151
|
Xu Z, Shi X, Bao M, Song X, Zhang Y, Wang H, Xie H, Mao F, Wang S, Jin H, Dong S, Zhang F, Wu Z, Wu Y. Transcriptome-Wide Analysis of RNA m 6A Methylation and Gene Expression Changes Among Two Arabidopsis Ecotypes and Their Reciprocal Hybrids. FRONTIERS IN PLANT SCIENCE 2021; 12:685189. [PMID: 34178005 PMCID: PMC8222996 DOI: 10.3389/fpls.2021.685189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/14/2021] [Indexed: 05/10/2023]
Abstract
The remodeling of transcriptome, epigenome, proteome, and metabolome in hybrids plays an important role in heterosis. N(6)-methyladenosine (m6A) methylation is the most abundant type of post-transcriptional modification for mRNAs, but the pattern of inheritance from parents to hybrids and potential impact on heterosis are largely unknown. We constructed transcriptome-wide mRNA m6A methylation maps of Arabidopsis thaliana Col-0 and Landsberg erecta (Ler) and their reciprocal F1 hybrids. Generally, the transcriptome-wide pattern of m6A methylation tends to be conserved between accessions. Approximately 74% of m6A methylation peaks are consistent between the parents and hybrids, indicating that a majority of the m6A methylation is maintained after hybridization. We found a significant association between differential expression and differential m6A modification, and between non-additive expression and non-additive methylation on the same gene. The overall RNA m6A level between Col-0 and Ler is clearly different but tended to disappear at the allelic sites in the hybrids. Interestingly, many enriched biological functions of genes with differential m6A modification between parents and hybrids are also conserved, including many heterosis-related genes involved in biosynthetic processes of starch. Collectively, our study revealed the overall pattern of inheritance of mRNA m6A modifications from parents to hybrids and a potential new layer of regulatory mechanisms related to heterosis formation.
Collapse
Affiliation(s)
- Zhihui Xu
- College of Life Science, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Key Laboratory for Information Agriculture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Xiaobo Shi
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Key Laboratory for Information Agriculture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Mengmei Bao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Key Laboratory for Information Agriculture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Xiaoqian Song
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Key Laboratory for Information Agriculture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Yuxia Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Key Laboratory for Information Agriculture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Haiyan Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Key Laboratory for Information Agriculture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Hairong Xie
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Key Laboratory for Information Agriculture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Fei Mao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Key Laboratory for Information Agriculture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Shuai Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Key Laboratory for Information Agriculture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Hongmei Jin
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Suomeng Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Feng Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhe Wu
- Department of Biology, SUSTech-PKU Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, China
| | - Yufeng Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Key Laboratory for Information Agriculture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Yufeng Wu
| |
Collapse
|
152
|
Ubiquitination of phytoene synthase 1 precursor modulates carotenoid biosynthesis in tomato. Commun Biol 2020; 3:730. [PMID: 33273697 PMCID: PMC7713427 DOI: 10.1038/s42003-020-01474-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/10/2020] [Indexed: 12/31/2022] Open
Abstract
Carotenoids are natural pigments that are indispensable to plants and humans, whereas the regulation of carotenoid biosynthesis by post-translational modification remains elusive. Here, we show that a tomato E3 ubiquitin ligase, Plastid Protein Sensing RING E3 ligase 1 (PPSR1), is responsible for the regulation of carotenoid biosynthesis. PPSR1 exhibits self-ubiquitination activity and loss of PPSR1 function leads to an increase in carotenoids in tomato fruit. PPSR1 affects the abundance of 288 proteins, including phytoene synthase 1 (PSY1), the key rate-limiting enzyme in the carotenoid biosynthetic pathway. PSY1 contains two ubiquitinated lysine residues (Lys380 and Lys406) as revealed by the global analysis and characterization of protein ubiquitination. We provide evidence that PPSR1 interacts with PSY1 precursor protein and mediates its degradation via ubiquitination, thereby affecting the steady-state level of PSY1 protein. Our findings not only uncover a regulatory mechanism for controlling carotenoid biosynthesis, but also provide a strategy for developing carotenoid-enriched horticultural crops. Wang et al. report on the role of a novel E3 ubiquitin ligase, Plastid Protein Sensing RING E3 ligase 1 (PPSR1), during tomato fruit ripening and find that it interacts with phytoene synthase 1 (PSY1) precursor protein and mediates its degradation via ubiquitination. This affects the steady-state level of PSY1 protein, the key rate-limiting enzyme in the carotenoid biosynthetic pathway. This study may provide a strategy for developing carotenoid-enriched horticultural crops.
