151
|
McCarthy MB, Townsend KS, Johnson PJ, LaCarrubba AM, Voelkl DL, Volkmann DH. Occurrence of a vaginal septum in a foal diagnosed with pyometra. EQUINE VET EDUC 2020. [DOI: 10.1111/eve.13272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- M. B. McCarthy
- Department of Veterinary Medicine and Surgery College of Veterinary Medicine University of Missouri Columbia Missouri USA
| | - K. S. Townsend
- Department of Veterinary Medicine and Surgery College of Veterinary Medicine University of Missouri Columbia Missouri USA
| | - P. J. Johnson
- Department of Veterinary Medicine and Surgery College of Veterinary Medicine University of Missouri Columbia Missouri USA
| | - A. M. LaCarrubba
- Department of Veterinary Medicine and Surgery College of Veterinary Medicine University of Missouri Columbia Missouri USA
| | - D. L. Voelkl
- Department of Veterinary Medicine and Surgery College of Veterinary Medicine University of Missouri Columbia Missouri USA
| | - D. H. Volkmann
- Department of Veterinary Medicine and Surgery College of Veterinary Medicine University of Missouri Columbia Missouri USA
| |
Collapse
|
152
|
Erny D, Prinz M. How microbiota shape microglial phenotypes and epigenetics. Glia 2020; 68:1655-1672. [PMID: 32181523 DOI: 10.1002/glia.23822] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/17/2022]
Abstract
Among the myeloid cells in the central nervous system (CNS) microglia are the main representatives of the innate immune system. Microglial fulfil tasks beyond phagocytosing debris and host defense against invading microorganism. During brain development microglia guide for example neurons for proper CNS formation, in adulthood they maintain tissue homeostasis and in aging microglia may become pro-inflammatory and finally exhausted. Recently, several endogenous and exogenous factors were identified that essentially shape the microglial phenotype during both steady-state and pathological conditions. On the one hand, microglia receive inputs from CNS-endogenous sources for example, via crosstalk with other glial cells and neurons but on the other hand microglia are also highly modulated by external signals. Among them, host microbiota-the host's resident bacteria-are vital regulators of the CNS innate immune system. This review summarizes key extrinsic and intrinsic factors, with special focus on the host microbiota, that essentially influence microglia functions and states during development, homeostasis, and disease.
Collapse
Affiliation(s)
- Daniel Erny
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
153
|
Considerable variability in antibiotic use among US children's hospitals in 2017-2018. Infect Control Hosp Epidemiol 2020; 41:571-578. [PMID: 32141424 DOI: 10.1017/ice.2019.373] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To characterize the prevalence of and seasonal and regional variation in inpatient antibiotic use among hospitalized US children in 2017-2018. DESIGN We conducted a cross-sectional examination of hospitalized children. The assessments were conducted on a single day in spring (May 3, 2017), summer (August 2, 2017), fall (October 25, 2017), and winter (January 31, 2018). The main outcome of interest was receipt of an antibiotic on the study day. SETTING The study included 51 freestanding US children's hospitals that participate in the Pediatric Health Information System (PHIS). PATIENTS This study included all patients <18 years old who were admitted to a participating PHIS hospital, excluding patients who were admitted solely for research purposes. RESULTS Of 52,769 total hospitalized children, 19,174 (36.3%) received antibiotics on the study day and 6,575 of these (12.5%) received broad-spectrum antibiotics. The overall prevalence of antibiotic use varied across hospitals from 22.3% to 51.9%. Antibiotic use prevalence was 29.2% among medical patients and 47.7% among surgical patients. Although there was no significant seasonal variation in antibiotic use prevalence, regional prevalence varied, ranging from 32.7% in the Midwest to 40.2% in the West (P < .001). Among units, pediatric intensive care unit patients had the highest prevalence of both overall and broad-spectrum antibiotic use at 58.3% and 26.6%, respectively (P < .001). CONCLUSIONS On any given day in a national network of children's hospitals, more than one-third of hospitalized children received an antibiotic, and 1 in 8 received a broad-spectrum antibiotic. Variation across hospitals, setting and regions identifies potential opportunities for enhanced antibiotic stewardship activities.
Collapse
|
154
|
Yi M, Jiao D, Qin S, Chu Q, Li A, Wu K. Manipulating Gut Microbiota Composition to Enhance the Therapeutic Effect of Cancer Immunotherapy. Integr Cancer Ther 2020; 18:1534735419876351. [PMID: 31517538 PMCID: PMC7242797 DOI: 10.1177/1534735419876351] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In the past decade, a growing set of immunotherapies including immune checkpoint
blockade, chimeric antigen receptor T cells, and bispecific antibodies propelled
the advancement of oncology therapeutics. Accumulating evidence demonstrates
that immunotherapy could eliminate tumors better than traditional chemotherapy
or radiotherapy with lower risk of adverse events in numerous cancer types.
Unfortunately, a substantial proportion of patients eventually acquire
resistance to immunotherapy. By analyzing the differences between
immunotherapy-sensitive and immunotherapy-resistant populations, it was noticed
that the composition of gut microbiota is closely related to treatment effect.
Moreover, in xenograft models, interventional regulation of gut microbiota could
effectively enhance efficacy and relieve resistance during immunotherapy. Thus,
we believe that gut microbiota composition might be helpful to explain the
heterogeneity of treatment effect, and manipulating gut microbiota could be a
promising adjuvant treatment for cancer immunotherapy. In this mini review, we
focus on the latest understanding of the cross-talk between gut microbiota and
host immunity. Moreover, we highlight the role of gut microbiota in cancer
immunotherapy including immune checkpoint inhibitor and adoptive cell
transfer.
Collapse
Affiliation(s)
- Ming Yi
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dechao Jiao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuang Qin
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Chu
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anping Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kongming Wu
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
155
|
Abstract
PURPOSE OF REVIEW The present review aims to describe the relationship between nutrition and the gut microbiome in critical illness. RECENT FINDINGS Critical illness disrupts not only cells of human origin but also the intestinal microbiome, with a decrease in bacterial diversity and transformation into a pathobiome. Under basal conditions, nutrition profoundly alters microbial composition with significant salutatory effects on human health. In critical illness, enteral nutrition is recommended and has theoretical (but not proven) advantages towards improved inner microbial health and diminution of bacterial translocation. Dietary supplements such as probiotics and fiber have been shown to improve microbial derangements in health. However, their impact on the microbiome in critical illness is unclear and although they may have some beneficial effects on patient-centric outcomes, they do not alter mortality. The precise mechanisms of how nutrition and dietary supplements modulate the gut microbiome remain to be determined. SUMMARY Nutrition and supplements such as probiotics appear to play a significant role in modulating the microbiome in health, yet the relationship in critical illness is unclear. Further investigation is required to determine the mechanistic determinants of the impact of nutrition on the microbiome in critical illness and the potential clinical implications of this.
Collapse
|
156
|
Winter S, Shoaie S, Kordasti S, Platzbecker U. Integrating the "Immunome" in the Stratification of Myelodysplastic Syndromes and Future Clinical Trial Design. J Clin Oncol 2020; 38:1723-1735. [PMID: 32058844 DOI: 10.1200/jco.19.01823] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are characterized by ineffective hematopoiesis and often include a dysregulation and dysfunction of the immune system. In the context of population aging, MDS incidence is set to increase substantially, with exponential increases in health care costs, given the limited and expensive treatment options for these patients. Treatment selection is mainly based on calculated risk categories according to a Revised International Prognostic Scoring System (IPSS-R). However, although IPSS-R is an excellent predictor of disease progression, it is an ineffective predictor of response to disease-modifying therapies. Redressing these unmet needs, the "immunome" is a key, multifaceted component in the initiation and overall response against malignant cells in MDS, and the current omission of immune status monitoring may in part explain the insufficiencies of current prognostic stratification methods. Nevertheless, integrating these and other recent molecular advances into clinical practice proves difficult. This review highlights the complexity of immune dysregulation in MDS pathophysiology and the fine balance between smoldering inflammation, adaptive immunity, and somatic mutations in promoting or suppressing malignant clones. We review the existing knowledge and discuss how state-of-the-art immune monitoring strategies could potentially permit novel patient substratification, thereby empowering practical predictions of response to treatment in MDS. We propose novel multicenter studies, which are needed to achieve this goal.
Collapse
Affiliation(s)
- Susann Winter
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), partner site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, United Kingdom.,Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Shahram Kordasti
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom.,Haematology Department, Guy's Hospital, London, United Kingdom
| | - Uwe Platzbecker
- German Cancer Consortium (DKTK), partner site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom.,Haematology Department, Guy's Hospital, London, United Kingdom.,Medical Clinic and Policlinic 1, Hematology and Cellular Therapy, University of Leipzig Medical Center, Leipzig, Germany.,German MDS Study Group (G-MDS), Leipzig, Germany
| |
Collapse
|
157
|
Bone marrow CX3CR1+ mononuclear cells relay a systemic microbiota signal to control hematopoietic progenitors in mice. Blood 2020; 134:1312-1322. [PMID: 31387916 DOI: 10.1182/blood.2019000495] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/15/2019] [Indexed: 12/16/2022] Open
Abstract
The microbiota regulate hematopoiesis in the bone marrow (BM); however, the detailed mechanisms remain largely unknown. In this study, we explored how microbiota-derived molecules (MDMs) were transferred to the BM and sensed by the local immune cells to control hematopoiesis under steady-state conditions. We reveal that MDMs, including bacterial DNA (bDNA), reach the BM via systemic blood circulation and are captured by CX3CR1+ mononuclear cells (MNCs). CX3CR1+ MNCs sense MDMs via endolysosomal Toll-like receptors (TLRs) to produce inflammatory cytokines, which control the basal expansion of hematopoietic progenitors, but not hematopoietic stem cells, and their differentiation potential toward myeloid lineages. CX3CR1+ MNCs colocate with hematopoietic progenitors at the perivascular region, and the depletion of CX3CR1+ MNCs impedes bDNA influx into the BM. Moreover, the abrogation of TLR pathways in CX3CR1+ MNCs abolished the microbiota effect on hematopoiesis. These studies demonstrate that systemic MDMs control BM hematopoiesis by producing CX3CR1+ MNC-mediated cytokines in the steady-state.
