151
|
Abstract
PURPOSE Cancer remains a significant cause of morbidity and mortality across the globe. A recent report suggests around 14.1 million new cases and 8.2 million cancer-related deaths, which are expected to reach 21.7 million and 13 million by 2030 worldwide, respectively. MATERIALS AND METHODS Because of highly complex mechanisms of cancer progression, it is important to explore and develop new innovative technologies which are more efficient compared with presently available treatment options. RESULTS Currently, chemotherapy, radiation and surgery are the most commonly used cancer treatment methods. In the last decade, nanomedicine emerged as an alternative treatment option that uses specific drug-delivery systems, improves efficacy of drugs and reduces detrimental side effects to normal tissues. CONCLUSION In this review, we have summarized cancer nanomedicines (active and passive drug delivery) available in the market. We have also discussed other nanomedicines that are at different stages of clinical trials.
Collapse
Affiliation(s)
- Nasimudeen R Jabir
- a King Fahd Medical Research Center , King Abdulaziz University , Jeddah , Saudi Arabia
| | - Khalid Anwar
- b School of Life Sciences , Jawaharlal Nehru University , New Delhi , India
| | - Chelapram K Firoz
- a King Fahd Medical Research Center , King Abdulaziz University , Jeddah , Saudi Arabia
| | - Mohammad Oves
- c Center of Excellence in Environmental Studies , King Abdulaziz University , Jeddah , Saudi Arabia
| | - Mohammad Amjad Kamal
- a King Fahd Medical Research Center , King Abdulaziz University , Jeddah , Saudi Arabia
| | - Shams Tabrez
- a King Fahd Medical Research Center , King Abdulaziz University , Jeddah , Saudi Arabia
| |
Collapse
|
152
|
Koleini N, Kardami E. Autophagy and mitophagy in the context of doxorubicin-induced cardiotoxicity. Oncotarget 2018; 8:46663-46680. [PMID: 28445146 PMCID: PMC5542301 DOI: 10.18632/oncotarget.16944] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/17/2017] [Indexed: 12/18/2022] Open
Abstract
Doxorubicin (Dox) is a cytotoxic drug widely incorporated in various chemotherapy protocols. Severe side effects such as cardiotoxicity, however, limit Dox application. Mechanisms by which Dox promotes cardiac damage and cardiomyocyte cell death have been investigated extensively, but a definitive picture has yet to emerge. Autophagy, regarded generally as a protective mechanism that maintains cell viability by recycling unwanted and damaged cellular constituents, is nevertheless subject to dysregulation having detrimental effects for the cell. Autophagic cell death has been described, and has been proposed to contribute to Dox-cardiotoxicity. Additionally, mitophagy, autophagic removal of damaged mitochondria, is affected by Dox in a manner contributing to toxicity. Here we will review Dox-induced cardiotoxicity and cell death in the broad context of the autophagy and mitophagy processes.
Collapse
Affiliation(s)
- Navid Koleini
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada.,Department of Physiology and Pathophysiology, Winnipeg, Manitoba, Canada
| | - Elissavet Kardami
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada.,Department of Physiology and Pathophysiology, Winnipeg, Manitoba, Canada.,Department of Human Anatomy and Cell Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
153
|
Liu Q, Zhu H, Tiruthani K, Shen L, Chen F, Gao K, Zhang X, Hou L, Wang D, Liu R, Huang L. Nanoparticle-Mediated Trapping of Wnt Family Member 5A in Tumor Microenvironments Enhances Immunotherapy for B-Raf Proto-Oncogene Mutant Melanoma. ACS NANO 2018; 12:1250-1261. [PMID: 29370526 PMCID: PMC5834397 DOI: 10.1021/acsnano.7b07384] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Development of an effective treatment against advanced tumors remains a major challenge for cancer immunotherapy. Approximately 50% of human melanoma is driven by B-Raf proto-oncogene mutation (BRAF mutant). Tumors with such mutation are desmoplastic, highly immunosuppressive, and often resistant to immune checkpoint therapies. We have shown that immunotherapy mediated by low-dose doxorubicin-induced immunogenic cell death was only partially effective for this type of tumor and not effective in long-term inhibition of tumor progression. Wnt family member 5A (Wnt5a), a signaling protein highly produced by BRAF mutant melanoma cells, has been implicated in inducing dendritic cell tolerance and tumor fibrosis, thus hindering effective antigen presentation and T-cell infiltration. We hypothesized that Wnt5a is a key molecule controlling the immunosuppressive tumor microenvironment in metastatic melanoma. Accordingly, we have designed and generated a trimeric trap protein, containing the extracellular domain of Fizzled 7 receptor that binds Wnt5a with a Kd ∼ 278 nM. Plasmid DNA encoding for the Wnt5a trap was delivered to the tumor by using cationic lipid-protamine-DNA nanoparticles. Expression of Wnt5a trap in the tumor, although transient, was greater than that of any other major organs including liver, resulting in a significant reduction of the Wnt5a level in the tumor microenvironment without systematic toxicity. Significantly, combination of Wnt5a trapping and low-dose doxorubicin showed great tumor growth inhibition and host survival prolongation. Our findings indicated that efficient local Wnt5a trapping significantly remodeled the immunosuppressive tumor microenvironment to facilitate immunogenic cell-death-mediated immunotherapy.
Collapse
Affiliation(s)
- Qi Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hongda Zhu
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- School of Food and Biology Engineering, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Karthik Tiruthani
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Limei Shen
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Fengqian Chen
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH) and the Center for Biotechnology & Genomics, Texas Tech University, Lubbock, TX 79416, USA
| | - Keliang Gao
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xueqiong Zhang
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lin Hou
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Degeng Wang
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH) and the Center for Biotechnology & Genomics, Texas Tech University, Lubbock, TX 79416, USA
| | - Rihe Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Corresponding authors. ;
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Corresponding authors. ;
| |
Collapse
|
154
|
Sonowal H, Pal P, Shukla K, Saxena A, Srivastava SK, Ramana KV. Aldose reductase inhibitor, fidarestat prevents doxorubicin-induced endothelial cell death and dysfunction. Biochem Pharmacol 2018; 150:181-190. [PMID: 29458045 DOI: 10.1016/j.bcp.2018.02.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/14/2018] [Indexed: 12/14/2022]
Abstract
Despite doxorubicin (Dox) being one of the most widely used chemotherapy agents for breast, blood and lung cancers, its use in colon cancer is limited due to increased drug resistance and severe cardiotoxic side effects that increase mortality associated with its use at high doses. Therefore, better adjuvant therapies are warranted to improve the chemotherapeutic efficacy and to decrease cardiotoxicity. We have recently shown that aldose reductase inhibitor, fidarestat, increases the Dox-induced colon cancer cell death and reduces cardiomyopathy. However, the efficacy of fidarestat in the prevention of Dox-induced endothelial dysfunction, a pathological event critical to cardiovascular complications, is not known. Here, we have examined the effect of fidarestat on Dox-induced endothelial cell toxicity and dysfunction in vitro and in vivo. Incubation of human umbilical vein endothelial cells (HUVECs) with Dox significantly increased the endothelial cell death, and pre-treatment of fidarestat prevented it. Further, fidarestat prevented the Dox-induced oxidative stress, formation of reactive oxygen species (ROS) and activation of Caspase-3 in HUVECs. Fidarestat also prevented Dox-induced monocyte adhesion to HUVECs and expression of ICAM-1 and VCAM-1. Fidarestat pre-treatment to HUVECs restored the Dox-induced decrease in the Nitric Oxide (NO)-levels and eNOS expression. Treatment of HUVECs with Dox caused a significant increase in the activation of NF-κB and expression of various inflammatory cytokines and chemokines which were prevented by fidarestat pre-treatment. Most importantly, fidarestat prevented the Dox-induced mouse cardiac cell hypertrophy and expression of eNOS, iNOS, and 3-Nitrotyrosine in the aorta tissues. Further, fidarestat blunted the Dox-induced expression of various inflammatory cytokines and chemokines in vivo. Thus, our results suggest that by preventing Dox-induced endothelial cytotoxicity and dysfunction, AR inhibitors could avert cardiotoxicity associated with anthracycline chemotherapy.
Collapse
Affiliation(s)
- Himangshu Sonowal
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Pabitra Pal
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kirtikar Shukla
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ashish Saxena
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Satish K Srivastava
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
155
|
Wallat JD, Harrison JK, Pokorski JK. pH Responsive Doxorubicin Delivery by Fluorous Polymers for Cancer Treatment. Mol Pharm 2018; 15:2954-2962. [PMID: 29381366 DOI: 10.1021/acs.molpharmaceut.7b01046] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Polymeric nanoparticles have emerged as valuable drug delivery vehicles as they improve solubility of hydrophobic drugs, enhance circulation lifetime, and can improve the biodistribution profile of small-molecule therapeutics. These nanoparticles can take on a host of polymer architectures including polymersomes, hyperbranched nanoparticles, and dendrimers. We have recently reported that simple low molecular weight fluorous copolymers can self-assemble into nanoparticles and show exceptional passive targeting into multiple tumor models. Given the favorable biodistribution of these particles, we sought to develop systems that enable selective delivery in acidic environments, such as the tumor microenvironment or the lysosomal compartment. In this report, we describe the synthesis and in vitro biological studies of a pH-responsive doxorubicin (DOX) fluorous polymer conjugate. A propargyl DOX hydrazone was synthesized and covalently attached to a water-dispersible fluorous polymer composed of trifluoroethyl methacrylate (TFEMA) and oligo(ethylene glycol) methyl ether methacrylate (OEGMEMA) using the ligand-accelerated copper-catalyzed azide-alkyne cycloaddition. Driven by the high fluorine content of the copolymer carrier, the DOX-copolymer formed stable micelles under aqueous conditions with a hydrodynamic diameter of 250 nm. The DOX-copolymer showed internalization into multiple in vitro models for breast and ovarian cancer. Cytotoxicity assays demonstrated efficacy in both breast and ovarian cancer with overall efficacy being highly dependent on the cell line chosen. Taken together, these results present a platform for the pH-triggered delivery of DOX from a fluorous micelle carrier effective against multiple cancer models in vitro.
Collapse
Affiliation(s)
- Jaqueline D Wallat
- Department of Macromolecular Science and Engineering , Case Western Reserve University, Case School of Engineering , Cleveland , Ohio 44106 , United States
| | - Jada K Harrison
- Department of Macromolecular Science and Engineering , Case Western Reserve University, Case School of Engineering , Cleveland , Ohio 44106 , United States
| | - Jonathan K Pokorski
- Department of Macromolecular Science and Engineering , Case Western Reserve University, Case School of Engineering , Cleveland , Ohio 44106 , United States
| |
Collapse
|
156
|
Fardhdiani V, Molfino L, Zamudio AG, Manuel R, Luciano G, Ciglenecki I, Rusch B, Toutous Trellu L, Coldiron ME. HIV-associated Kaposi's sarcoma in Maputo, Mozambique: outcomes in a specialized treatment center, 2010-2015. Infect Agent Cancer 2018; 13:5. [PMID: 29387144 PMCID: PMC5775566 DOI: 10.1186/s13027-018-0177-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/11/2018] [Indexed: 01/04/2023] Open
Abstract
Background Kaposi’s sarcoma (KS) is a common HIV-associated malignancy associated with disability, pain and poor outcomes. The cornerstone of its treatment is antiretroviral therapy, but advanced disease necessitates the addition of chemotherapy. In high-income settings, this often consists of liposomal anthracyclines, but in Mozambique, the first line includes conventional doxorubicin, bleomycin and vincristine, which is poorly-tolerated. Médecins Sans Frontières supports the Ministry of Health (MOH) in a specialized HIV and KS treatment center at the Centro de Referencia de Alto Maé in Maputo. Methods We performed a retrospective analysis of data collected on patients enrolled at the CRAM between 2010 and 2015, extracting routinely-collected clinical information from patient care databases. KS treatment followed national guidelines, and KS staging followed AIDS Clinical Trials Group and MOH criteria. Baseline description of the cohort and patient outcomes was performed. Risk factors for negative outcomes (death or loss to follow-up) were explored using Cox regression. Results Between 2010 and 2015, 1573 patients were enrolled, and 1210 began chemotherapy. A majority were young adult males. At enrollment, CD4 was < 200 cells/μl in 45% of patients. Among patients receiving chemotherapy, 78% received combination doxorubicin-bleomycin-vincristine. Among patients receiving chemotherapy, 43% were lost to follow-up and 8% were known to have died. In multivariate regression, the only risk factors identified with poor outcomes were CD4 < 100 cells/μl at enrollment (Risk ratio 1.5, 95%CI 1.1–2.1, p = 0.02 and having S1 disease (RR 1.7, 95%CI 1.2–2.3, p = 0.001). Discussion We describe a large cohort of patients receiving care for HIV-associated KS in a specialized clinic in an urban setting. Outcomes were nonetheless unsatisfactory. Efforts should be made to decrease late referrals and entry into care and to increase access to more effective and better-tolerated treatments like liposomal doxorubicin.