Collapse
|
153
|
Ji D, Cui X, Qin G, Chen T, Tian S. SlFERL Interacts with S-Adenosylmethionine Synthetase to Regulate Fruit Ripening. PLANT PHYSIOLOGY 2020; 184:2168-2181. [PMID: 32999005 PMCID: PMC7723100 DOI: 10.1104/pp.20.01203] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/23/2020] [Indexed: 05/28/2023]
Abstract
Fruit ripening is a complex and genetically programmed process modulated by transcription factors, hormones, and other regulators. However, the mechanism underlying the regulatory loop involving the membrane-protein targets of RIPENING-INHIBITOR (RIN) remains poorly understood. To unravel the function of tomato ( Solanum lycopersicum) FERONIA Like (SlFERL), a putative MADS-box transcription factor target gene, we investigated and addressed the significance of SlFERL in fruit ripening by combining reverse genetics, biochemical, and cytological analyses. Here, we report that RIN and Tomato AGAMOUS-LIKE1 (TAGL1) directly bind to the promoter region of SlFERL and further activate its expression transcriptionally, suggesting a potential role of SlFERL in fruit ripening. Overexpression of SlFERL significantly accelerated the ripening process of tomato fruit, whereas RNA interference knockdown of SlFERL resulted in delayed fruit ripening. Moreover, a surface plasmon resonance assay coupled with tandem mass spectrometry and a protein interaction assay revealed that SlFERL interacts with the key enzyme S-adenosyl-Met synthetase 1 (SlSAMS1) in the ethylene biosynthesis pathway, leading to increased S-adenosyl-Met accumulation and elevated ethylene production. Thus, SlFERL serves as a positive regulator of ethylene production and fruit ripening. This study provides clues to the molecular regulatory networks underlying fruit ripening.
Collapse
Affiliation(s)
- Dongchao Ji
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomin Cui
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, Beijing 100093, China
| |
Collapse
|
154
|
Zheng HX, Zhang XS, Sui N. Advances in the profiling of N 6-methyladenosine (m 6A) modifications. Biotechnol Adv 2020; 45:107656. [PMID: 33181242 DOI: 10.1016/j.biotechadv.2020.107656] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/26/2022]
Abstract
Over 160 RNA modifications have been identified, including N7-methylguanine (m7G), N6-methyladenosine (m6A), and 5-methylcytosine (m5C). These modifications play key roles in regulating the fate of RNA. In eukaryotes, m6A is the most abundant mRNA modification, accounting for over 80% of all RNA methylation modifications. Highly dynamic m6A modification may exert important effects on organismal reproduction and development. Significant advances in understanding the mechanism of m6A modification have been made using immunoprecipitation, chemical labeling, and site-directed mutagenesis, combined with next-generation sequencing. Single-molecule real-time and nanopore direct RNA sequencing (DRS) approaches provide additional ways to study RNA modifications at the cellular level. In this review, we explore the technical history of identifying m6A RNA modifications, emphasizing technological advances in detecting m6A modification. In particular, we discuss the challenge of generating accurate dynamic single-base resolution m6A maps and also strategies for improving detection specificity. Finally, we outline a roadmap for future research in this area, focusing on the application of RNA epigenetic modification, represented by m6A modification.
Collapse
Affiliation(s)
- Hong-Xiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xian-Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong 250014, China.
| |
Collapse
|
155
|
Tang D, Gallusci P, Lang Z. Fruit development and epigenetic modifications. THE NEW PHYTOLOGIST 2020; 228:839-844. [PMID: 32506476 DOI: 10.1111/nph.16724] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/01/2020] [Indexed: 05/26/2023]
Abstract
Fruit development is a complex process that is regulated not only by plant hormones and transcription factors, but also requires epigenetic modifications. Epigenetic modifications include DNA methylation, histone post-translational modifications, chromatin remodeling and noncoding RNAs. Together, these epigenetic modifications, which are controlled during development and in response to the environment, determine the chromatin state of genes and contribute to the transcriptomes of an organism. Recent studies have demonstrated that epigenetic regulation plays an important role in fleshy fruit ripening. Dysfunction of a DNA demethylase delayed ripening in tomato, and the application of a DNA methylation inhibitor altered ripening process in the fruits of several species. These studies indicated that manipulating the epigenome of fruit crops could open new ways for breeding in the future. In this review, we highlight recent progress and address remaining questions and challenges concerning the epigenetic regulation of fruit development and ripening.
