (CD3+CD8+) and Treg (CD4+CD25+ Foxp3+) cells increased significantly in AD dogs. Increased concentrations of IL-13 and TNF-α, and decreased levels of IL-10 and TGF-β1 was observed in AD dogs. The level of IL-4 was similar in both groups of animals. Results of the microarray experiment revealed differentially expressed genes involved in transcriptional regulation (e.g., transcription factors: SMAD2, RORA) or signal transduction pathways (e.g., VEGF, SHB21, PROC) taking part in T lymphocytes lineages differentiation and cytokines synthesis. Conclusions Results obtained indicate that CD8+ T cells, beside CD4+ T lymphocytes, contribute to the development of the allergic response. Increased IL-13 concentration in AD dogs suggests that this cytokine may play more important role than IL-4 in mediating changes induced by allergic inflammation. Furthermore, observed increase in Treg cells in parallel with high concentrations of TNF-α and low levels of IL-10 and TGF-β1 in the peripheral blood of AD dogs point at the functional insufficiency of Treg cells in patients with AD. Electronic supplementary material The online version of this article (doi:10.1186/s12917-016-0805-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alicja Majewska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland.
| | - Małgorzata Gajewska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Kourou Dembele
- Department of Small Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Henryk Maciejewski
- Department of Computer Engineering, Wroclaw University of Technology, Wrocław, Poland
| | - Adam Prostek
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Michał Jank
- Veterinary Institute, Faculty of Veterinary Medicine and Animal Sciences, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
186
|
Ku SK, Yoon EK, Lee HG, Han MS, Lee T, Bae JS. Inhibitory effects of lysozyme on endothelial protein C receptor shedding in vitro and in vivo. BMB Rep 2016; 48:624-9. [PMID: 25902836 PMCID: PMC4911204 DOI: 10.5483/bmbrep.2015.48.11.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Indexed: 02/02/2023] Open
Abstract
Lysozyme protects us from the ever-present danger of bacterial infection and binds to bacterial lipopolysaccharide (LPS) with high affinity. Beyond its role in the activation of protein C, the endothelial cell protein C receptor (EPCR) plays an important role in the cytoprotective pathway. EPCR can be shed from the cell surface, which is mediated by tumor necrosis factor-α converting enzyme (TACE). However, little is known about the effects of lysozyme on EPCR shedding. We investigated this issue by monitoring the effects of lysozyme on phorbol-12-myristate 13-acetate (PMA)-, tumor necrosis factor (TNF)-α-, interleukin (IL)-1βand cecal ligation and puncture (CLP)-mediated EPCR shedding and underlying mechanism. Data demonstrate that lysozyme induced potent inhibition of PMA-, TNF-α-, IL-1β-, and CLP-induced EPCR shedding. Lysozyme also inhibited the expression and activity of PMA-induced TACE in endothelial cells. These results demonstrate the potential of lysozyme as an anti-EPCR shedding reagent against PMA-mediated and CLP-mediated EPCR shedding. [BMB Reports 2015; 48(11): 624-629]
Collapse
Affiliation(s)
- Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea
| | - Eun-Kyung Yoon
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Hyun Gyu Lee
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Min-Su Han
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu Fatima Hospital, Daegu 41199, Korea
| | - Taeho Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
187
|
Martos L, Bonanad S, Ramón LA, Cid AR, Bonet E, Corral J, Miralles M, España F, Navarro S, Medina P. A simplified assay for the quantification of circulating activated protein C. Clin Chim Acta 2016; 459:101-104. [DOI: 10.1016/j.cca.2016.05.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 10/21/2022]
|
188
|