Collapse
|
157
|
The Use of Liposomes and Nanoparticles as Drug Delivery Systems to Improve Cancer Treatment in Dogs and Cats. Molecules 2017; 22:molecules22122167. [PMID: 29215573 PMCID: PMC6149801 DOI: 10.3390/molecules22122167] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/11/2022] Open
Abstract
Background: Cancer remains a leading cause of death in companion animals. In human medicine, liposomes and nanoparticles have been extensively investigated as drug delivery systems (DDS) for anticancer agents due to their ability to target cancerous cells and reduce the negative side effects of free cytostatic drugs. In this review, the authors discuss the results of clinical trials using liposomes and polymer-based nanoparticles as DDS to improve cancer treatment in dogs and cats, indicating which ones seem worth further evaluation. The authors then overview ongoing animal cancer clinical trials, evaluating nano-DDS registered on the American Veterinary Medical Association Animal Health Studies Database. Finally, the authors indicate the nano-drugs that require further in vivo evaluation based on the encouraging results obtained from in vitro studies. Conclusions: Liposomes have been the most investigated nano-DDS in veterinary medicine. The lack of cardiotoxicity of the commercially available liposomal doxorubicin (Doxil/Caelyx) suggests it should be used in dogs with cardiac disorders, rather than using free doxorubicin. Cisplatin-incorporated hyaluronic acid nanoparticles, nanocrystals of cisplatin, and paclitaxel are the most promising nano-drugs for potent applications in treating various canine cancers (e.g. oral melanoma, oral sarcoma, and anal gland adenocarcinoma) and their translation into the treatment of human diseases.
Collapse
|
158
|
Dexrazoxane added to doxorubicin-based adjuvant chemotherapy of breast cancer: a retrospective cohort study with a comparative analysis of toxicity and survival. Anticancer Drugs 2017; 28:787-794. [PMID: 28562379 DOI: 10.1097/cad.0000000000000514] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Dexrazoxane is indicated as a cardioprotective agent for patients receiving doxorubicin who are at increased risk for cardiotoxicity. Concerns have been raised on the use of dexrazoxane, particularly in adjuvant therapy, because of the risk of interference with the antitumor effect of doxorubicin. Two meta-analyses in metastatic breast cancer have rejected this hypothesis, but have shown an apparent increase in the severity of myelosuppression when dexrazoxane is used. Here, we analyzed retrospectively a cohort of our institute database to assess whether the addition of dexrazoxane causes more bone marrow suppression in breast cancer patients receiving doxorubicin-based adjuvant therapy. The secondary objectives were assessment of the incidence of febrile neutropenia, dose-schedule modifications, recorded cardiac events or cardiac test abnormalities, and overall survival. Eight hundred and twenty-two female patients who received adjuvant (or neoadjuvant) doxorubicin and cyclophosphamide for breast cancer between 2001 and 2013 were included. One hundred and four of these patients also received dexrazoxane concurrently with the adjuvant treatment. Hospital records and, when accessible, community clinic records were reviewed. The median follow-up duration was 7 years for patients receiving dexrazoxane and 7.5 years for patients not receiving dexrazoxane. 85.6% of patients were alive at data lock. Compared with the nondexrazoxane group, patients who received dexrazoxane were older (median age at diagnosis 59 vs. 52 years) and more likely to receive dose-dense AC therapy (73 vs. 59%) and adjuvant trastuzumab treatment (29 vs. 15%). Compared with the nondexrazoxane group, dexrazoxane treatment was associated with a higher rate of hematological side effects: leukopenia (48 vs. 39%), neutropenia (45 vs. 31%, P=0.003), anemia (86 vs. 73%, P=0.005), and thrombocytopenia (37 vs. 22%, P=0.001). There were more febrile neutropenia hospitalizations (20 vs. 10%, P=0.001) and dose reductions (22 vs. 8%, P<0.001) in the dexrazoxane group, but no significant difference in the incidence of treatment delays or cancellations. The incidence of cardiac events was the same in both treatment groups with and without dexrazoxane. There was a nonsignificantly lower mortality rate in the dexrazoxane group (9.6%) compared with the nondexrazoxane group (15.0%) at data lock. Adding dexrazoxane to doxorubicin in adjuvant therapy patients leads to higher rates of bone marrow suppression in all blood components, as well as more febrile neutropenia events, and dose reductions. No differences in events defined as cardiac toxicities were detected. Dexrazoxane had no detrimental effect on survival, despite the higher hematological toxicity, the older median age, and the higher prevalence of HER2-positive disease in the dexrazoxane group.
Collapse
|
159
|
Alibolandi M, Abnous K, Mohammadi M, Hadizadeh F, Sadeghi F, Taghavi S, Jaafari MR, Ramezani M. Extensive preclinical investigation of polymersomal formulation of doxorubicin versus Doxil-mimic formulation. J Control Release 2017; 264:228-236. [DOI: 10.1016/j.jconrel.2017.08.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 12/15/2022]
|
160
|
Fukuda A, Tahara K, Hane Y, Matsui T, Sasaoka S, Hatahira H, Motooka Y, Hasegawa S, Naganuma M, Abe J, Nakao S, Takeuchi H, Nakamura M. Comparison of the adverse event profiles of conventional and liposomal formulations of doxorubicin using the FDA adverse event reporting system. PLoS One 2017; 12:e0185654. [PMID: 28953936 PMCID: PMC5617225 DOI: 10.1371/journal.pone.0185654] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/16/2017] [Indexed: 01/10/2023] Open
Abstract
Doxorubicin (DOX) is an anthracycline widely used for the treatment of solid and hematological tumors. The aim of this study was to assess the adverse event profiles of conventional DOX and liposomal DOX. This is the first study to evaluate the effect of a liposomal formulation of DOX using spontaneous reporting system (SRS) databases. The SRS used was the US Food and Drug Administration Adverse Event Reporting System (FAERS). This study relied on definitions of preferred terms provided by the Medical Dictionary for Regulatory Activities (MedDRA) and the standardized MedDRA Queries (SMQ) database. We also calculated the reporting odds ratios (RORs) of suspected drugs (conventional DOX; PEGylated-liposome DOX; non-PEGylated-liposome DOX). The FAERS database contained 7,561,254 reports from January 2004 to December 2015. The number of reported AE cases for conventional DOX, PEGylated-liposome DOX, and non-PEGylated-liposome DOX was 5039, 3780, and 349, respectively. Conventional DOX and liposomal DOX have potential risks of causing myelosuppression, cardiotoxicity, alopecia, nausea, and vomiting, among other effects. The RORs (95% CI) from SMQ for haematopoietic leucopenia associated with conventional DOX, PEGylated-liposome DOX, and non-PEGylated-liposome DOX were 12.75 (11.89–13.68), 6.43 (5.81–7.13), and 14.73 (11.42–18.99), respectively. Liposomal DOX formulations were associated with lower RORs with regard to myelosuppression, cardiotoxicity, and alopecia than the conventional DOX was. The RORs (95% CI) for palmar-plantar erythrodysesthesia (PPE) associated with conventional DOX, PEGylated-liposome DOX, and non-PEGylated-liposome DOX were 6.56 (4.74–9.07), 64.77 (56.84–73.80), and 28.76 (15.77–52.45), respectively. This study is the first to evaluate the relationship between DOX liposomal formulations and their adverse event profiles. The results indicate that careful observation for PPE is recommended with the use of liposomal DOX, especially PEGylated-liposome DOX formulations.
Collapse
Affiliation(s)
- Akiho Fukuda
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu-shi, Gifu, Japan
| | - Kohei Tahara
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, Gifu University, Gifu-shi, Gifu, Japan
| | - Yuuki Hane
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu-shi, Gifu, Japan
| | - Toshinobu Matsui
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu-shi, Gifu, Japan
| | - Sayaka Sasaoka
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu-shi, Gifu, Japan
| | - Haruna Hatahira
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu-shi, Gifu, Japan
| | - Yumi Motooka
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu-shi, Gifu, Japan
| | - Shiori Hasegawa
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu-shi, Gifu, Japan
| | - Misa Naganuma
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu-shi, Gifu, Japan
| | - Junko Abe
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu-shi, Gifu, Japan
- Medical database Co., LTD, Shibuya-ku, Tokyo, Japan
| | - Satoshi Nakao
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu-shi, Gifu, Japan
| | - Hirofumi Takeuchi
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, Gifu University, Gifu-shi, Gifu, Japan
| | - Mitsuhiro Nakamura
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu-shi, Gifu, Japan
- * E-mail:
| |
Collapse
|
161
|
Kim GY, Ahuja T, Papadopoulos J, Cirrone F. Cardiotoxicity with carfilzomib at doses greater than 27 mg/m 2: A case series. J Oncol Pharm Pract 2017; 25:229-233. [PMID: 28914153 DOI: 10.1177/1078155217729564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Carfilzomib is a second-generation proteasome inhibitor that irreversibly inhibits chymotrypsin-like (CT-L) activities of the proteasome, and is indicated for relapsed or refractory multiple myeloma. Cardiotoxicity is a well-established adverse effect of carfilzomib. The extent of cardiac toxicity in the literature spans anywhere from palpitations to cardiac arrest, with the most commonly reported manifestation being new-onset or worsening heart failure. A pre-clinical study of the pharmacokinetics and pharmacodynamics of carfilzomib given via intravenous bolus or 30-minute infusion in rats showed that carfilzomib can strongly induce apoptosis and potently damage cardiac myocytes at clinically relevant concentrations. Moreover, the mortality rate with the bolus administration was 44% whereas the same dose administered as a 30-minute infusion did not result in mortality. There remains limited clinical data regarding the safety of carfilzomib at doses of 27-56 mg/m2 based on infusion times as these doses have not been well studied. This retrospective review was conducted to evaluate the safety of carfilzomib at doses >27 mg/m2 at all infusion times.
Collapse
Affiliation(s)
- Gee Youn Kim
- Department of Pharmacy, 12297 New York University Langone Medical Center , New York, NY
| | - Tania Ahuja
- Department of Pharmacy, 12297 New York University Langone Medical Center , New York, NY
| | - John Papadopoulos
- Department of Pharmacy, 12297 New York University Langone Medical Center , New York, NY
| | - Frank Cirrone
- Department of Pharmacy, 12297 New York University Langone Medical Center , New York, NY
| |
Collapse
|
162
|
Binder U, Skerra A. PASylation®: A versatile technology to extend drug delivery. Curr Opin Colloid Interface Sci 2017. [DOI: 10.1016/j.cocis.2017.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
163
|
Dendrimer-doxorubicin conjugates exhibit improved anticancer activity and reduce doxorubicin-induced cardiotoxicity in a murine hepatocellular carcinoma model. PLoS One 2017; 12:e0181944. [PMID: 28829785 PMCID: PMC5567696 DOI: 10.1371/journal.pone.0181944] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/10/2017] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the 2nd leading cause of cancer-related deaths every year globally. The most common form of treatment, hepatic arterial infusion (HAI), involves the direct injection of doxorubicin (DOX) into the hepatic artery. It is plagued with limited therapeutic efficacy and the occurrence of severe toxicities (e.g. cardiotoxicity). We aim to improve the therapeutic index of DOX delivered via HAI by loading the drug onto generation 5 (G5) poly(amidoamine) (PAMAM) dendrimers targeted to hepatic cancer cells via N-acetylgalactosamine (NAcGal) ligands. DOX is attached to the surface of G5 molecules via two different enzyme-sensitive linkages, L3 or L4, to achieve controllable drug release inside hepatic cancer cells. We previously reported on P1 and P2 particles that resulted from the combination of NAcGal-targeting with L3- or L4-DOX linkages, respectively, and showed controllable DOX release and toxicity towards hepatic cancer cells comparable to free DOX. In this study, we demonstrate that while the intratumoral delivery of free DOX (1 mg/kg) into HCC-bearing nod scid gamma (NSG) mice achieves a 2.5-fold inhibition of tumor growth compared to the saline group over 30 days, P1 and P2 particles delivered at the same DOX dosage achieve a 5.1- and 4.4-fold inhibition, respectively. Incubation of the particles with human induced pluripotent stem cell derived cardiomyocytes (hiPSC CMs) showed no effect on monolayer viability, apoptosis induction, or CM electrophysiology, contrary to the effect of free DOX. Moreover, magnetic resonance imaging revealed that P1- and P2-treated mice maintained cardiac function after intraperitoneal administration of DOX at 1 mg/kg for 21 days, unlike the free DOX group at an equivalent dosage, confirming that P1/P2 can avoid DOX-induced cardiotoxicity. Taken together, these results highlight the ability of P1/P2 particles to improve the therapeutic index of DOX and offer a replacement therapy for clinical HCC treatment.