Collapse
|
158
|
Hathaway-Schrader JD, Poulides NA, Carson MD, Kirkpatrick JE, Warner AJ, Swanson BA, Taylor EV, Chew ME, Reddy SV, Liu B, Westwater C, Novince CM. Specific Commensal Bacterium Critically Regulates Gut Microbiota Osteoimmunomodulatory Actions During Normal Postpubertal Skeletal Growth and Maturation. JBMR Plus 2020; 4:e10338. [PMID: 32161843 PMCID: PMC7059828 DOI: 10.1002/jbm4.10338] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/19/2022] Open
Abstract
The commensal gut microbiota critically regulates immunomodulatory processes that influence normal skeletal growth and maturation. However, the influence of specific microbes on commensal gut microbiota osteoimmunoregulatory actions is unknown. We have shown previously that the commensal gut microbiota enhances TH17/IL17A immune response effects in marrow and liver that have procatabolic/antianabolic actions in the skeleton. Segmented filamentous bacteria (SFB), a specific commensal gut bacterium within phylum Firmicutes, potently induces TH17/IL17A‐mediated immunity. The study purpose was to delineate the influence of SFB on commensal gut microbiota immunomodulatory actions regulating normal postpubertal skeletal development. Two murine models were utilized: SFB‐monoassociated mice versus germ‐free (GF) mice and specific‐pathogen‐free (SPF) mice +/− SFB. SFB colonization was validated by 16S rDNA analysis, and SFB‐induced TH17/IL17A immunity was confirmed by upregulation of Il17a in ileum and IL17A in serum. SFB‐colonized mice had an osteopenic trabecular bone phenotype, which was attributed to SFB actions suppressing osteoblastogenesis and enhancing osteoclastogenesis. Intriguingly, SFB‐colonized mice had increased expression of proinflammatory chemokines and acute‐phase reactants in the liver. Lipocalin‐2 (LCN2), an acute‐phase reactant and antimicrobial peptide, was substantially elevated in the liver and serum of SFB‐colonized mice, which supports the notion that SFB regulation of commensal gut microbiota osteoimmunomodulatory actions are mediated in part through a gut–liver–bone axis. Proinflammatory TH17 and TH1 cells were increased in liver‐draining lymph nodes of SFB‐colonized mice, which further substantiates that SFB osteoimmune‐response effects may be mediated through the liver. SFB‐induction of Il17a in the gut and Lcn2 in the liver resulted in increased circulating levels of IL17A and LCN2. Recognizing that IL17A and LCN2 support osteoclastogenesis/suppress osteoblastogenesis, SFB actions impairing postpubertal skeletal development appear to be mediated through immunomodulatory effects in both the gut and liver. This research reveals that specific microbes critically impact commensal gut microbiota immunomodulatory actions regulating normal postpubertal skeletal growth and maturation. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jessica D Hathaway-Schrader
- Department of Oral Health Sciences College of Dental Medicine, Medical University of South Carolina Charleston SC USA.,Department of Pediatrics-Division of Endocrinology College of Medicine, Medical University of South Carolina Charleston SC USA
| | - Nicole A Poulides
- Department of Oral Health Sciences College of Dental Medicine, Medical University of South Carolina Charleston SC USA.,Department of Pediatrics-Division of Endocrinology College of Medicine, Medical University of South Carolina Charleston SC USA
| | - Matthew D Carson
- Department of Oral Health Sciences College of Dental Medicine, Medical University of South Carolina Charleston SC USA.,Department of Pediatrics-Division of Endocrinology College of Medicine, Medical University of South Carolina Charleston SC USA
| | - Joy E Kirkpatrick
- Department of Oral Health Sciences College of Dental Medicine, Medical University of South Carolina Charleston SC USA.,Department of Drug Discovery & Biomedical Sciences College of Pharmacy, Medical University of South Carolina Charleston SC USA
| | - Amy J Warner
- Department of Oral Health Sciences College of Dental Medicine, Medical University of South Carolina Charleston SC USA.,Department of Pediatrics-Division of Endocrinology College of Medicine, Medical University of South Carolina Charleston SC USA
| | - Brooks A Swanson
- Department of Oral Health Sciences College of Dental Medicine, Medical University of South Carolina Charleston SC USA.,Department of Pediatrics-Division of Endocrinology College of Medicine, Medical University of South Carolina Charleston SC USA
| | - Eliza V Taylor
- Department of Oral Health Sciences College of Dental Medicine, Medical University of South Carolina Charleston SC USA
| | - Michael E Chew
- Department of Oral Health Sciences College of Dental Medicine, Medical University of South Carolina Charleston SC USA
| | - Sakamuri V Reddy
- Department of Pediatrics-Division of Endocrinology College of Medicine, Medical University of South Carolina Charleston SC USA
| | - Bei Liu
- Department of Microbiology and Immunology College of Medicine, Medical University of South Carolina Charleston SC USA
| | - Caroline Westwater
- Department of Oral Health Sciences College of Dental Medicine, Medical University of South Carolina Charleston SC USA.,Department of Microbiology and Immunology College of Medicine, Medical University of South Carolina Charleston SC USA
| | - Chad M Novince
- Department of Oral Health Sciences College of Dental Medicine, Medical University of South Carolina Charleston SC USA.,Department of Pediatrics-Division of Endocrinology College of Medicine, Medical University of South Carolina Charleston SC USA
| |
Collapse
|
159
|
Zhao XC, Zhao L, Sun XY, Xu ZS, Ju B, Meng FJ, Zhao HG. Excellent response of severe aplastic anemia to treatment of gut inflammation: A case report and review of the literature. World J Clin Cases 2020; 8:425-435. [PMID: 32047795 PMCID: PMC7000934 DOI: 10.12998/wjcc.v8.i2.425] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/02/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cumulative evidence suggests that the aberrant immune responses in acquired aplastic anemia (AA) are sustained by active chronic infections in genetically susceptible individuals. Recently, the constant source to trigger and sustain the pathophysiology has been proposed to come from the altered gut microbiota and chronic intestinal inflammation. In this case, our serendipitous finding provides convincing evidence that the persistently dysregulated autoimmunity may be generated, at least in a significant proposition of AA patients, by the altered gut microbiota and compromised intestinal epithelium.
CASE SUMMARY A 30-year-old Chinese male patient with refractory severe AA experienced a 3-month-long febrile episode, and his fever was refractory to many kinds of injected broad-spectrum antibiotics. When presenting with abdominal cramps, he was prescribed oral mannitol and gentamycin to get rid of the gut infection. This treatment resulted in a quick resolution of the fever. Unanticipatedly, it also produced an excellent hematological response. He had undergone three episodes of recurrence within the one-year treatment, with each recurrence occurring 7-8 wk from the gastrointestinal inflammation eliminating preparations. However, subsequent treatments were able to produce subsequent remissions and consecutive treatments were successful in achieving durative hematological improvements, strongly indicating an etiological association between chronic gut inflammation and the development of AA. Interestingly, comorbid diseases superimposed on this patient (namely, psychiatric disorders, hypertension, insulin resistance, and renal dysfunction) were ameliorated together with the hematological improvements.
CONCLUSION Chronic gut inflammation may be responsible for AA pathogenesis. The comorbidities and AA may share a common etiological association.
Collapse
Affiliation(s)
- Xi-Chen Zhao
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| | - Li Zhao
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| | - Xiao-Yun Sun
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| | - Zeng-Shan Xu
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| | - Bo Ju
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| | - Fan-Jun Meng
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Hong-Guo Zhao
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| |
Collapse
|
160
|
Kiuchi MG, Ho JK, Nolde JM, Gavidia LML, Carnagarin R, Matthews VB, Schlaich MP. Sympathetic Activation in Hypertensive Chronic Kidney Disease - A Stimulus for Cardiac Arrhythmias and Sudden Cardiac Death? Front Physiol 2020; 10:1546. [PMID: 32009970 PMCID: PMC6974800 DOI: 10.3389/fphys.2019.01546] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022] Open
Abstract
Studies have revealed a robust and independent correlation between chronic kidney disease (CKD) and cardiovascular (CV) events, including death, heart failure, and myocardial infarction. Recent clinical trials extend this range of adverse CV events, including malignant ventricular arrhythmias and sudden cardiac death (SCD). Moreover, other studies point out that cardiac structural and electrophysiological changes are a common occurrence in this population. These processes are likely contributors to the heightened hazard of arrhythmias in CKD population and may be useful indicators to detect patients who are at a higher SCD risk. Sympathetic overactivity is associated with increased CV risk, specifically in the population with CKD, and it is a central feature of the hypertensive state, occurring early in its clinical course. Sympathetic hyperactivity is already evident at the earliest clinical stage of CKD and is directly related to the progression of renal failure, being most pronounced in those with end-stage renal disease. Sympathetic efferent and afferent neural activity in kidney failure is a crucial facilitator for the perpetuation and evolvement of the disease. Here, we will revisit the role of the feedback loop of the sympathetic neural cycle in the context of CKD and how it may aggravate several of the risk factors responsible for causing SCD. Targeting the overactive sympathetic nervous system therapeutically, either pharmacologically or with newly available device-based approaches, may prove to be a pivotal intervention to curb the substantial burden of cardiac arrhythmias and SCD in the high-risk population of patients with CKD.
Collapse
Affiliation(s)
- Márcio Galindo Kiuchi
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit/Medical Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Jan K Ho
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit/Medical Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Janis Marc Nolde
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit/Medical Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Leslie Marisol Lugo Gavidia
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit/Medical Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Revathy Carnagarin
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit/Medical Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Vance B Matthews
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit/Medical Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Markus P Schlaich
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit/Medical Research Foundation, The University of Western Australia, Perth, WA, Australia.,Departments of Cardiology and Nephrology, Royal Perth Hospital, Perth, WA, Australia.,Neurovascular Hypertension & Kidney Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| |
Collapse
|
161
|
Abstract
OPINION STATEMENT There are approximately 1.2 million new hematologic malignancy cases resulting in ~ 690,000 deaths each year worldwide, and hematologic malignancies remain the most commonly occurring cancer in children. Even though advances in anticancer treatment regimens in recent decades have considerably improved survival rates, their cytotoxic effects and the resulting long-term complications pose a significant burden on the patients and the health care system. Therefore, non-toxic treatment modalities are needed to decrease side effects. The human body is the host to approximately 40 trillion microbes, known as the human microbiota. The large majority of the microbiota is located in the gastrointestinal tract, and is primarily composed of bacteria. The microbiota plays several important physiological roles, ranging from digestive functions to immunological and neural development. Investigating the microbiota in patients with hematologic malignancies has several important implications. The microbiota affects hematopoiesis, and influences the efficacies of chemotherapy and antimicrobial treatments. Determination of the microbiota composition and diversity could be an important part of risk stratification in the future, and may also take part to personalize antimicrobial treatments. Modulation of the microbiota via probiotics or fecal transplant can potentially be involved in reducing side effects of chemotherapy, and eliminating multiple drug resistant strains in patients with hematologic malignancies.
