151
|
Al-Sadi R, Boivin M, Ma T. Mechanism of cytokine modulation of epithelial tight junction barrier. Front Biosci (Landmark Ed) 2009; 14:2765-78. [PMID: 19273235 DOI: 10.2741/3413] [Citation(s) in RCA: 440] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytokines play a crucial role in the modulation of inflammatory response in the gastrointestinal tract. Pro-inflammatory cytokines including tumor necrosis factor-alpha, interferon-gamma, interleukin-1beta?IL-1beta?, and interleukin-12 are essential in mediating the inflammatory response, while anti-inflammatory cytokines including interleukin-10 and transforming growth factor-beta are important in the attenuation or containment of inflammatory process. It is increasingly recognized that cytokines have an important physiological and pathological effect on intestinal tight junction (TJ) barrier. Consistent with their known pro-inflammatory activities, pro-inflammatory cytokines cause a disturbance in intestinal TJ barrier, allowing increased tissue penetration of luminal antigens. Recent studies indicate that the inhibition of cytokine induced increase in intestinal TJ permeability has an important protective effect against intestinal mucosal damage and development of intestinal inflammation. In this review, the effects of various pro-inflammatory and anti-inflammatory cytokines on intestinal TJ barrier and the progress into the mechanisms that mediate the cytokine modulation of intestinal TJ barrier are reviewed.
Collapse
Affiliation(s)
- Rana Al-Sadi
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | |
Collapse
|
152
|
Ewaschuk JB, Diaz H, Meddings L, Diederichs B, Dmytrash A, Backer J, Looijer-van Langen M, Madsen KL. Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function. Am J Physiol Gastrointest Liver Physiol 2008; 295:G1025-34. [PMID: 18787064 DOI: 10.1152/ajpgi.90227.2008] [Citation(s) in RCA: 395] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Live probiotic bacteria are effective in reducing gut permeability and inflammation. We have previously shown that probiotics release peptide bioactive factors that modulate epithelial resistance in vitro. The objectives of this study were to determine the impact of factors released from Bifidobacteria infantis on intestinal epithelial cell permeability and tight junction proteins and to assess whether these factors retain their bioactivity when administered to IL-10-deficient mice. B. infantis conditioned medium (BiCM) was applied to T84 human epithelial cells in the presence and absence of TNF-alpha and IFN-gamma. Transepithelial resistance (TER), tight junction proteins [claudins 1, 2, 3, and 4, zonula occludens (ZO)-1, and occludin] and MAP kinase activity (p38 and ERK) were examined. Acute effects of BiCM on intestinal permeability were assessed in colons from IL-10-deficient mice in Ussing chambers. A separate group of IL-1-deficient mice was treated with BiCM for 4 wk and then assessed for intestinal histological injury, cytokine levels, epithelial permeability, and immune response to bacterial antigens. In T84 cells, BiCM increased TER, decreased claudin-2, and increased ZO-1 and occludin expression. This was associated with enhanced levels of phospho-ERK and decreased levels of phospho-p38. BiCM prevented TNF-alpha- and IFN-gamma-induced drops in TER and rearrangement of tight junction proteins. Inhibition of ERK prevented the BiCM-induced increase in TER and attenuated the protection from TNF-alpha and IFN-gamma. Oral BiCM administration acutely reduced colonic permeability in mice whereas long-term BiCM treatment in IL-10-deficient mice attenuated inflammation, normalized colonic permeability, and decreased colonic and splenic IFN-gamma secretion. In conclusion, peptide bioactive factors from B. infantis retain their biological activity in vivo and are effective in normalizing gut permeability and improving disease in an animal model of colitis. The effects of BiCM are mediated in part by changes in MAP kinases and tight junction proteins.
Collapse
|
153
|
Fries W, Muja C, Crisafulli C, Costantino G, Longo G, Cuzzocrea S, Mazzon E. Infliximab and etanercept are equally effective in reducing enterocyte APOPTOSIS in experimental colitis. Int J Med Sci 2008; 5:169-80. [PMID: 18645606 PMCID: PMC2452978 DOI: 10.7150/ijms.5.169] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Accepted: 07/01/2008] [Indexed: 12/17/2022] Open
Abstract
Loss of epithelial barrier integrity is considered an early step in the pathogenesis of Crohn's disease (CD), and the rate of enterocyte apoptosis is one of the determinants of the intestinal barrier function. Tumor necrosis factor-alpha (TNF-alpha), one of the major proinflammatory mediators in CD, is one of the extrinsic signals which initiate apoptosis of enterocytes. The aim of this study was to investigate the early effects of experimental colitis on enterocyte apoptosis, and the effects of two anti-TNF treatments, infliximab (IFX) and etanercept (ETC). In addition, the importance of receptor I for TNF was tested in TNFR-1(-/- )mice. Circulating TNF-alpha levels were effectively reduced by IFX and ETC (p<0.01, both) at 3 and 6 h. Apoptosis of the ileal enterocytes, assessed by TUNEL staining, staining for Fas-ligand, and bax, increased at 3 and 6h. These alterations were prevented by both anti-TNF strategies, and in TNFR-1(-/-) animals. The anti-apoptotic protein Bcl-2 was expressed in the ileal epithelium under control conditions, but was suppressed in DNB-colitis. Expression of Bcl-2 was maintained in both anti-TNF treatments and TNFR-1(-/-) mice.DNB colitis induced a very early, rapid increase of enterocyte apoptosis. Both anti-TNF strategies, IFX and ETC, were equally effective in suppressing enterocyte apoptosis, most likely by inactivation of circulating TNF-alpha.