Collapse
|
164
|
Brand W, Noorlander CW, Giannakou C, De Jong WH, Kooi MW, Park MV, Vandebriel RJ, Bosselaers IE, Scholl JH, Geertsma RE. Nanomedicinal products: a survey on specific toxicity and side effects. Int J Nanomedicine 2017; 12:6107-6129. [PMID: 28883724 PMCID: PMC5574663 DOI: 10.2147/ijn.s139687] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Due to their specific properties and pharmacokinetics, nanomedicinal products (NMPs) may present different toxicity and side effects compared to non-nanoformulated, conventional medicines. To facilitate the safety assessment of NMPs, we aimed to gain insight into toxic effects specific for NMPs by systematically analyzing the available toxicity data on approved NMPs in the European Union. In addition, by comparing five sets of products with the same active pharmaceutical ingredient (API) in a conventional formulation versus a nanoformulation, we aimed to identify any side effects specific for the nano aspect of NMPs. The objective was to investigate whether specific toxicity could be related to certain structural types of NMPs and whether a nanoformulation of an API altered the nature of side effects of the product in humans compared to a conventional formulation. The survey of toxicity data did not reveal nanospecific toxicity that could be related to certain types of structures of NMPs, other than those reported previously in relation to accumulation of iron nanoparticles (NPs). However, given the limited data for some of the product groups or toxicological end points in the analysis, conclusions with regard to (a lack of) potential nanomedicine-specific effects need to be considered carefully. Results from the comparison of side effects of five sets of drugs (mainly liposomes and/or cytostatics) confirmed the induction of pseudo-allergic responses associated with specific NMPs in the literature, in addition to the side effects common to both nanoformulations and regular formulations, eg, with liposomal doxorubicin, and possibly liposomal daunorubicin. Based on the available data, immunotoxicological effects of certain NMPs cannot be excluded, and we conclude that this end point requires further attention.
Collapse
Affiliation(s)
| | | | - Christina Giannakou
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven.,Department of Toxicogenomics, Maastricht University, Maastricht
| | - Wim H De Jong
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven
| | | | - Margriet Vdz Park
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven
| | - Rob J Vandebriel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven
| | - Irene Em Bosselaers
- Section Pharmacology, Toxicology and Pharmacokinetics, Medicines Evaluation Board (CBG-MEB), Utrecht
| | - Joep Hg Scholl
- Research & Analysis Department, Netherlands Pharmacovigilance Centre Lareb, 's-Hertogenbosch, the Netherlands
| | - Robert E Geertsma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven
| |
Collapse
|
165
|
Eryılmaz E, Canpolat C. Novel agents for the treatment of childhood leukemia: an update. Onco Targets Ther 2017; 10:3299-3306. [PMID: 28740405 PMCID: PMC5505617 DOI: 10.2147/ott.s126368] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Achieving lower morbidity and higher survival rates in the treatment of childhood leukemia has been a paradigm of success in modern oncology. However, serious long-term health complications occur in very large populations of childhood leukemia survivors, in the case of both acute lymphoid leukemia and acute myeloid leukemia (AML). Additionally, 15% of acute lymphoid leukemia patients have treatment failures, and rates are even higher in childhood AML. In the last few decades, as a result of well-tested experiments that statistically analyzed treatment cohorts, new agents have emerged as alternatives or supplements to established treatments, in which high survival and/or less morbidity were observed. This review provides an overview of better practice in the treatment of childhood leukemia.
Collapse
Affiliation(s)
- Ertugrul Eryılmaz
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Acibadem Maslak Hospital
| | - Cengiz Canpolat
- Department of Pediatric Hematology and Oncology, Acibadem Kozyatagi Hospital, Acıbadem University School of Medicine, Istanbul, Turkey
| |
Collapse
|
166
|
Guo D, Shi C, Wang X, Wang L, Zhang S, Luo J. Riboflavin-containing telodendrimer nanocarriers for efficient doxorubicin delivery: High loading capacity, increased stability, and improved anticancer efficacy. Biomaterials 2017; 141:161-175. [PMID: 28688287 DOI: 10.1016/j.biomaterials.2017.06.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022]
Abstract
We have developed two linear-dendritic telodendrimers (TDs) with rational design using amphiphilic riboflavin (Rf) as building blocks for efficient doxorubicin (DOX) delivery. Micellar TD nanoparticles (NPs) are composed of a hydrophilic polyethylene glycol (PEG) shell and a Rf-containing affinitive core for DOX encapsulation. Strong DOX-Rf interactions and amphiphilic Rf structure render these nanocarriers with an ultra-high DOX loading capacity (>1/1, DOX/TD, w/w), ∼100% loading efficiency, the sustained drug release and the optimal particle sizes (20-40 nm) for efficient tumor-targeted drug delivery. These nanoformulations significantly prolonged DOX circulation time in the blood without the accelerated clearance observed after multiple injections. DOX-TDs target several types of tumors efficiently in vivo, e.g. Raji lymphoma, MDA-MB-231 breast cancer, and SKOV-3 ovarian cancer. In vivo maximum tolerated dose (MTD) of DOX was increased by 2-2.5 folds for the nanoformulations in mice relative to those of free DOX and Doxil®. These nanoformulations significantly inhibited tumor growth and prolonged survival of mice bearing SKOV-3 ovarian cancer xenografts. In summary, Rf-containing nanoformulations with high DOX loading capacity, improved stability and efficient tumor targeting lead to superior antitumor efficacy, which merit the further development for clinical application.
Collapse
Affiliation(s)
- Dandan Guo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Changying Shi
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Xu Wang
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Lili Wang
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Shengle Zhang
- Department of Pathology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Juntao Luo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, State University of New York Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
167
|
Burade V, Bhowmick S, Maiti K, Zalawadia R, Ruan H, Thennati R. Lipodox® (generic doxorubicin hydrochloride liposome injection): in vivo efficacy and bioequivalence versus Caelyx® (doxorubicin hydrochloride liposome injection) in human mammary carcinoma (MX-1) xenograft and syngeneic fibrosarcoma (WEHI 164) mouse models. BMC Cancer 2017; 17:405. [PMID: 28587612 PMCID: PMC5461687 DOI: 10.1186/s12885-017-3377-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/19/2017] [Indexed: 11/14/2022] Open
Abstract
Background Doxorubicin (DXR) hydrochloride (HCl) liposome injection is an important part of the treatment armamentarium for a number of cancers. With growing needs for affordable and effective anticancer treatments, the development of generics is becoming increasingly important to facilitate patient access to vital medications. We conducted studies in relevant mouse models of cancer to compare the preclinical antitumour efficacy and plasma pharmacokinetic profile of a proposed generic DXR HCl liposome injection developed by Sun Pharmaceutical Industries Ltd. (SPIL DXR HCl liposome injection) with Caelyx® (reference DXR HCl liposome injection). Methods Syngeneic fibrosarcoma (WEHI 164)-bearing BALB/c mice and athymic nude mice transplanted with MX-1 human mammary carcinoma xenografts were treated with SPIL DXR HCl liposome injection, reference DXR HCl liposome injection or placebo, to compare tumour volume, antitumour activity (percentage test/control [%T/C] ratio, tumour regression, and specific tumour growth delay) and toxicity (survival and weight changes) in response to treatment. The pharmacokinetic profile of the SPIL and reference product was also studied in syngeneic fibrosarcoma-bearing mice. Results Treatment with either SPIL or reference DXR HCl liposome injection resulted in significant reduction in tumour volume from baseline in both models at all doses tested. High antitumour activity (%T/C ≤ 10) was seen from Day 21 and Day 14 onwards in SPIL and reference DXR HCl liposome injection–treated syngeneic fibrosarcoma-bearing mice, respectively, at 9 mg/kg. Moderate antitumour activity (%T/C ≤ 20) was seen from Day 17 and Day 24 onwards in SPIL and reference DXR HCl liposome injection–treated MX-1-bearing mice, respectively, at 6 mg/kg. No significant differences in tumour volume and %T/C were observed between SPIL and reference DXR HCl liposome injection–treated groups at any dose (p ≥ 0.05). Toxicity profiles were considered to be generally comparable. Evaluation of test/reference (A/B) ratios and 90% confidence intervals (CIs) for peak serum concentration (Cmax) and area under the curve (AUC0-t, and AUC0-∞) demonstrated bioequivalence of SPIL and reference DXR HCl liposome injections. Conclusions Establishing similarity is of critical importance during the development of generic treatments. SPIL and reference DXR HCl liposome injections were shown to be comparable with regards to antitumour activity, toxicity and pharmacokinetics.
Collapse
Affiliation(s)
- Vinod Burade
- Sun Pharma Advanced Research Company Ltd., 17 B Mahal Industrial Estate, Mahakali Caves Road, Andheri (East), Mumbai, Maharashtra, 400 093, India. .,Sun Pharma Advanced Research Centre (SPARC), Tandalja, Vadodara, Gujarat, 390 020, India.
| | - Subhas Bhowmick
- Sun Pharmaceutical Industries Ltd., Sun Pharma Advanced Research Centre (SPARC), Tandalja, Vadodara, Gujarat, 390 020, India
| | - Kuntal Maiti
- Sun Pharma Advanced Research Company Ltd., 17 B Mahal Industrial Estate, Mahakali Caves Road, Andheri (East), Mumbai, Maharashtra, 400 093, India
| | - Rishit Zalawadia
- Sun Pharma Advanced Research Company Ltd., 17 B Mahal Industrial Estate, Mahakali Caves Road, Andheri (East), Mumbai, Maharashtra, 400 093, India
| | - Harry Ruan
- Sun Pharma Advanced Research Company Ltd., 17 B Mahal Industrial Estate, Mahakali Caves Road, Andheri (East), Mumbai, Maharashtra, 400 093, India
| | - Rajamannar Thennati
- Sun Pharmaceutical Industries Ltd., Sun Pharma Advanced Research Centre (SPARC), Tandalja, Vadodara, Gujarat, 390 020, India
| |
Collapse
|
168
|
Darban SA, Badiee A, Jaafari MR. PNC27 anticancer peptide as targeting ligand significantly improved antitumor efficacy of Doxil in HDM2-expressing cells. Nanomedicine (Lond) 2017; 12:1475-1490. [DOI: 10.2217/nnm-2017-0069] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: To investigate the potential of PNC27 peptide, 12–26 of p53 with high affinity for HDM2 protein, as targeting ligand for Doxil to improve its antitumor activity. Materials & methods: Doxil postinserted with 25, 50, 100 and 200 PNC27 peptides per liposome. Flow cytometry and confocal analysis were performed on C26 colon carcinoma (HDM2 positive) and B16F0 melanoma (HDM2 negative) cells. In vivo studies were performed on BALB/c mice bearing C26 and C57BL/6 mice bearing B16F0 tumor models. Results: PNC27–Doxil showed significant cellular uptake and cytotoxicity in C26 cells compared with Doxil. PNC27–Doxil (100 PNC27 peptide) significantly improved therapeutic efficacy of Doxil without compromising its biodistribution in C26 tumor. However, these results were not observed in B16F0 cells. Conclusion: PNC27 is a promising targeting ligand for Doxil against HDM2-positive cancers.
Collapse
Affiliation(s)
- Shahrzad Amiri Darban
- Biotechnology Research Center, Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran
| | - Ali Badiee
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran
| |
Collapse
|
169
|
Armenian SH, Lacchetti C, Barac A, Carver J, Constine LS, Denduluri N, Dent S, Douglas PS, Durand JB, Ewer M, Fabian C, Hudson M, Jessup M, Jones LW, Ky B, Mayer EL, Moslehi J, Oeffinger K, Ray K, Ruddy K, Lenihan D. Prevention and Monitoring of Cardiac Dysfunction in Survivors of Adult Cancers: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 2017; 35:893-911. [DOI: 10.1200/jco.2016.70.5400] [Citation(s) in RCA: 652] [Impact Index Per Article: 93.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Purpose Cardiac dysfunction is a serious adverse effect of certain cancer-directed therapies that can interfere with the efficacy of treatment, decrease quality of life, or impact the actual survival of the patient with cancer. The purpose of this effort was to develop recommendations for prevention and monitoring of cardiac dysfunction in survivors of adult-onset cancers. Methods Recommendations were developed by an expert panel with multidisciplinary representation using a systematic review (1996 to 2016) of meta-analyses, randomized clinical trials, observational studies, and clinical experience. Study quality was assessed using established methods, per study design. The guideline recommendations were crafted in part using the Guidelines Into Decision Support methodology. Results A total of 104 studies met eligibility criteria and compose the evidentiary basis for the recommendations. The strength of the recommendations in these guidelines is based on the quality, amount, and consistency of the evidence and the balance between benefits and harms. Recommendations It is important for health care providers to initiate the discussion regarding the potential for cardiac dysfunction in individuals in whom the risk is sufficiently high before beginning therapy. Certain higher risk populations of survivors of cancer may benefit from prevention and screening strategies implemented during cancer-directed therapies. Clinical suspicion for cardiac disease should be high and threshold for cardiac evaluation should be low in any survivor who has received potentially cardiotoxic therapy. For certain higher risk survivors of cancer, routine surveillance with cardiac imaging may be warranted after completion of cancer-directed therapy, so that appropriate interventions can be initiated to halt or even reverse the progression of cardiac dysfunction.