Collapse
|
162
|
Faas MM, Liu Y, Borghuis T, van Loo-Bouwman CA, Harmsen H, de Vos P. Microbiota Induced Changes in the Immune Response in Pregnant Mice. Front Immunol 2020; 10:2976. [PMID: 31998293 PMCID: PMC6962187 DOI: 10.3389/fimmu.2019.02976] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/04/2019] [Indexed: 01/14/2023] Open
Abstract
Pregnancy is associated with adaptations of the immune response and with changes in the gutmicrobiota. We hypothesized the gut microbiota are involved in inducing (part of) the immunological adaptations during pregnancy. To test this hypothesis, we collected feces from pregnant conventional mice before and during pregnancy (days 7, 14, and 18) and microbiota were measured using 16S RNA sequencing. At day 18, mice were sacrificed and splenic (various Th cell populations) and blood immune cells (monocyte subsets) were measured by flow cytometry. The data were compared with splenic and blood immune cell populations from pregnant (day 18) germfree mice and non-pregnant conventional and germfree mice. Finally, the abundances of the individual gut bacteria in the microbiota of each conventional pregnant mouse were correlated to the parameters of the immune response of the same mouse. The microbiota of conventional mice were significantly different at the end of pregnancy (day 18) as compared with pre-pregnancy (Permanova, p < 0.05). The Shannon index was decreased and the Firmicutes/Bacteroidetes ratio was increased (Friedman followed by Dunn's test, p < 0.05), while abundances of various species (such as Allobaculum stercoricanis, Barnesiella intestihominis, and Roseburia faecis) were significantly different at day 18 compared with pre-pregnancy. In pregnant conventional mice, the percentage of Th1 cells was decreased, while the percentages of Treg cells and Th2 cells were or tended to be increased vs. non-pregnant mice. In germfree mice, only the percentage of Th1 cells was decreased in pregnant vs. non-pregnant mice, with no effect of pregnancy on Treg and Th2 cells. The percentages of monocyte subsets were affected by pregnancy similarly in conventional and germfree mice. However, the activation status of monocytes (expression of CD80 and MHCII) was affected by pregnancy mainly in conventional mice, and not in germfree mice. Correlation (Spearman's coefficient) of pregnancy affected microbiota with pregnancy affected immune cells, i.e., immune cells that were only affected differently in conventional mice and germfree mice, showed 4 clusters of bacteria and 4 clusters of immune cells, some of these clusters were correlated with each other. For instance, the microbiota in cluster 1 and 2 (in which there were various short chain fatty acid producing microbiota) are positively correlated with immune cells in cluster B, containing Treg cells and Th2 cells. Microbiota and immune cells are affected by pregnancy in mice. The different immunological adaptations to pregnancy between conventional and germfree mice, such as the increase in Treg and tendency to an increase in Th2 cells in conventional pregnant mice only, may suggest that the microbiota may play a role in adapting the maternal immune response to pregnancy.
Collapse
Affiliation(s)
- Marijke M Faas
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Yuanrui Liu
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Theo Borghuis
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | | | - Hermie Harmsen
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
163
|
Li J, Dubois W, Thovarai V, Wu Z, Feng X, Peat T, Zhang S, Sen SK, Trinchieri G, Chen J, Mock BA, Young NS. Attenuation of immune-mediated bone marrow damage in conventionally housed mice. Mol Carcinog 2020; 59:237-245. [PMID: 31898340 DOI: 10.1002/mc.23151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/19/2022]
Abstract
In humans, bone marrow (BM) failure syndromes, both constitutional and acquired, predispose to myeloid malignancies. We have modeled acquired immune aplastic anemia, the paradigmatic disease of these syndromes, in the mouse by infusing lymph node cells from specific pathogen-free (SPF) CD45.1 congenic C57BL/6 (B6) donors into hybrid CByB6F1 recipients housed either in conventional (CVB) or SPF facilities. The severity of BM damage was reduced in CVB recipients; they also had reduced levels of CD44+ CD62L- effector memory T cells, reduced numbers of donor-type CD44+ T cells, and reduced expansion of donor-type CD8 T cells carrying T-cell receptor β-variable regions 07, 11, and 17. Analyses of fecal samples through 16S ribosomal RNA amplicon sequencing revealed greater gut microbial alpha diversity in CVB mice relative to that of SPF mice. Thus, the presence of a broader spectrum of gut microorganisms in CVB-housed CByB6F1 could have primed recipient animal's immune system leading to suppression of allogeneic donor T-cell activation and expansion and attenuation of host BM destruction. These results suggest the potential benefit of diverse gut microbiota in patients receiving BM transplants.
Collapse
Affiliation(s)
- Jun Li
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland.,Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wendy Dubois
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Vishal Thovarai
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Zhijie Wu
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Xingmin Feng
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Tyler Peat
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Shuling Zhang
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Shurjo K Sen
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jichun Chen
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Beverly A Mock
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
164
|
Wu M, Liu J, Li F, Huang S, He J, Xue Y, Fu T, Feng S, Li Z. Antibiotic-induced dysbiosis of gut microbiota impairs corneal development in postnatal mice by affecting CCR2 negative macrophage distribution. Mucosal Immunol 2020; 13:47-63. [PMID: 31434991 PMCID: PMC6914671 DOI: 10.1038/s41385-019-0193-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 06/18/2019] [Accepted: 07/17/2019] [Indexed: 02/04/2023]
Abstract
Antibiotics are extremely useful, but they can cause adverse impacts on host bodies. We found that antibiotic treatment altered the composition of the gut microbiota and the gene expression profile in the corneal tissues of postnatal mice and decreased the corneal size and thickness, the angiogenesis of limbal blood vessels, and the neurogenesis of corneal nerve fibers. The reconstitution of the gut microbiota with fecal transplants in antibiotic-treated mice largely reversed these impairments in corneal development. Furthermore, C-C chemokine receptor type 2 negative (CCR2-) macrophages were confirmed to participate in corneal development, and their distribution in the cornea was regulated by the gut microbiota. We propose that the CCR2- macrophage population is a crucial mediator through which gut microbiota affect corneal development in postnatal mice. In addition, probiotics were shown to have the potential effect of restoring corneal development in antibiotic-treated mice. Abx-induced gut dysbiosis has significant, long-term effects on the development of the cornea, and reversal of these suppressive effects takes a long time.
Collapse
Affiliation(s)
- Mingjuan Wu
- 0000 0004 1790 3548grid.258164.cInternational Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Jun Liu
- 0000 0004 1790 3548grid.258164.cInternational Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Fanying Li
- 0000 0004 1790 3548grid.258164.cInternational Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China ,0000 0004 1790 3548grid.258164.cDepartment of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, China
| | - Shuoya Huang
- 0000 0004 1790 3548grid.258164.cInternational Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China ,0000 0004 1760 3828grid.412601.0Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jingxin He
- 0000 0004 1790 3548grid.258164.cInternational Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China ,0000 0004 1760 3828grid.412601.0Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yunxia Xue
- 0000 0004 1790 3548grid.258164.cInternational Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Ting Fu
- 0000 0004 1790 3548grid.258164.cInternational Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Shanshan Feng
- 0000 0004 1790 3548grid.258164.cInternational Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Zhijie Li
- 0000 0004 1790 3548grid.258164.cInternational Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China ,0000 0004 1760 3828grid.412601.0Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China ,grid.414011.1Department of Ophthalmology, Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
165
|
Tirone C, Pezza L, Paladini A, Tana M, Aurilia C, Lio A, D'Ippolito S, Tersigni C, Posteraro B, Sanguinetti M, Di Simone N, Vento G. Gut and Lung Microbiota in Preterm Infants: Immunological Modulation and Implication in Neonatal Outcomes. Front Immunol 2019; 10:2910. [PMID: 31921169 PMCID: PMC6920179 DOI: 10.3389/fimmu.2019.02910] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/27/2019] [Indexed: 12/23/2022] Open
Abstract
In recent years, an aberrant gastrointestinal colonization has been found to be associated with an higher risk for postnatal sepsis, necrotizing enterocolitis (NEC) and growth impairment in preterm infants. As a consequence, the reasons of intestinal dysbiosis in this population of newborns have increasingly become an object of interest. The presence of a link between the gut and lung microbiome's development (gut-lung axis) is emerging, and more data show as a gut-brain cross talking mediated by an inflammatory milieu, may affect the immunity system and influence neonatal outcomes. A revision of the studies which examined gut and lung microbiota in preterm infants and a qualitative analysis of data about characteristic patterns and related outcomes in terms of risk of growing impairment, Necrotizing Enterocolitis (NEC), Bronchopulmonary Dysplasia (BPD), and sepsis have been performed. Microbiota take part in the establishment of the gut barrier and many data suggest its immune-modulator role. Furthermore, the development of the gut and lung microbiome (gut-lung axis) appear to be connected and able to lead to abnormal inflammatory responses which have a key role in the pathogenesis of BPD. Dysbiosis and the gut predominance of facultative anaerobes appear to be crucial to the pathogenesis and subsequently to the prevention of such diseases.
Collapse
Affiliation(s)
- Chiara Tirone
- Fondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. di Neonatologia, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Rome, Italy.,Università Cattolica del Sacro Cuore, Istituto di Clinica Pediatrica, Rome, Italy
| | - Lucilla Pezza
- Fondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. di Neonatologia, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Rome, Italy.,Università Cattolica del Sacro Cuore, Istituto di Clinica Pediatrica, Rome, Italy
| | - Angela Paladini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. di Neonatologia, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Rome, Italy.,Università Cattolica del Sacro Cuore, Istituto di Clinica Pediatrica, Rome, Italy
| | - Milena Tana
- Fondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. di Neonatologia, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Rome, Italy.,Università Cattolica del Sacro Cuore, Istituto di Clinica Pediatrica, Rome, Italy
| | - Claudia Aurilia
- Fondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. di Neonatologia, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Rome, Italy.,Università Cattolica del Sacro Cuore, Istituto di Clinica Pediatrica, Rome, Italy
| | - Alessandra Lio
- Fondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. di Neonatologia, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Rome, Italy.,Università Cattolica del Sacro Cuore, Istituto di Clinica Pediatrica, Rome, Italy
| | - Silvia D'Ippolito
- Fondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. di Ostetricia e Patologia Ostetrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Rome, Italy.,Università Cattolica del Sacro Cuore, Istituto di Clinica Ostetrica e Ginecologica, Rome, Italy
| | - Chiara Tersigni
- Fondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. di Ostetricia e Patologia Ostetrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Rome, Italy.,Università Cattolica del Sacro Cuore, Istituto di Clinica Ostetrica e Ginecologica, Rome, Italy
| | - Brunella Posteraro
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Dipartimento di Scienze di Laboratorio e Infettivologiche, Rome, Italy.,Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maurizio Sanguinetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Dipartimento di Scienze di Laboratorio e Infettivologiche, Rome, Italy.,Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Nicoletta Di Simone
- Fondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. di Ostetricia e Patologia Ostetrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Rome, Italy.,Università Cattolica del Sacro Cuore, Istituto di Clinica Ostetrica e Ginecologica, Rome, Italy
| | - Giovanni Vento
- Fondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. di Neonatologia, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Rome, Italy.,Università Cattolica del Sacro Cuore, Istituto di Clinica Pediatrica, Rome, Italy
| |
Collapse
|
166
|
Moron R, Galvez J, Colmenero M, Anderson P, Cabeza J, Rodriguez-Cabezas ME. The Importance of the Microbiome in Critically Ill Patients: Role of Nutrition. Nutrients 2019; 11:E3002. [PMID: 31817895 PMCID: PMC6950228 DOI: 10.3390/nu11123002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022] Open
Abstract
Critically ill patients have an alteration in the microbiome in which it becomes a disease-promoting pathobiome. It is characterized by lower bacterial diversity, loss of commensal phyla, like Firmicutes and Bacteroidetes, and a domination of pathogens belonging to the Proteobacteria phylum. Although these alterations are multicausal, many of the treatments administered to these patients, like antibiotics, play a significant role. Critically ill patients also have a hyperpermeable gut barrier and dysregulation of the inflammatory response that favor the development of the pathobiome, translocation of pathogens, and facilitate the emergence of sepsis. In order to restore the homeostasis of the microbiome, several nutritional strategies have been evaluated with the aim to improve the management of critically ill patients. Importantly, enteral nutrition has proven to be more efficient in promoting the homeostasis of the gut microbiome compared to parenteral nutrition. Several nutritional therapies, including prebiotics, probiotics, synbiotics, and fecal microbiota transplantation, are currently being used, showing variable results, possibly due to the unevenness of clinical trial conditions and the fact that the beneficial effects of probiotics are specific to particular species or even strains. Thus, it is of great importance to better understand the mechanisms by which nutrition and supplement therapies can heal the microbiome in critically ill patients in order to finally implement them in clinical practice with optimal safety and efficacy.