Interaction between Endothelial Protein C Receptor and Intercellular Adhesion Molecule 1 to Mediate Binding of Plasmodium falciparum-Infected Erythrocytes to Endothelial Cells. mBio 2016; 7:mBio.00615-16. [PMID: 27406562 PMCID: PMC4958245 DOI: 10.1128/mbio.00615-16] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intercellular adhesion molecule 1 (ICAM-1) and the endothelial protein C receptor (EPCR) are candidate receptors for the deadly complication cerebral malaria. However, it remains unclear if Plasmodium falciparum parasites with dual binding specificity are involved in cytoadhesion or different parasite subpopulations bind in brain microvessels. Here, we investigated this issue by studying different subtypes of ICAM-1-binding parasite lines. We show that two parasite lines expressing domain cassette 13 (DC13) of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family have dual binding specificity for EPCR and ICAM-1 and further mapped ICAM-1 binding to the first DBLβ domain following the PfEMP1 head structure in both proteins. As PfEMP1 head structures have diverged between group A (EPCR binders) and groups B and C (CD36 binders), we also investigated how ICAM-1-binding parasites with different coreceptor binding traits influence P. falciparum-infected erythrocyte binding to endothelial cells. Whereas levels of binding to tumor necrosis factor alpha (TNF-α)-stimulated endothelial cells from the lung and brain by all ICAM-1-binding parasite lines increased, group A (EPCR and ICAM-1) was less dependent than group B (CD36 and ICAM-1) on ICAM-1 upregulation. Furthermore, both group A DC13 parasite lines had higher binding levels to brain endothelial cells (a microvascular niche with limited CD36 expression). This study shows that ICAM-1 is a coreceptor for a subset of EPCR-binding parasites and provides the first evidence of how EPCR and ICAM-1 interact to mediate parasite binding to both resting and TNF-α-activated primary brain and lung endothelial cells. Cerebral malaria is a severe neurological complication of P. falciparum infection associated with infected erythrocyte (IE) binding in cerebral vessels. Yet little is known about the mechanisms by which parasites adhere in the brain or other microvascular sites. Here, we studied parasite lines expressing group A DC13-containing PfEMP1 variants, a subset that has previously been shown to have high brain cell- and other endothelial cell-binding activities. We show that DC13-containing PfEMP1 variants have dual EPCR- and ICAM-1-binding activities and that both receptors are involved in parasite adherence to lung and brain endothelial cells. As both EPCR and ICAM-1 are implicated in cerebral malaria, these findings suggest the possibility that parasites with dual binding activities are involved in parasite sequestration to microvascular beds with low CD36 expression, such as the brain, and we urge more research into the multiadhesive properties of PfEMP1 variants.
Collapse
|
189
|
Physiological cerebrovascular remodeling in response to chronic mild hypoxia: A role for activated protein C. Exp Neurol 2016; 283:396-403. [PMID: 27412766 DOI: 10.1016/j.expneurol.2016.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/13/2016] [Accepted: 07/08/2016] [Indexed: 11/22/2022]
Abstract
Activated protein C (APC) is a serine protease that promotes favorable changes in vascular barrier integrity and post-ischemic angiogenic remodeling in animal models of ischemic stroke, and its efficacy is currently being investigated in clinical ischemic stroke trials. Interestingly, application of sub-clinical chronic mild hypoxia (CMH) (8% O2) also promotes angiogenic remodeling and increased tight junction protein expression, suggestive of enhanced blood-brain barrier (BBB) integrity, though the role of APC in mediating the influence of CMH has not been investigated. To examine this potential link, we studied CMH-induced cerebrovascular remodeling after treating mice with two different reagents: (i) a function-blocking antibody that neutralizes APC activity, and (ii) exogenous recombinant murine APC. While CMH promoted endothelial proliferation, increased vascular density, and upregulated the angiogenic endothelial integrins α5β1 and αvβ3, these events were almost completely abolished by functional blockade of APC. Consistent with these findings, addition of exogenous recombinant APC enhanced CMH-induced endothelial proliferation, expansion of total vascular area and further enhanced the CMH-induced right-shift in vessel size distribution. Taken together, our findings support a key role for APC in mediating physiological remodeling of cerebral blood vessels in response to CMH.