Collapse
Affiliation(s)
- Saro H. Armenian
- Saro H. Armenian, City of Hope, Duarte, CA; Christina Lacchetti, American Society of Clinical Oncology, Alexandria; Neelima Denduluri, Virginia Cancer Specialists, Arlington, VA; Ana Barac, Medstar Heart Institute, Medstar Washington Hospital Center, Washington, DC; Joseph Carver and Mariell Jessup, University of Pennsylvania; Bonnie Ky, Hospital of the University of Pennsylvania, Philadelphia, PA; Louis S. Constine, University of Rochester Medical Center, Rochester; Lee W. Jones and Kevin Oeffinger,
| | - Christina Lacchetti
- Saro H. Armenian, City of Hope, Duarte, CA; Christina Lacchetti, American Society of Clinical Oncology, Alexandria; Neelima Denduluri, Virginia Cancer Specialists, Arlington, VA; Ana Barac, Medstar Heart Institute, Medstar Washington Hospital Center, Washington, DC; Joseph Carver and Mariell Jessup, University of Pennsylvania; Bonnie Ky, Hospital of the University of Pennsylvania, Philadelphia, PA; Louis S. Constine, University of Rochester Medical Center, Rochester; Lee W. Jones and Kevin Oeffinger,
| | - Ana Barac
- Saro H. Armenian, City of Hope, Duarte, CA; Christina Lacchetti, American Society of Clinical Oncology, Alexandria; Neelima Denduluri, Virginia Cancer Specialists, Arlington, VA; Ana Barac, Medstar Heart Institute, Medstar Washington Hospital Center, Washington, DC; Joseph Carver and Mariell Jessup, University of Pennsylvania; Bonnie Ky, Hospital of the University of Pennsylvania, Philadelphia, PA; Louis S. Constine, University of Rochester Medical Center, Rochester; Lee W. Jones and Kevin Oeffinger,
| | - Joseph Carver
- Saro H. Armenian, City of Hope, Duarte, CA; Christina Lacchetti, American Society of Clinical Oncology, Alexandria; Neelima Denduluri, Virginia Cancer Specialists, Arlington, VA; Ana Barac, Medstar Heart Institute, Medstar Washington Hospital Center, Washington, DC; Joseph Carver and Mariell Jessup, University of Pennsylvania; Bonnie Ky, Hospital of the University of Pennsylvania, Philadelphia, PA; Louis S. Constine, University of Rochester Medical Center, Rochester; Lee W. Jones and Kevin Oeffinger,
| | - Louis S. Constine
- Saro H. Armenian, City of Hope, Duarte, CA; Christina Lacchetti, American Society of Clinical Oncology, Alexandria; Neelima Denduluri, Virginia Cancer Specialists, Arlington, VA; Ana Barac, Medstar Heart Institute, Medstar Washington Hospital Center, Washington, DC; Joseph Carver and Mariell Jessup, University of Pennsylvania; Bonnie Ky, Hospital of the University of Pennsylvania, Philadelphia, PA; Louis S. Constine, University of Rochester Medical Center, Rochester; Lee W. Jones and Kevin Oeffinger,
| | - Neelima Denduluri
- Saro H. Armenian, City of Hope, Duarte, CA; Christina Lacchetti, American Society of Clinical Oncology, Alexandria; Neelima Denduluri, Virginia Cancer Specialists, Arlington, VA; Ana Barac, Medstar Heart Institute, Medstar Washington Hospital Center, Washington, DC; Joseph Carver and Mariell Jessup, University of Pennsylvania; Bonnie Ky, Hospital of the University of Pennsylvania, Philadelphia, PA; Louis S. Constine, University of Rochester Medical Center, Rochester; Lee W. Jones and Kevin Oeffinger,
| | - Susan Dent
- Saro H. Armenian, City of Hope, Duarte, CA; Christina Lacchetti, American Society of Clinical Oncology, Alexandria; Neelima Denduluri, Virginia Cancer Specialists, Arlington, VA; Ana Barac, Medstar Heart Institute, Medstar Washington Hospital Center, Washington, DC; Joseph Carver and Mariell Jessup, University of Pennsylvania; Bonnie Ky, Hospital of the University of Pennsylvania, Philadelphia, PA; Louis S. Constine, University of Rochester Medical Center, Rochester; Lee W. Jones and Kevin Oeffinger,
| | - Pamela S. Douglas
- Saro H. Armenian, City of Hope, Duarte, CA; Christina Lacchetti, American Society of Clinical Oncology, Alexandria; Neelima Denduluri, Virginia Cancer Specialists, Arlington, VA; Ana Barac, Medstar Heart Institute, Medstar Washington Hospital Center, Washington, DC; Joseph Carver and Mariell Jessup, University of Pennsylvania; Bonnie Ky, Hospital of the University of Pennsylvania, Philadelphia, PA; Louis S. Constine, University of Rochester Medical Center, Rochester; Lee W. Jones and Kevin Oeffinger,
| | - Jean-Bernard Durand
- Saro H. Armenian, City of Hope, Duarte, CA; Christina Lacchetti, American Society of Clinical Oncology, Alexandria; Neelima Denduluri, Virginia Cancer Specialists, Arlington, VA; Ana Barac, Medstar Heart Institute, Medstar Washington Hospital Center, Washington, DC; Joseph Carver and Mariell Jessup, University of Pennsylvania; Bonnie Ky, Hospital of the University of Pennsylvania, Philadelphia, PA; Louis S. Constine, University of Rochester Medical Center, Rochester; Lee W. Jones and Kevin Oeffinger,
| | - Michael Ewer
- Saro H. Armenian, City of Hope, Duarte, CA; Christina Lacchetti, American Society of Clinical Oncology, Alexandria; Neelima Denduluri, Virginia Cancer Specialists, Arlington, VA; Ana Barac, Medstar Heart Institute, Medstar Washington Hospital Center, Washington, DC; Joseph Carver and Mariell Jessup, University of Pennsylvania; Bonnie Ky, Hospital of the University of Pennsylvania, Philadelphia, PA; Louis S. Constine, University of Rochester Medical Center, Rochester; Lee W. Jones and Kevin Oeffinger,
| | - Carol Fabian
- Saro H. Armenian, City of Hope, Duarte, CA; Christina Lacchetti, American Society of Clinical Oncology, Alexandria; Neelima Denduluri, Virginia Cancer Specialists, Arlington, VA; Ana Barac, Medstar Heart Institute, Medstar Washington Hospital Center, Washington, DC; Joseph Carver and Mariell Jessup, University of Pennsylvania; Bonnie Ky, Hospital of the University of Pennsylvania, Philadelphia, PA; Louis S. Constine, University of Rochester Medical Center, Rochester; Lee W. Jones and Kevin Oeffinger,
| | - Melissa Hudson
- Saro H. Armenian, City of Hope, Duarte, CA; Christina Lacchetti, American Society of Clinical Oncology, Alexandria; Neelima Denduluri, Virginia Cancer Specialists, Arlington, VA; Ana Barac, Medstar Heart Institute, Medstar Washington Hospital Center, Washington, DC; Joseph Carver and Mariell Jessup, University of Pennsylvania; Bonnie Ky, Hospital of the University of Pennsylvania, Philadelphia, PA; Louis S. Constine, University of Rochester Medical Center, Rochester; Lee W. Jones and Kevin Oeffinger,
| | - Mariell Jessup
- Saro H. Armenian, City of Hope, Duarte, CA; Christina Lacchetti, American Society of Clinical Oncology, Alexandria; Neelima Denduluri, Virginia Cancer Specialists, Arlington, VA; Ana Barac, Medstar Heart Institute, Medstar Washington Hospital Center, Washington, DC; Joseph Carver and Mariell Jessup, University of Pennsylvania; Bonnie Ky, Hospital of the University of Pennsylvania, Philadelphia, PA; Louis S. Constine, University of Rochester Medical Center, Rochester; Lee W. Jones and Kevin Oeffinger,
| | - Lee W. Jones
- Saro H. Armenian, City of Hope, Duarte, CA; Christina Lacchetti, American Society of Clinical Oncology, Alexandria; Neelima Denduluri, Virginia Cancer Specialists, Arlington, VA; Ana Barac, Medstar Heart Institute, Medstar Washington Hospital Center, Washington, DC; Joseph Carver and Mariell Jessup, University of Pennsylvania; Bonnie Ky, Hospital of the University of Pennsylvania, Philadelphia, PA; Louis S. Constine, University of Rochester Medical Center, Rochester; Lee W. Jones and Kevin Oeffinger,
| | - Bonnie Ky
- Saro H. Armenian, City of Hope, Duarte, CA; Christina Lacchetti, American Society of Clinical Oncology, Alexandria; Neelima Denduluri, Virginia Cancer Specialists, Arlington, VA; Ana Barac, Medstar Heart Institute, Medstar Washington Hospital Center, Washington, DC; Joseph Carver and Mariell Jessup, University of Pennsylvania; Bonnie Ky, Hospital of the University of Pennsylvania, Philadelphia, PA; Louis S. Constine, University of Rochester Medical Center, Rochester; Lee W. Jones and Kevin Oeffinger,
| | - Erica L. Mayer
- Saro H. Armenian, City of Hope, Duarte, CA; Christina Lacchetti, American Society of Clinical Oncology, Alexandria; Neelima Denduluri, Virginia Cancer Specialists, Arlington, VA; Ana Barac, Medstar Heart Institute, Medstar Washington Hospital Center, Washington, DC; Joseph Carver and Mariell Jessup, University of Pennsylvania; Bonnie Ky, Hospital of the University of Pennsylvania, Philadelphia, PA; Louis S. Constine, University of Rochester Medical Center, Rochester; Lee W. Jones and Kevin Oeffinger,
| | - Javid Moslehi
- Saro H. Armenian, City of Hope, Duarte, CA; Christina Lacchetti, American Society of Clinical Oncology, Alexandria; Neelima Denduluri, Virginia Cancer Specialists, Arlington, VA; Ana Barac, Medstar Heart Institute, Medstar Washington Hospital Center, Washington, DC; Joseph Carver and Mariell Jessup, University of Pennsylvania; Bonnie Ky, Hospital of the University of Pennsylvania, Philadelphia, PA; Louis S. Constine, University of Rochester Medical Center, Rochester; Lee W. Jones and Kevin Oeffinger,
| | - Kevin Oeffinger
- Saro H. Armenian, City of Hope, Duarte, CA; Christina Lacchetti, American Society of Clinical Oncology, Alexandria; Neelima Denduluri, Virginia Cancer Specialists, Arlington, VA; Ana Barac, Medstar Heart Institute, Medstar Washington Hospital Center, Washington, DC; Joseph Carver and Mariell Jessup, University of Pennsylvania; Bonnie Ky, Hospital of the University of Pennsylvania, Philadelphia, PA; Louis S. Constine, University of Rochester Medical Center, Rochester; Lee W. Jones and Kevin Oeffinger,
| | - Katharine Ray
- Saro H. Armenian, City of Hope, Duarte, CA; Christina Lacchetti, American Society of Clinical Oncology, Alexandria; Neelima Denduluri, Virginia Cancer Specialists, Arlington, VA; Ana Barac, Medstar Heart Institute, Medstar Washington Hospital Center, Washington, DC; Joseph Carver and Mariell Jessup, University of Pennsylvania; Bonnie Ky, Hospital of the University of Pennsylvania, Philadelphia, PA; Louis S. Constine, University of Rochester Medical Center, Rochester; Lee W. Jones and Kevin Oeffinger,
| | - Kathryn Ruddy
- Saro H. Armenian, City of Hope, Duarte, CA; Christina Lacchetti, American Society of Clinical Oncology, Alexandria; Neelima Denduluri, Virginia Cancer Specialists, Arlington, VA; Ana Barac, Medstar Heart Institute, Medstar Washington Hospital Center, Washington, DC; Joseph Carver and Mariell Jessup, University of Pennsylvania; Bonnie Ky, Hospital of the University of Pennsylvania, Philadelphia, PA; Louis S. Constine, University of Rochester Medical Center, Rochester; Lee W. Jones and Kevin Oeffinger,
| | - Daniel Lenihan
- Saro H. Armenian, City of Hope, Duarte, CA; Christina Lacchetti, American Society of Clinical Oncology, Alexandria; Neelima Denduluri, Virginia Cancer Specialists, Arlington, VA; Ana Barac, Medstar Heart Institute, Medstar Washington Hospital Center, Washington, DC; Joseph Carver and Mariell Jessup, University of Pennsylvania; Bonnie Ky, Hospital of the University of Pennsylvania, Philadelphia, PA; Louis S. Constine, University of Rochester Medical Center, Rochester; Lee W. Jones and Kevin Oeffinger,
| |
Collapse
|
170
|
Kim KR, Kim HY, Lee YD, Ha JS, Kang JH, Jeong H, Bang D, Ko YT, Kim S, Lee H, Ahn DR. Self-assembled mirror DNA nanostructures for tumor-specific delivery of anticancer drugs. J Control Release 2016; 243:121-131. [DOI: 10.1016/j.jconrel.2016.10.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/10/2016] [Accepted: 10/13/2016] [Indexed: 10/20/2022]
|
171
|
Cardiac safety of adjuvant non-pegylated liposomal doxorubicin combined with cyclophosphamide and followed by paclitaxel in older breast cancer patients. Breast 2016; 31:186-191. [PMID: 27886643 DOI: 10.1016/j.breast.2016.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 12/21/2022] Open
Abstract
PURPOSE To investigate the cardiac safety of adjuvant Non-Pegylated Liposomal Doxorubicin (NPL-DOX) combined to Cyclophosphamide (CTX) and followed by weekly Paclitaxel, in older patients (≥65 years) with diagnosis of high risk breast cancer. The main end point of this prospective study was the detection of early episodes of symptomatic congestive heart failure (CHF). METHODS The cardiac function was evaluated by left ventricular ejection fraction (LVEF) measurements with repeated echocardiograms, performed 2 weeks before the beginning of chemotherapy and every 6 months, until 30 months after the study entry; then yearly for at least 5 years. RESULTS Forty-seven patients were enrolled from two Italian Divisions of Medical Oncology. Final results revealed no early episodes of symptomatic CHF within the first 12 months from the enrolment. Only two cardiac events were observed: an episode of atrial flutter after the first cycle of NPL-DOX and CTX, with a quick return to normal rhythm, and a grade 3 (scored to NCI-CTCAE, version 3.0) CHF episode, 18 months later chemotherapy start. No other relevant toxicities were reported. CONCLUSIONS This adjuvant combination including NPL-DOX in elderly patients, resulted in a low rate of cardiac toxic effects. Comparative trials should be encouraged to confirm these findings.