Collapse
Affiliation(s)
- Rocio Moron
- Servicio Farmacia Hospitalaria, Hospital Universitario Clínico San Cecilio, 18016-Granada, Spain; (R.M.); (J.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (M.C.); (P.A.); (M.E.R.-C.)
| | - Julio Galvez
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (M.C.); (P.A.); (M.E.R.-C.)
- Department of Pharmacology, CIBER-ehd, Center of Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
| | - Manuel Colmenero
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (M.C.); (P.A.); (M.E.R.-C.)
- Servicio de Medicina Intensiva, Hospital Universitaro Clinico San Cecilio, 18016 Granada, Spain
| | - Per Anderson
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (M.C.); (P.A.); (M.E.R.-C.)
- Servicio de Análisis Clínicos e Inmunologia, UGC Laboratorio Clínico, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - José Cabeza
- Servicio Farmacia Hospitalaria, Hospital Universitario Clínico San Cecilio, 18016-Granada, Spain; (R.M.); (J.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (M.C.); (P.A.); (M.E.R.-C.)
| | - Maria Elena Rodriguez-Cabezas
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (M.C.); (P.A.); (M.E.R.-C.)
- Department of Pharmacology, CIBER-ehd, Center of Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
| |
Collapse
|
167
|
Thackray LB, Handley SA, Gorman MJ, Poddar S, Bagadia P, Briseño CG, Theisen DJ, Tan Q, Hykes BL, Lin H, Lucas TM, Desai C, Gordon JI, Murphy KM, Virgin HW, Diamond MS. Oral Antibiotic Treatment of Mice Exacerbates the Disease Severity of Multiple Flavivirus Infections. Cell Rep 2019; 22:3440-3453.e6. [PMID: 29590614 PMCID: PMC5908250 DOI: 10.1016/j.celrep.2018.03.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 02/15/2018] [Accepted: 02/28/2018] [Indexed: 12/22/2022] Open
Abstract
Although the outcome of flavivirus infection can vary from asymptomatic to lethal, environmental factors modulating disease severity are poorly defined. Here, we observed increased susceptibility of mice to severe West Nile (WNV), Dengue, and Zika virus infections after treatment with oral antibiotics (Abx) that depleted the gut microbiota. Abx treatment impaired the development of optimal T cell responses, with decreased levels of WNV-specific CD8+ T cells associated with increased infection and immunopathology. Abx treatments that resulted in enhanced WNV susceptibility generated changes in the overall structure of the gut bacterial community and in the abundance of specific bacterial taxa. As little as 3 days of treatment with ampicillin was sufficient to alter host immunity and WNV outcome. Our results identify oral Abx therapy as a potential environmental determinant of systemic viral disease, and they raise the possibility that perturbation of the gut microbiota may have deleterious consequences for subsequent flavivirus infections.
Collapse
Affiliation(s)
- Larissa B Thackray
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Scott A Handley
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Matthew J Gorman
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Subhajit Poddar
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Prachi Bagadia
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Carlos G Briseño
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Derek J Theisen
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Qing Tan
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Barry L Hykes
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Hueylie Lin
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Tiffany M Lucas
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Chandni Desai
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jeffrey I Gordon
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Howard Hughes Medical Institute, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
168
|
Moskowitz JE, Devkota S. Determinants of Microbial Antibiotic Susceptibility: The Commensal Gut Microbiota Perspective. Cell Host Microbe 2019; 26:574-576. [DOI: 10.1016/j.chom.2019.10.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
169
|
|
170
|
Solis K, Dehority W. Antibiotic-Induced Neutropenia During Treatment of Hematogenous Osteoarticular Infections in Otherwise Healthy Children. J Pediatr Pharmacol Ther 2019; 24:431-437. [PMID: 31598107 DOI: 10.5863/1551-6776-24.5.431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVES We studied the frequency and characteristics of antibiotic-induced neutropenia in otherwise healthy children receiving antibiotic therapy for hematogenous osteoarticular infections (OAIs). METHODS We retrospectively enrolled otherwise healthy children between 1 month and 18 years of age discharged with an OAI from our institution over an 11-year period. An absolute neutrophil count (ANC) ≤1500 cells/μL was defined as neutropenia. We recorded demographic and clinical information, as well as the value and timing of each ANC in relation to changes in antibiotic therapy. A multivariable regression model assessed the contributions of various risk factors. RESULTS A total of 186 children were enrolled (mean age, 7.6 years; 67.2% boys). β-Lactams represented 61.2% of all prescriptions. During treatment, 61 subjects (32.8%) developed neutropenia (median time to onset, 24 days). An ANC < 500 cells/μL occurred in 7 subjects (3.8%). Neutropenic subjects (mean age, 6.0 years) were significantly younger than those without neutropenia (mean age, 8.5 years) (OR = 0.86; 95% CI: 0.79-0.93; p < 0.001) and received significantly longer courses of total (89.3 vs. 55.8 days) and parenteral (24.6 vs. 19.9 days) antibiotic therapy (OR = 1.01; 95% CI: 1.01-1.02; p = 0.004 and OR = 1.02; 95% CI: 1.01-1.04; p = 0.041, respectively). Recurrent neutropenia occurred in 23.0% of all neutropenic subjects and was significantly more common in those with a longer mean duration of parenteral therapy (OR = 1.05; 95% CI: 1.02-1.09; p = 0.004.). No complications from neutropenia occurred. CONCLUSIONS Neutropenia was common in our cohort of children receiving prolonged antibiotic therapy for OAIs. Younger age and longer courses of therapy were associated with an increased risk of neutropenia.
Collapse
|
171
|
Zeng H, He H, Guo L, Li J, Lee M, Han W, Guzman AG, Zang S, Zhou Y, Zhang X, Goodell MA, King KY, Sun D, Huang Y. Antibiotic treatment ameliorates Ten-eleven translocation 2 (TET2) loss-of-function associated hematological malignancies. Cancer Lett 2019; 467:1-8. [PMID: 31563562 DOI: 10.1016/j.canlet.2019.09.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/22/2019] [Accepted: 09/24/2019] [Indexed: 12/17/2022]
Abstract
TET2 is among the most frequently mutated genes in hematological malignancies, as well as in healthy individuals with clonal hematopoiesis. Inflammatory stress is known to promote the expansion of Tet2-deficient hematopoietic stem cells, as well as the initiation of pre-leukemic conditions. Infection is one of the most frequent complications in hematological malignancies and antibiotics are commonly used to suppress infection-induced inflammation, but their application in TET2 mutation-associated cancers remained underexplored. In this study, we discovered that Tet2 depletion led to aberrant expansion of myeloid cells, which was correlated with elevated serum levels of pro-inflammatory cytokines at the pre-malignant stage. Antibiotics treatment suppressed the growth of Tet2-deficient myeloid and lymphoid tumor cells in vivo. Transcriptomic profiling further revealed significant changes in the expression of genes involved in the TNF-α signaling and other immunomodulatory pathways in antibiotics-treated tumor cells. Pharmacological inhibition of TNF-α signaling partially attenuated Tet2-deficient tumor cell growth in vivo. Therefore, our findings establish the feasibility of targeting pro-inflammatory pathways to curtail TET2 inactivation-associated hematological malignancies.
Collapse
Affiliation(s)
- Hongxiang Zeng
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Hailan He
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA; Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Lei Guo
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Jia Li
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Minjung Lee
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Wei Han
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Anna G Guzman
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shengbing Zang
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Xiaotian Zhang
- Van Andel Institute, Center for Epigenetics, Grand Rapids, MI, 49503, USA
| | - Margaret A Goodell
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Katherine Y King
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA; Department of Pediatrics, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Deqiang Sun
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA.
| | - Yun Huang
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA.
| |
Collapse
|
172
|
Bayer F, Ascher S, Pontarollo G, Reinhardt C. Antibiotic Treatment Protocols and Germ-Free Mouse Models in Vascular Research. Front Immunol 2019; 10:2174. [PMID: 31572384 PMCID: PMC6751252 DOI: 10.3389/fimmu.2019.02174] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022] Open
Abstract
The gut microbiota influence host vascular physiology locally in the intestine, but also evoke remote effects that impact distant organ functions. Amongst others, the microbiota affect intestinal vascular remodeling, lymphatic development, cardiac output and vascular function, myelopoiesis, prothrombotic platelet function, and immunovigilance of the host. Experimentally, host-microbiota interactions are investigated by working with animals devoid of symbiotic bacteria, i.e., by the decimation of gut commensals by antibiotic administration, or by taking advantage of germ-free mouse isolator technology. Remarkably, some of the vascular effects that were unraveled following antibiotic treatment were not observed in the germ-free animal models and vice versa. In this review, we will dissect the manifold influences that antibiotics have on the cardiovascular system and their effects on thromboinflammation.
Collapse
Affiliation(s)
- Franziska Bayer
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefanie Ascher
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Giulia Pontarollo
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Mainz, Germany
| |
Collapse
|
173
|
Murdoch CC, Rawls JF. Commensal Microbiota Regulate Vertebrate Innate Immunity-Insights From the Zebrafish. Front Immunol 2019; 10:2100. [PMID: 31555292 PMCID: PMC6742977 DOI: 10.3389/fimmu.2019.02100] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022] Open
Abstract
Microbial communities populate the mucosal surfaces of all animals. Metazoans have co-evolved with these microorganisms, forming symbioses that affect the molecular and cellular underpinnings of animal physiology. These microorganisms, collectively referred to as the microbiota, are found on many distinct body sites (including the skin, nasal cavity, and urogenital tract), however the most densely colonized host tissue is the intestinal tract. Although spatially confined within the intestinal lumen, the microbiota and associated products shape the development and function of the host immune system. Studies comparing gnotobiotic animals devoid of any microbes (germ free) with counterparts colonized with selected microbial communities have demonstrated that commensal microorganisms are required for the proper development and function of the immune system at homeostasis and following infectious challenge or injury. Animal model systems have been essential for defining microbiota-dependent shifts in innate immune cell function and intestinal physiology during infection and disease. In particular, the zebrafish has emerged as a powerful vertebrate model organism with unparalleled capacity for in vivo imaging, a full complement of genetic approaches, and facile methods to experimentally manipulate microbial communities. Here we review key insights afforded by the zebrafish into the impact of microbiota on innate immunity, including evidence that the perception of and response to the microbiota is evolutionarily conserved. We also highlight opportunities to strengthen the zebrafish model system, and to gain new insights into microbiota-innate immune interactions that would be difficult to achieve in mammalian models.
