151
|
Thangavadivel S, Zelle-Rieser C, Olivier A, Postert B, Untergasser G, Kern J, Brunner A, Gunsilius E, Biedermann R, Hajek R, Pour L, Willenbacher W, Greil R, Jöhrer K. CCR10/CCL27 crosstalk contributes to failure of proteasome-inhibitors in multiple myeloma. Oncotarget 2018; 7:78605-78618. [PMID: 27732933 PMCID: PMC5346663 DOI: 10.18632/oncotarget.12522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/03/2016] [Indexed: 11/25/2022] Open
Abstract
The bone marrow microenvironment plays a decisive role in multiple myeloma progression and drug resistance. Chemokines are soluble mediators of cell migration, proliferation and survival and essentially modulate tumor progression and drug resistance. Here we investigated bone marrow-derived chemokines of naive and therapy-refractory myeloma patients and discovered that high levels of the chemokine CCL27, known so far for its role in skin inflammatory processes, correlated with worse overall survival of the patients. In addition, chemokine levels were significantly higher in samples from patients who became refractory to bortezomib at first line treatment compared to resistance at later treatment lines. In vitro as well as in an in vivo model we could show that CCL27 triggers bortezomib-resistance of myeloma cells. This effect was strictly dependent on the expression of the respective receptor, CCR10, on stroma cells and involved the modulation of IL-10 expression, activation of myeloma survival pathways, and modulation of proteasomal activity. Drug resistance could be totally reversed by blocking CCR10 by siRNA as well as blocking IL-10 and its receptor. From our data we suggest that blocking the CCR10/CCL27/IL-10 myeloma-stroma crosstalk is a novel therapeutic target that could be especially relevant in early refractory myeloma patients.
Collapse
Affiliation(s)
| | | | | | - Benno Postert
- Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Gerold Untergasser
- Tyrolean Cancer Research Institute, Innsbruck, Austria.,Laboratory of Tumor Angiogenesis and Tumorbiology, Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
| | - Johann Kern
- Laboratory of Tumor Angiogenesis and Tumorbiology, Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrea Brunner
- Department of Pathology, Medical University Innsbruck, Innsbruck, Austria
| | - Eberhard Gunsilius
- Laboratory of Tumor Angiogenesis and Tumorbiology, Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
| | - Rainer Biedermann
- Department of Orthopedic Surgery, Medical University Innsbruck, Innsbruck, Austria
| | - Roman Hajek
- Babak Myeloma Group, Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Department of Clinical Hematology, University Hospital Brno, Brno, Czech Republic.,Department of Hematooncology, Faculty of Medicine, University of Ostrava and University Hospital Ostrava, Ostrava, Czech Republic
| | - Ludek Pour
- Babak Myeloma Group, Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Department of Clinical Hematology, University Hospital Brno, Brno, Czech Republic.,Department of Hematooncology, Faculty of Medicine, University of Ostrava and University Hospital Ostrava, Ostrava, Czech Republic
| | - Wolfgang Willenbacher
- Department of Internal Medicine V, University Hospital Innsbruck, Innsbruck, Austria
| | - Richard Greil
- Tyrolean Cancer Research Institute, Innsbruck, Austria.,Salzburg Cancer Research Institute-Laboratory of Immunological and Molecular Cancer Research, Salzburg, Austria.,Third Medical Department at The Paracelsus Medical University Salzburg, Austria.,Cancer Cluster Salzburg (CCS), Salzburg, Austria
| | - Karin Jöhrer
- Tyrolean Cancer Research Institute, Innsbruck, Austria
| |
Collapse
|
152
|
Alzrigat M, Párraga AA, Agarwal P, Zureigat H, Österborg A, Nahi H, Ma A, Jin J, Nilsson K, Öberg F, Kalushkova A, Jernberg-Wiklund H. EZH2 inhibition in multiple myeloma downregulates myeloma associated oncogenes and upregulates microRNAs with potential tumor suppressor functions. Oncotarget 2018; 8:10213-10224. [PMID: 28052011 PMCID: PMC5354653 DOI: 10.18632/oncotarget.14378] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 12/15/2016] [Indexed: 12/21/2022] Open
Abstract
Multiple Myeloma (MM) is a plasma cell tumor localized to the bone marrow (BM). Despite the fact that current treatment strategies have improved patients' median survival time, MM remains incurable. Epigenetic aberrations are emerging as important players in tumorigenesis making them attractive targets for therapy in cancer including MM. Recently, we suggested the polycomb repressive complex 2 (PRC2) as a common denominator of gene silencing in MM and presented the PRC2 enzymatic subunit enhancer of zeste homolog 2 (EZH2) as a potential therapeutic target in MM. Here we further dissect the anti-myeloma mechanisms mediated by EZH2 inhibition and show that pharmacological inhibition of EZH2 reduces the expression of MM-associated oncogenes; IRF-4, XBP-1, PRDM1/BLIMP-1 and c-MYC. We show that EZH2 inhibition reactivates the expression of microRNAs with tumor suppressor functions predicted to target MM-associated oncogenes; primarily miR-125a-3p and miR-320c. ChIP analysis reveals that miR-125a-3p and miR-320c are targets of EZH2 and H3K27me3 in MM cell lines and primary cells. Our results further highlight that polycomb-mediated silencing in MM includes microRNAs with tumor suppressor activity. This novel role strengthens the oncogenic features of EZH2 and its potential as a therapeutic target in MM.
Collapse
Affiliation(s)
- Mohammad Alzrigat
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Alba Atienza Párraga
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Prasoon Agarwal
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Hadil Zureigat
- Department of Medicine, Faculty of Medicine, University of Jordan, Amman, Jordan
| | - Anders Österborg
- Department of Oncology-Pathology, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Hareth Nahi
- Department of Medicine, Unit of Hematology, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Anqi Ma
- Department of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jian Jin
- Department of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kenneth Nilsson
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Fredrik Öberg
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Antonia Kalushkova
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Helena Jernberg-Wiklund
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
153
|
Takagi S, Tsukamoto S, Park J, Johnson KE, Kawano Y, Moschetta M, Liu CJ, Mishima Y, Kokubun K, Manier S, Salem KZ, Huynh D, Sacco A, Forward J, Roccaro AM, Battinelli EM, Ghobrial IM. Platelets Enhance Multiple Myeloma Progression via IL-1β Upregulation. Clin Cancer Res 2018; 24:2430-2439. [PMID: 29440174 DOI: 10.1158/1078-0432.ccr-17-2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 12/06/2017] [Accepted: 02/04/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Tumor cell-platelet interactions contribute to tumor progression and metastasis in solid tumors. However, the role of platelets in hematological malignancies is not clear. We investigated the association of platelet activation status with clinical stages in multiple myeloma (MM) patients and explored the role of platelets in MM progression.Experimental Design: Platelets were obtained from healthy donors and MM patients. We examined platelet activation status in MM patients by flow cytometry and transmission electron microscopy. We also observed the enriched pathways that are involved with platelet activation in RNA sequencing of platelets. MM cell lines were used to assess the effect of platelets on MM cell proliferation in vitro and their engraftment in vivo RNA sequencing of MM cell lines was performed to explore molecular mechanisms underlying MM cell-platelet interaction and a CRISPR/Cas9 knockout approach was used for validation.Results: Platelets from MM patients were highly activated with disease progression. RNA sequencing of platelets revealed that genes involved in platelets were enriched in patients with smoldering MM (SMM) or MM. Platelets promoted MM cell proliferation in vitro and contributed to tumor engraftment in bone marrow in vivo RNA sequencing revealed that IL-1β was upregulated in MM cell lines co-cultured with platelets, whereas IL-1β knockout in MM cell lines abrogated the effects of platelets on MM cell proliferation and engraftment in vivoConclusions: Platelets from MM patients were highly activated with disease progression. IL-1β is critical to platelet-mediated MM progression and might be a potential target for MM treatment. Clin Cancer Res; 24(10); 2430-9. ©2018 AACR.
Collapse
Affiliation(s)
- Satoshi Takagi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Shokichi Tsukamoto
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Jihye Park
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kelly E Johnson
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yawara Kawano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Michele Moschetta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Chia-Jen Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Yuji Mishima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Katsutoshi Kokubun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Salomon Manier
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Karma Z Salem
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Daisy Huynh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Antonio Sacco
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Clinical Research Development and Phase I Unit; CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Jodi Forward
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aldo M Roccaro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Clinical Research Development and Phase I Unit; CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Elisabeth M Battinelli
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Irene M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
154
|
Ring ES, Lawson MA, Snowden JA, Jolley I, Chantry AD. New agents in the Treatment of Myeloma Bone Disease. Calcif Tissue Int 2018; 102:196-209. [PMID: 29098361 PMCID: PMC5805798 DOI: 10.1007/s00223-017-0351-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/19/2017] [Indexed: 12/17/2022]
Abstract
Patients with multiple myeloma develop a devastating bone disease driven by the uncoupling of bone remodelling, excess osteoclastic bone resorption and diminished osteoblastic bone formation. The bone phenotype is typified by focal osteolytic lesions leading to pathological fractures, hypercalcaemia and other catastrophic bone events such as spinal cord compression. This causes bone pain, impaired functional status, decreased quality of life and increased mortality. Early in the disease, malignant plasma cells occupy a niche environment that encompasses their interaction with other key cellular components of the bone marrow microenvironment. Through these interactions, osteoclast-activating factors and osteoblast inhibitory factors are produced, which together uncouple the dynamic process of bone remodelling, leading to net bone loss and focal osteolytic lesions. Current management includes antiresorptive therapies, i.e. bisphosphonates, palliative support and orthopaedic interventions. Bisphosphonates are the mainstay of treatment for myeloma bone disease (MBD), but are only partially effective and do have some significant disadvantages; for example, they do not lead to the repair of existing bone destruction. Thus, newer agents to prevent bone destruction and also promote bone formation and repair existing lesions are warranted. This review summarises novel ways that MBD is being therapeutically targeted.
Collapse
Affiliation(s)
- Elizabeth S Ring
- Department of Oncology and Metabolism, Faculty of Medicine, Dentistry and Health, The University of Sheffield Medical School, Beech Hill Road, Sheffield, South Yorkshire, S10 2RX, UK.
| | - Michelle A Lawson
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, Mellanby Bone Centre, School of Medicine and Biomedical Sciences, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - John A Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Ingrid Jolley
- Department of Oncology and Metabolism, Faculty of Medicine, Dentistry and Health, The University of Sheffield Medical School, Beech Hill Road, Sheffield, South Yorkshire, S10 2RX, UK
- Department of Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Andrew D Chantry
- Department of Oncology and Metabolism, Faculty of Medicine, Dentistry and Health, The University of Sheffield Medical School, Beech Hill Road, Sheffield, South Yorkshire, S10 2RX, UK
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, Mellanby Bone Centre, School of Medicine and Biomedical Sciences, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
155
|
Abdi J, Jian H, Chang H. Role of micro-RNAs in drug resistance of multiple myeloma. Oncotarget 2018; 7:60723-60735. [PMID: 27494872 PMCID: PMC5312415 DOI: 10.18632/oncotarget.11032] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/19/2016] [Indexed: 12/19/2022] Open
Abstract
While novel therapeutic approaches have profoundly improved survival of multiple myeloma (MM) patients, drug resistance and treatment refractoriness still persists. This obstacle highly demands thorough investigation into the root and underlying molecular mechanisms to develop more effective strategies. The advent of micro-RNAs (miRNAs) in the study of cancer biology and pathogenesis in recent years has revolutionized therapy in this field and particularly opened new windows to further understanding of tumor drug resistance. However; in spite of the fact that miRNAs involvement in MM pathogenesis and progression has been substantially evidenced, miRNA investigation in MM drug resistance is still in its infancy. Our knowledge of the potential role of miRNAs in MM drug resistance comes from few recent reports confirming that some miRNAs including miR-137/197, miR-21 and miR-221/222 could negatively modulate drug sensitivity of MM cells. Further continuous researches are required to exploit miRNAs to elucidate the critical mechanisms controlling drug resistance in MM. In this review, we will highlight the most recent observations on the role of miRNAs in MM drug resistance. Moreover, approaches and insights into clinical application of miRNAs to overcome MM drug resistance will be discussed.