Collapse
|
172
|
Benedetto G, Vestal CG, Richardson C. Aptamer-Functionalized Nanoparticles as "Smart Bombs": The Unrealized Potential for Personalized Medicine and Targeted Cancer Treatment. Target Oncol 2016; 10:467-85. [PMID: 25989948 DOI: 10.1007/s11523-015-0371-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Conventional delivery of chemotherapeutic agents leads to multiple systemic side effects and toxicity, limiting the doses that can be used. The development of targeted therapies to selectively deliver anti-cancer agents to tumor cells without damaging neighboring unaffected cells would lead to higher effective local doses and improved response rates. Aptamers are single-stranded oligonucleotides that bind to target molecules with both high affinity and high specificity. The high specificity exhibited by aptamers promotes localization and uptake by specific cell populations, such as tumor cells, and their conjugation to anti-cancer drugs has been explored for targeted therapy. Advancements in the development of polymeric nanoparticles allow anti-cancer drugs to be encapsulated in protective nonreactive shells for controlled drug delivery with reduced toxicity. The conjugation of aptamers to nanoparticle-based therapeutics may further enhance direct targeting and personalized medicine. Here we present how the combinatorial use of aptamer and nanoparticle technologies has the potential to develop "smart bombs" for targeted cancer treatment, highlighting recent pre-clinical studies demonstrating efficacy for the direct targeting to particular tumor cell populations. However, despite these pre-clinical promising results, there has been little progress in moving this technology to the bedside.
Collapse
Affiliation(s)
- Gregory Benedetto
- Department of Biological Sciences, UNC Charlotte, 1902 University City Blvd., Woodward Hall Room 386B, Charlotte, NC, 28223, USA.
| | - C Greer Vestal
- Department of Biological Sciences, UNC Charlotte, 1902 University City Blvd., Woodward Hall Room 386B, Charlotte, NC, 28223, USA.
| | - Christine Richardson
- Department of Biological Sciences, UNC Charlotte, 1902 University City Blvd., Woodward Hall Room 386B, Charlotte, NC, 28223, USA.
| |
Collapse
|
173
|
Zamorano JL, Lancellotti P, Rodriguez Muñoz D, Aboyans V, Asteggiano R, Galderisi M, Habib G, Lenihan DJ, Lip GYH, Lyon AR, Lopez Fernandez T, Mohty D, Piepoli MF, Tamargo J, Torbicki A, Suter TM, Zamorano JL, Aboyans V, Achenbach S, Agewall S, Badimon L, Barón‐Esquivias G, Baumgartner H, Bax JJ, Bueno H, Carerj S, Dean V, Erol Ç, Fitzsimons D, Gaemperli O, Kirchhof P, Kolh P, Lancellotti P, Lip GYH, Nihoyannopoulos P, Piepoli MF, Ponikowski P, Roffi M, Torbicki A, Vaz Carneiro A, Windecker S, Achenbach S, Minotti G, Agewall S, Badimon L, Bueno H, Cardinale D, Carerj S, Curigliano G, de Azambuja E, Dent S, Erol C, Ewer MS, Farmakis D, Fietkau R, Fitzsimons D, Gaemperli O, Kirchhof P, Kohl P, McGale P, Ponikowski P, Ringwald J, Roffi M, Schulz‐Menger J, Stebbing J, Steiner RK, Szmit S, Vaz Carneiro A, Windecker S. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines. Eur J Heart Fail 2016; 19:9-42. [DOI: 10.1002/ejhf.654] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
174
|
Zamorano JL, Lancellotti P, Rodriguez Muñoz D, Aboyans V, Asteggiano R, Galderisi M, Habib G, Lenihan DJ, Lip GYH, Lyon AR, Lopez Fernandez T, Mohty D, Piepoli MF, Tamargo J, Torbicki A, Suter TM. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines. Eur Heart J 2016; 37:2768-2801. [DOI: 10.1093/eurheartj/ehw211] [Citation(s) in RCA: 1498] [Impact Index Per Article: 187.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
175
|
Giordano G, Spagnuolo A, Olivieri N, Corbo C, Campagna A, Spagnoletti I, Pennacchio RM, Campidoglio S, Pancione M, Palladino L, Villari B, Febbraro A. Cancer drug related cardiotoxicity during breast cancer treatment. Expert Opin Drug Saf 2016; 15:1063-74. [PMID: 27120499 DOI: 10.1080/14740338.2016.1182493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Breast cancer (BC) is the most common cancer in women. Although therapeutic armamentarium like chemotherapy, endocrine and target agents have increased survival, cardiovascular side effects have been observed. A comprehensive risk assessment, early detection and management of cardiac adverse events is therefore needed. AREAS COVERED In this review we focus on cardiotoxicity data deriving from Phase III randomized trials, systematic reviews and meta-analysis in BC patients. We provide insight into advances that have been made in the molecular mechanisms, clinical presentation and management of such adverse event. EXPERT OPINION Despite the large number of data from Phase III trials about cardiac events incidence, there are poor evidences for detection, monitoring and management of cardiotoxicity during BC treatment. Future cardiotoxicity-oriented clinical cancer research can help to predict the risk of cardiac adverse events and improve patients' outcome. Multidisciplinary approach as well as integration of blood biomarkers with imaging will be desirable.
Collapse
Affiliation(s)
- Guido Giordano
- a Medical Oncology Unit , Ospedale Sacro Cuore di Gesù, Fatebenefratelli , Benevento , Italy
| | - Alessia Spagnuolo
- a Medical Oncology Unit , Ospedale Sacro Cuore di Gesù, Fatebenefratelli , Benevento , Italy
| | - Nunzio Olivieri
- b Department of Biology , University of Naples, Federico II , Napoli , Italy
| | - Claudia Corbo
- a Medical Oncology Unit , Ospedale Sacro Cuore di Gesù, Fatebenefratelli , Benevento , Italy
| | - Angelo Campagna
- a Medical Oncology Unit , Ospedale Sacro Cuore di Gesù, Fatebenefratelli , Benevento , Italy
| | - Ilaria Spagnoletti
- a Medical Oncology Unit , Ospedale Sacro Cuore di Gesù, Fatebenefratelli , Benevento , Italy
| | | | - Serena Campidoglio
- a Medical Oncology Unit , Ospedale Sacro Cuore di Gesù, Fatebenefratelli , Benevento , Italy
| | - Massimo Pancione
- c Duepartment of Science and Technology , University of Sannio , Benevento , Italy
| | - Luciano Palladino
- d Department of Surgery , Ospedale Sacro Cuore di Gesù, Fatebenefratelli , Benevento , Italy
| | - Bruno Villari
- e Department of Cardiology , Ospedale Sacro Cuore di Gesù, Fatebenefratelli , Benevento , Italy
| | - Antonio Febbraro
- a Medical Oncology Unit , Ospedale Sacro Cuore di Gesù, Fatebenefratelli , Benevento , Italy
| |
Collapse
|
176
|
Mamorska-Dyga A, Ronny FMH, Puccio C, Islam H, Liu D. A rare case of the upper extremity diffuse large B-cell lymphoma mimicking soft tissue sarcoma in an elderly patient. Stem Cell Investig 2016; 3:25. [PMID: 27486587 DOI: 10.21037/sci.2016.06.06] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 05/22/2016] [Indexed: 11/06/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma, with about 30% of new cases presenting with extranodal disease. Lesions originating from soft tissues of the upper extremities are extremely rare and may mimic other malignancies like sarcoma. We present a case of an elderly patient with right upper extremity (RUE) mass which was proven to be DLBCL instead of sarcoma. We emphasize the increasing need for investigating new therapeutic options for patients of extreme age and/or with underlying heart disease.
Collapse
Affiliation(s)
- Aleksandra Mamorska-Dyga
- 1 Department of Medicine, 2 Department of Pathology, New York Medical College and Westchester Medical Center, Valhalla, NY, USA
| | - Faisal M H Ronny
- 1 Department of Medicine, 2 Department of Pathology, New York Medical College and Westchester Medical Center, Valhalla, NY, USA
| | - Carmelo Puccio
- 1 Department of Medicine, 2 Department of Pathology, New York Medical College and Westchester Medical Center, Valhalla, NY, USA
| | - Humayun Islam
- 1 Department of Medicine, 2 Department of Pathology, New York Medical College and Westchester Medical Center, Valhalla, NY, USA
| | - Delong Liu
- 1 Department of Medicine, 2 Department of Pathology, New York Medical College and Westchester Medical Center, Valhalla, NY, USA
| |
Collapse
|
177
|
Bukowska B, Rogalska A, Marczak A. New potential chemotherapy for ovarian cancer - Combined therapy with WP 631 and epothilone B. Life Sci 2016; 151:86-92. [PMID: 26944437 DOI: 10.1016/j.lfs.2016.02.095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/24/2016] [Accepted: 02/29/2016] [Indexed: 12/27/2022]
Abstract
Despite more modern therapeutics approaches and the use of new drugs for chemotherapy, patients with ovarian cancer still have poor prognosis and therefore, new strategies for its cure are highly needed. One of the promising ways is combined therapy, which has many advantages as minimizing drug resistance, enhancing efficacy of treatment, and reducing toxicity. Combined therapy has rich and successful history in the field of ovarian cancer treatment. Currently use therapy is usually based on platinum-containing agent (carboplatin or cisplatin) and a member of taxanes (paclitaxel or docetaxel). In the mid-2000s this standard regimen has been expanded with bevacizumab, monoclonal antibody directed to Vascular Endothelial Growth Factor (VEGF). Another drug combination with promising perspectives is WP 631 given together with epothilone B (Epo B). WP 631 is a bisanthracycline composed of two molecules of daunorubicin linked with a p-xylenyl linker. Epo B is a 16-membered macrolide manifesting similar mechanism of action to taxanes. Their effectiveness against ovarian cancer as single agents is well established. However, the combination of WP 631 and Epo B appeared to act synergistically, meaning that it is much more potent than the single drugs. The mechanism lying under its efficacy includes disturbing essential cell cycle-regulating proteins leading to mitotic slippage and following apoptosis, as well as affecting EpCAM and HMGB1 expression. In this article, we summarized the current state of knowledge regarding combined therapy based on WP 631 and Epo B as a potential way of ovarian cancer treatment.