Collapse
Affiliation(s)
| | - John F. Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
174
|
Balistreri CR, Garagnani P, Madonna R, Vaiserman A, Melino G. Developmental programming of adult haematopoiesis system. Ageing Res Rev 2019; 54:100918. [PMID: 31226498 DOI: 10.1016/j.arr.2019.100918] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/15/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022]
Abstract
The Barker hypothesis of 'foetal origin of adult diseases' has led to emphasize the concept of 'developmental programming', based on the crucial role of epigenetic factors. Accordingly, it has been demonstrated that parental adversity (before conception and during pregnancy) and foetal factors (i.e., hypoxia, malnutrition and placental insufficiency) permanently modify the physiological systems of the progeny, predisposing them to premature ageing and chronic disease during adulthood. Thus, an altered functionality of the endocrine, immune, nervous and cardiovascular systems is observed in the progeny. However, it remains to be understood whether the haematopoietic system itself also represents a portrait of foetal programming. Here, we provide evidence, reporting and discussing related theories, and results of studies described in the literature. In addition, we have outlined our opinions and suggest how it is possible to intervene to correct foetal mal-programming. Some pro-health interventions and recommendations are proposed, with the hope of guarantee the health of future generations and trying to combat the continuous increase in age-related diseases in human populations.
Collapse
|
175
|
Yang T, Richards EM, Pepine CJ, Raizada MK. The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease. Nat Rev Nephrol 2019; 14:442-456. [PMID: 29760448 DOI: 10.1038/s41581-018-0018-2] [Citation(s) in RCA: 433] [Impact Index Per Article: 72.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Crosstalk between the gut microbiota and the host has attracted considerable attention owing to its involvement in diverse diseases. Chronic kidney disease (CKD) is commonly associated with hypertension and is characterized by immune dysregulation, metabolic disorder and sympathetic activation, which are all linked to gut dysbiosis and altered host-microbiota crosstalk. In this Review, we discuss the complex interplay between the brain, the gut, the microbiota and the kidney in CKD and hypertension and explain our brain-gut-kidney axis hypothesis for the pathogenesis of these diseases. Consideration of the role of the brain-gut-kidney axis in the maintenance of normal homeostasis and of dysregulation of this axis in CKD and hypertension could lead to the identification of novel therapeutic targets. In addition, the discovery of unique microbial communities and their associated metabolites and the elucidation of brain-gut-kidney signalling are likely to fill fundamental knowledge gaps leading to innovative research, clinical trials and treatments for CKD and hypertension.
Collapse
Affiliation(s)
- Tao Yang
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Elaine M Richards
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Carl J Pepine
- Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
176
|
Liu J, Wu M, He J, Xiao C, Xue Y, Fu T, Lin C, Dong D, Li Z. Antibiotic-Induced Dysbiosis of Gut Microbiota Impairs Corneal Nerve Regeneration by Affecting CCR2-Negative Macrophage Distribution. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 188:2786-2799. [PMID: 30470496 PMCID: PMC6284554 DOI: 10.1016/j.ajpath.2018.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/10/2018] [Accepted: 08/21/2018] [Indexed: 12/20/2022]
Abstract
Although antibiotics are useful, they can also bring negative effects. We found that antibiotic-treated mice exhibit an alteration in the gene expression profile of corneal tissues and a decrease in corneal nerve density. During corneal wound healing, antibiotic treatment was found to impair corneal nerve regeneration, an effect that could be largely reversed by reconstitution of the gut microbiota via fecal transplant. Furthermore, CCR2- corneal macrophages were found to participate in the repair of damaged corneal nerves, and a decrease in CCR2- corneal macrophages in antibiotic-treated mice, which could be reversed by fecal transplant, was observed. Adoptive transfer of CCR2- corneal macrophages promoted corneal nerve regeneration in antibiotic-treated mice. The application of probiotics after administration of antibiotics also restored the proportion of CCR2- corneal macrophages and increased the regeneration of corneal nerve fibers after epithelial abrasion. These results suggest that dysbiosis of the gut microbiota induced by antibiotic treatment impairs corneal nerve regeneration by affecting CCR2- macrophage distribution in the cornea. This study also indicates the potential of probiotics as a therapeutic strategy for promoting the regeneration of damaged corneal nerve fibers when the gut microbiota is in dysbiosis.
Collapse
Affiliation(s)
- Jun Liu
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, People's Republic of China; International Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, People's Republic of China; Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, People's Republic of China
| | - Mingjuan Wu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, People's Republic of China
| | - Jingxin He
- International Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, People's Republic of China
| | - Chengju Xiao
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, People's Republic of China
| | - Yunxia Xue
- International Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, People's Republic of China
| | - Ting Fu
- International Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, People's Republic of China
| | - Cuipei Lin
- International Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, People's Republic of China
| | - Dong Dong
- International Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, People's Republic of China
| | - Zhijie Li
- International Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, People's Republic of China; Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, People's Republic of China; Department of Ophthalmology, Henan Provincial People's Hospital, Zhengzhou, People's Republic of China; Section of Leukocyte Biology, Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
177
|
Are There Potential Applications of Fecal Microbiota Transplantation beyond Intestinal Disorders? BIOMED RESEARCH INTERNATIONAL 2019; 2019:3469754. [PMID: 31467881 PMCID: PMC6699279 DOI: 10.1155/2019/3469754] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/04/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
Abstract
Intestinal microbial dysbiosis is associated with various intestinal and extraintestinal disorders. Fecal microbiota transplantation (FMT), a type of fecal bacteriotherapy, is considered an effective therapeutic option for recurrent Clostridium difficile infection (rCDI) and also has important value in other intestinal diseases including irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). The purpose of this review is to discuss promising therapeutic value in extraintestinal diseases associated with gut microbial dysbiosis, including liver, metabolic, chronic kidney, neuropsychiatric, allergic, autoimmune, and hematological diseases as well as tumors.
Collapse
|
178
|
Wolf AA, Yáñez A, Barman PK, Goodridge HS. The Ontogeny of Monocyte Subsets. Front Immunol 2019; 10:1642. [PMID: 31379841 PMCID: PMC6650567 DOI: 10.3389/fimmu.2019.01642] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
Classical and non-classical monocytes, and the macrophages and monocyte-derived dendritic cells they produce, play key roles in host defense against pathogens, immune regulation, tissue repair and many other processes throughout the body. Recent studies have revealed previously unappreciated heterogeneity among monocytes that may explain this functional diversity, but our understanding of mechanisms controlling the functional programming of distinct monocyte subsets remains incomplete. Resolving monocyte heterogeneity and understanding how their functional identity is determined holds great promise for therapeutic immune modulation. In this review, we examine how monocyte origins and developmental influences shape the phenotypic and functional characteristics of monocyte subsets during homeostasis and in the context of infection, inflammation, and cancer. We consider how extrinsic signals and transcriptional regulators impact monocyte production and functional programming, as well as the influence of epigenetic and metabolic mechanisms. We also examine the evidence that functionally distinct monocyte subsets are produced via different developmental pathways during homeostasis and that inflammatory stimuli differentially target progenitors during an emergency response. We highlight the need for a more comprehensive understanding of the relationship between monocyte ontogeny and heterogeneity, including multiparametric single-cell profiling and functional analyses. Studies defining mechanisms of monocyte subset production and maintenance of unique monocyte identities have the potential to facilitate the design of therapeutic interventions to target specific monocyte subsets in a variety of disease contexts, including infectious and inflammatory diseases, cancer, and aging.
Collapse
Affiliation(s)
- Anja A Wolf
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Alberto Yáñez
- Departament de Microbiologia i Ecologia, Universitat de València, Burjassot, Spain.,Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Burjassot, Spain
| | - Pijus K Barman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Helen S Goodridge
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
179
|
Dang AT, Marsland BJ. Microbes, metabolites, and the gut-lung axis. Mucosal Immunol 2019; 12:843-850. [PMID: 30976087 DOI: 10.1038/s41385-019-0160-6] [Citation(s) in RCA: 544] [Impact Index Per Article: 90.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 02/07/2023]
Abstract
The microbiota plays an essential role in the education, development, and function of the immune system, both locally and systemically. Emerging experimental and epidemiological evidence highlights a crucial cross-talk between the intestinal microbiota and the lungs, termed the 'gut-lung axis'. Changes in the constituents of the gut microbiome, through either diet, disease or medical interventions (such as antibiotics) is linked with altered immune responses and homeostasis in the airways. The importance of the gut-lung axis has become more evident following the identification of several gut microbe-derived components and metabolites, such as short-chain fatty acids (SCFAs), as key mediators for setting the tone of the immune system. Recent studies have supported a role for SCFAs in influencing hematopoietic precursors in the bone marrow-a major site of innate and adaptive immune cell development. Here, we review the current understanding of host-microbe cross-talk along the gut-lung axis. We highlight the importance of SCFAs in shaping and promoting bone marrow hematopoiesis to resolve airway inflammation and to support a healthy homeostasis.
Collapse
Affiliation(s)
- Anh Thu Dang
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Benjamin J Marsland
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
180
|
A long-distance relationship: the commensal gut microbiota and systemic viruses. Curr Opin Virol 2019; 37:44-51. [PMID: 31226645 DOI: 10.1016/j.coviro.2019.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022]
Abstract
Recent advances defining the role of the commensal gut microbiota in the development, education, induction, function, and maintenance of the mammalian immune system inform our understanding of how immune responses govern the outcome of systemic virus infection. While characterization of the impact of the local oral, respiratory, dermal and genitourinary microbiota on host immune responses and systemic virus infection is in its infancy, the gut microbiota interacts with host immunity systemically and at distal non-gastrointestinal tract sites to modulate the pathogenesis of systemic viruses. Gut microbes, microbe-associated molecular patterns, and microbe-derived metabolites engage receptors expressed on the cell surface, in the endosome, or in the cytoplasm to orchestrate optimal innate and adaptive immune responses important for controlling systemic virus infection.
Collapse
|
181
|
Freudenhammer M, Henneke P, Härtel C. Mikrobiom von Risikoneugeborenen und präventive Modifikation. Monatsschr Kinderheilkd 2019. [DOI: 10.1007/s00112-019-0684-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
182
|
Sethi V, Vitiello GA, Saxena D, Miller G, Dudeja V. The Role of the Microbiome in Immunologic Development and its Implication For Pancreatic Cancer Immunotherapy. Gastroenterology 2019; 156:2097-2115.e2. [PMID: 30768986 DOI: 10.1053/j.gastro.2018.12.045] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/09/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022]
Abstract
Our understanding of the microbiome and its role in immunity, cancer initiation, and cancer progression has evolved significantly over the past century. The "germ theory of cancer" was first proposed in the early 20th century, and shortly thereafter the bacterium Helicobacter pylori, and later Fusobacterium nucleatum, were implicated in the development of gastric and colorectal cancers, respectively. However, with the development of reliable mouse models and affordable sequencing technologies, the most fascinating aspect of the microbiome-cancer relationship, where microbes undermine cancer immune surveillance and indirectly promote oncogenesis, has only recently been described. In this review, we highlight the essential role of the microbiome in immune system development and maturation. We review how microbe-induced immune activation promotes oncogenesis, focusing particularly on pancreatic carcinogenesis, and show that modulation of the microbiome augments the anti-cancer immune response and enables successful immunotherapy against pancreatic cancer.