Collapse
Affiliation(s)
- Dengguo Tang
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Philippe Gallusci
- Laboratory of Grape Ecophysiology and Functional Biology, Bordeaux University, INRAE, Bordeaux Science Agro, Villenave d'Ormon, 33140, France
| | - Zhaobo Lang
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
156
|
Chen T, Qin G, Tian S. Regulatory network of fruit ripening: current understanding and future challenges. THE NEW PHYTOLOGIST 2020; 228:1219-1226. [PMID: 32729147 DOI: 10.1111/nph.16822] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/07/2020] [Indexed: 05/19/2023]
Abstract
Fruit ripening is a developmental process that is spatio-temporally tuned at multiple levels. Molecular dissections of the mechanisms underlying the ripening process have revealed a network encompassed by hormones, transcriptional regulators, epigenomic modifications and other regulatory elements that directly determine fruit quality and the postharvest commodity of fresh produce. Many studies have addressed the important roles of ethylene, abscisic acid (ABA) and other hormones in regulating fruit ripening. Recent studies have shown that some spontaneous mutants for tomato transcription factors (TFs) have resulted from loss-of-function or dominant-negative mutations. Unlike in DNA methylation variation, the histone mark H3K27me3 may be conserved and prevents the transcriptional feedback circuit from generating autocatalytic ethylene. These observations of a network of partially redundant component indicate the need to improve our current understanding. Here, we focussed on the recent advances and future challenges in investigations of the molecular mechanisms of fruit ripening. We also identified several issues that still need to be addressed in future studies.
Collapse
Affiliation(s)
- Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
157
|
Xu X, Yuan Y, Feng B, Deng W. CRISPR/Cas9-mediated gene-editing technology in fruit quality improvement. FOOD QUALITY AND SAFETY 2020. [DOI: 10.1093/fqsafe/fyaa028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Fruits are an essential part of a healthy, balanced diet and it is particularly important for fibre, essential vitamins, and trace elements. Improvement in the quality of fruit and elongation of shelf life are crucial goals for researchers. However, traditional techniques have some drawbacks, such as long period, low efficiency, and difficulty in the modification of target genes, which limit the progress of the study. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technique was developed and has become the most popular gene-editing technology with high efficiency, simplicity, and low cost. CRISPR/Cas9 technique is widely accepted to analyse gene function and complete genetic modification. This review introduces the latest progress of CRISPR/Cas9 technology in fruit quality improvement. For example, CRISPR/Cas9-mediated targeted mutagenesis of RIPENING INHIBITOR gene (RIN), Lycopene desaturase (PDS), Pectate lyases (PL), SlMYB12, and CLAVATA3 (CLV3) can affect fruit ripening, fruit bioactive compounds, fruit texture, fruit colouration, and fruit size. CRISPR/Cas9-mediated mutagenesis has become an efficient method to modify target genes and improve fruit quality.
Collapse
Affiliation(s)
- Xin Xu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Yujin Yuan
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Bihong Feng
- College of Agriculture, Guangxi University, Nanning, China
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
158
|
Hewitt S, Dhingra A. Beyond Ethylene: New Insights Regarding the Role of Alternative Oxidase in the Respiratory Climacteric. FRONTIERS IN PLANT SCIENCE 2020; 11:543958. [PMID: 33193478 PMCID: PMC7652990 DOI: 10.3389/fpls.2020.543958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Climacteric fruits are characterized by a dramatic increase in autocatalytic ethylene production that is accompanied by a spike in respiration at the onset of ripening. The change in the mode of ethylene production from autoinhibitory to autostimulatory is known as the System 1 (S1) to System 2 (S2) transition. Existing physiological models explain the basic and overarching genetic, hormonal, and transcriptional regulatory mechanisms governing the S1 to S2 transition of climacteric fruit. However, the links between ethylene and respiration, the two main factors that characterize the respiratory climacteric, have not been examined in detail at the molecular level. Results of recent studies indicate that the alternative oxidase (AOX) respiratory pathway may play an essential role in mediating cross-talk between ethylene response, carbon metabolism, ATP production, and ROS signaling during climacteric ripening. New genomic, metabolic, and epigenetic information sheds light on the interconnectedness of ripening metabolic pathways, necessitating an expansion of the current, ethylene-centric physiological models. Understanding points at which ripening responses can be manipulated may reveal key, species- and cultivar-specific targets for regulation of ripening, enabling superior strategies for reducing postharvest wastage.