Collapse
Affiliation(s)
- Barbara Bukowska
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str, 90-236 Lodz, Poland.
| | - Aneta Rogalska
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str, 90-236 Lodz, Poland
| | - Agnieszka Marczak
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str, 90-236 Lodz, Poland
| |
Collapse
|
178
|
Abstract
Long term survival of childhood cancers is now more than 70%. Anthracyclines, including doxorubicin, are some of the most efficacious anticancer drugs available. However, its use as a chemotherapeutic agent is severely hindered by its dose-limiting toxicities. Most notably observed is cardiotoxicity, but other organ systems are also degraded by doxorubicin use. Despite the years of its use and the amount of information written about this drug, an understanding of its cellular mechanisms is not fully appreciated. The mechanisms by which doxorubicin induces cytotoxicity in target cancer cells have given insight about how the drug damages cardiomyocytes. The major mechanisms of doxorubicin actions are thought to be as an oxidant generator and as an inhibitor of topoisomerase 2. However, other signaling pathways are also invoked with significant consequences for the cardiomyocyte. Further the interaction between oxidant generation and topoisomerase function has only recently been appreciated and the consequences of this interaction are still not fully understood. The unfortunate consequences of doxorubicin within cardiomyocytes have promoted the search for new drugs and methods that can prevent or reverse the damage caused to the heart after treatment in cancer patients. Alternative protocols have lessened the impact on newly diagnosed cancer patients. However the years of doxorubicin use have generated a need for monitoring the onset of cardiotoxicity as well as understanding its potential long-term consequences. Although a fairly clear understanding of the short-term pathologic mechanisms of doxorubicin actions has been achieved, the long-term mechanisms of doxorubicin induced heart failure remain to be carefully delineated.
Collapse
Affiliation(s)
| | - John G. Edwards
- Corresponding author at: Department of Physiology, New York Medical College, 15 Dana Road, Valhalla, NY, United States.Department of PhysiologyNew York Medical College15 Dana RoadValhallaNYUnited States
| |
Collapse
|
179
|
Ibraheem A, Stankowski-Drengler TJ, Gbolahan OB, Engel JM, Onitilo AA. Chemotherapy-induced cardiotoxicity in breast cancer patients. BREAST CANCER MANAGEMENT 2016. [DOI: 10.2217/bmt-2016-0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chemotherapy-induced cardiotoxicity (CIC) is a well-documented side effect of breast cancer treatment. Nearly all chemotherapeutic agents can cause CIC with the highest occurrence found in anthracycline and trastuzumab use. Treatment- and patient-related risk factors contribute to the development of CIC making risk modification an important consideration during breast cancer treatment. Prevention and early detection of cardiotoxicity are key to minimizing permanent and devastating cardiac damage; therefore, early involvement of a cardiologist including periodic cardiac monitoring during and after chemotherapy exposure is recommended.
Collapse
Affiliation(s)
| | | | | | - Jessica M Engel
- Marshfield Clinic Cancer Care at St Michaels, Stevens Point, WI 54481, USA
| | - Adedayo A Onitilo
- Marshfield Clinic Weston Center, Oncology/Hematology Department, Weston, WI 54481, USA
| |
Collapse
|
180
|
Characterization of temperature induced changes in liposomes coated with poly( N -isopropylacrylamide- co -methacrylic acid). J Colloid Interface Sci 2015; 450:7-16. [DOI: 10.1016/j.jcis.2015.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 02/02/2023]
|
181
|
Matsuo Y, Park JH, Miyamoto T, Yamamoto S, Hisada S, Alachkar H, Nakamura Y. TOPK inhibitor induces complete tumor regression in xenograft models of human cancer through inhibition of cytokinesis. Sci Transl Med 2015; 6:259ra145. [PMID: 25338756 DOI: 10.1126/scitranslmed.3010277] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
TOPK (T-lymphokine-activated killer cell-originated protein kinase) is highly and frequently transactivated in various cancer tissues, including lung and triple-negative breast cancers, and plays an indispensable role in the mitosis of cancer cells. We report the development of a potent TOPK inhibitor, OTS964 {(R)-9-(4-(1-(dimethylamino)propan-2-yl)phenyl)-8-hydroxy-6-methylthieno[2,3-c]quinolin-4(5H)-one}, which inhibits TOPK kinase activity with high affinity and selectivity. Similar to the knockdown effect of TOPK small interfering RNAs (siRNAs), this inhibitor causes a cytokinesis defect and the subsequent apoptosis of cancer cells in vitro as well as in xenograft models of human lung cancer. Although administration of the free compound induced hematopoietic adverse reactions (leukocytopenia associated with thrombocytosis), the drug delivered in a liposomal formulation effectively caused complete regression of transplanted tumors without showing any adverse reactions in mice. Our results suggest that the inhibition of TOPK activity may be a viable therapeutic option for the treatment of various human cancers.
Collapse
Affiliation(s)
- Yo Matsuo
- OncoTherapy Science Inc., Kawasaki, Kanagawa 213-0012, Japan
| | - Jae-Hyun Park
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | | | - Shinji Yamamoto
- OncoTherapy Science Inc., Kawasaki, Kanagawa 213-0012, Japan
| | - Shoji Hisada
- OncoTherapy Science Inc., Kawasaki, Kanagawa 213-0012, Japan
| | - Houda Alachkar
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Yusuke Nakamura
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
182
|
Movahedi F, Hu RG, Becker DL, Xu C. Stimuli-responsive liposomes for the delivery of nucleic acid therapeutics. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1575-84. [PMID: 25819885 DOI: 10.1016/j.nano.2015.03.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/07/2015] [Accepted: 03/11/2015] [Indexed: 10/23/2022]
Abstract
UNLABELLED Nucleic acid therapeutics (NATs) are valuable tools in the modulation of gene expression in a highly specific manner. So far, NATs have been actively pursued in both pre-clinical and clinical studies to treat diseases such as cancer, infectious and inflammatory diseases. However, the clinical application of NATs remains a considerable challenge owing to their limited cellular uptake, low biological stability, off-target effect, and unfavorable pharmacokinetics. One concept to address these issues is to deliver NATs within stimuli-responsive liposomes, which release their contents of NATs upon encountering environmental changes such as temperature, pH, and ion strength. In this case, before reaching the targeted tissue/organ, NATs are protected from degradation by enzymes and immune system. Once at the area of interest, localized and targeted delivery can be achieved with minimal influence to other parts of the body. Here, we discuss the latest developments and existing challenges in this field. FROM THE CLINICAL EDITOR Nucleic acid therapeutics have been shown to enhance or eliminate specific gene expression in experimental research. Unfortunately, clinical applications have so far not been realized due to problems of easy degradation and possible toxicity. The use of nanosized carriers such as liposomes to deliver nucleic acids is one solution to overcome these problems. In this review article the authors describe and discuss the potentials of various trigger-responsive "smart" liposomes, with a view to help other researchers to design better liposomal nucleic acid delivery systems.
Collapse
Affiliation(s)
- Fatemeh Movahedi
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Rebecca G Hu
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - David L Becker
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore.
| |
Collapse
|
183
|
Abstract
Since their discovery in the 1960s, liposomes have been studied in depth, and they continue to constitute a field of intense research. Liposomes are valued for their biological and technological advantages, and are considered to be the most successful drug-carrier system known to date. Notable progress has been made, and several biomedical applications of liposomes are either in clinical trials, are about to be put on the market, or have already been approved for public use. In this review, we briefly analyze how the efficacy of liposomes depends on the nature of their components and their size, surface charge, and lipidic organization. Moreover, we discuss the influence of the physicochemical properties of liposomes on their interaction with cells, half-life, ability to enter tissues, and final fate in vivo. Finally, we describe some strategies developed to overcome limitations of the “first-generation” liposomes, and liposome-based drugs on the market and in clinical trials.
Collapse
Affiliation(s)
- Giuseppina Bozzuto
- Chemical Methodology Institute, CNR, Rome, Italy ; Department of Technology and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Agnese Molinari
- Department of Technology and Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
184
|
Edwardson DW, Narendrula R, Chewchuk S, Mispel-Beyer K, Mapletoft JPJ, Parissenti AM. Role of Drug Metabolism in the Cytotoxicity and Clinical Efficacy of Anthracyclines. Curr Drug Metab 2015; 16:412-26. [PMID: 26321196 PMCID: PMC5398089 DOI: 10.2174/1389200216888150915112039] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/31/2015] [Accepted: 08/10/2015] [Indexed: 01/19/2023]
Abstract
Many clinical studies involving anti-tumor agents neglect to consider how these agents are metabolized within the host and whether the creation of specific metabolites alters drug therapeutic properties or toxic side effects. However, this is not the case for the anthracycline class of chemotherapy drugs. This review describes the various enzymes involved in the one electron (semi-quinone) or two electron (hydroxylation) reduction of anthracyclines, or in their reductive deglycosidation into deoxyaglycones. The effects of these reductions on drug antitumor efficacy and toxic side effects are also discussed. Current evidence suggests that the one electron reduction of anthracyclines augments both their tumor toxicity and their toxicity towards the host, in particular their cardiotoxicity. In contrast, the two electron reduction (hydroxylation) of anthracyclines strongly reduces their ability to kill tumor cells, while augmenting cardiotoxicity through their accumulation within cardiomyocytes and their direct effects on excitation/contraction coupling within the myocytes. The reductive deglycosidation of anthracyclines appears to inactivate the drug and only occurs under rare, anaerobic conditions. This knowledge has resulted in the identification of important new approaches to improve the therapeutic index of anthracyclines, in particular by inhibiting their cardiotoxicity. The true utility of these approaches in the management of cancer patients undergoing anthracycline-based chemotherapy remains unclear, although one such agent (the iron chelator dexrazoxane) has recently been approved for clinical use.
Collapse
Affiliation(s)
| | | | | | | | | | - Amadeo M Parissenti
- Dept. of Chemistry and Biochemistry, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada.
| |
Collapse
|
185
|
The potential of liposomes with carbonic anhydrase IX to deliver anticancer ingredients to cancer cells in vivo. Int J Mol Sci 2014; 16:230-55. [PMID: 25547490 PMCID: PMC4307245 DOI: 10.3390/ijms16010230] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/16/2014] [Indexed: 12/19/2022] Open
Abstract
Drug delivery nanocarriers, especially targeted drug delivery by liposomes are emerging as a class of therapeutics for cancer. Early research results suggest that liposomal therapeutics enhanced efficacy, while simultaneously reducing side effects, owing to properties such as more targeted localization in tumors and active cellular uptake. Here, we highlight the features of immunoliposomes that distinguish them from previous anticancer therapies, and describe how these features provide the potential for therapeutic effects that are not achievable with other modalities. While a large number of studies has been published, the emphasis here is placed on the carbonic anhydrase IX (CA-IX) and the conjugated liposomes that are likely to open a new chapter on drug delivery system by using immunoliposomes to deliver anticancer ingredients to cancer cells in vivo.
Collapse
|
186
|
Schmid D, Jarvis GE, Fay F, Small DM, Greene MK, Majkut J, Spence S, McLaughlin KM, McCloskey KD, Johnston PG, Kissenpfennig A, Longley DB, Scott CJ. Nanoencapsulation of ABT-737 and camptothecin enhances their clinical potential through synergistic antitumor effects and reduction of systemic toxicity. Cell Death Dis 2014; 5:e1454. [PMID: 25299779 PMCID: PMC4649518 DOI: 10.1038/cddis.2014.413] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/28/2014] [Accepted: 08/29/2014] [Indexed: 01/09/2023]
Abstract
The simultaneous delivery of multiple cancer drugs in combination therapies to achieve optimal therapeutic effects in patients can be challenging. This study investigated whether co-encapsulation of the BH3-mimetic ABT-737 and the topoisomerase I inhibitor camptothecin (CPT) in PEGylated polymeric nanoparticles (NPs) was a viable strategy for overcoming their clinical limitations and to deliver both compounds at optimal ratios. We found that thrombocytopenia induced by exposure to ABT-737 was diminished through its encapsulation in NPs. Similarly, CPT-associated leukopenia and gastrointestinal toxicity were reduced compared with the administration of free CPT. In addition to the reduction of dose-limiting side effects, the co-encapsulation of both anticancer compounds in a single NP produced synergistic induction of apoptosis in both in vitro and in vivo colorectal cancer models. This strategy may widen the therapeutic window of these and other drugs and may enhance the clinical efficacy of synergistic drug combinations.