Collapse
Affiliation(s)
- Vrishketan Sethi
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Gerardo A Vitiello
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Deepak Saxena
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York; Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York
| | - George Miller
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Vikas Dudeja
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida.
| |
Collapse
|
183
|
Liu D, Wen B, Zhu K, Luo Y, Li J, Li Y, Lin H, Huang J, Liu Z. Antibiotics-induced perturbations in gut microbial diversity influence metabolic phenotypes in a murine model of high-fat diet-induced obesity. Appl Microbiol Biotechnol 2019; 103:5269-5283. [PMID: 31020379 DOI: 10.1007/s00253-019-09764-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 12/11/2022]
Abstract
Gut microbiota play a key role in the regulation of obesity and associated metabolic disorders. To study the relationship between them, antibiotics have been widely used to generate pseudo-germ-free rodents as control models. However, it is not clear whether antibiotics impact an animal's metabolic phenotype. Therefore, the effect of antibiotics-induced gut microbial perturbations on metabolic phenotypes in high-fat diet (HFD) fed mice was investigated. The results showed that antibiotics perturbed gut microbial composition and structure. Community diversity and richness were reduced, and the phyla Firmicutes/Bacteroidetes (F/B) ratio was decreased by antibiotics. Visualization of Unifrac distance data using principal component analysis (PCA) and unweighted pair-group method with arithmetic mean (UPGAM) demonstrated that fecal samples of HFD-fed mice separated from those of chow diet (CD) fed mice. Fecal samples from antibiotics-treated and non-treated mice were clustered into two different microbial populations. Moreover, antibiotics suppressed HFD-induced metabolic features, including body weight gain (BWG), liver weight (LW), epididymal fat weight (EFW), and serum levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), alanine aminotransferase (ALT), fasting blood glucose (FBG), and insulin (INS) significantly (P < 0.05). Lachnospiraceae, Ruminiclostridium and Helicobacter, biomarkers of mouse gut microbiota before treatment by antibiotics, were positively correlated with obesity phenotypes significantly (P < 0.05) and were decreased by (92.95 ± 5.09) %, (97.73 ± 2.09) % and (99.48 ± 0.21) % respectively after 30 days of treatment by antibiotics. However, Bacteroidia were enriched in HFD-fed antibiotics-treated mice and were negatively correlated with obesity phenotypes significantly (P < 0.05). We suggested that the antibiotics-induced depletion of Lachnospiraceae, Ruminiclostridium, and Helicobacter, and the decrease in F/B ratio in gut microbiota played a role in the prevention of HFD-induced obesity in mice.
Collapse
Affiliation(s)
- Dongmin Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, 410128, China.,Hunan University of Science and Engineering, Yongzhou, 425199, China
| | - Beibei Wen
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, 410128, China
| | - Kun Zhu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, 410128, China
| | - Yong Luo
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, 410128, China
| | - Juan Li
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, 410128, China.,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha, 410128, China.,Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Changsha, 410128, China
| | - Yinhua Li
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, 410128, China.,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha, 410128, China.,Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Changsha, 410128, China
| | - Haiyan Lin
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, 410128, China.,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha, 410128, China.,Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Changsha, 410128, China
| | - Jianan Huang
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, 410128, China. .,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha, 410128, China. .,Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Changsha, 410128, China.
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, 410128, China. .,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha, 410128, China. .,Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Changsha, 410128, China.
| |
Collapse
|
184
|
McCoy KD, Thomson CA. The Impact of Maternal Microbes and Microbial Colonization in Early Life on Hematopoiesis. THE JOURNAL OF IMMUNOLOGY 2019; 200:2519-2526. [PMID: 29632252 DOI: 10.4049/jimmunol.1701776] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/12/2018] [Indexed: 12/24/2022]
Abstract
All body surfaces are colonized by microbes, which occurs through a dynamic process over the first few years of life. Initial colonizing microbes are transferred from the maternal microbiota to the newborn through vertical transmission. Postnatal maturation of the immune system is heavily influenced by these microbes, particularly during early life. Although microbial-mediated education of the immune system is better understood at mucosal sites, recent data indicate that the systemic immune system is also shaped by the microbiota. Bacterial products and metabolites produced through microbial metabolism can reach distal sites, and metabolites derived from the maternal microbiota can cross the placenta and are present in milk. Recent studies show that the microbiota can even influence immune development in primary lymphoid organs like the bone marrow. This review outlines our current knowledge of how the microbiota can impact hematopoiesis, with a focus on the effects of maternal and early-life microbiota.
Collapse
Affiliation(s)
- Kathy D McCoy
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Carolyn A Thomson
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
185
|
Ciabattini A, Nardini C, Santoro F, Garagnani P, Franceschi C, Medaglini D. Vaccination in the elderly: The challenge of immune changes with aging. Semin Immunol 2019; 40:83-94. [PMID: 30501873 DOI: 10.1016/j.smim.2018.10.010] [Citation(s) in RCA: 261] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022]
Abstract
The unprecedented increase of life expectancy challenges society to protect the elderly from morbidity and mortality making vaccination a crucial mean to safeguard this population. Indeed, infectious diseases, such as influenza and pneumonia, are among the top killers of elderly people in the world. Elderly individuals are more prone to severe infections and less responsive to vaccination prevention, due to immunosenescence combined with the progressive increase of a proinflammatory status characteristic of the aging process (inflammaging). These factors are responsible for most age-related diseases and correlate with poor response to vaccination. Therefore, it is of utmost interest to deepen the knowledge regarding the role of inflammaging in vaccination responsiveness to support the development of effective vaccination strategies designed for elderly. In this review we analyse the impact of age-associated factors such as inflammaging, immunosenescence and immunobiography on immune response to vaccination in the elderly, and we consider systems biology approaches as a mean for integrating a multitude of data in order to rationally design vaccination approaches specifically tailored for the elderly.
Collapse
Affiliation(s)
- Annalisa Ciabattini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Viale Bracci 16, 53100, Siena, Italy
| | - Christine Nardini
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, SE-171 77, Stockholm, Sweden; Personal Genomics S.r.l., Via Roveggia, 43B, 37134, Verona, Italy; CNR IAC "Mauro Picone", Via dei Taurini, 19, 00185, Roma, Italy
| | - Francesco Santoro
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Viale Bracci 16, 53100, Siena, Italy
| | - Paolo Garagnani
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, SE-171 77, Stockholm, Sweden; Interdepartmental Centre 'L. Galvani' (CIG), University of Bologna, Via G. Petroni 26, 40139, Bologna, Italy; Department of Experimental, Diagnostic and Specialty Medicine (DIMES) - University of Bologna,40139, Bologna, Italy
| | - Claudio Franceschi
- IRCCS, Institute of Neurological Sciences of Bologna, Via Altura 3, 40139, Bologna, Italy.
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Viale Bracci 16, 53100, Siena, Italy.
| |
Collapse
|
186
|
Cross talk between neutrophils and the microbiota. Blood 2019; 133:2168-2177. [PMID: 30898860 DOI: 10.1182/blood-2018-11-844555] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/24/2018] [Indexed: 12/18/2022] Open
Abstract
The microbiota has emerged as an important regulator of the host immunity by the induction, functional modulation, or suppression of local and systemic immune responses. In return, the host immune system restricts translocation and fine tunes the composition and distribution of the microbiota to maintain a beneficial symbiosis. This paradigm applies to neutrophils, a critical component of the innate immunity, allowing their production and function to be influenced by microbial components and metabolites derived from the microbiota, and engaging them in the process of microbiota containment and regulation. The cross talk between neutrophils and the microbiota adjusts the magnitude of neutrophil-mediated inflammation on challenge while preventing neutrophil responses against commensals under steady state. Here, we review the major molecular and cellular mediators of the interactions between neutrophils and the microbiota and discuss their interplay and contribution in chronic inflammatory diseases and cancer.
Collapse
|
187
|
Kumari R, Palaniyandi S, Hildebrandt GC. Microbiome: An Emerging New Frontier in Graft-Versus-Host Disease. Dig Dis Sci 2019; 64:669-677. [PMID: 30523482 DOI: 10.1007/s10620-018-5369-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/07/2018] [Indexed: 12/12/2022]
Abstract
Hematopoietic cell transplantation is an intensive therapy used to treat high-risk hematological malignant disorders and other life-threatening hematological and genetic diseases. Graft-versus-host disease (GVHD) presents a barrier to its wider application. A conditioning regimen and medications given to patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HCT) are capable of disturbing the homeostatic crosstalk between the microbiome and the host immune system and of leading to dysbiosis. Intestinal inflammation in the context of GVHD is associated with loss in microbial diversity that could serve as an independent predictor of mortality. Successful gastrointestinal decontamination using high doses of non-absorbable antibiotics likely affect allo-HCT outcomes leading to significantly less acute GVHD (aGVHD). Butyrate-producing Clostridia directly result in the increased presence of regulatory T cells in the gut, which are protective in GVHD development. Beyond the microbiome, Candida, a member of the mycobiome, colonization in the gut has been considered as a risk factor in pathophysiology of aGVHD and reduction in GVHD is observed with antifungal prophylaxis with fluconazole. Reduced number of goblet cells and Paneth cells have been shown to associate with GVHD and has a significant impact on the micro- and mycobiome density and their composition. Lower levels of 3-indoxyl sulfate at initial stages after allo-HCT are related with worse GVHD outcomes and increased mortality. Increased understanding of the vital role of the gut microbiome in GVHD can give directions to move the field towards the development of improved innovative approaches for preventing or treating GVHD following allo-HCT.
Collapse
Affiliation(s)
- Reena Kumari
- Division of Hematology & Blood and Marrow Transplantation, Markey Cancer Center, University of Kentucky, 900 S. Limestone, Lexington, KY, 40536-0093, USA
| | - Senthilnathan Palaniyandi
- Division of Hematology & Blood and Marrow Transplantation, Markey Cancer Center, University of Kentucky, 900 S. Limestone, Lexington, KY, 40536-0093, USA
| | - Gerhard Carl Hildebrandt
- Division of Hematology & Blood and Marrow Transplantation, Markey Cancer Center, University of Kentucky, 900 S. Limestone, Lexington, KY, 40536-0093, USA. .,Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, 800 Rose Street, Lexington, KY, 40536-0093, USA.
| |
Collapse
|
188
|
Govindarajah V, Reynaud D. Tuning of the Hematopoietic Stem Cell Compartment in its Inflammatory Environment. CURRENT STEM CELL REPORTS 2019; 4:189-200. [PMID: 30705804 DOI: 10.1007/s40778-018-0131-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose of review The hematopoietic stem cell (HSC) compartment is the cornerstone of a lifelong blood cell production but also contributes to the ability of the hematopoietic system to dynamically respond to environmental challenges. This review summarizes our knowledge about the interaction between HSCs and its inflammatory environment during life and questions how its disruption could affect the health of the hematopoietic system. Recent findings The latest research demonstrates the direct role of inflammatory signals in promoting the emergence of the HSCs during development and in setting their steady-state activity in adults. They indicate that inflammatory patho-physiological conditions or immunological history could shape the structure and biology of the HSC compartment, therefore altering its overall fitness. Summary Through instructive and/or selective mechanisms, the inflammatory environment seems to provide a key homeostatic signal for HSCs. Although the mechanistic basis of this complex interplay remains to be fully understood, its dysregulation has broad consequences on HSC physiology and the development of hematological diseases. As such, developing experimental models that fully recapitulate a normal basal inflammatory state could be essential to fully assess HSC biology in native conditions.