Collapse
|
190
|
The Effect of Activated Protein C on Attenuation of Ischemia-Reperfusion Injury in a Rat Muscle Flap Model. Ann Plast Surg 2016; 75:448-54. [PMID: 26360654 DOI: 10.1097/sap.0000000000000118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ischemia-reperfusion injury is often the final and irreversible factor causing flap failure in microsurgery. The salvage of a microsurgical flap with an ischemia-reperfusion injury contributes to the success of microsurgical flap transfers. Activated protein C (APC), a serine protease with anticoagulant and anti-inflammatory activities, has been shown to improve ischemic flap survival. To date, APC has yet to be applied to models of free flap with ischemia-reperfusion injury. In this study, we aimed to investigate the effect of APC on gracilis flap ischemia-reperfusion injury induced by gracilis vessels clamping and reopening. Sixty male Sprague-Dawley rats were randomly divided into 2 groups. After 4 hours of clamping for ischemia, flaps were reperfused and recombinant human APC (25 μg/kg) or saline was injected in the flaps through pedicles. At 0, 1, 4, 18, and 24 hours after injection (n = 6 for each time point), the tissue samples were harvested. The muscle viability at 24 hours in saline group was 54.8% (15.1%), whereas the APC-treated group was 90.0% (4.3%) (P < 0.05). The induced nitric oxide synthase (iNOS) mRNA expression increased with the time after reperfusion, which were 0.93 (0.25) to 2.09 (0.22) in saline group, and 0.197 (0.15) to 0.711 (0.15) in the APC-treated group. iNOS mRNA expression in the APC-treated group was significantly higher than the saline group at 1, 18, and 24 hours (P < 0.05). Numerous inflammatory cells were observed infiltrating and invading the muscle fibers in the saline group more than the APC-treated group. Increased number of polymorphonuclear cells was also noted in the saline group compared with the APC-treated group (P < 0.05). In conclusion, APC treatment can significantly attenuate ischemia-reperfusion injury and increase the survival of the free flap through down-regulating iNOS mRNA expression and reducing the inflammatory cells. Further research is still needed to be done on various mechanisms in which APC is protective to prevent tissue damage.
Collapse
|
191
|
Abstract
Disseminated intravascular coagulation (DIC) is an acquired syndrome characterized by widespread intravascular activation of coagulation that can be caused by infectious insults (such as sepsis) and non-infectious insults (such as trauma). The main pathophysiological mechanisms of DIC are inflammatory cytokine-initiated activation of tissue factor-dependent coagulation, insufficient control of anticoagulant pathways and plasminogen activator inhibitor 1-mediated suppression of fibrinolysis. Together, these changes give rise to endothelial dysfunction and microvascular thrombosis, which can cause organ dysfunction and seriously affect patient prognosis. Recent observations have pointed to an important role for extracellular DNA and DNA-binding proteins, such as histones, in the pathogenesis of DIC. The International Society on Thrombosis and Haemostasis (ISTH) established a DIC diagnostic scoring system consisting of global haemostatic test parameters. This scoring system has now been well validated in diverse clinical settings. The theoretical cornerstone of DIC management is the specific and vigorous treatment of the underlying conditions, and DIC should be simultaneously managed to improve patient outcomes. The ISTH guidance for the treatment of DIC recommends treatment strategies that are based on current evidence. In this Primer, we provide an updated overview of the pathophysiology, diagnosis and management of DIC and discuss the future directions of basic and clinical research in this field.
Collapse
|
192
|
Glynn JJ, Hinds MT. Bioactive Anti-Thrombotic Modification of Decellularized Matrix for Vascular Applications. Adv Healthc Mater 2016; 5:1439-46. [PMID: 27072858 PMCID: PMC5753589 DOI: 10.1002/adhm.201600020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/04/2016] [Indexed: 12/20/2022]
Abstract
The decellularized matrix derived from porcine small intestinal submucosa (SIS) is a widely used biomaterial being investigated for numerous applications. Currently, thrombus deposition and neointimal hyperplasia have limited the use of SIS in some vascular applications. To limit these detrimental processes, this work applies bioactive, endothelial-inspired properties to the material. SIS is modified with the endothelial cell membrane protein thrombomodulin and the glycosaminoglycan heparin to facilitate protein C activation and anticoagulant activity, respectively. Modifying SIS with thrombomodulin alone enables robust activated protein C (APC) generation, and thrombomodulin activity is maintained after prolonged exposure to fluid shear and blood plasma. Heparin-modified SIS has a potent anticoagulant activity. When both modifications are applied sequentially, SIS modified first with thrombomodulin then with heparin retains the full activity of each individual modification. Tubular SIS devices are connected to a baboon arteriovenous shunt to quantify thrombus deposition on these materials. After being exposed to flowing whole blood for 60 min, SIS devices modified first with thrombomodulin then with heparin have significantly less platelet accumulation compared to unmodified SIS devices. These studies demonstrate that modifying SIS with thrombomodulin and heparin confers APC generation and anticoagulant activity that results in reduced thrombogenesis.