Collapse
Affiliation(s)
- Jahangir Abdi
- Division of Molecular and Cellular Biology, Toronto General Research Institute, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Hou Jian
- Department of Hematology, Shanghai Chang Zheng Hospital, Shanghai, China
| | - Hong Chang
- Division of Molecular and Cellular Biology, Toronto General Research Institute, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Hematology and Medical Oncology, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
156
|
Notch signaling: its roles and therapeutic potential in hematological malignancies. Oncotarget 2018; 7:29804-23. [PMID: 26934331 PMCID: PMC5045435 DOI: 10.18632/oncotarget.7772] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/11/2016] [Indexed: 01/07/2023] Open
Abstract
Notch is a highly conserved signaling system that allows neighboring cells to communicate, thereby controlling their differentiation, proliferation and apoptosis, with the outcome of its activation being highly dependent on signal strength and cell type. As such, there is growing evidence that disturbances in physiological Notch signaling contribute to cancer development and growth through various mechanisms. Notch was first reported to contribute to tumorigenesis in the early 90s, through identification of the involvement of the Notch1 gene in the chromosomal translocation t(7;9)(q34;q34.3), found in a small subset of T-cell acute lymphoblastic leukemia. Since then, Notch mutations and aberrant Notch signaling have been reported in numerous other precursor and mature hematological malignancies, of both myeloid and lymphoid origin, as well as many epithelial tumor types. Of note, Notch has been reported to have both oncogenic and tumor suppressor roles, dependent on the cancer cell type. In this review, we will first give a general description of the Notch signaling pathway, and its physiologic role in hematopoiesis. Next, we will review the role of aberrant Notch signaling in several hematological malignancies. Finally, we will discuss current and potential future therapeutic approaches targeting this pathway.
Collapse
|
157
|
Ghobrial IM, Detappe A, Anderson KC, Steensma DP. The bone-marrow niche in MDS and MGUS: implications for AML and MM. Nat Rev Clin Oncol 2018; 15:219-233. [PMID: 29311715 DOI: 10.1038/nrclinonc.2017.197] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Several haematological malignancies, including multiple myeloma (MM) and acute myeloid leukaemia (AML), have well-defined precursor states that precede the development of overt cancer. MM is almost always preceded by monoclonal gammopathy of undetermined significance (MGUS), and at least a quarter of all patients with myelodysplastic syndromes (MDS) have disease that evolves into AML. In turn, MDS are frequently anteceded by clonal haematopoiesis of indeterminate potential (CHIP). The acquisition of additional genetic and epigenetic alterations over time clearly influences the increasingly unstable and aggressive behaviour of neoplastic haematopoietic clones; however, perturbations in the bone-marrow microenvironment are increasingly recognized to have key roles in initiating and supporting oncogenesis. In this Review, we focus on the concept that the haematopoietic neoplasia-microenvironment relationship is an intimate rapport between two partners, provide an overview of the evidence supporting a role for the bone-marrow niche in promoting neoplasia, and discuss the potential for niche-specific therapeutic targets.
Collapse
Affiliation(s)
- Irene M Ghobrial
- Division of Hematological Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - Alexandre Detappe
- Division of Hematological Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - Kenneth C Anderson
- Division of Hematological Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - David P Steensma
- Division of Hematological Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
158
|
Zarone MR, Misso G, Grimaldi A, Zappavigna S, Russo M, Amler E, Di Martino MT, Amodio N, Tagliaferri P, Tassone P, Caraglia M. Evidence of novel miR-34a-based therapeutic approaches for multiple myeloma treatment. Sci Rep 2017; 7:17949. [PMID: 29263373 PMCID: PMC5738363 DOI: 10.1038/s41598-017-18186-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 12/01/2017] [Indexed: 02/07/2023] Open
Abstract
MiR-34a acts as tumor suppressor microRNA (miRNA) in several cancers, including multiple myeloma (MM), by controlling the expression of target proteins involved in cell cycle, differentiation and apoptosis. Here, we have investigated the combination between miR-34a and γ-secretase inhibitor (γSI), Sirtinol or zoledronic acid (ZOL) in order to enhance the inhibitory action of this miRNA on its canonical targets such as Notch1 and SIRT1, and on Ras/MAPK-dependent pathways. Our data demonstrate that miR-34a synthetic mimics significantly enhance the anti-tumor activity of all the above-mentioned anti-cancer agents in RPMI 8226 MM cells. We found that γSI enhanced miR-34a-dependent anti-tumor effects by activating the extrinsic apoptotic pathway which could overcome the cytoprotective autophagic mechanism. Moreover, the combination between miR-34a and γSI increased the cell surface calreticulin (CRT) expression, that is well known for triggering anti-tumor immunological response. The combination between miR-34a and Sirtinol induced the activation of an intrinsic apoptotic pathway along with increased surface expression of CRT. Regarding ZOL, we found a powerful growth inhibition after enforced miR-34a expression, which was not likely attributable to neither apoptosis nor autophagy modulation. Based on our data, the combination of miR-34a with other anti-cancer agents appears a promising anti-MM strategy deserving further investigation.
Collapse
Affiliation(s)
- Mayra Rachele Zarone
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Gabriella Misso
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Anna Grimaldi
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Silvia Zappavigna
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Margherita Russo
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Evzen Amler
- Institute of Biophysics, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
- Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Catanzaro, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli", Naples, Italy.
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
159
|
Hypoxia promotes IL-32 expression in myeloma cells, and high expression is associated with poor survival and bone loss. Blood Adv 2017; 1:2656-2666. [PMID: 29296919 DOI: 10.1182/bloodadvances.2017010801] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/20/2017] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) is a hematologic cancer characterized by expansion of malignant plasma cells in the bone marrow. Most patients develop an osteolytic bone disease, largely caused by increased osteoclastogenesis. The myeloma bone marrow is hypoxic, and hypoxia may contribute to MM disease progression, including bone loss. Here we identified interleukin-32 (IL-32) as a novel inflammatory cytokine expressed by a subset of primary MM cells and MM cell lines. We found that high IL-32 gene expression in plasma cells correlated with inferior survival in MM and that IL-32 gene expression was higher in patients with bone disease compared with those without. IL-32 was secreted from MM cells in extracellular vesicles (EVs), and those EVs, as well as recombinant human IL-32, promoted osteoclast differentiation both in vitro and in vivo. The osteoclast-promoting activity of the EVs was IL-32 dependent. Hypoxia increased plasma-cell IL-32 messenger RNA and protein levels in a hypoxia-inducible factor 1α-dependent manner, and high expression of IL-32 was associated with a hypoxic signature in patient samples, suggesting that hypoxia may promote expression of IL-32 in MM cells. Taken together, our results indicate that targeting IL-32 might be beneficial in the treatment of MM bone disease in a subset of patients.
Collapse
|
160
|
Tian M, Huang H. The therapeutic effect of modified Huangqi Guizhi Wuwu Tang for multiple myeloma: An 18-year follow-up case report. Medicine (Baltimore) 2017; 96:e9074. [PMID: 29245321 PMCID: PMC5728936 DOI: 10.1097/md.0000000000009074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
RATIONALE Multiple myeloma (MM) is a hematologic malignancy characterized by proliferation of clonal plasma cells in the bone marrow. The median survival has increased to 6 years in recent years. But MM remains incurable. Some studies about the effects of Chinese herb medicine on MM have been carried out. Long survival in MM patients through Traditional Chinese Medicine (TCM) therapies has been reported rarely before. PATIENT CONCERNS We report a case of a female patient who was diagnosed with MM in 2000 at the age of 49. She received 9 cycles of multiple chemotherapeutic regimens mainly based on melphalan from September 2000 to May 2001. Though her condition was under control in some degree, she discontinued treatment due to significant side effects such as fatigue, hyperhidrosis, fever, chill, larynx mucosa ulcers, pharynx mucosa ulcers, and poor appetite. Instead, she sought treatment with TCM alone. DIAGNOSES Based on the TCM theory, the patient's condition was categorized as Xue Bi. INTERVENTIONS Up to the present, the patient has been using modified Huangqi Guizhi Wuwu Tang (HGWT) continuously for 18 years. In this prescription, Radix Astragali is an important herb. When the patient's condition worsened, its dosage was increased from 30 to 120g. Besides, she has been eating Radix Astragali porridge or drinking Radix Astragali tea for almost 18 years at the same time. OUTCOMES Throughout the period, no obvious side effects have been observed and her health condition remains stable. LESSONS Polysaccharides isolated from Astragalus membranaceus (Radix Astragali) and Polyporus umbellatus could promote maturation of dendritic cells. Polysaccharides and flavonoids isolated from Astragalus membranaceus could regulate bone marrow microenvironment by inhibiting secretion of interleukin (IL)-6, IL-12 p40 and bidirectionally regulating the osteogenic capacity of osteoblasts. Besides, Rhizoma Atractylodis Macrocephalae, another important component of the prescription, has inhibitory effects on osteolytic bone lesions. This case suggests TCM treatment may have a positive therapeutic effect on MM. Modified HGWT, especially the Chinese herb medicine Radix Astragali could potentially be an alternative option for the treatment of MM. Both pharmacological studies and randomized clinical trials are needed in the future.
Collapse
Affiliation(s)
| | - Huang Huang
- International Jingfang Institute, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| |
Collapse
|
161
|
Determining therapeutic susceptibility in multiple myeloma by single-cell mass accumulation. Nat Commun 2017; 8:1613. [PMID: 29151572 PMCID: PMC5694762 DOI: 10.1038/s41467-017-01593-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/29/2017] [Indexed: 12/05/2022] Open
Abstract
Multiple myeloma (MM) has benefited from significant advancements in treatment that have improved outcomes and reduced morbidity. However, the disease remains incurable and is characterized by high rates of drug resistance and relapse. Consequently, methods to select the most efficacious therapy are of great interest. Here we utilize a functional assay to assess the ex vivo drug sensitivity of single multiple myeloma cells based on measuring their mass accumulation rate (MAR). We show that MAR accurately and rapidly defines therapeutic susceptibility across human multiple myeloma cell lines to a gamut of standard-of-care therapies. Finally, we demonstrate that our MAR assay, without the need for extended culture ex vivo, correctly defines the response of nine patients to standard-of-care drugs according to their clinical diagnoses. This data highlights the MAR assay in both research and clinical applications as a promising tool for predicting therapeutic response using clinical samples. Multiple myeloma is characterized by high rates of drug resistance and relapse. Here the authors utilize a functional assay to assess the ex vivo drug sensitivity of single multiple myeloma cells based on measuring the mass accumulation rate of individual cells.
Collapse
|
162
|
Pittari G, Vago L, Festuccia M, Bonini C, Mudawi D, Giaccone L, Bruno B. Restoring Natural Killer Cell Immunity against Multiple Myeloma in the Era of New Drugs. Front Immunol 2017; 8:1444. [PMID: 29163516 PMCID: PMC5682004 DOI: 10.3389/fimmu.2017.01444] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 10/17/2017] [Indexed: 12/24/2022] Open
Abstract
Transformed plasma cells in multiple myeloma (MM) are susceptible to natural killer (NK) cell-mediated killing via engagement of tumor ligands for NK activating receptors or “missing-self” recognition. Similar to other cancers, MM targets may elude NK cell immunosurveillance by reprogramming tumor microenvironment and editing cell surface antigen repertoire. Along disease continuum, these effects collectively result in a progressive decline of NK cell immunity, a phenomenon increasingly recognized as a critical determinant of MM progression. In recent years, unprecedented efforts in drug development and experimental research have brought about emergence of novel therapeutic interventions with the potential to override MM-induced NK cell immunosuppression. These NK-cell enhancing treatment strategies may be identified in two major groups: (1) immunomodulatory biologics and small molecules, namely, immune checkpoint inhibitors, therapeutic antibodies, lenalidomide, and indoleamine 2,3-dioxygenase inhibitors and (2) NK cell therapy, namely, adoptive transfer of unmanipulated and chimeric antigen receptor-engineered NK cells. Here, we summarize the mechanisms responsible for NK cell functional suppression in the context of cancer and, specifically, myeloma. Subsequently, contemporary strategies potentially able to reverse NK dysfunction in MM are discussed.