Collapse
Affiliation(s)
- Vinothini Govindarajah
- Stem Cell Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Damien Reynaud
- Stem Cell Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
189
|
Hathaway-Schrader JD, Steinkamp HM, Chavez MB, Poulides NA, Kirkpatrick JE, Chew ME, Huang E, Alekseyenko AV, Aguirre JI, Novince CM. Antibiotic Perturbation of Gut Microbiota Dysregulates Osteoimmune Cross Talk in Postpubertal Skeletal Development. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:370-390. [PMID: 30660331 DOI: 10.1016/j.ajpath.2018.10.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/01/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022]
Abstract
Commensal gut microbiota-host immune responses are experimentally delineated via gnotobiotic animal models or alternatively by antibiotic perturbation of gut microbiota. Osteoimmunology investigations in germ-free mice, revealing that gut microbiota immunomodulatory actions critically regulate physiologic skeletal development, highlight that antibiotic perturbation of gut microbiota may dysregulate normal osteoimmunological processes. We investigated the impact of antibiotic disruption of gut microbiota on osteoimmune response effects in postpubertal skeletal development. Sex-matched C57BL/6T mice were administered broad-spectrum antibiotics or vehicle-control from the age of 6 to 12 weeks. Antibiotic alterations in gut bacterial composition and skeletal morphology were sex dependent. Antibiotics did not influence osteoblastogenesis or endochondral bone formation, but notably enhanced osteoclastogenesis. Unchanged Tnf or Ccl3 expression in marrow and elevated tumor necrosis factor-α and chemokine (C-C motif) ligand 3 in serum indicated that the pro-osteoclastic effects of the antibiotics are driven by increased systemic inflammation. Antibiotic-induced broad changes in adaptive and innate immune cells in mesenteric lymph nodes and spleen demonstrated that the perturbation of gut microbiota drives a state of dysbiotic hyperimmune response at secondary lymphoid tissues draining local gut and systemic circulation. Antibiotics up-regulated the myeloid-derived suppressor cells, immature myeloid progenitor cells known for immunosuppressive properties in pathophysiologic inflammatory conditions. Myeloid-derived suppressor cell-mediated immunosuppression can be antigen specific. Therefore, antibiotic-induced broad suppression of major histocompatibility complex class II antigen presentation genes in bone marrow discerns that antibiotic perturbation of gut microbiota dysregulates critical osteoimmune cross talk.
Collapse
Affiliation(s)
- Jessica D Hathaway-Schrader
- Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, South Carolina; Endocrinology Division, Department of Pediatrics, Medical University of South Carolina College of Medicine, Charleston, South Carolina
| | - Heidi M Steinkamp
- Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, South Carolina; Division of Pediatric Dentistry, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Michael B Chavez
- Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, South Carolina; Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Nicole A Poulides
- Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, South Carolina; Endocrinology Division, Department of Pediatrics, Medical University of South Carolina College of Medicine, Charleston, South Carolina
| | - Joy E Kirkpatrick
- Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, South Carolina
| | - Michael E Chew
- Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, South Carolina
| | - Emily Huang
- Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, South Carolina
| | - Alexander V Alekseyenko
- Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, South Carolina; Department of Public Health Sciences, Medical University of South Carolina College of Medicine, Charleston, South Carolina
| | - Jose I Aguirre
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Chad M Novince
- Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, South Carolina; Endocrinology Division, Department of Pediatrics, Medical University of South Carolina College of Medicine, Charleston, South Carolina.
| |
Collapse
|
190
|
Pronovost GN, Hsiao EY. Perinatal Interactions between the Microbiome, Immunity, and Neurodevelopment. Immunity 2019; 50:18-36. [PMID: 30650376 PMCID: PMC6447295 DOI: 10.1016/j.immuni.2018.11.016] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/17/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023]
Abstract
The microbiome modulates host immune function across the gastrointestinal tract, peripheral lymphoid organs, and central nervous system. In this review, we highlight emerging evidence that microbial effects on select immune phenotypes arise developmentally, where the maternal and neonatal microbiome influence immune cell ontogeny in the offspring during gestation and early postnatal life. We further discuss roles for the perinatal microbiome and early-life immunity in regulating normal neurodevelopmental processes. In addition, we examine evidence that abnormalities in microbiota-neuroimmune interactions during early life are associated with altered risk of neurological disorders in humans. Finally, we conclude by evaluating the potential implications of microbiota-immune interventions for neurological conditions. Continued progress toward dissecting mechanistic interactions between the perinatal microbiota, immune system, and nervous system might uncover fundamental insights into how developmental interactions across physiological systems inform later-life health and disease.
Collapse
Affiliation(s)
- Geoffrey N Pronovost
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Elaine Y Hsiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
191
|
Intestinal Microbiota Protects against MCD Diet-Induced Steatohepatitis. Int J Mol Sci 2019; 20:ijms20020308. [PMID: 30646522 PMCID: PMC6358781 DOI: 10.3390/ijms20020308] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/14/2018] [Accepted: 01/08/2019] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in western countries, with a continuously rising incidence. Gut-liver communication and microbiota composition have been identified as critical drivers of the NAFLD progression. Hence, it has been shown that microbiota depletion can ameliorate high-fat diet or western-diet induced experimental Non-alcoholic steatohepatitis (NASH). However, its functional implications in the methionine-choline dietary model, remain incompletely understood. Here, we investigated the physiological relevance of gut microbiota in methionine-choline deficient (MCD) diet induced NASH. Experimental liver disease was induced by 8 weeks of MCD feeding in wild-type (WT) mice, either with or without commensal microbiota depletion, by continuous broad-spectrum antibiotic (AB) treatment. MCD diet induced steatohepatitis was accompanied by a reduced gut microbiota diversity, indicating intestinal dysbiosis. MCD treatment prompted macroscopic shortening of the intestine, as well as intestinal villi in histology. However, gut microbiota composition of MCD-treated mice, neither resembled human NASH, nor did it augment the intestinal barrier integrity or intestinal inflammation. In the MCD model, AB treatment resulted in increased steatohepatitis activity, compared to microbiota proficient control mice. This phenotype was driven by pronounced neutrophil infiltration, while AB treatment only slightly increased monocyte-derived macrophages (MoMF) abundance. Our data demonstrated the differential role of gut microbiota, during steatohepatitis development. In the context of MCD induced steatohepatitis, commensal microbiota was found to be hepatoprotective.
Collapse
|
192
|
Weaver LK, Minichino D, Biswas C, Chu N, Lee JJ, Bittinger K, Albeituni S, Nichols KE, Behrens EM. Microbiota-dependent signals are required to sustain TLR-mediated immune responses. JCI Insight 2019; 4:124370. [PMID: 30626747 DOI: 10.1172/jci.insight.124370] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
Host-commensal interactions are critical for the generation of robust inflammatory responses, yet the mechanisms leading to this effect remain poorly understood. Using a murine model of cytokine storm, we identified that host microbiota are required to sustain systemic TLR-driven immune responses. Mice treated with broad-spectrum antibiotics or raised in germ-free conditions responded normally to an initial TLR signal but failed to sustain production of proinflammatory cytokines following administration of repeated TLR signals in vivo. Mechanistically, host microbiota primed JAK signaling in myeloid progenitors to promote TLR-enhanced myelopoiesis, which is required for the accumulation of TLR-responsive monocytes. In the absence of TLR-enhanced monocytopoiesis, antibiotic-treated mice lost their ability to respond to repeated TLR stimuli and were protected from cytokine storm-induced immunopathology. These data reveal priming of TLR-enhanced myelopoiesis as a microbiota-dependent mechanism that regulates systemic inflammatory responses and highlight a role for host commensals in the pathogenesis of cytokine storm syndromes.
Collapse
Affiliation(s)
- Lehn K Weaver
- Division of Pediatric Rheumatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Danielle Minichino
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Chhanda Biswas
- Division of Pediatric Rheumatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Niansheng Chu
- Division of Pediatric Rheumatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jung-Jin Lee
- CHOP Microbiome Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kyle Bittinger
- CHOP Microbiome Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sabrin Albeituni
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Kim E Nichols
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Edward M Behrens
- Division of Pediatric Rheumatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
193
|
Ge J, Yang T, Zhang L, Zhang X, Zhu X, Tang B, Wan X, Tong J, Song K, Yao W, Sun G, Sun Z, Liu H. The incidence, risk factors and outcomes of early bloodstream infection in patients with malignant hematologic disease after unrelated cord blood transplantation: a retrospective study. BMC Infect Dis 2018; 18:654. [PMID: 30545330 PMCID: PMC6293544 DOI: 10.1186/s12879-018-3575-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 11/30/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Bloodstream infection (BSI) is one of the major causes of morbidity and mortality for patients undergoing hematopoietic stem cell transplantation (HSCT). The unrelated cord blood transplantation (UCBT) can provided opportunities for patients without suitable donors for bone marrow transplantation (BMT) and peripheral blood stem cell transplantation (PBSCT), while few studies have addressed BSI after UCBT. The aim of this study was to analyse the incidence and risk factors of BSI, causative organisms, microbial resistance, and its impact on the clinical outcomes and survival of patients. METHODS There are 336 patients, were divided into two groups depending on whether developing BSI. Demographic characteristics, laboratory data, and clinical outcome were compared between different groups. The risk factors of BSI was examined using logistic regression and the survival was examined using the Kaplan-Meier method and log-rank test. RESULTS Ninety-two patients (27.4%) developed early BSI with 101 pathogenic bacteria isolated, and the median day of developing initial BSI was 4.5 d. Gram-negative bacteria were the most common isolate (60, 59.4%), followed by Gram-positive bacteria (40, 39.6%) and fungi (1, 1.0%). Thirty-seven (36.6%) isolates were documented as having multiple drug resistance (MDR). Myeloid malignancies, conditioning regimens including total body irradiation (TBI), and prolonged neutropenia were identified as the independent risk factors for early BSI. The 3-year OS was 59.9% versus 69.2% in the BSI group and no-BSI group (P = 0.0574), respectively. The 3-year OS of the MDR group was significantly lower than that of the non-BSI group (51.1% versus 69.2%, p = 0.013). CONCLUSIONS Our data indicate that the incidence of early BSI after UCBT was high, especially in patients with myeloid disease and a conditioning regimen including TBI and prolonged neutropenia. Early BSI with MDR after UCBT had a negative impact on long-term survival.