Collapse
Affiliation(s)
- Jeremy J Glynn
- Department of Biomedical Engineering, Oregon Health & Science University, Mail Code: CH13B 3303 SW Bond Ave, Portland, OR, 97239, USA
| | - Monica T Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Mail Code: CH13B 3303 SW Bond Ave, Portland, OR, 97239, USA
| |
Collapse
|
193
|
Kang H, Lee T, Bae JS. Suppressive Effects of Pelargonidin on Endothelial Protein C Receptor Shedding via the Inhibition of TACE Activity and MAP Kinases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:771-84. [PMID: 27222063 DOI: 10.1142/s0192415x16500427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Beyond its role in the activation of protein C, the endothelial cell protein C receptor (EPCR) plays an important role in the cytoprotective pathway. EPCR can be shed from the cell surface, which is mediated by tumor necrosis factor-[Formula: see text] converting enzyme (TACE). Pelargonidin is a well-known red pigment found in plants, and has been reported to have important biological activities that are potentially beneficial to human health. However, little is known about the effects of pelargonidin on EPCR shedding. We investigated this issue by monitoring the effects of pelargonidin on phorbol-12-myristate 13-acetate (PMA)-, tumor necrosis factor (TNF)-[Formula: see text]-, interleukin (IL)-1β-, and cecal ligation and puncture (CLP)-mediated EPCR shedding and by investigating the underlying mechanism of pelargonidin action. Data demonstrate that pelargonidin induced potent inhibition of PMA-, TNF-[Formula: see text]-, IL-1β-, and CLP-induced EPCR shedding by inhibiting the phosphorylation of mitogen-activated protein kinases (MAPKs) such as p38, janus kinase (JNK), and extracellular signal-regulated kinase (ERK) 1/2. Pelargonidin also inhibited the expression and activity of PMA-induced TACE in endothelial cells. These results demonstrate the potential of pelargonidin as an anti-EPCR shedding reagent against PMA- and CLP-mediated EPCR shedding.
Collapse
Affiliation(s)
- Hyejin Kang
- 1 College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Taeho Lee
- 1 College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Jong-Sup Bae
- 1 College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 702-701, Republic of Korea
| |
Collapse
|
194
|
Severe adult malaria is associated with specific PfEMP1 adhesion types and high parasite biomass. Proc Natl Acad Sci U S A 2016; 113:E3270-9. [PMID: 27185931 DOI: 10.1073/pnas.1524294113] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The interplay between cellular and molecular determinants that lead to severe malaria in adults is unexplored. Here, we analyzed parasite virulence factors in an infected adult population in India and investigated whether severe malaria isolates impair endothelial protein C receptor (EPCR), a protein involved in coagulation and endothelial barrier permeability. Severe malaria isolates overexpressed specific members of the Plasmodium falciparum var gene/PfEMP1 (P. falciparum erythrocyte membrane protein 1) family that bind EPCR, including DC8 var genes that have previously been linked to severe pediatric malaria. Machine learning analysis revealed that DC6- and DC8-encoding var transcripts in combination with high parasite biomass were the strongest indicators of patient hospitalization and disease severity. We found that DC8 CIDRα1 domains from severe malaria isolates had substantial differences in EPCR binding affinity and blockade activity for its ligand activated protein C. Additionally, even a low level of inhibition exhibited by domains from two cerebral malaria isolates was sufficient to interfere with activated protein C-barrier protective activities in human brain endothelial cells. Our findings demonstrate an interplay between parasite biomass and specific PfEMP1 adhesion types in the development of adult severe malaria, and indicate that low impairment of EPCR function may contribute to parasite virulence.