Collapse
Affiliation(s)
- Gianfranco Pittari
- Department of Medical Oncology, National Center for Cancer Care and Research, HMC, Doha, Qatar
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Moreno Festuccia
- Department of Oncology/Hematology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Chiara Bonini
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Vita-Salute San Raffaele University, Milano, Italy
| | - Deena Mudawi
- Department of Medical Oncology, National Center for Cancer Care and Research, HMC, Doha, Qatar
| | - Luisa Giaccone
- Department of Oncology/Hematology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Benedetto Bruno
- Department of Oncology/Hematology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
163
|
Terpos E, Gobbi M, Potamianou A, Lahaye M, Couturier C, Cavo M. Retreatment and prolonged therapy with subcutaneous bortezomib in patients with relapsed multiple myeloma: A randomized, controlled, phase III study. Eur J Haematol 2017; 100:10-19. [DOI: 10.1111/ejh.12937] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Evangelos Terpos
- Department of Clinical Therapeutics; School of Medicine; University of Athens; Athens Greece
| | - Marco Gobbi
- Clinical Hematology; IRCCS AOU San Martino-IST; Genova Italy
| | | | | | | | - Michele Cavo
- Seràgnoli Institute of Hematology; University of Bologna; Bologna Italy
| |
Collapse
|
164
|
Alzrigat M, Párraga AA, Majumder MM, Ma A, Jin J, Österborg A, Nahi H, Nilsson K, Heckman CA, Öberg F, Kalushkova A, Jernberg-Wiklund H. The polycomb group protein BMI-1 inhibitor PTC-209 is a potent anti-myeloma agent alone or in combination with epigenetic inhibitors targeting EZH2 and the BET bromodomains. Oncotarget 2017; 8:103731-103743. [PMID: 29262596 PMCID: PMC5732762 DOI: 10.18632/oncotarget.21909] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 10/10/2017] [Indexed: 01/08/2023] Open
Abstract
Multiple myeloma (MM) is a tumor of plasmablasts/plasma cells (PCs) characterized by the expansion of malignant PCs with complex genetic aberrations in the bone marrow (BM). Recent reports, by us and others, have highlighted the polycomb group (PcG) proteins as potential targets for therapy in MM. The PcG protein BMI-1 of the polycomb repressive complex 1 (PRC1) has been reported to be overexpressed and to possess oncogenic functions in MM. Herein, we report on the anti-myeloma effects of the BMI-1 inhibitor PTC-209 and demonstrate that PTC-209 is a potent anti-myeloma agent in vitro using MM cell lines and primary MM cells. We show that PTC-209 reduces the viability of MM cells via induction of apoptosis and reveal that the anti-MM actions of PTC-209 are mediated by on-target effects i.e. downregulation of BMI-1 protein and the associated repressive histone mark H2AK119ub, leaving other PRC1 subunits such as CBX-7 and the catalytic subunit RING1B unaffected. Importantly, we demonstrate that PTC-209 exhibits synergistic and additive anti-myeloma activity when combined with other epigenetic inhibitors targeting EZH2 and BET bromodomains. Collectively, these data qualify BMI-1 as a candidate for targeted therapy in MM alone or in combinations with epigenetic inhibitors directed to PRC2/EZH2 or BET bromodomains.
Collapse
Affiliation(s)
- Mohammad Alzrigat
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Alba Atienza Párraga
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Muntasir Mamun Majumder
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Anqi Ma
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jian Jin
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anders Österborg
- Department of Oncology-Pathology, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Hareth Nahi
- Department of Medicine, Unit of Hematology, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Kenneth Nilsson
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Caroline A Heckman
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Fredrik Öberg
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Antonia Kalushkova
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Helena Jernberg-Wiklund
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
165
|
Gutwein O, Rahimi-Levene N, Herzog-Tzarfati K, Garach-Jehoshua O, Nagler A, Izak M, Koren-Michowitz M. Low Protein Z levels in patients with plasma cell neoplasms are inversely correlated with IL-6 levels. Leuk Res 2017; 62:104-107. [PMID: 29031125 DOI: 10.1016/j.leukres.2017.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/16/2017] [Accepted: 09/24/2017] [Indexed: 11/27/2022]
Abstract
Patients with multiple myeloma (MM) have an increased thrombotic risk, but pathogenesis remains uncertain. Low levels of Protein Z (PZ), a vitamin K-dependent plasma protein, are associated with venous as well as arterial thrombosis. The purpose of this study was to analyze PZ levels in patients with plasma cell neoplasms. PATIENTS AND METHODS The study consisted of 64 plasma cells neoplasm patients and 42 healthy individuals. Clinical investigations included measurement of plasma PZ and IL-6 levels. RESULTS PZ levels in patients with plasma cell neoplasms were significantly lower compared to healthy controls in the entire cohort (1392±659 vs.2010±603ng/mL, P<0.01), as well as in specific disease subgroups; symptomatic MM (1428±652ng/mL, p<0.01), smoldering MM (1437±883ng/mL, p=0.045) and monoclonal gammopathy of undetermined significance (MGUS) (1247±593ng/mL, p=0.01). PZ was negatively correlated with IL-6 levels in MM patients (r=-0.7, P<0.01). There was no significant difference in PZ levels between patients with or without thrombotic event. CONCLUSION Plasma cell neoplasm patients have low levels of PZ. This is presumably related to the increased IL-6 production by the bone marrow microenvironment, and could have a potential role in the increased thrombotic tendency in those patients.
Collapse
Affiliation(s)
- O Gutwein
- Division of Hematology, Assaf Harofeh Medical Center, Zerifin, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel.
| | - N Rahimi-Levene
- Division of Hematology, Assaf Harofeh Medical Center, Zerifin, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - K Herzog-Tzarfati
- Division of Hematology, Assaf Harofeh Medical Center, Zerifin, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - O Garach-Jehoshua
- Division of Hematology, Assaf Harofeh Medical Center, Zerifin, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - A Nagler
- Sackler Faculty of Medicine, Tel Aviv University, Israel; Division of Hematology, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - M Izak
- Division of Hematology, Assaf Harofeh Medical Center, Zerifin, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - M Koren-Michowitz
- Division of Hematology, Assaf Harofeh Medical Center, Zerifin, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| |
Collapse
|
166
|
Ševčíková T, Growková K, Kufová Z, Filipová J, Vrublová P, Jelínek T, Kořístek Z, Kryukov F, Kryukova E, Hájek R. Biobanking strategy and sample preprocessing for integrative research in monoclonal gammopathies. J Clin Pathol 2017; 70:847-853. [PMID: 28360189 PMCID: PMC5749344 DOI: 10.1136/jclinpath-2017-204329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 11/25/2022]
Abstract
AIMS Some types of monoclonal gammopathies are typified by a very limited availability of aberrant cells. Modern research use high throughput technologies and an integrated approach for detailed characterisation of abnormal cells. This strategy requires relatively high amounts of starting material which cannot be obtained from every diagnosis without causing inconvenience to the patient. The aim of this methodological paper is to reflect our long experience with laboratory work and describe the best protocols for sample collection, sorting and further preprocessing in terms of the available number of cells and intended downstream application in monoclonal gammopathies research. Potential pitfalls are also discussed. METHODS Comparison and optimisation of freezing and sorting protocols for plasma cells in monoclonal gammopathies, followed by testing of various nucleic acid isolation and amplification techniques to establish a guideline for sample processing in haemato-oncology research. RESULTS We show the average numbers of aberrant cells that can be obtained from various monoclonal gammopathies (monoclonal gammopathy of undetermined significance/light chain amyloidosis/multiple myeloma (MM)/MM circulating plasma cells/ minimal residual disease MM-10 123/22 846/305 501/68 641/4000 aberrant plasma cells of 48/30/10/16/37×106 bone marrow mononuclear cells) and the expected yield of nucleic acids provided from multiple isolation kits (DNA/RNA yield from 1 to 200×103 cells was 2.14-427/0.12-123 ng). CONCLUSIONS Tested kits for parallel isolation deliver outputs comparable with kits specialised for just one type of molecule. We also present our positive experience with the whole genome amplification method, which can serve as a very powerful tool to gain complex information from a very small cell population.
Collapse
Affiliation(s)
- T Ševčíková
- Department of Haemato-oncology, University Hospital Ostrava, Ostrava, Czech Republic
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - K Growková
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Z Kufová
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - J Filipová
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - P Vrublová
- Department of Haemato-oncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - T Jelínek
- Department of Haemato-oncology, University Hospital Ostrava, Ostrava, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Z Kořístek
- Department of Haemato-oncology, University Hospital Ostrava, Ostrava, Czech Republic
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - F Kryukov
- Department of Haemato-oncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - E Kryukova
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Babak Myeloma Group, Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - R Hájek
- Department of Haemato-oncology, University Hospital Ostrava, Ostrava, Czech Republic
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
167
|
Schneiderova P, Pika T, Gajdos P, Fillerova R, Kromer P, Kudelka M, Minarik J, Papajik T, Scudla V, Kriegova E. Serum protein fingerprinting by PEA immunoassay coupled with a pattern-recognition algorithms distinguishes MGUS and multiple myeloma. Oncotarget 2017; 8:69408-69421. [PMID: 29050213 PMCID: PMC5642488 DOI: 10.18632/oncotarget.11242] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/28/2016] [Indexed: 12/26/2022] Open
Abstract
Serum protein fingerprints associated with MGUS and MM and their changes in MM after autologous stem cell transplantation (MM-ASCT, day 100) remain unexplored. Using highly-sensitive Proximity Extension ImmunoAssay on 92 cancer biomarkers (Proseek Multiplex, Olink), enhanced serum levels of Adrenomedullin (ADM, Pcorr= .0004), Growth differentiation factor 15 (GDF15, Pcorr= .003), and soluble Major histocompatibility complex class I-related chain A (sMICA, Pcorr= .023), all prosurvival and chemoprotective factors for myeloma cells, were detected in MM comparing to MGUS. Comparison of MGUS and healthy subjects revealed elevation of angiogenic and antia-poptotic midkine (Pcorr= .0007) and downregulation of Transforming growth factor beta 1 (TGFB1, Pcorr= .005) in MGUS. Importantly, altered serum pattern was associated with MM-ASCT compared to paired MM at the diagnosis as well as to healthy controls, namely by upregulated B-Cell Activating Factor (sBAFF) (Pcorr< .006) and sustained elevation of other pro-tumorigenic factors. In conclusion, the serum fingerprints of MM and MM-ASCT were characteristic by elevated levels of prosurvival and chemoprotective factors for myeloma cells.
Collapse
Affiliation(s)
- Petra Schneiderova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Tomas Pika
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czech Republic
| | - Petr Gajdos
- Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czech Republic
| | - Regina Fillerova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Pavel Kromer
- Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czech Republic
| | - Milos Kudelka
- Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czech Republic
| | - Jiri Minarik
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czech Republic
| | - Tomas Papajik
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czech Republic
| | - Vlastimil Scudla
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czech Republic
| | - Eva Kriegova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
168
|
Abstract
The outcomes for the majority of patients with myeloma have improved over recent decades, driven by treatment advances. However, there is a subset of patients considered to have high-risk disease who have not benefited. Understanding how high-risk disease evolves from more therapeutically tractable stages is crucial if we are to improve outcomes. This can be accomplished by identifying the genetic mechanisms and mutations driving the transition of a normal plasma cell to one with the features of the following disease stages: monoclonal gammopathy of undetermined significance, smouldering myeloma, myeloma and plasma cell leukaemia. Although myeloma initiating events are clonal, subsequent driver lesions often occur in a subclone of cells, facilitating progression by Darwinian selection processes. Understanding the co-evolution of the clones within their microenvironment will be crucial for therapeutically manipulating the process. The end stage of progression is the generation of a state associated with treatment resistance, increased proliferation, evasion of apoptosis and an ability to grow independently of the bone marrow microenvironment. In this Review, we discuss these end-stage high-risk disease states and how new information is improving our understanding of their evolutionary trajectories, how they may be diagnosed and the biological behaviour that must be addressed if they are to be treated effectively.