Collapse
Affiliation(s)
- D Schmid
- School of Pharmacy, Queen's University Belfast, Belfast, UK
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - G E Jarvis
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - F Fay
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - D M Small
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| | - M K Greene
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - J Majkut
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - S Spence
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| | - K M McLaughlin
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - K D McCloskey
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - P G Johnston
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - A Kissenpfennig
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| | - D B Longley
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - C J Scott
- School of Pharmacy, Queen's University Belfast, Belfast, UK
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| |
Collapse
|
187
|
Ourique AF, Chaves PDS, Souto GD, Pohlmann AR, Guterres SS, Beck RCR. Redispersible liposomal-N-acetylcysteine powder for pulmonary administration: development, in vitro characterization and antioxidant activity. Eur J Pharm Sci 2014; 65:174-82. [PMID: 25263567 DOI: 10.1016/j.ejps.2014.09.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 09/16/2014] [Accepted: 09/18/2014] [Indexed: 10/24/2022]
Abstract
Liposomal dry powders of N-acetylcysteine (SD-NAC-Lip) were developed for pulmonary administration. Liposomes were prepared by reverse phase evaporation and spray dried using lactose (10%, w/w) as drying adjuvant. The powders were characterized according to process yield, drug content, residual water content, particle size distribution, morphology and redispersion behavior. In vitro aerosol performance was evaluated using an eight-stage Andersen Cascade Impactor. Moreover, in vitro antioxidant activity was determined by measuring thiobarbituric acid reactive species (TBARS) present in the lungs of healthy Wistar rats after induction of oxidation by iron/EDTA. The spray-drying process had a high yield (71%±2), drug content (mg/g) according to the expected value, moisture content below 9%, geometric mean diameter under 3μm with span value lower than 1. Spherical particles were observed by scanning electron microscopy. Liposomal dry-powders were able to recover the nanometric size of the original dispersion after their redispersion in aqueous medium, as shown by laser diffraction and transmission electron microscopy. Furthermore, the powders presented aerodynamic diameter of about 7μm and respirable fraction above 30%, indicating suitable properties for pulmonary use. The encapsulation of N-acetylcysteine in liposomes was essential to maintain its in vitro antioxidant activity after the drying process. In addition, the powder containing the encapsulated drug had better in vitro antioxidant activity than the liquid and solid formulations containing the non-encapsulated drug, which makes it a good candidate for the treatment of pulmonary diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Aline Ferreira Ourique
- Programa de Pós-Graduação em Nanotecnologia Farmacêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Paula Dos Santos Chaves
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriele Dadalt Souto
- Programa de Pós-Graduação em Nanotecnologia Farmacêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Adriana Raffin Pohlmann
- Programa de Pós-Graduação em Nanotecnologia Farmacêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Silvia Stanisçuaski Guterres
- Programa de Pós-Graduação em Nanotecnologia Farmacêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ruy Carlos Ruver Beck
- Programa de Pós-Graduação em Nanotecnologia Farmacêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
188
|
Lindsey ML, Lange RA, Parsons H, Andrews T, Aune GJ. The tell-tale heart: molecular and cellular responses to childhood anthracycline exposure. Am J Physiol Heart Circ Physiol 2014; 307:H1379-89. [PMID: 25217655 DOI: 10.1152/ajpheart.00099.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the modern era of cancer chemotherapy that began in the mid-1940s, survival rates for children afflicted with cancer have steadily improved from 10% to current rates that approach 80% (60). Unfortunately, many long-term survivors of pediatric cancer develop chemotherapy-related health effects; 25% are afflicted with a severe or life-threatening medical condition, with cardiovascular disease being a primary risk (96). Childhood cancer survivors have markedly elevated incidences of stroke, congestive heart failure (CHF), coronary artery disease, and valvular disease (96). Their cardiac mortality is 8.2 times higher than expected (93). Anthracyclines are a key component of most curative chemotherapeutic regimens used in pediatric cancer, and approximately half of all childhood cancer patients are exposed to them (78). Numerous epidemiologic and observational studies have linked childhood anthracycline exposure to an increased risk of developing cardiomyopathy and CHF, often decades after treatment. The acute toxic effects of anthracyclines on cardiomyocytes are well described; however, myocardial tissue is comprised of additional resident cell types, and events occurring in the cardiomyocyte do not fully explain the pathological processes leading to late cardiomyopathy and CHF. This review will summarize the current literature regarding the cellular and molecular responses to anthracyclines, with an important emphasis on nonmyocyte cardiac cell types as well as those that mediate the myocardial injury response.
Collapse
Affiliation(s)
- Merry L Lindsey
- Department of Physiology and Biophysics, San Antonio Cardiovascular Proteomics Center and Jackson Center for Heart Research, Mississippi Medical Center, Jackson, Mississippi
| | - Richard A Lange
- Division of Cardiology, Department of Medicine, San Antonio Cardiovascular Proteomics Center, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - Helen Parsons
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center San Antonio, San Antonio, Texas; and
| | - Thomas Andrews
- Division of Hematology-Oncology, Department of Pediatrics, Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - Gregory J Aune
- Division of Hematology-Oncology, Department of Pediatrics, Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas
| |
Collapse
|
189
|
CSAPO MELINDA, LAZAR LIVIU. Chemotherapy-Induced Cardiotoxicity: Pathophysiology and Prevention. CLUJUL MEDICAL (1957) 2014; 87:135-42. [PMID: 26528012 PMCID: PMC4508592 DOI: 10.15386/cjmed-339] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/25/2014] [Accepted: 08/29/2014] [Indexed: 01/09/2023]
Abstract
Along with the remarkable progress registered in oncological treatment that led to increased survival of cancer patients, treatment-related comorbidities have also become an issue for these long-term survivors. Of particular interest is the development of cardiotoxic events, which, even when asymptomatic, not only have a negative impact on the patient`s cardiac prognosis, but also considerably restrict therapeutic opportunities. The pathophysiology of cytostatic-induced cardiotoxicity implies a series of complex and intricate mechanisms, whose understanding enables the development of preventive and therapeutic strategies. Securing cardiac function is an ongoing challenge for the pharmaceutical industry and the physicians who have to deal currently with these adverse reactions. This review focuses on the main mechanism of cardiac toxicity induced by anticancer drugs and especially on the current strategies applied for preventing and minimizing the cardiac side effects.
Collapse
Affiliation(s)
| | - LIVIU LAZAR
- Faculty of Medicine and Pharmacy, University of Oradea, Romania
- Oradea Municipal Hospital, Romania
| |
Collapse
|
190
|
Bendle M, Pealing J, Papanastasopoulos P, Bower M. Liposomal anthracycline chemotherapy and the risk of second malignancies in patients with Kaposi's sarcoma (KS). Cancer Chemother Pharmacol 2014; 74:611-5. [PMID: 25055936 DOI: 10.1007/s00280-014-2538-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/10/2014] [Indexed: 02/04/2023]
Abstract
PURPOSE People living with HIV (PLWH) are at increased risk of cancer, both non-AIDS- and AIDS-defining malignancies (NADM and ADM). Systemic chemotherapy also predisposes to secondary cancers. The potential contribution of systemic liposomal anthracycline chemotherapy (SLAC) to the development of second cancers in PLWH is unknown. METHODS Since 1998, we have treated 495 PLWH and Kaposi's sarcoma (KS) with a stage-stratified approach including 163 who received SLAC as first-line treatment for KS. Subsequent ADM and NADM diagnosed in this population were recorded. RESULTS More patients who received SLAC had T1 stage disease (p < 0.0001) and lower CD4 cell counts (p < 0.0001) in line with the stage-stratified treatment, but there were no significant differences in age (p = 0.29), gender (p = 0.18), prior AIDS-defining illness (p = 0.45), plasma HIV viral load (p = 0.15), or HHV8 viral load (p = 0.39) between the two groups. During a median follow-up of 4.6 years (maximum 15 years) from KS diagnosis, 28 patients developed a second cancer (5 ADM and 23 NADM). The 5-year cumulative risk of second cancer is 5.8 % (95 % CI 3.0-8.6 %), and there is no significant difference in the rate between those treated with SLAC and those not (log rank p = 0.19). Most patients (n = 131) were treated with daunoxome (liposomal daunorubicin) chemotherapy, and there was no significant correlation between risk of second cancer and cumulative dose of daunoxome (p = 0.23). CONCLUSION Although the risk of second cancer after a diagnosis of KS in PLWH is high, systemic liposomal anthracycline chemotherapy does not appear to increase the risk.
Collapse
Affiliation(s)
- M Bendle
- Department of Oncology, Chelsea and Westminster Hospital, 369 Fulham Road, London, SW10 9NH, UK
| | | | | | | |
Collapse
|
191
|
Liu F, Ding H, Jin X, Ding N, Deng L, He Y, Zhu J, Song Y. FCGR3A 158V/F polymorphism and response to frontline R-CHOP therapy in diffuse large B-cell lymphoma. DNA Cell Biol 2014; 33:616-23. [PMID: 25050883 DOI: 10.1089/dna.2013.2333] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The influence of Fc gamma receptor IIIA (FCGR3A) 158V/F polymorphisms on the response to rituximab (R) plus CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone; R-CHOP) therapy in diffuse large B-cell lymphoma (DLBCL) is uncertain. Thus, a retrospective study and a meta-analysis were performed to examine the possible correlation between FCGR3A 158V/F polymorphism and the response rate of R-CHOP regimen in patients with newly diagnosed DLBCL. The genotypes of FCGR3A 158V/F in 164 newly diagnosed DLBCL patients treated with R-CHOP were determined in this retrospective study. Additionally, a meta-analysis of current and previously published studies was conducted. Overall response rate (complete and partial response, ORR) and complete response rate (CR) were evaluated. The results of our retrospective study showed lack of correlation between FCGR3A 158V/F polymorphism and ORR (p=0.78) or CR (p=0.76) with R-CHOP therapy. A meta-analysis of 731 cases also showed lack of significant association of ORR and CR in all genetic models with FCGR3A 158V/F polymorphism. In survival analysis, the homozygous F genotype correlated with a shorter progression-free survival than that of non-F/F genotype (p=0.05), this was significant for the non-GC subset of DLBCL (p=0.04), but no association was found between overall survival and FCGR3A 158V/F polymorphism. Further analysis with nonsuperiority test (p<0.0001) suggested that FCGR3A 158V/F polymorphism was not associated with better ORR or CR in newly diagnosed DLBCL patient treated with R-CHOP. No clear relationship was found between FCGR3A 158V/F polymorphism and response to frontline R-CHOP therapy in patients with DLBCL.
Collapse
Affiliation(s)
- Fen Liu
- 1 Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University , Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
192
|
Vici P, Pizzuti L, Gamucci T, Sergi D, Conti F, Zampa G, Del Medico P, De Vita R, Pozzi M, Botti C, Di Filippo S, Tomao F, Sperduti I, Di Lauro L. Non-pegylated liposomal Doxorubicin-cyclophosphamide in sequential regimens with taxanes as neoadjuvant chemotherapy in breast cancer patients. J Cancer 2014; 5:398-405. [PMID: 24847380 PMCID: PMC4026993 DOI: 10.7150/jca.9132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/04/2014] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Chemotherapy regimens containing anthracyclines and taxanes represent the landmark of neoadjuvant systemic therapy of breast cancer. In advanced breast cancer patients liposomal anthracyclines (LA) have shown similar efficacy and less cardiac toxicity when compared to conventional anthracyclines. We performed this retrospective analysis in order to evaluate the efficacy and tolerability of neoadjuvant regimens including LA outside of clinical trials in routine clinical practice. METHODS Fifty operable or locally advanced, HER2 negative, breast cancer patients were retrospectively identified in 5 Italian cancer centres. Nineteen patients had received 4 cycles of non-pegylated liposomal doxorubicin (NPLD) and cyclophosphamide, followed by 4 cycles of docetaxel, every 3 weeks. In 25 patients the reverse sequence was employed, and a third subgroup of 6 patients received 4 cycles of NPLD/cyclophosphamide every 3 weeks followed by 4 cycles of weekly carboplatin and paclitaxel. RESULTS We observed 10 pathological complete responses (pCR) (20.0%, 95%CI, 9% to 31%), and 35 (70%, 95%CI, 57.3% to 82.7%) partial responses (pPR), whereas no patients progressed onto therapy. In the small subset of triple negative tumors the pCR rate was 37.5%, and in tumors expressing ER and/or PgR it was 16.7%. A pCR rate of 26.5% was observed in tumors with high Ki-67, whereas in tumors with low Ki-67 only one (6.2%) pCR was observed (p=0.14). Treatments were well tolerated. The most common toxicities were myelosuppression and palmar-plantar erytrodysesthesia; 4 asymptomatic and transient LVEF decrease have been recorded, without any case of clinical cardiotoxicity. CONCLUSIONS NPLD-cyclophosphamide and taxanes sequential regimens were proven effective and well tolerated in breast cancer patients with contra-indication to conventional anthracyclines undergoing neoadjuvant chemotherapy, even outside of clinical trials in everyday clinical practice.