Collapse
|
195
|
Alsultan A, Gale AJ, Kurban K, Khalifah M, Albadr FB, Griffin JH. Activation-resistant homozygous protein C R229W mutation causing familial perinatal intracranial hemorrhage and delayed onset of thrombosis. Thromb Res 2016; 143:17-21. [PMID: 27172833 DOI: 10.1016/j.thromres.2016.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/08/2016] [Accepted: 04/22/2016] [Indexed: 11/18/2022]
Abstract
INTRODUCTION We describe a family with two first-degree cousins who presented with similar phenotypes characterized by neonatal intracranial hemorrhage and subsequent onset of thrombosis. PATIENTS/METHODS We enrolled the two affected patients, five unaffected family members and fifty-five normal controls. Clinical, laboratory, and radiological characteristics of patients were obtained. Exome sequencing was performed for the older affected child. PROC c.811 C>T was genotyped by PCR in patients, family members, and controls. Protein C amidolytic activity and antigen were measured using the STACHROM® protein C kit and ELISAs. To define functional abnormalities caused by the patients' mutation, recombinant wildtype protein C and its mutants R229W, R229Q and R229A were studied. RESULTS For the two cousins, protein C amidolytic activity was 61% and 59% and antigen was 57% and 73% (nl 70-140%), respectively. Exome sequencing revealed a homozygous variant in exon 9 of the protein C (PROC) gene c.811 C>T (R229W). The R229W mutation is located in the calcium binding loop of protein C's protease domain that mediates thrombomodulin interactions. Recombinant R229W-protein C mutant was strikingly defective in rate of activation by thrombin: thrombomodulin, suggesting an in vivo deficit in these children for generation of activated protein C. CONCLUSIONS These cases emphasize that protein C and activated protein C are important in maintaining the integrity of the brain vascular endothelium in humans. Moreover, routine protein C assays utilizing snake venom protease fail to detect protein C mutants that are resistant to thrombin:thrombomodulin activation.
Collapse
Affiliation(s)
- Abdulrahman Alsultan
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Andrew J Gale
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Kadijah Kurban
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Khalifah
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Fahad B Albadr
- Department of Radiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - John H Griffin
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
196
|
The tissue factor pathway mediates both activation of coagulation and coagulopathy after injury. J Trauma Acute Care Surg 2016; 79:1009-13; discussion 1014. [PMID: 26317815 DOI: 10.1097/ta.0000000000000707] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND The initiation of coagulation in trauma is thought to originate from exposed tissue factor (TF); recent data have led to the alternative hypothesis that damage-associated molecular patterns may contribute to postinjury coagulation. In acute traumatic coagulopathy, aberrant coagulation is mediated via the activated protein C (aPC) pathway; the upstream regulators of this process and its relation to TF remain uncharacterized. To examine the role of the TF pathway in mediating acute traumatic coagulopathy, we used specific antibody blockades in an established murine model of traumatic hemorrhagic shock, hypothesizing that both coagulation activation after injury and aPC-mediated coagulopathy are driven by TF via thrombin. METHODS Mice underwent an established model of trauma and hemorrhage and were subjected to either sham (vascular cannulation) or trauma-hemorrhage (cannulation, laparotomy, shock to mean arterial pressure of 35 mm Hg); they were monitored for 60 minutes before sacrifice. Mice in each group were pretreated with either targeted anti-TF antibody to block the TF pathway or hirudin for specific blockade of thrombin. Plasma was assayed for thrombin-antithrombin (TAT) and aPC by enzyme-linked immunosorbent assay. RESULTS Compared with controls, trauma-hemorrhage mice treated with anti-TF antibody had significantly reduced levels of TAT (2.3 ng/mL vs. 5.7 ng/mL, p = 0.016) and corresponding decreases in aPC (16.3 ng/mL vs. 31.6 ng/mL, p = 0.034), with reductions to levels seen in sham mice. Direct inhibition of thrombin yielded similar results, with reduction in aPC to levels below those seen in sham mice. CONCLUSION In this study, blockade of the TF pathway led to the attenuation of both thrombin production and aPC activation observed in traumatic shock. Specific thrombin inhibition achieved similar results, indicating that aPC-related coagulopathy is mediated via thrombin activated by the TF pathway. The near-complete blockade of TAT and aPC observed in this model argues for a dominant role of the TF-thrombin pathway in both coagulation activation after injury and traumatic coagulopathy.