Collapse
Affiliation(s)
- Charlotte Pawlyn
- The Institute of Cancer Research, 15 Cotswold Road, Sutton SM2 5NG, UK
| | - Gareth J Morgan
- The Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| |
Collapse
|
169
|
Chen R, Zhang X, Gao C, Luan C, Wang Y, Chen B. Treatment and prognostic factors for survival in newly diagnosed multiple myeloma patients with bortezomib and dexamethasone regimen: a single Chinese center retrospective study. Cancer Manag Res 2017; 9:373-380. [PMID: 28883741 PMCID: PMC5576706 DOI: 10.2147/cmar.s144405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objective The aim of this retrospective study was to evaluate the efficacy and prognostic factors of bortezomib and dexamethasone (BD) chemotherapy regimen in the treatment of newly diagnosed multiple myeloma (MM) patients in our hospital. Methods A total of 47 newly diagnosed MM patients treated in our hospital from May 2010 to September 2016 were included in this study. All the enrolled patients received at least two cycles of BD chemotherapy regimen. Results The overall response rate after treatment was 68.5% with a complete response of 23.4%, very good partial response of 17.0%, partial response of 21.3% and minor response of 6.8%. The median time of overall survival (OS), progression-free survival (PFS) and time to progression (TTP) of the treated patients were 36.0, 19.0 and 18.0 months, respectively; the mean OS, PFS and TTP were 36.0, 19.3 and 18.8 months, respectively. Though some adverse events had occurred, none of the patients was discontinued from treatment. Level of albumin, β2-microglobulin and cytogenetic abnormalities were prognostic factors for OS, and plasma cell percentage in bone marrow, β2-microglobulin and cytogenetic abnormalities were prognostic factors for PFS as revealed by log-rank test of univariate analysis; no prognostic factors for OS and PFS were detected by COX regression of multivariate analysis. Conclusion Our study demonstrated that BD regimen was effective and well tolerated in newly diagnosed MM patients, and prognostic factors for patients’ survival include level of albumin, plasma cell percentage in bone marrow, β2-microglobulin and cytogenetic abnormalities.
Collapse
Affiliation(s)
- Runzhe Chen
- Department of Hematology and Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Xiaoping Zhang
- Department of Hematology and Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Chong Gao
- Department of Hematology and Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Chengxin Luan
- Department of Hematology and Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Yujie Wang
- Department of Hematology and Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
170
|
Hansmann L, Han A, Penter L, Liedtke M, Davis MM. Clonal Expansion and Interrelatedness of Distinct B-Lineage Compartments in Multiple Myeloma Bone Marrow. Cancer Immunol Res 2017; 5:744-754. [PMID: 28768640 PMCID: PMC5590392 DOI: 10.1158/2326-6066.cir-17-0012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/05/2017] [Accepted: 07/25/2017] [Indexed: 11/16/2022]
Abstract
Multiple myeloma is characterized by the clonal expansion of malignant plasma cells in the bone marrow. But the phenotypic diversity and the contribution of less predominant B-lineage clones to the biology of this disease have been controversial. Here, we asked whether cells bearing the dominant multiple myeloma immunoglobulin rearrangement occupy phenotypic compartments other than that of plasma cells. To accomplish this, we combined 13-parameter FACS index sorting and t-Stochastic Neighbor Embedding (t-SNE) visualization with high-throughput single-cell immunoglobulin sequencing to track selected B-lineage clones across different stages of human B-cell development. As expected, the predominant clones preferentially mapped to aberrant plasma cell compartments, albeit phenotypically altered from wild type. Interestingly, up to 1.2% of cells of the predominant clones colocalized with B-lineage cells of a normal phenotype. In addition, minor clones with distinct immunoglobulin sequences were detected in up to 9% of sequenced cells, but only 2 out of 12 of these clones showed aberrant immune phenotypes. The majority of these minor clones showed intraclonal silent nucleotide differences within the CDR3s and varying frequencies of somatic mutations in the immunoglobulin genes. Therefore, the phenotypic range of multiple myeloma cells in the bone marrow is not confined to aberrant-phenotype plasma cells but extends to low frequencies of normal-phenotype B cells, in line with the recently reported success of B cell-targeting cellular therapies in some patients. The majority of minor clones result from parallel nonmalignant expansion. Cancer Immunol Res; 5(9); 744-54. ©2017 AACR.
Collapse
Affiliation(s)
- Leo Hansmann
- Department of Microbiology and Immunology, Stanford University, Stanford, California. .,Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Arnold Han
- Department of Microbiology and Immunology, Stanford University, Stanford, California
| | - Livius Penter
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Michaela Liedtke
- Division of Hematology, Department of Medicine, Stanford University, Stanford, California
| | - Mark M Davis
- Department of Microbiology and Immunology, Stanford University, Stanford, California. .,Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, California.,The Howard Hughes Medical Institute, Stanford University, Stanford, California
| |
Collapse
|
171
|
|
172
|
Abstract
Multiple myeloma is a malignancy of terminally differentiated plasma cells, and patients typically present with bone marrow infiltration of clonal plasma cells and monoclonal protein in the serum and/or urine. The diagnosis of multiple myeloma is made when clear end-organ damage attributable to the plasma cell proliferative disorder or when findings that suggest a high likelihood of their development are present. Distinguishing symptomatic multiple myeloma that requires treatment from the precursor stages of monoclonal gammopathy of undetermined significance and smouldering multiple myeloma is important, as observation is the standard for those conditions. Much progress has been made over the past decade in the understanding of disease biology and individualized treatment approaches. Several new classes of drugs, such as proteasome inhibitors and immunomodulatory drugs, have joined the traditional armamentarium (corticosteroids, alkylating agents and anthracyclines) and, along with high-dose therapy and autologous haemopoietic stem cell transplantation, have led to deeper and durable clinical responses. Indeed, an increasing proportion of patients are achieving lasting remissions, raising the possibility of cure for this disease. Success will probably depend on using combinations of effective agents and treating patients in the early stages of disease, such as patients with smouldering multiple myeloma.
Collapse
|
173
|
Chen WC, Kanate AS, Craig M, Petros WP, Hazlehurst LA. Emerging combination therapies for the management of multiple myeloma: the role of elotuzumab. Cancer Manag Res 2017; 9:307-314. [PMID: 28744161 PMCID: PMC5513822 DOI: 10.2147/cmar.s117477] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Treatment options for patients with multiple myeloma (MM) have increased during the past decade. Despite the significant advances, challenges remain on which combination strategies will provide the optimal response for any given patient. Defining optimal combination strategies and corresponding companion diagnostics, that will guide clinical decisions are required to target relapsed or refractory multiple myeloma (RRMM) in order to improve disease progression, survival and quality of life for patients with MM. Elotuzumab is a humanized monoclonal antibody that targets signaling lymphocytic activation molecule F7 (SLAMF7), approved by the US Food and Drug Administration (FDA) in 2015 and the European Medicines Agency in 2016 for the treatment of MM. SLAMF7 is expressed in normal and malignant plasma cells and has lower expression on natural killer (NK) cells. Experimental evidence indicates that elotuzumab exhibits anti-myeloma activity through 1) antibody-dependent cell-mediated cytotoxicity, 2) enhancing NK cells cytotoxicity and 3) interfering with adhesion of MM cells to bone marrow stem cells (BMSCs). Although elotuzumab has no single agent activity in patients with RRMM who have received one to three prior therapies, the combination of elotuzumab with anti-myeloma agents, such as immunomodulatory drugs-lenalidomide, or proteasome inhibitors (PIs)-bortezomib, remarkably improved the overall response rates and progression-free survival in MM patients with only minimal incremental toxicity. In brief, the clinical data for elotuzumab indicate that targeting SLAMF7 in combination with the use of conventional therapies is feasible and effective with a tolerable safety profile for the treatment of RRMM.
Collapse
Affiliation(s)
- Wei-Chih Chen
- Department of Pharmaceutical Sciences, School of Pharmacy
| | - Abraham S Kanate
- Osborn Hematopoietic Malignancy and Transplantation Program, West Virginia University.,West Virginia University Cancer Institute, Morgantown, WV, USA
| | - Michael Craig
- Osborn Hematopoietic Malignancy and Transplantation Program, West Virginia University.,West Virginia University Cancer Institute, Morgantown, WV, USA
| | - William P Petros
- Department of Pharmaceutical Sciences, School of Pharmacy.,West Virginia University Cancer Institute, Morgantown, WV, USA
| | - Lori A Hazlehurst
- Department of Pharmaceutical Sciences, School of Pharmacy.,Osborn Hematopoietic Malignancy and Transplantation Program, West Virginia University.,West Virginia University Cancer Institute, Morgantown, WV, USA
| |
Collapse
|
174
|
Esma F, Salvini M, Troia R, Boccadoro M, Larocca A, Pautasso C. Melphalan hydrochloride for the treatment of multiple myeloma. Expert Opin Pharmacother 2017; 18:1127-1136. [DOI: 10.1080/14656566.2017.1349102] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fabrizio Esma
- Myeloma Unit, Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Marco Salvini
- Myeloma Unit, Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Rossella Troia
- Myeloma Unit, Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Mario Boccadoro
- Myeloma Unit, Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Alessandra Larocca
- Myeloma Unit, Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Chiara Pautasso
- Myeloma Unit, Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| |
Collapse
|
175
|
Li S, Jiang Y, Li A, Liu X, Xing X, Guo Y, Xu Y, Hao Y, Zheng C. Telomere length is positively associated with the expression of IL‑6 and MIP‑1α in bone marrow mesenchymal stem cells of multiple myeloma. Mol Med Rep 2017; 16:2497-2504. [PMID: 28677723 PMCID: PMC5547952 DOI: 10.3892/mmr.2017.6885] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 05/09/2017] [Indexed: 12/11/2022] Open
Abstract
Potential roles of mesenchymal stem cells (MSCs) in the pathogenesis of multiple myeloma (MM) are largely unknown. In the current study, the authors analyzed telomere length and the expressions of interleukin (IL)-6 and macrophage inflammatory protein (MIP)-1α in MSCs derived from the bone marrow (BM) of MM patients and controls. The current results demonstrated that there was no significant difference in cell surface expression of CD73 and CD90, and the capacity to differentiate into bone tissue were identified between the BM MSCs derived from MM patients and controls. Interestingly, telomere length (TL) and mRNA expressions of IL-6 and MIP-1α were significantly longer or higher in BM MSCs of MM than those of controls. Moreover, TL is positively associated with the expressions of IL-6 and MIP-1α at the mRNA level in BM MSCs of MM. Additionally, IL-6 and MIP-1α expression were significantly upregulated when MSCs from MM patients were cultured in the myeloma associated condition medium. The present study indicated that myeloma-associated elongation of TL of BM MSCs may be a key element contributing to the increased IL-6 and MIP-1α expression, by which MSCs in the tumor microenvironment may facilitate MM and/or MM bone disease development.
Collapse
Affiliation(s)
- Shengli Li
- Department of Hematology, The Second Hospital, Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yang Jiang
- Department of Hematology, The Second Hospital, Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Ai Li
- Department of Hematology, The Second Hospital, Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xiaoli Liu
- Department of Hematology, The Second Hospital, Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xiangling Xing
- Department of Hematology, The Second Hospital, Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yanan Guo
- Department of Hematology, The Second Hospital, Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yaqi Xu
- Department of Hematology, The Second Hospital, Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yunliang Hao
- Department of Hematology, Jining No. 1 People's Hospital, Jining, Shandong 272100, P.R. China
| | - Chengyun Zheng
- Department of Hematology, The Second Hospital, Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
176
|
Golay J. Direct targeting of cancer cells with antibodies: What can we learn from the successes and failure of unconjugated antibodies for lymphoid neoplasias? J Autoimmun 2017; 85:6-19. [PMID: 28666691 DOI: 10.1016/j.jaut.2017.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 06/11/2017] [Indexed: 12/26/2022]
Abstract
Following approval in 1997 of the anti-CD20 antibody rituximab for the treatment of B-NHL and CLL, many other unconjugated IgG1 MAbs have been tested in pre-clinical and clinical trials for the treatment of lymphoid neoplasms. Relatively few have been approved however and these are directed against a limited number of target antigens (CD20, CD52, CCR4, CD38, CD319). We review here the known biological properties of these antibodies and discuss which factors may have led to their success or may, on the contrary, limit their clinical application. Common factors of the approved MAbs are that the target antigen is expressed at relatively high levels on the neoplastic targets and their mechanism of action is mostly immune-mediated. Indeed most of these MAbs induce ADCC and phagocytosis by macrophages, and many also activate complement, leading to target cell lysis. In contrast direct cell death induction is not a common feature but may enhance efficacy in some cases. Interestingly, a key factor for the success of several MAbs appears to be their capacity to skew immunity towards an anti-tumour mode, by inhibiting/depleting suppressor cells and/or activating immune cells within the microenvironment, independently of FcγRs. We also expose here some of the strategies employed by industry to expand the clinical use of these molecules beyond their original indication. Interestingly, due to the central role of lymphocytes in the control of the immune response, several of the antibodies are now successfully used to treat many different autoimmune diseases and have also been formally approved for some of these new indications. There is little doubt that this trend will continue and that the precise mechanisms of therapeutic MAbs will be further dissected and better understood in the context of both tumour immunology and autoimmunity.