Collapse
Affiliation(s)
- Seanna Hewitt
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, United States
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - Amit Dhingra
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, United States
- Department of Horticulture, Washington State University, Pullman, WA, United States
| |
Collapse
|
159
|
Huong TT, Ngoc LNT, Kang H. Functional Characterization of a Putative RNA Demethylase ALKBH6 in Arabidopsis Growth and Abiotic Stress Responses. Int J Mol Sci 2020; 21:ijms21186707. [PMID: 32933187 PMCID: PMC7555452 DOI: 10.3390/ijms21186707] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022] Open
Abstract
RNA methylation and demethylation, which is mediated by RNA methyltransferases (referred to as “writers”) and demethylases (referred to as “erasers”), respectively, are emerging as a key regulatory process in plant development and stress responses. Although several studies have shown that AlkB homolog (ALKBH) proteins are potential RNA demethylases, the function of most ALKBHs is yet to be determined. The Arabidopsis thaliana genome contains thirteen genes encoding ALKBH proteins, the functions of which are largely unknown. In this study, we characterized the function of a potential eraser protein, ALKBH6 (At4g20350), during seed germination and seedling growth in Arabidopsis under abiotic stresses. The seeds of T-DNA insertion alkbh6 knockdown mutants germinated faster than the wild-type seeds under cold, salt, or abscisic acid (ABA) treatment conditions but not under dehydration stress conditions. Although no differences in seedling and root growth were observed between the alkbh6 mutant and wild-type under normal conditions, the alkbh6 mutant showed a much lower survival rate than the wild-type under salt, drought, or heat stress. Cotyledon greening of the alkbh6 mutants was much higher than that of the wild-type upon ABA application. Moreover, the transcript levels of ABA signaling-related genes, including ABI3 and ABI4, were down-regulated in the alkbh6 mutant compared to wild-type plants. Importantly, the ALKBH6 protein had an ability to bind to both m6A-labeled and m5C-labeled RNAs. Collectively, these results indicate that the potential eraser ALKBH6 plays important roles in seed germination, seedling growth, and survival of Arabidopsis under abiotic stresses.
Collapse
Affiliation(s)
- Trinh Thi Huong
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (T.T.H.); (L.N.T.N.)
- The Western Highlands Agriculture and Forestry Science Institute, Buon Ma Thuot, DakLak 63000, Vietnam
| | - Le Nguyen Tieu Ngoc
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (T.T.H.); (L.N.T.N.)
- Faculty of Forestry Agriculture, Tay Nguyen University, Buon Ma Thuot, DakLak 63000, Vietnam
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (T.T.H.); (L.N.T.N.)
- Correspondence: ; Tel.: +82-(62)-530-2181
| |
Collapse
|
160
|
Xu Q, Jiang M, Gu S, Wang F, Yuan B. Early Life Stress Induced DNA Methylation of Monoamine Oxidases Leads to Depressive-Like Behavior. Front Cell Dev Biol 2020; 8:582247. [PMID: 33015076 PMCID: PMC7505948 DOI: 10.3389/fcell.2020.582247] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Major depressive disorder (MDD) is coming to be the regarded as one of the leading causes for human disabilities. Due to its complicated pathological process, the etiology is still unclear and the treatment is still targeting at the monoamine neurotransmitters. Early life stress has been known as a major cause for MDD, but how early life stress affects adult monoaminergic activity is not clear either. Recently, DNA methylation is considered to be the key mechanism of epigenetics and might play a role in early life stress induced mental illness. DNA methylation is an enzymatic covalent modification of DNA, has been one of the main epigenetic mechanisms investigated. The metabolic enzyme for the monoamine neurotransmitters, monoamine oxidases A/B (MAO A/MAO B) are the prime candidates for the investigation into the role of DNA methylation in mental disorders. In this review, we will review recent advances about the structure and physiological function of monoamine oxidases (MAO), brief narrative other factors include stress induced changes, early life stress, perinatal depression (PD) relationship with other epigenetic changes, such as DNA methylation, microRNA (miRNA). This review will shed light on the epigenetic changes involved in MDD, which may provide potential targets for future therapeutics in depression pathogenesis.
Collapse
Affiliation(s)
- Qiuyue Xu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingchen Jiang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Simeng Gu
- Department of Psychology, Jiangsu University Medical School, Zhenjiang, China
| | - Fushun Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Bin Yuan
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
161
|
Zheng HX, Sun X, Zhang XS, Sui N. m 6A Editing: New Tool to Improve Crop Quality? TRENDS IN PLANT SCIENCE 2020; 25:859-867. [PMID: 32376086 DOI: 10.1016/j.tplants.2020.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
N6-methyladenosine (m6A) is the most common type of eukaryotic mRNA modification. It plays an important role in regulating plant growth and development and stress resistance. m6A modification influences nearly all aspects of RNA metabolism and functionality and has great potential for improving crop quality. However, changing m6A modification levels as a whole may have unpredictable effects, making it impossible to accurately predict the effect of specific m6A modifications on RNA. In this opinion article, the main challenges and possible solutions for exploring m6A modification functions in plant systems are discussed. An m6A editing platform that uses new high-throughput methods to identify m6A modification at single-base resolution, and genome editing for selective editing of specific m6A sites for crop improvement is proposed.