Collapse
|
197
|
Coagulation disorders and their cutaneous presentations: Diagnostic work-up and treatment. J Am Acad Dermatol 2016; 74:795-804; quiz 805-6. [DOI: 10.1016/j.jaad.2015.08.071] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 08/19/2015] [Accepted: 08/19/2015] [Indexed: 11/22/2022]
|
198
|
Abstract
Protease signaling in cells elicits multiple physiologically important responses via protease-activated receptors (PARs). There are 4 members of this family of G-protein-coupled receptors (PAR1-4). PARs are activated by proteolysis of the N terminus to reveal a tethered ligand. The rate-limiting step of PAR signaling is determined by the efficiency of proteolysis of the N terminus, which is regulated by allosteric binding sites, cofactors, membrane localization, and receptor dimerization. This ultimately controls the initiation of PAR signaling. In addition, these factors also control the cellular response by directing signaling toward G-protein or β-arrestin pathways. PAR1 signaling on endothelial cells is controlled by the activating protease and heterodimerization with PAR2 or PAR3. As a consequence, the genetic and epigenetic control of PARs and their cofactors in physiologic and pathophysiologic conditions have the potential to influence cellular behavior. Recent studies have uncovered polymorphisms that result in PAR4 sequence variants with altered reactivity that interact to influence platelet response. This further demonstrates how interactions within the plasma membrane can control the physiological output. Understanding the structural rearrangement following PAR activation and how PARs are allosterically controlled within the plasma membrane will determine how best to target this family of receptors therapeutically. The purpose of this article is to review how signaling from PARs is influenced by alternative cleavage sites and the physical interactions within the membrane. Going forward, it will be important to relate the altered signaling to the molecular arrangement of PARs in the cell membrane and to determine how these may be influenced genetically.
Collapse
|
199
|
Abstract
PURPOSE OF REVIEW Sepsis affects patients of all ages with multiple comorbidities and underlying diagnoses, and is the result of infection by many potential pathogens infecting various organs or sites. Many molecules have been clinically tested in recent years for their potential immunomodulatory effects, but have been shown to have no beneficial effects on outcomes in heterogeneous populations of patients with sepsis. There are, therefore, no specific antisepsis therapies and mortality and morbidity rates remain high despite improved overall management of these patients. This review covers promising agents currently used in clinical trials. RECENT FINDINGS There are several candidates currently undergoing early and later phase of clinical testing, including thrombomodulin, alkaline phosphatase, interferon-beta, and selepressin. Other approaches including immunoglobulins, extracorporeal therapies, and pharmaconutrients will also be discussed. SUMMARY Despite multiple trials of potential therapies for sepsis, no strategies have yet been persistently shown to have beneficial effects on outcomes. The main reason for the disappointing results is that patient populations in these studies have been too heterogeneous. Selecting patients on the basis of general symptoms is not enough. Rather patients should be selected according to the likely action of the drug in question. To achieve this, improved biomarkers of sepsis and of the immune response are needed and the activities of the individual agents need to be carefully characterized. New candidates are being developed and the results of ongoing and recent clinical trials of immunomodulatory therapies are eagerly awaited as new therapies for sepsis are urgently needed.