Collapse
Affiliation(s)
- Josée Golay
- Center of Cellular Therapy "G. Lanzani", USC Haematology, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Via Garibaldi 11-13, 24128, Bergamo, Italy.
| |
Collapse
|
177
|
Rastgoo N, Abdi J, Hou J, Chang H. Role of epigenetics-microRNA axis in drug resistance of multiple myeloma. J Hematol Oncol 2017; 10:121. [PMID: 28623912 PMCID: PMC5474298 DOI: 10.1186/s13045-017-0492-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/06/2017] [Indexed: 01/18/2023] Open
Abstract
Despite administration of novel therapies, multiple myeloma (MM) remains incurable with resistance to drugs leading to relapse in most patients. Thus, it is critical to understand the detailed mechanisms underlying the drug resistance of MM and develop more effective therapeutic strategies. Genetic abnormalities are well known to play a central role in MM pathogenesis and therapy resistance; however, epigenetic aberrations mainly affecting the patterns of DNA methylation/histone modifications of genes (especially tumor suppressors) and miRNAs have also been shown to be involved. Importantly, while epigenetic silencing of miRNAs in MM is well documented, some epigenetic markers are known to be direct targets of miRNAs particularly the recently described "epimiRNAs". Drugs targeting epigenetic modifiers (e.g., HDACs, EZH2) can sensitize MM-resistant cells to anti-myeloma drugs and reversibility of epigenetic changes makes these drugs promising therapeutic agents. Therefore, combination of miRNA mimics with inhibitors of epigenetic modifiers would be a more potent therapeutic strategy in MM patients in relapse or refractory to treatments. In this review, we will discuss the findings of recent investigations on epigenetics/miRNA regulatory axis in development of drug resistance in MM and highlight possible approaches for therapeutic applications of such interaction.
Collapse
Affiliation(s)
- Nasrin Rastgoo
- Division of Molecular and Cellular Biology, Toronto General Research Institute, Toronto, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
| | - Jahangir Abdi
- Division of Molecular and Cellular Biology, Toronto General Research Institute, Toronto, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
| | - Jian Hou
- Department of Hematology, Shanghai Chang Zheng Hospital, Shanghai, China
| | - Hong Chang
- Division of Molecular and Cellular Biology, Toronto General Research Institute, Toronto, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
- Department of Hematology, Shanghai Chang Zheng Hospital, Shanghai, China
- Department of Laboratory Hematology and Medical Oncology, University Health Network, 200 Elizabeth Street, 11E-413, Toronto, ON M5G 2C4 Canada
| |
Collapse
|
178
|
Russignan A, Spina C, Tamassia N, Cassaro A, Rigo A, Bagnato A, Rosanò L, Bonalumi A, Gottardi M, Zanatta L, Giacomazzi A, Scupoli MT, Tinelli M, Salvadori U, Mosna F, Zamò A, Cassatella MA, Vinante F, Tecchio C. Endothelin-1 receptor blockade as new possible therapeutic approach in multiple myeloma. Br J Haematol 2017; 178:781-793. [DOI: 10.1111/bjh.14771] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/14/2017] [Indexed: 01/31/2023]
Affiliation(s)
- Anna Russignan
- Haematology and Bone-Marrow Transplant Unit; Department of Medicine; Verona University; Verona Italy
| | - Cecilia Spina
- Haematology and Bone-Marrow Transplant Unit; Department of Medicine; Verona University; Verona Italy
| | - Nicola Tamassia
- Section of General Pathology; Department of Medicine; Verona University; Verona Italy
| | - Adriana Cassaro
- Haematology and Bone-Marrow Transplant Unit; Department of Medicine; Verona University; Verona Italy
| | - Antonella Rigo
- Haematology and Bone-Marrow Transplant Unit; Department of Medicine; Verona University; Verona Italy
| | - Anna Bagnato
- Preclinical Models and New Therapeutic Agents Unit; Regina Elena National Cancer Institute; Rome Italy
| | - Laura Rosanò
- Preclinical Models and New Therapeutic Agents Unit; Regina Elena National Cancer Institute; Rome Italy
| | - Angela Bonalumi
- Haematology and Bone-Marrow Transplant Unit; Department of Medicine; Verona University; Verona Italy
| | | | - Lucia Zanatta
- Pathology Unit; Ospedale Regionale Cà Foncello; Treviso Italy
| | - Alice Giacomazzi
- Haematology and Bone-Marrow Transplant Unit; Department of Medicine; Verona University; Verona Italy
| | - Maria Teresa Scupoli
- Interdepartmental Laboratory for Medical Research (LURM); Verona University; Verona Italy
| | - Martina Tinelli
- Haematology and Bone-Marrow Transplant Unit; Department of Medicine; Verona University; Verona Italy
| | - Ugo Salvadori
- Haematology and Bone-Marrow Transplant Unit; Department of Medicine; Verona University; Verona Italy
| | - Federico Mosna
- Haematology Unit; Ospedale Regionale Cà Foncello; Treviso Italy
| | - Alberto Zamò
- Section of Pathology; Department of Pathology and Diagnostic; Verona University; Verona Italy
| | - Marco A. Cassatella
- Section of General Pathology; Department of Medicine; Verona University; Verona Italy
| | - Fabrizio Vinante
- Haematology and Bone-Marrow Transplant Unit; Department of Medicine; Verona University; Verona Italy
| | - Cristina Tecchio
- Haematology and Bone-Marrow Transplant Unit; Department of Medicine; Verona University; Verona Italy
| |
Collapse
|
179
|
Amodio N, D'Aquila P, Passarino G, Tassone P, Bellizzi D. Epigenetic modifications in multiple myeloma: recent advances on the role of DNA and histone methylation. Expert Opin Ther Targets 2017; 21:91-101. [PMID: 27892767 DOI: 10.1080/14728222.2016.1266339] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Multiple Myeloma (MM) is a clonal late B-cell disorder accounting for about 13% of hematological cancers and 1% of all neoplastic diseases. Recent studies on the molecular pathogenesis and biology of MM have highlighted a complex epigenomic landscape contributing to MM onset, prognosis and high individual variability. Areas covered: We describe here the current knowledge on epigenetic events characterizing MM initiation and progression, focusing on the role of DNA and histone methylation and on the most promising epi-therapeutic approaches targeting the methylation pathway. Expert opinion: Data published so far indicate that alterations of the epigenetic framework, which include aberrant global or gene/non-coding RNA specific methylation profiles, feature prominently in the pathobiology of MM. Indeed, the aberrant expression of components of the epigenetic machinery as well as the reversibility of the epigenetic marks make this pathway druggable, providing the basis for the design of epigenetic therapies against this still fatal malignancy.
Collapse
Affiliation(s)
- Nicola Amodio
- a Department of Experimental and Clinical Medicine , Magna Graecia University , Catanzaro , Italy
| | - Patrizia D'Aquila
- b Department of Biology, Ecology and Earth Sciences , University of Calabria , Rende , Italy
| | - Giuseppe Passarino
- b Department of Biology, Ecology and Earth Sciences , University of Calabria , Rende , Italy
| | - Pierfrancesco Tassone
- a Department of Experimental and Clinical Medicine , Magna Graecia University , Catanzaro , Italy.,c Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology , Temple University , Philadelphia , PA , US
| | - Dina Bellizzi
- b Department of Biology, Ecology and Earth Sciences , University of Calabria , Rende , Italy
| |
Collapse
|
180
|
Delgado-Calle J, Anderson J, Cregor MD, Condon KW, Kuhstoss SA, Plotkin LI, Bellido T, Roodman GD. Genetic deletion of Sost or pharmacological inhibition of sclerostin prevent multiple myeloma-induced bone disease without affecting tumor growth. Leukemia 2017; 31:2686-2694. [PMID: 28529307 PMCID: PMC5699973 DOI: 10.1038/leu.2017.152] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/26/2017] [Accepted: 05/04/2017] [Indexed: 12/28/2022]
Abstract
Multiple myeloma (MM) causes lytic bone lesions due to increased bone
resorption and concomitant marked suppression of bone formation. Sclerostin
(Scl) levels, an osteocyte-derived inhibitor of Wnt/β-catenin signaling,
are elevated in MM patient sera and are increased in osteocytes in MM-bearing
mice. We show here that genetic deletion of Sost, the gene encoding Scl,
prevented MM-induced bone disease in an immune-deficient mouse model of early
MM, and that administration of anti-Scl antibody (Scl-Ab) increased bone mass
and decreases osteolysis in immune-competent mice with established MM. Sost/Scl
inhibition increased osteoblast numbers, stimulated new bone formation and
decreased osteoclast number in MM-colonized bone. Further, Sost/Scl inhibition
did not affect tumor growth in vivo or anti-myeloma drug
efficacy in vitro. These results identify the osteocyte as a
major contributor to the deleterious effects of MM in bone and osteocyte-derived
Scl as a promising target for the treatment of established MM-induced bone
disease. Further, Scl did not interfere with efficacy of chemotherapy for MM
suggesting that combined treatment with anti-myeloma drugs and Scl-Ab should
effectively control MM growth and bone disease, providing new avenues to
effectively control MM and bone disease in patients with active MM.
Collapse
Affiliation(s)
- J Delgado-Calle
- Department of Anatomy and Cell Biology, Indiana University, Indianapolis, IN, USA.,Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - J Anderson
- Division of Hematology/Oncology, Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - M D Cregor
- Department of Anatomy and Cell Biology, Indiana University, Indianapolis, IN, USA
| | - K W Condon
- Department of Anatomy and Cell Biology, Indiana University, Indianapolis, IN, USA
| | - S A Kuhstoss
- Lilly Research Laboratories, Indianapolis, Indiana, USA
| | - L I Plotkin
- Department of Anatomy and Cell Biology, Indiana University, Indianapolis, IN, USA.,Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - T Bellido
- Department of Anatomy and Cell Biology, Indiana University, Indianapolis, IN, USA.,Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA.,Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, Indiana University, Indianapolis, IN, USA
| | - G D Roodman
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA.,Division of Hematology/Oncology, Department of Medicine, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
181
|
D’Agostino M, Salvini M, Palumbo A, Larocca A, Gay F. Novel investigational drugs active as single agents in multiple myeloma. Expert Opin Investig Drugs 2017; 26:699-711. [DOI: 10.1080/13543784.2017.1324571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Mattia D’Agostino
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Marco Salvini
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Antonio Palumbo
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
- Currently Takeda employee
| | - Alessandra Larocca
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Francesca Gay
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| |
Collapse
|
182
|
|
183
|
Ciavarella S, Laurenzana A, De Summa S, Pilato B, Chillà A, Lacalamita R, Minoia C, Margheri F, Iacobazzi A, Rana A, Merchionne F, Fibbi G, Del Rosso M, Guarini A, Tommasi S, Serratì S. u-PAR expression in cancer associated fibroblast: new acquisitions in multiple myeloma progression. BMC Cancer 2017; 17:215. [PMID: 28340565 PMCID: PMC5366111 DOI: 10.1186/s12885-017-3183-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 03/09/2017] [Indexed: 01/07/2023] Open
Abstract
Background Multiple Myeloma (MM) is a B-cell malignancy in which clonal plasma cells progressively expand within the bone marrow (BM) as effect of complex interactions with extracellular matrix and a number of microenvironmental cells. Among these, cancer-associated fibroblasts (CAF) mediate crucial reciprocal signals with MM cells and are associated to aggressive disease and poor prognosis. A large body of evidence emphasizes the role of the urokinase plasminogen activator (u-PA) and its receptor u-PAR in potentiating the invasion capacity of tumor plasma cells, but little is known about their role in the biology of MM CAF. In this study, we investigated the u-PA/u-PAR axis in MM-associated fibroblasts and explore additional mechanisms of tumor/stroma interplay in MM progression. Methods CAF were purified from total BM stromal fraction of 64 patients including monoclonal gammopathy of undetermined significance, asymptomatic and symptomatic MM, as well as MM in post-treatment remission. Flow cytometry, Real Time PCR and immunofluorescence were performed to investigate the u-PA/u-PAR system in relation to the level of activation of CAF at different stages of the disease. Moreover, proliferation and invasion assays coupled with silencing experiments were used to prove, at functional level, the function of u-PAR in CAF. Results We found higher activation level, along with increased expression of pro-invasive molecules, including u-PA, u-PAR and metalloproteinases, in CAF from patients with symptomatic MM compared to the others stages of the disease. Consistently, CAF from active MM as well as U266 cell line under the influence of medium conditioned by active MM CAF, display higher proliferative rate and invasion potential, which were significantly restrained by u-PAR gene expression inhibition. Conclusions Our data suggest that the stimulation of u-PA/u-PAR system contributes to the activated phenotype and function of CAF during MM progression, providing a biological rationale for future targeted therapies against MM.