Collapse
Affiliation(s)
- Hong-Xiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xi Sun
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xian-Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong 250014, China.
| |
Collapse
|
162
|
Pu H, Shan S, Wang Z, Duan W, Tian J, Zhang L, Li J, Song H, Xu X. Dynamic Changes of DNA Methylation Induced by Heat Treatment Were Involved in Ethylene Signal Transmission and Delayed the Postharvest Ripening of Tomato Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8976-8986. [PMID: 32686929 DOI: 10.1021/acs.jafc.0c02971] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Deoxyribonucleic acid (DNA) methylation plays an important role in fruit ripening and senescence. Here, the role of DNA methylation of the CpG island of SlACS10, LeCTR1, LeEIN3, LeERT10, and SlERF-A1 genes induced by heat treatment (37 °C) in postharvest ripening of tomato fruit was studied. After heat treatment, the firmness and vitamin C content showed higher levels, the loss of aldehydes in volatile components was delayed, and the activities of methylase and demethylase decreased in tomato fruit. Moreover, in heat-treated fruit, significant changes in DNA methylation of SlACS10, LeCTR1, LeEIN3, LeERT10, and SlERF-A1 were induced, the expression of LeERT10 and LeEIN3 was inhibited, the expression of SlERF-A1 was increased, by which ethylene signal transmission might be suppressed and the postharvest ripening of tomato fruit was delayed. The present study provided valuable information for understanding the essential role of DNA methylation in the postharvest ripening of tomato fruit.
Collapse
Affiliation(s)
- Huili Pu
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Shuangshuang Shan
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhiqiang Wang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Wenhui Duan
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jixin Tian
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lin Zhang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jiangkuo Li
- Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, National Engineering and Technology Research Center for Preservation of Agricultural Products, Tianjin 300384, China
| | - Hongmiao Song
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiangbin Xu
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
163
|
Yang J, Deng G, Lian J, Garraway J, Niu Y, Hu Z, Yu J, Zhang M. The Chromosome-Scale Genome of Melon Dissects Genetic Architecture of Important Agronomic Traits. iScience 2020; 23:101422. [PMID: 32798971 PMCID: PMC7452659 DOI: 10.1016/j.isci.2020.101422] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/05/2020] [Accepted: 07/26/2020] [Indexed: 12/29/2022] Open
Abstract
Comparative and evolutionary genomics analyses are the powerful tools to provide mechanistic insights into important agronomic traits. Here, we completed a chromosome-scale assembly of the "neglected" but vital melon subspecies Cucumis melo ssp. agrestis using single-molecule real-time sequencing, Hi-C, and an ultra-dense genetic map. Comparative genomics analyses identified two targeted genes, UDP-sugar pyrophosphorylase and α-galactosidase, that were selected during evolution for specific phloem transport of oligosaccharides in Cucurbitaceae. Association analysis of transcriptome and the DNA methylation patterns revealed the epigenetic regulation of sucrose accumulation in developing fruits. We constructed the melon recombinant inbred lines to uncover Alkaline/Neutral Invertase (CINV), Sucrose-Phosphatase 2 (SPP2), α-galactosidase, and β-galactosidase loci related to sucrose accumulation and an LRR receptor-like serine/threonine-protein kinase associated with gummy stem blight resistance. This study provides essential genomic resources enabling functional genomics studies and the genomics-informed breeding pipelines for improving the fruit quality and disease resistance traits.
Collapse
Affiliation(s)
- Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| | - Guancong Deng
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Jinmin Lian
- Biozeron Shenzhen, Inc., Shenzhen 518081, China
| | - Jenella Garraway
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | | | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Jingquan Yu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China.
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China.