Collapse
|
200
|
Turner RJ, Bloemenkamp KW, Bruijn JA, Baelde HJ. Loss of Thrombomodulin in Placental Dysfunction in Preeclampsia. Arterioscler Thromb Vasc Biol 2016; 36:728-35. [DOI: 10.1161/atvbaha.115.306780] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/09/2016] [Indexed: 11/16/2022]
Abstract
Objective—
Preeclampsia is a pregnancy-specific syndrome characterized by placental dysfunction and an angiogenic imbalance. Systemically, levels of thrombomodulin, an endothelium- and syncytiotrophoblast-bound protein that regulates coagulation, inflammation, apoptosis, and tissue remodeling, are increased. We aimed to investigate placental thrombomodulin dysregulation and consequent downstream effects in the pathogenesis of preeclampsia.
Approach and Results—
Placentas from 28 preeclampsia pregnancies, 30 uncomplicated pregnancies, and 21 pregnancies complicated by growth restriction as extra controls were included. Immunohistochemical staining of thrombomodulin, caspase-3, and fibrin was performed. Placental mRNA expression of thrombomodulin, inflammatory markers, matrix metalloproteinases 2 and 9, and soluble Flt-1 were measured with quantitative polymerase chain reaction. Thrombomodulin mRNA expression was determined in vascular endothelial growth factor–transfected trophoblast cell lines. Thrombomodulin protein and mRNA expression were decreased in preeclampsia as compared with both control groups (
P
=0.001). Thrombomodulin mRNA expression correlated with maternal body mass index (
P
<0.01) and diastolic blood pressure (
P
<0.05) in preeclampsia. An increase in placental apoptotic cells was associated with preeclampsia (
P
<0.001). Thrombomodulin expression correlated positively with matrix metalloproteinase expression (
P
<0.01) in preeclampsia, but not with fibrin deposits or inflammatory markers. Placental soluble Flt-1 expression correlated with decreased thrombomodulin expression. Vascular endothelial growth factor induced upregulation of thrombomodulin expression in trophoblast cells.
Conclusions—
Decreased thrombomodulin expression in preeclampsia may play a role in placental dysfunction in preeclampsia and is possibly caused by an angiogenic imbalance. Hypertension and obesity are associated with thrombomodulin downregulation. These results set the stage for further basic and clinical research on thrombomodulin in the pathogenesis of preeclampsia and other syndromes characterized by endothelial dysfunction.
Collapse
Affiliation(s)
- Rosanne J. Turner
- From the Departments of Pathology (R.J.T., J.A.B., H.J.B.) and Obstetrics (K.W.M.B.), Leiden University Medical Centre, Leiden, the Netherlands; and Department of Obstetrics, Birth Centre, Wilhelmina Children Hospital, Division Woman and Baby, University Medical Centre Utrecht, Utrecht, the Netherlands (K.W.M.B.)
| | - Kitty W.M. Bloemenkamp
- From the Departments of Pathology (R.J.T., J.A.B., H.J.B.) and Obstetrics (K.W.M.B.), Leiden University Medical Centre, Leiden, the Netherlands; and Department of Obstetrics, Birth Centre, Wilhelmina Children Hospital, Division Woman and Baby, University Medical Centre Utrecht, Utrecht, the Netherlands (K.W.M.B.)
| | - Jan A. Bruijn
- From the Departments of Pathology (R.J.T., J.A.B., H.J.B.) and Obstetrics (K.W.M.B.), Leiden University Medical Centre, Leiden, the Netherlands; and Department of Obstetrics, Birth Centre, Wilhelmina Children Hospital, Division Woman and Baby, University Medical Centre Utrecht, Utrecht, the Netherlands (K.W.M.B.)
| | - Hans J. Baelde
- From the Departments of Pathology (R.J.T., J.A.B., H.J.B.) and Obstetrics (K.W.M.B.), Leiden University Medical Centre, Leiden, the Netherlands; and Department of Obstetrics, Birth Centre, Wilhelmina Children Hospital, Division Woman and Baby, University Medical Centre Utrecht, Utrecht, the Netherlands (K.W.M.B.)
| |
Collapse
|