Collapse
Affiliation(s)
- Patrizia Vici
- 1. Department of Medical Oncology B, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy, Rome, Italy
| | - Laura Pizzuti
- 1. Department of Medical Oncology B, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy, Rome, Italy
| | - Teresa Gamucci
- 2. Medical Oncology Unit ASL Frosinone, Via Armando Fabi, 03100, Frosinone, Italy
| | - Domenico Sergi
- 1. Department of Medical Oncology B, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy, Rome, Italy
| | - Francesca Conti
- 1. Department of Medical Oncology B, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy, Rome, Italy
| | - Germano Zampa
- 3. Oncology Unit, Nuovo Regina Margherita Hospital, Via Emilio Morosini 30, 00153, Rome, Italy
| | - Pietro Del Medico
- 4. Department of Medical Oncology, Reggio Calabria General Hospital, via Melacrino, 89100 Reggio Calabria, Italy
| | - Roy De Vita
- 5. Department of Plastic and Reconstructive Surgery, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Marcello Pozzi
- 5. Department of Plastic and Reconstructive Surgery, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Claudio Botti
- 6. Department of Breast Surgery, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Simona Di Filippo
- 7. Department of Hepatobiliary Surgery, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Federica Tomao
- 8. Department of Gynecologic and Obstetric Sciences, La Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Isabella Sperduti
- 9. Biostatistics Unit, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Luigi Di Lauro
- 1. Department of Medical Oncology B, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy, Rome, Italy
| |
Collapse
|
193
|
Long L, Wang W, Cai XD, Cheng DU, Shuai X, Peng Y. PinX1-siRNA/mPEG-PEI-SPION combined with doxorubicin enhances the inhibition of glioma growth. Exp Ther Med 2014; 7:1170-1176. [PMID: 24940406 PMCID: PMC3991531 DOI: 10.3892/etm.2014.1586] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/19/2014] [Indexed: 01/08/2023] Open
Abstract
Resistance to chemotherapy and the side effects of anticancer drugs are the major obstacles for glioma treatment. The aim of the present study was to develop a novel approach for the treatment of gliomas that improved the therapeutic effect; the anticancer drug, doxorubicin (DOX), was combined with short interfering (si)RNA and monomethoxy polyethylene glycol polyethylenimine superparamagnetic iron oxide nanoparticle (mPEG-PEI-SPION), a magnetic resonance imaging (MRI)-visible nanoparticle. Specific siRNA molecules, delivered by mPEG-PEI-SPION, were employed to knockdown the PIN2-interacting protein 1 (PinX1) gene in C6 glioma cells. PinX1 is a nucleolar protein associated with telomere and telomerase. C6 cells were treated with DOX and/or PinX1-siRNA. The results of the transfection experiments revealed that siRNA/mPEG-PEI-SPION was transfected into C6 cells with high efficiency. PinX1-siRNA was unable to inhibit C6 cells, while in the PinX1-siRNA + DOX group, the same dose of DOX caused an increased loss of cell viability. Therefore, mPEG-PEI-SPION was shown to be viable for siRNA delivery into C6 cells and coadministration of DOX with PinX1-siRNA may be a potential therapeutic method for inhibiting gliomas.
Collapse
Affiliation(s)
- Ling Long
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China ; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Weiwei Wang
- Center of Biomedical Engineering, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510275, P.R. China
| | - Xia-Dong Cai
- Department of Neurology, The Sixth Affiliated Hospital (Guangdong Gastrointestinal and Anal Hospital), Sun Yat-Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - DU Cheng
- Center of Biomedical Engineering, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510275, P.R. China
| | - Xintao Shuai
- Center of Biomedical Engineering, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510275, P.R. China
| | - Ying Peng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
194
|
Cang S, Ma Y, Chiao JW, Liu D. Phenethyl isothiocyanate and paclitaxel synergistically enhanced apoptosis and alpha-tubulin hyperacetylation in breast cancer cells. Exp Hematol Oncol 2014; 3:5. [PMID: 24495785 PMCID: PMC3927854 DOI: 10.1186/2162-3619-3-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/03/2014] [Indexed: 12/17/2022] Open
Abstract
Combination of phenethyl isothiocyanate (PEITC) and paclitaxel (taxol) has been shown to work synergistically to increase apoptosis and cell cycle arrest in breast cancer cells. In this report, we further explored the mechanisms for the synergistic activity of PEITC and taxol in MCF7 and MDA-MB-231 (MB) breast cancer cell lines. By Western blotting analysis, treatment of MCF7 cells with both PEITC and taxol led to a 10.4-fold and 5.96-fold increase in specific acetylation of alpha-tubulin over single agent PEITC and taxol, respectively. This synergistic effect on acetylation of alpha-tubulin was also seen in MB cells. The combination of PEITC and taxol also reduced expressions of cell cycle regulator Cdk1, and anti-apoptotic protein bcl-2, enhanced expression of Bax and cleavage of PARP proteins. In conclusion, this study provided biochemical evidence for the mechanism of synergistic effect between the epigenetic agent PEITC and the chemotherapeutic agent taxol.
Collapse
Affiliation(s)
- Shundong Cang
- Department of Oncology, Henan Province People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Yuehua Ma
- Department of Oncology, Henan Province People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Jen-Wei Chiao
- Department of Medicine, New York Medical College and Westchester Medical Center, Valhalla, NY 10595, USA
| | - Delong Liu
- Department of Medicine, New York Medical College and Westchester Medical Center, Valhalla, NY 10595, USA.,Institute of Hematology, Henan Tumor Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
195
|
Pria AD, Hayward K, Bower M. Do we still need chemotherapy for AIDS-associated Kaposi’s sarcoma? Expert Rev Anticancer Ther 2014; 13:203-9. [DOI: 10.1586/era.12.179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
196
|
Oliveira MS, Carvalho JL, Campos ACDA, Gomes DA, de Goes AM, Melo MM. Doxorubicin has in vivo toxicological effects on ex vivo cultured mesenchymal stem cells. Toxicol Lett 2013; 224:380-6. [PMID: 24291741 DOI: 10.1016/j.toxlet.2013.11.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 12/13/2022]
Abstract
Doxorubicin (dox) is an effective chemotherapeutic agent that leads to cardiotoxicity. An alternative treatment for dox-cardiotoxicity is autologous mesenchymal stem cells (MSCs) transplantation. It remains unclear if dox has deleterious effects on MSCs from subjects under chemotherapy, therefore this study aimed to evaluate dox in vivo toxicological effects on ex vivo cultured MSCs, inferring whether autologous transplantation may be an alternative treatment in patients who are exposed to the drug. Wistar rats received either dox or saline. Following treatments, animals were sacrificed and bone marrow MSCs were isolated, characterized for cell surface markers and assessed according to their viability, alkaline phosphatase production, and proliferation kinetics. Moreover, MSCs were primed to cardiac differentiation and troponin T and connexin 43 expressions were evaluated. Compared to control, undifferentiated MSCs from dox group kept the pattern for surface marker and had similar viability results. In contrast, they showed lower alkaline phosphatase production, proliferation rate, and connexin 43 expression. Primed MSCs from dox group showed lower troponin T levels. It was demonstrated a toxic effect of dox in host MSCs. This result renders the possibility of autologous MSCs transplantation to treat dox-cardiotoxicity, which could be a non-suitable option for subjects receiving such antineoplastic agent.
Collapse
Affiliation(s)
- Maira Souza Oliveira
- College of Veterinary Medicine, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Caixa Postal 567, 30123-970 Belo Horizonte, MG, Brazil.
| | - Juliana Lott Carvalho
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Caixa Postal 567, 30123-970 Belo Horizonte, MG, Brazil
| | - Ana Carolina De Angelis Campos
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Caixa Postal 567, 30123-970 Belo Horizonte, MG, Brazil
| | - Dawidson Assis Gomes
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Caixa Postal 567, 30123-970 Belo Horizonte, MG, Brazil
| | - Alfredo Miranda de Goes
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Caixa Postal 567, 30123-970 Belo Horizonte, MG, Brazil
| | - Marília Martins Melo
- College of Veterinary Medicine, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Caixa Postal 567, 30123-970 Belo Horizonte, MG, Brazil
| |
Collapse
|
197
|
Ko EM, Lippmann Q, Caron WP, Zamboni W, Gehrig PA. Clinical risk factors of PEGylated liposomal doxorubicin induced palmar plantar erythrodysesthesia in recurrent ovarian cancer patients. Gynecol Oncol 2013; 131:683-8. [PMID: 24096112 DOI: 10.1016/j.ygyno.2013.09.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/24/2013] [Accepted: 09/30/2013] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Studies have shown that body composition, age, gender, changes in monocyte count and repeated dosing alter pharmacokinetic properties of PEGylated liposomal doxorubicin (PLD). However, limited information exists regarding the clinical risk factors of ovarian cancer patients who develop palmar plantar erythrodysesthesia (PPE) while receiving PLD for cancer recurrence. METHODS We conducted a retrospective cohort analysis of consecutive patients with recurrent ovarian and primary peritoneal cancer who were treated with PLD from 2005 to 2009. Clinical and pathologic data were abstracted from electronic medical records. Statistical analyses were performed using univariate and bivariate analyses, logistic regression, and log rank-tests. RESULTS Twenty-three percent (31/133) of patients developed PPE. Age, body mass index (BMI), race, stage, and histology did not significantly differ between PPE and non-PPE patients. There was a possible trend for decreasing PPE with increasing body mass index (BMI) (24.5% of normal weight, 27.5% of overweight; 23.8% of obese class I; 13.3% of obese class II; and 0% of obese class III), though not statistically significant. The number of chemotherapy regimens prior to PLD, and the mean cycles of PLD received did not differ between patients with and without PPE. 77.4% of PPE cases occurred within the first 3 infusion cycles. PPE was not associated with time to progression. CONCLUSION Nearly one-quarter of ovarian cancer patients receiving PLD will develop PPE. Further investigation of factors such as BMI associated with PPE may aid in patient selection for PLD, and future development of other nanoparticle and liposomal agents.
Collapse
Affiliation(s)
- Emily M Ko
- Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC, USA.
| | | | | | | | | |
Collapse
|
198
|
Liu K, Cang S, Ma Y, Chiao JW. Synergistic effect of paclitaxel and epigenetic agent phenethyl isothiocyanate on growth inhibition, cell cycle arrest and apoptosis in breast cancer cells. Cancer Cell Int 2013; 13:10. [PMID: 23388416 PMCID: PMC3637186 DOI: 10.1186/1475-2867-13-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 01/29/2013] [Indexed: 01/11/2023] Open
Abstract
This study examined whether combining paclitaxel (taxol) with a novel epigenetic agent phenethyl isothiocyanate (PEITC) will yield a synergistic effect on inhibiting breast cancer cells. Two drug-resistant breast cancer cell lines, MCF7 and MDA-MB-231, were treated with PEITC and taxol. Cell growth, cell cycle, and apoptosis were examined. The combination of PEITC and taxol significantly decreased the IC50 of PEITC and taxol over each agent alone. The combination also increased apoptosis by more than two fold over each single agent in both cell lines. A significant increase of cells in the G2/M phases was detected. In conclusion, the combination of PEITC and taxol exhibits a synergistic effect on growth inhibition in breast cancer cells. This combination deserves further study in vivo.
Collapse
Affiliation(s)
- Katherine Liu
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA
| | - Shundong Cang
- Department of Oncology, Henan Province People's Hospital, Zhengzhou, China
| | - Yuehua Ma
- Department of Oncology, Henan Province People's Hospital, Zhengzhou, China
| | - Jen Wei Chiao
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
199
|
Chi A, Nguyen NP, Tse W, Sobremonte G, Concannon P, Zhu A. Intensity modulated radiotherapy for sinonasal malignancies with a focus on optic pathway preservation. J Hematol Oncol 2013; 6:4. [PMID: 23294673 PMCID: PMC3561126 DOI: 10.1186/1756-8722-6-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/31/2012] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To assess if intensity-modulated radiotherapy (IMRT) can possibly lead to improved local control and lower incidence of vision impairment/blindness in comparison to non-IMRT techniques when treating sinonasal malignancies; what is the most optimal dose constraints for the optic pathway; and the impact of different IMRT strategies on optic pathway sparing in this setting. METHODS AND MATERIALS A literature search in the PubMed databases was conducted in July, 2012. RESULTS Clinical studies on IMRT and 2D/3D (2 dimensional/3 dimensional) RT for sinonasal malignancies suggest improved local control and lower incidence of severe vision impairment with IMRT in comparison to non-IMRT techniques. As observed in the non-IMRT studies, blindness due to disease progression may occur despite a lack of severe toxicity possibly due to the difficulty of controlling locally very advanced disease with a dose ≤ 70 Gy. Concurrent chemotherapy's influence on the the risk of severe optic toxicity after radiotherapy is unclear. A maximum dose of ≤ 54 Gy with conventional fractionation to the optic pathway may decrease the risk of blindness. Increased magnitude of intensity modulation through increasing the number of segments, beams, and using a combination of coplanar and non-coplanar arrangements may help increase dose conformality and optic pathway sparing when IMRT is used. CONCLUSION IMRT optimized with appropriate strategies may be the treatment of choice for the most optimal local control and optic pathway sparing when treating sinonasal malignancy.
Collapse
Affiliation(s)
- Alexander Chi
- Department of Radiation Oncology, West Virginia University, 1 Medical Center Dr, Morgantown, Morgantown, WV 26506, USA.
| | | | | | | | | | | |
Collapse
|