| |
Collapse
|
164
|
Xue H, Wei Z, Chen K, Tang Y, Wu X, Su J, Meng J. Prediction of RNA Methylation Status From Gene Expression Data Using Classification and Regression Methods. Evol Bioinform Online 2020; 16:1176934320915707. [PMID: 32733123 PMCID: PMC7372605 DOI: 10.1177/1176934320915707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/28/2020] [Indexed: 12/18/2022] Open
Abstract
RNA N6-methyladenosine (m6A) has emerged
as an important epigenetic modification for its role in regulating the
stability, structure, processing, and translation of RNA. Instability of
m6A homeostasis may result in flaws in stem cell regulation,
decrease in fertility, and risk of cancer. To this day, experimental detection
and quantification of RNA m6A modification are still time-consuming
and labor-intensive. There is only a limited number of epitranscriptome samples
in existing databases, and a matched RNA methylation profile is not often
available for a biological problem of interests. As gene expression data are
usually readily available for most biological problems, it could be appealing if
we can estimate the RNA methylation status from gene expression data using
in silico methods. In this study, we explored the
possibility of computational prediction of RNA methylation status from gene
expression data using classification and regression methods based on mouse RNA
methylation data collected from 73 experimental conditions. Elastic
Net-regularized Logistic Regression (ENLR), Support Vector Machine (SVM), and
Random Forests (RF) were constructed for classification. Both SVM and RF
achieved the best performance with the mean area under the curve (AUC) = 0.84
across samples; SVM had a narrower AUC spread. Gene Site Enrichment Analysis was
conducted on those sites selected by ENLR as predictors to access the biological
significance of the model. Three functional annotation terms were found
statistically significant: phosphoprotein, SRC Homology 3 (SH3) domain, and
endoplasmic reticulum. All 3 terms were found to be closely related to
m6A pathway. For regression analysis, Elastic Net was
implemented, which yielded a mean Pearson correlation coefficient = 0.68 and a
mean Spearman correlation coefficient = 0.64. Our exploratory study suggested
that gene expression data could be used to construct predictors for
m6A methylation status with adequate accuracy. Our work showed
for the first time that RNA methylation status may be predicted from the matched
gene expression data. This finding may facilitate RNA modification research in
various biological contexts when a matched RNA methylation profile is not
available, especially in the very early stage of the study.
Collapse
Affiliation(s)
- Hao Xue
- Department of Mathematical Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China.,Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Zhen Wei
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China.,Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Kunqi Chen
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China.,Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Yujiao Tang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China.,Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Xiangyu Wu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China.,Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Jionglong Su
- Department of Mathematical Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Jia Meng
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China.,Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
165
|
Liang Q, Deng H, Li Y, Liu Z, Shu P, Fu R, Zhang Y, Pirrello J, Zhang Y, Grierson D, Bouzayen M, Liu Y, Liu M. Like Heterochromatin Protein 1b represses fruit ripening via regulating the H3K27me3 levels in ripening-related genes in tomato. THE NEW PHYTOLOGIST 2020; 227:485-497. [PMID: 32181875 DOI: 10.1111/nph.16550] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
Polycomb group (PcG) proteins play vital roles in plant development via epigenetically repressing the transcription of target genes. However, to date, their function in fruit ripening is largely unknown. Combining reverse genetic approaches, physiological methods, yeast two-hybrid, co-immunoprecipitation, and chromatin immunoprecipitation assays, we show that Like Heterochromatin Protein 1b (SlLHP1b), a tomato Polycomb Repressive Complex 1 (PRC1)-like protein with a ripening-related expression pattern, represses fruit ripening via colocalization with epigenetic mark H3K27me3. RNA interference (RNAi)-mediated downregulation of SlLHP1b advanced ripening initiation, climacteric ethylene production, and fruit softening, whereas SlLHP1b overexpression delayed these events. Ripening-related genes were significantly upregulated in SlLHP1b RNAi fruits and downregulated in overexpressing fruits compared with wild-type. Furthermore, SlLHP1b protein interacts with ripening regulator MSI1, a subunit of the PRC2 complex. Moreover, SlLHP1b also binds the epigenetic histone mark H3K27me3 in vivo and chromatin immunoprecipitation-quantitative PCR results showed binding occurs preferentially to regions of ripening-associated chromatin marked by histone H3K27me3. Furthermore, the H3K27me3 levels in chromatin of ripening-related genes is negatively correlated with accumulation of their transcripts in SlLHP1b down or upregulated fruits during ripening. Our findings reveal a novel regulatory function of SlLHP1b in fruit and provide new insights into the PcG-mediated epigenetic regulation of climacteric fruit ripening.