Collapse
Affiliation(s)
- S Ciavarella
- National Cancer Research Centre IRCCS "Giovanni Paolo II", 70124, Bari, Italy
| | - A Laurenzana
- Department of Experimental and Clinical Biomedical Sciences, Section of Experimental Pathology and Oncology, University of Florence, Florence, Italy
| | - S De Summa
- Molecular Genetics Laboratory, National Cancer Research Centre, IRCCS "Giovanni Paolo II", 70124, Bari, Italy
| | - B Pilato
- Molecular Genetics Laboratory, National Cancer Research Centre, IRCCS "Giovanni Paolo II", 70124, Bari, Italy
| | - A Chillà
- Department of Experimental and Clinical Biomedical Sciences, Section of Experimental Pathology and Oncology, University of Florence, Florence, Italy
| | - R Lacalamita
- Molecular Genetics Laboratory, National Cancer Research Centre, IRCCS "Giovanni Paolo II", 70124, Bari, Italy
| | - C Minoia
- National Cancer Research Centre IRCCS "Giovanni Paolo II", 70124, Bari, Italy
| | - F Margheri
- Department of Experimental and Clinical Biomedical Sciences, Section of Experimental Pathology and Oncology, University of Florence, Florence, Italy
| | - A Iacobazzi
- National Cancer Research Centre IRCCS "Giovanni Paolo II", 70124, Bari, Italy
| | - A Rana
- National Cancer Research Centre IRCCS "Giovanni Paolo II", 70124, Bari, Italy
| | - F Merchionne
- National Cancer Research Centre IRCCS "Giovanni Paolo II", 70124, Bari, Italy
| | - G Fibbi
- Department of Experimental and Clinical Biomedical Sciences, Section of Experimental Pathology and Oncology, University of Florence, Florence, Italy
| | - M Del Rosso
- Department of Experimental and Clinical Biomedical Sciences, Section of Experimental Pathology and Oncology, University of Florence, Florence, Italy
| | - A Guarini
- National Cancer Research Centre IRCCS "Giovanni Paolo II", 70124, Bari, Italy
| | - S Tommasi
- Molecular Genetics Laboratory, National Cancer Research Centre, IRCCS "Giovanni Paolo II", 70124, Bari, Italy
| | - S Serratì
- Molecular Genetics Laboratory, National Cancer Research Centre, IRCCS "Giovanni Paolo II", 70124, Bari, Italy. .,Nanotecnology Laboratory, National Cancer Research Centre, IRCCS "Giovanni Paolo II", Bari, Italy.
| |
Collapse
|
184
|
Wang D, Fløisand Y, Myklebust CV, Bürgler S, Parente-Ribes A, Hofgaard PO, Bogen B, Taskén K, Tjønnfjord GE, Schjesvold F, Dalgaard J, Tveita A, Munthe LA. Autologous bone marrow Th cells can support multiple myeloma cell proliferation in vitro and in xenografted mice. Leukemia 2017; 31:2114-2121. [PMID: 28232741 DOI: 10.1038/leu.2017.69] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 02/03/2017] [Accepted: 02/14/2017] [Indexed: 02/06/2023]
Abstract
Multiple myeloma (MM) is a plasma cell malignancy where MM cell growth is supported by the bone marrow (BM) microenvironment with poorly defined cellular and molecular mechanisms. MM cells express CD40, a receptor known to activate autocrine secretion of cytokines and elicit proliferation. Activated T helper (Th) cells express CD40 ligand (CD40L) and BM Th cells are significantly increased in MM patients. We hypothesized that activated BM Th cells could support MM cell growth. We here found that activated autologous BM Th cells supported MM cell growth in a contact- and CD40L-dependent manner in vitro. MM cells had retained the ability to activate Th cells that reciprocated and stimulated MM cell proliferation. Autologous BM Th cells supported MM cell growth in xenografted mice and were found in close contact with MM cells. MM cells secreted chemokines that attracted Th cells, secretion was augmented by CD40-stimulation. Within 14 days of culture of whole BM aspirates in autologous serum, MM cells and Th cells mutually stimulated each other, and MM cells required Th cells for further expansion in vitro and in mice. The results suggest that Th cells may support the expansion of MM cells in patients.
Collapse
Affiliation(s)
- D Wang
- Department of Immunology, Centre for Immune Regulation, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Y Fløisand
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - C V Myklebust
- Department of Immunology, Centre for Immune Regulation, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - S Bürgler
- Department of Immunology, Centre for Immune Regulation, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - A Parente-Ribes
- Department of Immunology, Centre for Immune Regulation, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - P O Hofgaard
- Department of Immunology, Centre for Immune Regulation, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,KG Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - B Bogen
- Department of Immunology, Centre for Immune Regulation, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,KG Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - K Taskén
- Centre for Molecular Medicine Norway (NCMM), University of Oslo, Oslo, Norway
| | - G E Tjønnfjord
- Department of Haematology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - F Schjesvold
- Department of Immunology, Centre for Immune Regulation, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - J Dalgaard
- Department of Haematology, Oslo University Hospital, Oslo, Norway.,Department of Medicine, Vestre Viken Trust, Drammen Hospital, Drammen, Norway
| | - A Tveita
- Department of Immunology, Centre for Immune Regulation, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - L A Munthe
- Department of Immunology, Centre for Immune Regulation, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
185
|
|
186
|
A gene expression inflammatory signature specifically predicts multiple myeloma evolution and patients survival. Blood Cancer J 2016; 6:e511. [PMID: 27983725 PMCID: PMC5223153 DOI: 10.1038/bcj.2016.118] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/28/2016] [Indexed: 12/22/2022] Open
Abstract
Multiple myeloma (MM) is closely dependent on cross-talk between malignant plasma cells and cellular components of the inflammatory/immunosuppressive bone marrow milieu, which promotes disease progression, drug resistance, neo-angiogenesis, bone destruction and immune-impairment. We investigated the relevance of inflammatory genes in predicting disease evolution and patient survival. A bioinformatics study by Ingenuity Pathway Analysis on gene expression profiling dataset of monoclonal gammopathy of undetermined significance, smoldering and symptomatic-MM, identified inflammatory and cytokine/chemokine pathways as the most progressively affected during disease evolution. We then selected 20 candidate genes involved in B-cell inflammation and we investigated their role in predicting clinical outcome, through univariate and multivariate analyses (log-rank test, logistic regression and Cox-regression model). We defined an 8-genes signature (IL8, IL10, IL17A, CCL3, CCL5, VEGFA, EBI3 and NOS2) identifying each condition (MGUS/smoldering/symptomatic-MM) with 84% accuracy. Moreover, six genes (IFNG, IL2, LTA, CCL2, VEGFA, CCL3) were found independently correlated with patients' survival. Patients whose MM cells expressed high levels of Th1 cytokines (IFNG/LTA/IL2/CCL2) and low levels of CCL3 and VEGFA, experienced the longest survival. On these six genes, we built a prognostic risk score that was validated in three additional independent datasets. In this study, we provide proof-of-concept that inflammation has a critical role in MM patient progression and survival. The inflammatory-gene prognostic signature validated in different datasets clearly indicates novel opportunities for personalized anti-MM treatment.
Collapse
|
187
|
Wu K, Li L, Thakur C, Lu Y, Zhang X, Yi Z, Chen F. Proteomic Characterization of the World Trade Center dust-activated mdig and c-myc signaling circuit linked to multiple myeloma. Sci Rep 2016; 6:36305. [PMID: 27833099 PMCID: PMC5105131 DOI: 10.1038/srep36305] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/12/2016] [Indexed: 12/30/2022] Open
Abstract
Several epidemiological studies suggested an increased incidence rate of multiple myeloma (MM) among first responders and other individuals who exposed to World Trade Center (WTC) dust. In this report, we provided evidence showing that WTC dust is potent in inducing mdig protein and/or mRNA in bronchial epithelial cells, B cells and MM cell lines. An increased mdig expression in MM bone marrow was observed, which is associated with the disease progression and prognosis of the MM patients. Through integrative genomics and proteomics approaches, we further demonstrated that mdig directly interacts with c-myc and JAK1 in MM cell lines, which contributes to hyperactivation of the IL-6-JAK-STAT3 signaling important for the pathogenesis of MM. Genetic silencing of mdig reduced activity of the major downstream effectors in the IL-6-JAK-STAT3 pathway. Taken together, these data suggest that WTC dust may be one of the key etiological factors for those who had been exposed for the development of MM by activating mdig and c-myc signaling circuit linked to the IL-6-JAK-STAT3 pathway essential for the tumorigenesis of the malignant plasma cells.
Collapse
Affiliation(s)
- Kai Wu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Lingzhi Li
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Chitra Thakur
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Yongju Lu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Xiangmin Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Zhengping Yi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| |
Collapse
|
188
|
Burger R, Günther A, Klausz K, Staudinger M, Peipp M, Penas EMM, Rose-John S, Wijdenes J, Gramatzki M. Due to interleukin-6 type cytokine redundancy only glycoprotein 130 receptor blockade efficiently inhibits myeloma growth. Haematologica 2016; 102:381-390. [PMID: 27658435 DOI: 10.3324/haematol.2016.145060] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 09/14/2016] [Indexed: 12/25/2022] Open
Abstract
Interleukin-6 has an important role in the pathophysiology of multiple myeloma where it supports the growth and survival of the malignant plasma cells in the bone marrow. It belongs to a family of cytokines which use the glycoprotein 130 chain for signal transduction, such as oncostatin M or leukemia inhibitory factor. Targeting interleukin-6 in plasma cell diseases is currently evaluated in clinical trials with monoclonal antibodies. Here, efforts were made to elucidate the contribution of interleukin-6 and glycoprotein 130 signaling in malignant plasma cell growth in vivo In the xenograft severe combined immune deficiency model employing our interleukin-6-dependent plasma cell line INA-6, the lack of human interleukin-6 induced autocrine interleukin-6 production and a proliferative response to other cytokines of the glycoprotein 130 family. Herein, mice were treated with monoclonal antibodies against human interleukin-6 (elsilimomab/B-E8), the interleukin-6 receptor (B-R6), and with an antibody blocking glycoprotein 130 (B-R3). While treatment of mice with interleukin-6 and interleukin-6 receptor antibodies resulted in a modest delay in tumor growth, the development of plasmacytomas was completely prevented with the anti-glycoprotein 130 antibody. Importantly, complete inhibition was also achieved using F(ab')2-fragments of monoclonal antibody B-R3. Tumors harbor activated signal transducer and activator of transcription 3, and in vitro, the antibody inhibited leukemia inhibitory factor stimulated signal transducer and activator of transcription 3 phosphorylation and cell growth, while being less effective against interleukin-6. In conclusion, the growth of INA-6 plasmacytomas in vivo under interleukin-6 withdrawal remains strictly dependent on glycoprotein 130, and other glycoprotein 130 cytokines may substitute for interleukin-6. Antibodies against glycoprotein 130 are able to overcome this redundancy and should be explored for a possible therapeutic window.