Collapse
Affiliation(s)
- Jing Ge
- Department of Hematology of Anhui Provincial Hospital, Anhui Medical University, 17 Lujiang Road, Hefei, 230001, Anhui, China
| | - Tingting Yang
- Department of Hematology of Anhui Provincial Hospital, Anhui Medical University, 17 Lujiang Road, Hefei, 230001, Anhui, China
| | - Lei Zhang
- Department of Hematology of Anhui Provincial Hospital, the First Affiliated Hospital of University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Xuhan Zhang
- Department of Hematology of Anhui Provincial Hospital, the First Affiliated Hospital of University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Xiaoyu Zhu
- Department of Hematology of Anhui Provincial Hospital, the First Affiliated Hospital of University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Baolin Tang
- Department of Hematology of Anhui Provincial Hospital, the First Affiliated Hospital of University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Xiang Wan
- Department of Hematology of Anhui Provincial Hospital, the First Affiliated Hospital of University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Juan Tong
- Department of Hematology of Anhui Provincial Hospital, the First Affiliated Hospital of University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Kaidi Song
- Department of Hematology of Anhui Provincial Hospital, the First Affiliated Hospital of University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Wen Yao
- Department of Hematology of Anhui Provincial Hospital, the First Affiliated Hospital of University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Guangyu Sun
- Department of Hematology of Anhui Provincial Hospital, the First Affiliated Hospital of University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Zimin Sun
- Department of Hematology of Anhui Provincial Hospital, the First Affiliated Hospital of University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Huilan Liu
- Department of Hematology of Anhui Provincial Hospital, Anhui Medical University, 17 Lujiang Road, Hefei, 230001, Anhui, China. .,Department of Hematology of Anhui Provincial Hospital, the First Affiliated Hospital of University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
194
|
Grainger J, Daw R, Wemyss K. Systemic instruction of cell-mediated immunity by the intestinal microbiome. F1000Res 2018; 7:F1000 Faculty Rev-1910. [PMID: 30631436 PMCID: PMC6290979 DOI: 10.12688/f1000research.14633.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2018] [Indexed: 12/11/2022] Open
Abstract
Recent research has shed light on the plethora of mechanisms by which the gastrointestinal commensal microbiome can influence the local immune response in the gut (in particular, the impact of the immune system on epithelial barrier homeostasis and ensuring microbial diversity). However, an area that is much less well explored but of tremendous therapeutic interest is the impact the gut microbiome has on systemic cell-mediated immune responses. In this commentary, we highlight some key studies that are beginning to broadly examine the different mechanisms by which the gastrointestinal microbiome can impact the systemic immune compartment. Specifically, we discuss the effects of the gut microbiome on lymphocyte polarisation and trafficking, tailoring of resident immune cells in the liver, and output of circulating immune cells from the bone marrow. Finally, we explore contexts in which this new understanding of long-range effects of the gut microbiome can have implications, including cancer therapies and vaccination.
Collapse
Affiliation(s)
- John Grainger
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Manchester Collaborative Centre for Inflammation Research, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Rufus Daw
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Manchester Collaborative Centre for Inflammation Research, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Kelly Wemyss
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Manchester Collaborative Centre for Inflammation Research, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
195
|
Kennedy EA, King KY, Baldridge MT. Mouse Microbiota Models: Comparing Germ-Free Mice and Antibiotics Treatment as Tools for Modifying Gut Bacteria. Front Physiol 2018; 9:1534. [PMID: 30429801 PMCID: PMC6220354 DOI: 10.3389/fphys.2018.01534] [Citation(s) in RCA: 353] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/11/2018] [Indexed: 12/14/2022] Open
Abstract
As the intestinal microbiota has become better appreciated as necessary for maintenance of physiologic homeostasis and also as a modulator of disease processes, there has been a corresponding increase in manipulation of the microbiota in mouse models. While germ-free mouse models are generally considered to be the gold standard for studies of the microbiota, many investigators turn to antibiotics treatment models as a rapid, inexpensive, and accessible alternative. Here we describe and compare these two approaches, detailing advantages and disadvantages to both. Further, we detail what is known about the effects of antibiotics treatment on cell populations, cytokines, and organs, and clarify how this compares to germ-free models. Finally, we briefly describe recent findings regarding microbiota regulation of infectious diseases and other immunologic challenges by the microbiota, and highlight important future directions and considerations for the use of antibiotics treatment in manipulation of the microbiota.
Collapse
Affiliation(s)
- Elizabeth A. Kennedy
- Division of Infectious Diseases, Department of Medicine, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Katherine Y. King
- Section of Infectious Diseases, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Megan T. Baldridge
- Division of Infectious Diseases, Department of Medicine, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
196
|
Pickard JM, Zeng MY, Caruso R, Núñez G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev 2018; 279:70-89. [PMID: 28856738 DOI: 10.1111/imr.12567] [Citation(s) in RCA: 970] [Impact Index Per Article: 138.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The intestinal tract of mammals is colonized by a large number of microorganisms including trillions of bacteria that are referred to collectively as the gut microbiota. These indigenous microorganisms have co-evolved with the host in a symbiotic relationship. In addition to metabolic benefits, symbiotic bacteria provide the host with several functions that promote immune homeostasis, immune responses, and protection against pathogen colonization. The ability of symbiotic bacteria to inhibit pathogen colonization is mediated via several mechanisms including direct killing, competition for limited nutrients, and enhancement of immune responses. Pathogens have evolved strategies to promote their replication in the presence of the gut microbiota. Perturbation of the gut microbiota structure by environmental and genetic factors increases the risk of pathogen infection, promotes the overgrowth of harmful pathobionts, and the development of inflammatory disease. Understanding the interaction of the microbiota with pathogens and the immune system will provide critical insight into the pathogenesis of disease and the development of strategies to prevent and treat inflammatory disease.
Collapse
Affiliation(s)
- Joseph M Pickard
- Department of Pathology and Comprehensive Cancer Center, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Melody Y Zeng
- Department of Pathology and Comprehensive Cancer Center, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Roberta Caruso
- Department of Pathology and Comprehensive Cancer Center, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriel Núñez
- Department of Pathology and Comprehensive Cancer Center, The University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
197
|
Fuglsang E, Krych L, Lundsager MT, Nielsen DS, Frøkiaer H. Postnatal Administration of Lactobacillus rhamnosus HN001 Ameliorates Perinatal Broad-Spectrum Antibiotic-Induced Reduction in Myelopoiesis and T Cell Activation in Mouse Pups. Mol Nutr Food Res 2018; 62:e1800510. [PMID: 30211987 DOI: 10.1002/mnfr.201800510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/03/2018] [Indexed: 12/31/2022]
Abstract
SCOPE This study addresses whether administration of Lactobacillus rhamnosus HN001 could mitigate the effects of a compromised gut microbiota on the composition of mature leukocytes and granulocyte-macrophage progenitor cells (GMPs) in newborn mice. METHODS AND RESULTS Pregnant dams receive oral broad-spectrum antibiotics, which dramatically decrease the gut microbial composition analyzed by 16S rRNA sequencing. Perinatal antibiotic treatment decreases the proportions of bone marrow (BM) GMPs (postnatal day (PND2): 0.5% vs 0.8%, PND4: 0.2% to 0.6%) and mature granulocytes (33% vs 24% at PND2), and spleen granulocytes (7% vs 17% at PND2) and B cells (PND2:18% vs 28%, PND4:11% vs 22%). At PND35, T helper (Th) cells (20% vs 14%) and cytotoxic T (Tc) cells (10% vs 8%) decrease in the spleen. Oral administration of L. rhamnosus HN001 to neonatal pups (PND1-7) restores the antibiotic-induced changes of GMPs and granulocytes in BM and spleen, and further increases splenic granulocytes in control pups. At PND35, splenic proportions of B and Th but not Tc cells are restored. CONCLUSION Postnatal administration of a single bacterial strain efficiently restores granulopoiesis and most T cell activation in neonatal mice that suffer from a perinatal antibiotic-induced compromised gut microbiota at birth.
Collapse
Affiliation(s)
- Eva Fuglsang
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lukasz Krych
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Mia Thorup Lundsager
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Hanne Frøkiaer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
198
|
Karabulutoglu M, Finnon R, Imaoka T, Friedl AA, Badie C. Influence of diet and metabolism on hematopoietic stem cells and leukemia development following ionizing radiation exposure. Int J Radiat Biol 2018; 95:452-479. [PMID: 29932783 DOI: 10.1080/09553002.2018.1490042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE The review aims to discuss the prominence of dietary and metabolic regulators in maintaining hematopoietic stem cell (HSC) function, long-term self-renewal, and differentiation. RESULTS Most adult stem cells are preserved in a quiescent, nonmotile state in vivo which acts as a "protective state" for stem cells to reduce endogenous stress provoked by DNA replication and cellular respiration as well as exogenous environmental stress. The dynamic balance between quiescence, self-renewal and differentiation is critical for supporting a functional blood system throughout life of an organism. Stress-conditions, for example ionizing radiation exposure can trigger the blood forming HSCs to proliferate and migrate through extramedullary tissues to expand the number of HSCs and increase hematopoiesis. In addition, a wealth of investigation validated that deregulation of this balance plays a critical pathogenic role in various different hematopoietic diseases including the leukemia development. CONCLUSION The review summarizes the current knowledge on how alterations in dietary and metabolic factors could alter the risk of leukemia development following ionizing radiation exposure by inhibiting or even reversing the leukemic progression. Understanding the influence of diet, metabolism, and epigenetics on radiation-induced leukemogenesis may lead to the development of practical interventions to reduce the risk in exposed populations.
Collapse
Affiliation(s)
- Melis Karabulutoglu
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK.,b CRUK & MRC Oxford Institute for Radiation Oncology, Department of Oncology , University of Oxford , Oxford , UK
| | - Rosemary Finnon
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK
| | - Tatsuhiko Imaoka
- c Department of Radiation Effects Research, National Institute of Radiological Sciences , National Institutes for Quantum and Radiological Science and Technology , Chiba , Japan
| | - Anna A Friedl
- d Department of Radiation Oncology , University Hospital, LMU Munich , Munich , Germany
| | - Christophe Badie
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK
| |
Collapse
|
199
|
Abstract
PURPOSE OF REVIEW The review aims to discuss emerging evidence in the field of microbiome-dependent roles in host defense during critical illness with a focus on lung, kidney, and brain inflammation. RECENT FINDINGS The gut microbiota of critical ill patients is characterized by lower diversity, lower abundances of key commensal genera, and in some cases overgrowth by one bacterial genera, a state otherwise known as dysbiosis. Increasing evidence suggests that microbiota-derived components can reach the circulatory system from the gut and modulate immune homeostasis. Dysbiosis might have greater consequences for the critically ill than previously imagined and could contribute to poor outcome. Preclinical studies suggest that impaired communication across the gut - organ axes is associated with brain, lung - and kidney failure. SUMMARY In health, a diverse microbiome might enhance host defense, while during critical illness, the dysbiotic microbiome might contribute to comorbidity and organ dysfunction. Future research should be aimed at further establishing the causes and consequences of dysbiosis seen in the critically ill, which will provide perspective for developing new strategies of intervention.
Collapse
|
200
|
|