Collapse
Affiliation(s)
- Qi Liang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Heng Deng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yuxiang Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Ziyu Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Peng Shu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Rao Fu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yaoxin Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Julien Pirrello
- GBF Laboratory, Université de Toulouse, INRA, Castanet-Tolosan, 31320, France
| | - Yang Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Don Grierson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Mondher Bouzayen
- GBF Laboratory, Université de Toulouse, INRA, Castanet-Tolosan, 31320, France
| | - Yongsheng Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| |
Collapse
|
166
|
Du X, Fang T, Liu Y, Wang M, Zang M, Huang L, Zhen S, Zhang J, Shi Z, Wang G, Fu J, Liu Y. Global profiling of N 6 -methyladenosine methylation in maize callus induction. THE PLANT GENOME 2020; 13:e20018. [PMID: 33016611 DOI: 10.1002/tpg2.20018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/24/2020] [Accepted: 03/05/2020] [Indexed: 05/26/2023]
Abstract
Callus induction is a dedifferentiation process that accompanies a cell fate transition, and epigenetic regulation plays a crucial role in the process. N6 -methyladenosine (m6A) methylation is an important mechanism in post-transcriptional epigenetic regulation and functions in cell reprogramming. However, the function of m6A methylation during callus induction is still unknown. Here, we performed transcriptome-wide m6A-seq on immature maize embryos after culturing for 2, 4, or 8 days with or without the auxin analogue 2,4-D. A total of 26,794 unique m6A peaks were detected from 17,456 maize genes; and 2,338 specific, 2,4-D-induced m6A peaks (D-specific m6A) were detected only in embryos cultured with 2,4-D. Furthermore, a positive correlation between m6A methylation and mRNA abundance was discovered in the genes with D-specific m6A deposition, especially at the beginning of callus induction. Key genes involved in callus induction, i.e. BABY BOOM and LBD transcription factors, underwent m6A methylation, increasing their transcript levels, thus improving callus induction. These results revealed the importance of m6A methylation during the early stage of callus induction and provided new insights into the molecular mechanism of callus induction at an epitranscriptomic level.
Collapse
Affiliation(s)
- Xuemei Du
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ting Fang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meng Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Maosen Zang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Liying Huang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Sihan Zhen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jie Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zichen Shi
- Beijing No.4 High School International Campus, China
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunjun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
167
|
Zheng H, Li S, Zhang X, Sui N. Functional Implications of Active N 6-Methyladenosine in Plants. Front Cell Dev Biol 2020; 8:291. [PMID: 32411708 PMCID: PMC7202093 DOI: 10.3389/fcell.2020.00291] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/03/2020] [Indexed: 11/13/2022] Open
Abstract
N6-methyladenosine (m6A) is the most common type of eukaryotic mRNA modification and has been found in many organisms, including mammals, and plants. It has important regulatory effects on RNA splicing, export, stability, and translation. The abundance of m6A on RNA depends on the dynamic regulation between methyltransferase ("writer") and demethylase ("eraser"), and m6A binding protein ("reader") exerts more specific regulatory function by binding m6A modification sites on RNA. Progress in research has revealed important functions of m6A modification in plants. In this review, we systematically summarize the latest advances in research on the composition and mechanism of action of the m6A system in plants. We emphasize the function of m6A modification on RNA fate, plant development, and stress resistance. Finally, we discuss the outstanding questions and opportunities exist for future research on m6A modification in plant.
Collapse
Affiliation(s)
- Hongxiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiansheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
168
|
Chen YT, Shen JY, Chen DP, Wu CF, Guo R, Zhang PP, Lv JW, Li WF, Wang ZX, Chen YP. Identification of cross-talk between m 6A and 5mC regulators associated with onco-immunogenic features and prognosis across 33 cancer types. J Hematol Oncol 2020; 13:22. [PMID: 32188475 PMCID: PMC7081591 DOI: 10.1186/s13045-020-00854-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/03/2020] [Indexed: 12/26/2022] Open
Abstract
Methylation of RNA and DNA, notably in the forms of N6-methyladenosine (m6A) and 5-methylcytosine (5mC) respectively, plays crucial roles in diverse biological processes. Currently, there is a lack of knowledge regarding the cross-talk between m6A and 5mC regulators. Thus, we systematically performed a pan-cancer genomic analysis by depicting the molecular correlations between m6A and 5mC regulators across ~ 11,000 subjects representing 33 cancer types. For the first time, we identified cross-talk between m6A and 5mC methylation at the multiomic level. Then, we further established m6A/5mC epigenetic module eigengenes by combining hub m6A/5mC regulators and informed a comprehensive epigenetic state. The model reflected status of the tumor-immune-stromal microenvironment and was able to predict patient survival in the majority of cancer types. Our results lay a solid foundation for epigenetic regulation in human cancer and pave a new road for related therapeutic targets.