Collapse
Affiliation(s)
- Renate Burger
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Andreas Günther
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Katja Klausz
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Matthias Staudinger
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Eva Maria Murga Penas
- Institute of Human Genetics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Stefan Rose-John
- Department of Biochemistry, Christian-Albrechts-University of Kiel, Medical Faculty, Germany
| | | | - Martin Gramatzki
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
189
|
Cooke RE, Gherardin NA, Harrison SJ, Quach H, Godfrey DI, Prince M, Koldej R, Ritchie DS. Spontaneous onset and transplant models of the Vk*MYC mouse show immunological sequelae comparable to human multiple myeloma. J Transl Med 2016; 14:259. [PMID: 27599546 PMCID: PMC5011922 DOI: 10.1186/s12967-016-0994-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/28/2016] [Indexed: 12/22/2022] Open
Abstract
Background The Vk*MYC transgenic and transplant mouse models of multiple myeloma (MM) are well established as a research tool for anti-myeloma drug discovery. However, little is known of the immune response in these models. Understanding the immunological relevance of these models is of increasing importance as immunotherapeutic drugs are developed against MM. Methods We set out to examine how cellular immunity is affected in Vk*MYC mouse models and compare that to the immunology of patients with newly diagnosed and relapsed/refractory MM. Results We found that there were significant immunological responses in mice developing either spontaneous (transgenic) or transplanted MM as a consequence of the degree of tumor burden. Particularly striking were the profound B cell lymphopenia and the expansion of CD8+ effector memory T cells within the lymphocyte population that progressively developed with advancing disease burden, mirroring changes seen in human MM. High disease burden was also associated with increased inflammatory cytokine production by T lymphocytes, which is more fitting with relapsed/refractory MM in humans. Conclusions These findings have important implications for the application of this mouse model in the development of MM immunotherapies. Trial registration LitVacc ANZCTR trial ID ACTRN12613000344796; RevLite ANZCTR trial ID NCT00482261
Collapse
Affiliation(s)
- Rachel E Cooke
- ACRF Translational Research Laboratory, Royal Melbourne Hospital, Parkville, VIC, 3010, Australia. .,Cancer Immunology Program, Peter MacCallum Cancer Centre, University of Melbourne, East Melbourne, VIC, 3002, Australia. .,Department of Medicine, University of Melbourne, Melbourne, Australia.
| | - Nicholas A Gherardin
- Cancer Immunology Program, Peter MacCallum Cancer Centre, University of Melbourne, East Melbourne, VIC, 3002, Australia.,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, 3010, Australia
| | - Simon J Harrison
- Cancer Immunology Program, Peter MacCallum Cancer Centre, University of Melbourne, East Melbourne, VIC, 3002, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Hang Quach
- Cancer Immunology Program, Peter MacCallum Cancer Centre, University of Melbourne, East Melbourne, VIC, 3002, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Miles Prince
- Cancer Immunology Program, Peter MacCallum Cancer Centre, University of Melbourne, East Melbourne, VIC, 3002, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Rachel Koldej
- ACRF Translational Research Laboratory, Royal Melbourne Hospital, Parkville, VIC, 3010, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia
| | - David S Ritchie
- ACRF Translational Research Laboratory, Royal Melbourne Hospital, Parkville, VIC, 3010, Australia.,Cancer Immunology Program, Peter MacCallum Cancer Centre, University of Melbourne, East Melbourne, VIC, 3002, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia
| |
Collapse
|
190
|
Abstract
There have been major recent advancements in the understanding and management of multiple myeloma. Diagnostic criteria have been revised and former ultra-high-risk smoldering multiple myeloma is now considered multiple myeloma in need of treatment. Understanding clonal progression, evolution, and tides not only has helped elucidate the disease behavior but might help expand therapeutic choices in order to select appropriate treatment for patients. Unprecedented response rates with modern triplet induction therapies containing proteasome inhibitor and immunomodulators have made this approach standard for initial treatment. The US Food and Drug Administration approved four new drugs (two targeted antibodies and two oral agents) in 2015 in relapsed/refractory multiple myeloma and these drugs along with the other already-available drugs have now increased the choices of regimens. Even drugs without single-agent activity, such as panobinostat and elotuzumab, have an important role, especially in the proteasome inhibitor refractory setting. Recent studies done in the context of novel agent induction suggest that high-dose therapy followed by autologous transplant continues to improve response rates and progression-free survival, thus underscoring their role in transplant-eligible patients. Evolving paradigms in the treatment of multiple myeloma include newer promising immune approaches, such as adoptive cellular therapies, vaccines, or antibody-based immune manipulations. Though multiple myeloma is still considered incurable, it is clear that with the improved understanding of disease biology and clonal architecture of relapse combined with the availability of multi-targeted approaches, we are ever closer to a lasting cure or transformation into indolent and long-lasting disease courses or both.
Collapse
Affiliation(s)
- Binod Dhakal
- Division of Hematology/Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Saulius Girnius
- Division of Hematology/Oncology, University of Cincinnati, Cincinnati, OH, USA
| | - Parameswaran Hari
- Division of Hematology/Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
191
|
Cell autonomous and microenvironmental regulation of tumor progression in precursor states of multiple myeloma. Curr Opin Hematol 2016; 23:426-33. [DOI: 10.1097/moh.0000000000000259] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
192
|
Ríos-Tamayo R, Sáinz J, Martínez-López J, Puerta JM, Chang DYL, Rodríguez T, Garrido P, de Veas JLG, Romero A, Moratalla L, López-Fernández E, González PA, Sánchez MJ, Jiménez-Moleón JJ, Jurado M, Lahuerta JJ. Early mortality in multiple myeloma: the time-dependent impact of comorbidity: A population-based study in 621 real-life patients. Am J Hematol 2016; 91:700-4. [PMID: 27074204 DOI: 10.1002/ajh.24389] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/28/2016] [Accepted: 04/09/2016] [Indexed: 01/09/2023]
Abstract
Multiple myeloma is a heterogeneous disease with variable survival; this variability cannot be fully explained by the current systems of risk stratification. Early mortality remains a serious obstacle to further improve the trend toward increased survival demonstrated in recent years. However, the definition of early mortality is not standardized yet. Importantly, no study has focused on the impact of comorbidity on early mortality in multiple myeloma to date. Therefore, we analyzed the role of baseline comorbidity in a large population-based cohort of 621 real-life myeloma patients over a 31-year period. To evaluate early mortality, a sequential multivariate regression model at 2, 6, and 12 months from diagnosis was performed. It was demonstrated that comorbidity had an independent impact on early mortality, which is differential and time-dependent. Besides renal failure, respiratory disease at 2 months, liver disease at 6 months, and hepatitis virus C infection at 12 months, were, respectively, associated with early mortality, adjusting for other well-established prognostic factors. On the other hand, the long-term monitoring in our study points out a modest downward trend in early mortality over time. This is the first single institution population-based study aiming to assess the impact of comorbidity on early mortality in multiple myeloma. It is suggested that early mortality should be analyzed at three key time points (2, 6, and 12 months), in order to allow comparisons between studies. Comorbidity plays a critical role in the outcome of myeloma patients in terms of early mortality. Am. J. Hematol. 91:700-704, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rafael Ríos-Tamayo
- Monoclonal Gammopathies Unit; University Hospital Virgen De Las Nieves; Granada Spain
- Department of Hematology; University Hospital Virgen De Las Nieves; Granada Spain
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS; Granada Spain
- Instituto De Investigación Biosanitaria De Granada (Ibs.GRANADA), Hospitales Universitarios De Granada/Universidad De Granada; Granada Spain
| | - Juan Sáinz
- Monoclonal Gammopathies Unit; University Hospital Virgen De Las Nieves; Granada Spain
- Department of Hematology; University Hospital Virgen De Las Nieves; Granada Spain
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS; Granada Spain
- Instituto De Investigación Biosanitaria De Granada (Ibs.GRANADA), Hospitales Universitarios De Granada/Universidad De Granada; Granada Spain
| | | | - José Manuel Puerta
- Department of Hematology; University Hospital Virgen De Las Nieves; Granada Spain
| | - Daysi-Yoe-Ling Chang
- Instituto De Investigación Biosanitaria De Granada (Ibs.GRANADA), Hospitales Universitarios De Granada/Universidad De Granada; Granada Spain
- Granada Cancer Registry; Andalusian School of Public Health; Granada Spain
| | - Teresa Rodríguez
- Department of Inmunology; University Hospital Virgen De Las Nieves; Granada Spain
| | - Pilar Garrido
- Department of Hematology; University Hospital Virgen De Las Nieves; Granada Spain
| | | | - Antonio Romero
- Department of Hematology; University Hospital Virgen De Las Nieves; Granada Spain
| | - Lucía Moratalla
- Department of Hematology; University Hospital Virgen De Las Nieves; Granada Spain
| | | | | | - María José Sánchez
- Instituto De Investigación Biosanitaria De Granada (Ibs.GRANADA), Hospitales Universitarios De Granada/Universidad De Granada; Granada Spain
- Granada Cancer Registry; Andalusian School of Public Health; Granada Spain
- CIBER Epidemiology and Public Health; Granada Spain
| | - José Juan Jiménez-Moleón
- Instituto De Investigación Biosanitaria De Granada (Ibs.GRANADA), Hospitales Universitarios De Granada/Universidad De Granada; Granada Spain
- CIBER Epidemiology and Public Health; Granada Spain
- Department of Preventive Medicine and Public Health; University of Granada; Granada Spain
| | - Manuel Jurado
- Monoclonal Gammopathies Unit; University Hospital Virgen De Las Nieves; Granada Spain
- Department of Hematology; University Hospital Virgen De Las Nieves; Granada Spain
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS; Granada Spain
- Instituto De Investigación Biosanitaria De Granada (Ibs.GRANADA), Hospitales Universitarios De Granada/Universidad De Granada; Granada Spain
| | | |
Collapse
|
193
|
Naymagon L, Abdul-Hay M. Novel agents in the treatment of multiple myeloma: a review about the future. J Hematol Oncol 2016; 9:52. [PMID: 27363832 PMCID: PMC4929712 DOI: 10.1186/s13045-016-0282-1] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 06/21/2016] [Indexed: 02/07/2023] Open
Abstract
Multiple myeloma (MM) is a disease that affects plasma cells and can lead to devastating clinical features such as anemia, lytic bone lesions, hypercalcemia, and renal disease. An enhanced understanding of MM disease mechanisms has led to new more targeted treatments. There is now a plethora of treatments available for MM. In this review article, our aim is to discuss many of the novel agents that are being studied or have recently been approved for the treatment of MM. These agents include the following: immunomodulators (pomalidomide), proteasome inhibitors (carfilzomib, marizomib, ixazomib, oprozomib), alkylating agents (bendamustine), AKT inhibitors (afuresertib), BTK inhibitors (ibrutinib), CDK inhibitors (dinaciclib), histone deacetylase inhibitors (panobinostat, rocilinostat, vorinostat), IL-6 inhibitors (siltuximab), kinesin spindle protein inhibitors (filanesib), monoclonal antibodies (daratumumab, elotuzumab, indatuximab, SAR650984), and phosphoinositide 3-kinase (PI3K) inhibitors.
Collapse
Affiliation(s)
| | - Maher Abdul-Hay
- Department of Medicine, New York University, New York, USA. .,Perlmutter Cancer Center, New York University, New York, USA. .,NYU School of Medicine, 240 East 38th Street, 19 Floor, New York, NY, 10016, USA.
| |
Collapse
|
194
|
Phenotypic, transcriptomic, and genomic features of clonal plasma cells in light-chain amyloidosis. Blood 2016; 127:3035-9. [DOI: 10.1182/blood-2015-10-673095] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 03/31/2016] [Indexed: 12/24/2022] Open
Abstract
Key Points
Clonal PCs in AL have similar phenotypic and CNA profiles as those in MM, but their transcriptome is similar to that of normal PCs. First-ever WES in AL amyloidosis reveals potential lack of a unifying mutation.