Collapse
Affiliation(s)
- Yu-Tong Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-Sen University, Guangzhou, 510632, People's Republic of China
| | - Jia-Yi Shen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,School of Medicine, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Dong-Ping Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Chen-Fei Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Rui Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Pan-Pan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Jia-Wei Lv
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Wen-Fei Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| | - Zi-Xian Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| | - Yu-Pei Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
169
|
N 6-methyladenosine ALKBH5 promotes non-small cell lung cancer progress by regulating TIMP3 stability. Gene 2020; 731:144348. [PMID: 31927006 DOI: 10.1016/j.gene.2020.144348] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 01/22/2023]
Abstract
Mounting evidence demonstrates that N6-methyladenosine (m6A) play critical roles of m6A in the epigenetic regulation, especially for human cancer. The m6A modification is installed by methyltransferase and erased demethylases, leading to the significant modification for gene expression and cell fate. Here, we investigated the biological roles and mechanism of demethylase alkylation repair homolog protein 5 (ALKBH5) in the non-small cell lung cancer (NSCLC). Results revealed that ALKBH5 was ectopically up-regulated in the NSCLC tissue and cells, and closely correlated with the poor prognosis. Functionally, ALKBH5 promoted the proliferation and reduced apoptosis of NSCLC cells in vitro, and knockdown of ALKBH5 repressed the tumor growth in vivo. Mechanistically, RNA immunoprecipitation sequencing (RIP-Seq) revealed that ALKBH5 targeted the TIMP3. Moreover, ALKBH5 repressed TIMP3 mRNA stability and protein production. In conclusion, the present research confirmed the ALKBH5/TIMP3 pathway in the NSCLC oncogenesis progress, providing a novel insight for the epitranscriptome and potential therapeutic target for NSCLC.
Collapse
|
170
|
Liang Z, Riaz A, Chachar S, Ding Y, Du H, Gu X. Epigenetic Modifications of mRNA and DNA in Plants. MOLECULAR PLANT 2020; 13:14-30. [PMID: 31863849 DOI: 10.1016/j.molp.2019.12.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/22/2019] [Accepted: 12/05/2019] [Indexed: 05/21/2023]
Abstract
Advances in the detection and mapping of messenger RNA (mRNA) N6-methyladenosine (m6A) and 5-methylcytosine (m5C), and DNA N6-methyldeoxyadenosine (6mA) redefined our understanding of these modifications as additional tiers of epigenetic regulation. In plants, the most prevalent internal mRNA modifications, m6A and m5C, play crucial and dynamic roles in many processes, including embryo development, stem cell fate determination, trichome branching, leaf morphogenesis, floral transition, stress responses, fruit ripening, and root development. The newly identified and widespread epigenetic marker 6mA DNA methylation is associated with gene expression, plant development, and stress responses. Here, we review the latest research progress on mRNA and DNA epigenetic modifications, including the detection, dynamics, distribution, functions, regulatory proteins, and evolution, with a focus on m6A, m5C, and 6mA. We also provide some perspectives on future research of the newly identified and unknown epigenetic modifications of mRNA and DNA in plants.
Collapse
Affiliation(s)
- Zhe Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany
| | - Adeel Riaz
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sadaruddin Chachar
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yike Ding
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA
| | - Hai Du
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
171
|
Zhou L, Tian S, Qin G. RNA methylomes reveal the m 6A-mediated regulation of DNA demethylase gene SlDML2 in tomato fruit ripening. Genome Biol 2019; 20:156. [PMID: 31387610 PMCID: PMC6683476 DOI: 10.1186/s13059-019-1771-7] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Methylation of nucleotides, notably in the forms of 5-methylcytosine (5mC) in DNA and N6-methyladenosine (m6A) in mRNA, carries important information for gene regulation. 5mC has been elucidated to participate in the regulation of fruit ripening, whereas the function of m6A in this process and the interplay between 5mC and m6A remain uncharacterized. RESULTS Here, we show that mRNA m6A methylation exhibits dynamic changes similar to DNA methylation during tomato fruit ripening. RNA methylome analysis reveals that m6A methylation is a prevalent modification in the mRNA of tomato fruit, and the m6A sites are enriched around the stop codons and within the 3' untranslated regions. In the fruit of the ripening-deficient epimutant Colorless non-ripening (Cnr) which harbors DNA hypermethylation, over 1100 transcripts display increased m6A levels, while only 134 transcripts show decreased m6A enrichment, suggesting a global increase in m6A. The m6A deposition is generally negatively correlated with transcript abundance. Further analysis demonstrates that the overall increase in m6A methylation in Cnr mutant fruit is associated with the decreased expression of RNA demethylase gene SlALKBH2, which is regulated by DNA methylation. Interestingly, SlALKBH2 has the ability to bind the transcript of SlDML2, a DNA demethylase gene required for tomato fruit ripening, and modulates its stability via m6A demethylation. Mutation of SlALKBH2 decreases the abundance of SlDML2 mRNA and delays fruit ripening. CONCLUSIONS Our study identifies a novel layer of gene regulation for key ripening genes and establishes an essential molecular link between DNA methylation and mRNA m6A methylation during fruit ripening.
Collapse
Affiliation(s)
- Leilei Zhou
- Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian District, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian District, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian District, Beijing, 100093, China.
| |
Collapse
|