Collapse
|
195
|
Bouchnita A, Eymard N, Moyo TK, Koury MJ, Volpert V. Bone marrow infiltration by multiple myeloma causes anemia by reversible disruption of erythropoiesis. Am J Hematol 2016; 91:371-8. [PMID: 26749142 DOI: 10.1002/ajh.24291] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 12/29/2015] [Indexed: 12/20/2022]
Abstract
Multiple myeloma (MM) infiltrates bone marrow and causes anemia by disrupting erythropoiesis, but the effects of marrow infiltration on anemia are difficult to quantify. Marrow biopsies of newly diagnosed MM patients were analyzed before and after four 28-day cycles of non-erythrotoxic remission induction chemotherapy. Complete blood cell counts and serum paraprotein concentrations were measured at diagnosis and before each chemotherapy cycle. At diagnosis, marrow area infiltrated by myeloma correlated negatively with hemoglobin, erythrocytes, and marrow erythroid cells. After successful chemotherapy, patients with less than 30% myeloma infiltration at diagnosis had no change in these parameters, whereas patients with more than 30% myeloma infiltration at diagnosis increased all three parameters. Clinical data were used to develop mathematical models of the effects of myeloma infiltration on the marrow niches of terminal erythropoiesis, the erythroblastic islands (EBIs). A hybrid discrete-continuous model of erythropoiesis based on EBI structure/function was extended to sections of marrow containing multiple EBIs. In the model, myeloma cells can kill erythroid cells by physically destroying EBIs and by producing proapoptotic cytokines. Following chemotherapy, changes in serum paraproteins as measures of myeloma cells and changes in erythrocyte numbers as measures of marrow erythroid cells allowed modeling of myeloma cell death and erythroid cell recovery, respectively. Simulations of marrow infiltration by myeloma and treatment with non-erythrotoxic chemotherapy demonstrate that myeloma-mediated destruction and subsequent reestablishment of EBIs and expansion of erythroid cell populations in EBIs following chemotherapy provide explanations for anemia development and its therapy-mediated recovery in MM patients.
Collapse
Affiliation(s)
- Anass Bouchnita
- Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1; Villeurbanne 69622 France
| | - Nathalie Eymard
- Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1; Villeurbanne 69622 France
| | - Tamara K. Moyo
- Division of Hematology/Oncology; Department of Medicine; Vanderbilt University Medical Center; Nashville Tennessee
| | - Mark J. Koury
- Division of Hematology/Oncology; Department of Medicine; Vanderbilt University Medical Center; Nashville Tennessee
| | - Vitaly Volpert
- Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1; Villeurbanne 69622 France
- INRIA Team Dracula, INRIA Antenne Lyon La Doua, Villeurbanne 69603, France, and European Institute of Systems Biology and Medicine; Lyon 69007 France
| |
Collapse
|
196
|
Martello M, Remondini D, Borsi E, Santacroce B, Procacci M, Pezzi A, Dico FA, Martinelli G, Zamagni E, Tacchetti P, Pantani L, Testoni N, Marzocchi G, Rocchi S, Zannetti BA, Mancuso K, Cavo M, Terragna C. Opposite activation of the Hedgehog pathway in CD138+ plasma cells and CD138-CD19+ B cells identifies two subgroups of patients with multiple myeloma and different prognosis. Leukemia 2016; 30:1869-76. [PMID: 27074969 DOI: 10.1038/leu.2016.77] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/02/2016] [Accepted: 03/14/2016] [Indexed: 12/14/2022]
Abstract
Hyperactivation of the Hedgehog (Hh) pathway, which controls refueling of multiple myeloma (MM) clones, might be critical to disease recurrence. Although several studies suggest the Hh pathway is activated in CD138- immature cells, differentiated CD138+ plasma cells might also be able to self-renew by producing themselves the Hh ligands. We studied the gene expression profiles of 126 newly diagnosed MM patients analyzed in both the CD138+ plasma cell fraction and CD138-CD19+ B-cell compartment. Results demonstrated that an Hh-gene signature was able to cluster patients in two subgroups characterized by the opposite Hh pathway expression in mature plasma cells and their precursors. Strikingly, patients characterized by Hh hyperactivation in plasma cells, but not in their B cells, displayed high genomic instability and an unfavorable outcome in terms of shorter progression-free survival (hazard ratio: 1.92; 95% confidence interval: 1.19-3.07) and overall survival (hazard ratio: 2.61; 95% confidence interval: 1.26-5.38). These results suggest that the mechanisms triggered by the Hh pathway ultimately led to identify a more indolent vs a more aggressive biological and clinical subtype of MM. Therefore, patient stratification according to their molecular background might help the fine-tuning of future clinical and therapeutic studies.
Collapse
Affiliation(s)
- M Martello
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - D Remondini
- Department of Physics and Astronomy (DIFA), University of Bologna, Bologna, Italy
| | - E Borsi
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - B Santacroce
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - M Procacci
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - A Pezzi
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - F A Dico
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - G Martinelli
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - E Zamagni
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - P Tacchetti
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - L Pantani
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - N Testoni
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - G Marzocchi
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - S Rocchi
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - B A Zannetti
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - K Mancuso
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - M Cavo
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - C Terragna
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| |
Collapse
|
197
|
de la Puente P, Quan N, Hoo RS, Muz B, Gilson RC, Luderer M, King J, Achilefu S, Salama NN, Vij R, Azab AK. Newly established myeloma-derived stromal cell line MSP-1 supports multiple myeloma proliferation, migration, and adhesion and induces drug resistance more than normal-derived stroma. Haematologica 2016; 101:e307-11. [PMID: 27081175 DOI: 10.3324/haematol.2016.142190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Pilar de la Puente
- Department of Radiation Oncology, Cancer Biology Division, Washington University in Saint Louis School of Medicine, MO, USA
| | - Nancy Quan
- Department of Radiation Oncology, Cancer Biology Division, Washington University in Saint Louis School of Medicine, MO, USA Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, MO, USA
| | - Ryan Soo Hoo
- Department of Radiation Oncology, Cancer Biology Division, Washington University in Saint Louis School of Medicine, MO, USA Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, MO, USA
| | - Barbara Muz
- Department of Radiation Oncology, Cancer Biology Division, Washington University in Saint Louis School of Medicine, MO, USA
| | - Rebecca C Gilson
- Biomedical Engineering, Washington University in Saint Louis School of Medicine, MO, USA
| | - Micah Luderer
- Department of Radiation Oncology, Cancer Biology Division, Washington University in Saint Louis School of Medicine, MO, USA
| | - Justin King
- Section of Stem Cell Transplant and Leukemia, Division of Medical Oncology, Washington University in Saint Louis School of Medicine, MO, USA
| | - Samuel Achilefu
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Noha Nabil Salama
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, MO, USA Department of Pharmaceutics and Industrial Pharmacy, University Faculty of Pharmacy, Cairo, Egypt
| | - Ravi Vij
- Section of Stem Cell Transplant and Leukemia, Division of Medical Oncology, Washington University in Saint Louis School of Medicine, MO, USA
| | - Abdel Kareem Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University in Saint Louis School of Medicine, MO, USA
| |
Collapse
|
198
|
Malek E, de Lima M, Letterio JJ, Kim BG, Finke JH, Driscoll JJ, Giralt SA. Myeloid-derived suppressor cells: The green light for myeloma immune escape. Blood Rev 2016; 30:341-8. [PMID: 27132116 DOI: 10.1016/j.blre.2016.04.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/28/2016] [Accepted: 04/01/2016] [Indexed: 01/04/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous, immature myeloid cell population with the ability to suppress innate and adaptive immune responses that promote tumor growth. MDSCs are increased in patients with multiple myeloma (MM) and have bidirectional interaction with tumors within the MM microenvironment. MM-MDSCs promote MM tumor growth and induce immune suppression; conversely, MM cells induce MDSC development and survival. Although the role of MDSCs in infections, inflammatory diseases and solid tumors has been extensively characterized, their tumor-promoting and immune-suppressive role in MM and the MM microenvironment is only beginning to emerge. The presence and activation of MDSCs in MM patients has been well documented; however, the direct actions and functional consequences of MDSCs on cancer cells is poorly defined. Immunosuppressive MDSCs play an important role in tumor progression primarily because of their capability to promote immune-escape, angiogenesis, drug resistance and metastasis. However, their role in the bone marrow (BM), the primary MM site, is poorly understood. MM remains an incurable malignancy, and it is likely that the BM microenvironment protects MM against chemotherapy agents and the host immune system. A growing body of evidence suggests that host immune cells with a suppressive phenotype contribute to a myeloma immunosuppressive network. Among the known suppressor cells, MDSCs and T regulatory cells (Tregs) have been found to be significantly increased in myeloma patients and their levels correlate with disease stage and clinical outcome. Furthermore, it has been shown that MDSC can mediate suppression of myeloma-specific T-cell responses through the induction of T-cell anergy and Treg development in the MM microenvironment. Here, we review clinical correlations and the preclinical proof-of-principle data on the role of MDSCs in myeloma immunotolerance and highlight the mechanistically relevant MDSC-targeted compounds and their potential utility in a new approach for anti-myeloma therapy.
Collapse
Affiliation(s)
- Ehsan Malek
- University Hospitals Case Medical Center, Seidman Cancer Center, Cleveland, OH, USA.
| | - Marcos de Lima
- University Hospitals Case Medical Center, Seidman Cancer Center, Cleveland, OH, USA
| | - John J Letterio
- Department of Pediatrics, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA; The Angie Fowler Adolescent & Young Adult Cancer Institute, Rainbow Babies & Children's Hospital, University Hospitals, Cleveland, OH, USA
| | - Byung-Gyu Kim
- Department of Pediatrics, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA; The Angie Fowler Adolescent & Young Adult Cancer Institute, Rainbow Babies & Children's Hospital, University Hospitals, Cleveland, OH, USA
| | - James H Finke
- Taussig Cancer Institute, Glickman Urological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - James J Driscoll
- Division of Hematology and Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, USA; The Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sergio A Giralt
- Adult Bone Marrow Transplant Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
199
|
Wang J, De Veirman K, Faict S, Frassanito MA, Ribatti D, Vacca A, Menu E. Multiple myeloma exosomes establish a favourable bone marrow microenvironment with enhanced angiogenesis and immunosuppression. J Pathol 2016; 239:162-73. [PMID: 26956697 DOI: 10.1002/path.4712] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/03/2016] [Accepted: 02/29/2016] [Indexed: 12/21/2022]
Abstract
Multiple myeloma (MM) pathogenesis and progression largely rely on the cells and extracellular factors in the bone marrow (BM) microenvironment. Compelling studies have identified tumour exosomes as key regulators in the maintenance and education of the BM microenvironment by targeting stromal cells, immune cells, and vascular cells. However, the role of MM exosomes in the modification of the BM microenvironment and MM progression remains unclear. Here, we explored the functions of MM exosomes in angiogenesis and immunosuppression in vitro and in vivo. Murine MM exosomes carrying multiple angiogenesis-related proteins enhanced angiogenesis and directly promoted endothelial cell growth. Several pathways such as signal transducer and activator of transcription 3 (STAT3), c-Jun N-terminal kinase, and p53 were modulated by the exosomes in endothelial and BM stromal cells. These exosomes promoted the growth of myeloid-derived suppressor cells (MDSCs) in naive mice through activation of the STAT3 pathway and changed their subsets to similar phenotypes to those seen in MM-bearing mice. Moreover, MM exosomes up-regulated inducible nitric oxide synthase and enhanced the immunosuppressive capacity of BM MDSCs in vivo. Our data show that MM exosomes modulate the BM microenvironment through enhancement of angiogenesis and immunosuppression, which will further facilitate MM progression. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jinheng Wang
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Kim De Veirman
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Sylvia Faict
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Maria Antonia Frassanito
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy.,National Cancer Institute 'Giovanni Paolo II', Bari, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| |
Collapse
|
200
|
Bolomsky A, Schreder M, Hübl W, Zojer N, Hilbe W, Ludwig H. Monokine induced by interferon gamma (MIG/CXCL9) is an independent prognostic factor in newly diagnosed myeloma. Leuk Lymphoma 2016; 57:2516-25. [DOI: 10.3109/10428194.2016.1151511] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|