Collapse
Affiliation(s)
- Walter Fries
- Dipartimento di Medicina Interna e Terapia Medica, Sezione di Farmacologia, Università di Messina, Messina, Italy.
| | | | | | | | | | | | | |
Collapse
|
154
|
Abstract
Pathogens are exogenous agents capable of causing disease in susceptible organisms. In celiac sprue, a disease triggered by partially hydrolyzed gluten peptides in the small intestine, the offending immunotoxins cannot replicate, but otherwise have many hallmarks of classical pathogens. First, dietary gluten and its peptide metabolites are ubiquitous components of the modern diet, yet only a small, genetically susceptible fraction of the human population contracts celiac sprue. Second, immunotoxic gluten peptides have certain unusual structural features that allow them to survive the harsh proteolytic conditions of the gastrointestinal tract and thereby interact extensively with the mucosal lining of the small intestine. Third, they invade across epithelial barriers intact to access the underlying gut-associated lymphoid tissue. Fourth, they possess recognition sequences for selective modification by an endogenous enzyme, transglutaminase 2, allowing for in situ activation to a more immunotoxic form via host subversion. Fifth, they precipitate a T cell–mediated immune reaction comprising both innate and adaptive responses that causes chronic inflammation of the small intestine. Sixth, complete elimination of immunotoxic gluten peptides from the celiac diet results in remission, whereas reintroduction of gluten in the diet causes relapse. Therefore, in analogy with antibiotics, orally administered proteases that reduce the host's exposure to the immunotoxin by accelerating gluten peptide destruction have considerable therapeutic potential. Last but not least, notwithstanding the power of in vitro methods to reconstitute the essence of the immune response to gluten in a celiac patient, animal models for the disease, while elusive, are likely to yield fundamentally new systems-level insights.
Collapse
|
155
|
Abstract
INTRODUCTION/BACKGROUND Inflammatory bowel disease (IBD) results from complex interactions between: host genome, immune system, mucosa, bacteria, and environment. SOURCES OF DATA Review of PubMed database using search terms 'bacteria and inflammatory bowel disease' and 'genetics and inflammatory bowel disease'. PubMed 'related reference' feature and references from retrieved articles were examined. AREAS OF AGREEMENT IBD results from interaction between the microbiota of the gut and the immune system. Key gene defects associated with IBD are involved in bacterial recognition and processing. The environment at least modifies and may determine pathogenesis. AREAS OF CONTROVERSY It has been disputed whether the primary defect in IBD is immunological or bacterial, and which bacteria are key. GROWING POINTS/AREAS FOR RESEARCH: 'M cells', the specialized epithelial cells that overlie Peyer's patches, are a major interface between gut bacteria and the immune system. Improved understanding is needed of the bacteria involved in IBD pathogenesis, their genotypes and phenotypes, their portal of entry and their mechanism for escaping attack from the immune system. Bacterial ligands involved in bacteria-epithelial adhesion are emerging, and molecular techniques are rapidly increasing our knowledge of the human intestinal microbiota.
Collapse
Affiliation(s)
- Paul Knight
- School of Clinical Sciences, University of Liverpool, Nuffield Building, Crown Street, Liverpool L693BX, UK
| | | | | |
Collapse
|
156
|
Tschöp J, Martignoni A, Goetzman HS, Choi LG, Wang Q, Noel JG, Ogle CK, Pritts TA, Johannigman JA, Lentsch AB, Caldwell CC. Gammadelta T cells mitigate the organ injury and mortality of sepsis. J Leukoc Biol 2007; 83:581-8. [PMID: 18063696 DOI: 10.1189/jlb.0707507] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Sepsis is a difficult condition to treat and is associated with a high mortality rate. Sepsis is known to cause a marked depletion of lymphocytes, although the function of different lymphocyte subsets in the response to sepsis is unclear. gammadelta T cells are found largely in epithelial-rich tissues, and previous studies of gammadelta T cells in models of sepsis have yielded divergent results. In the present study, we examined the function of gammadelta T cells during sepsis in mice using cecal ligation and puncture (CLP). Mice deficient in gammadelta T cells had decreased survival times and increased tissue damage after CLP compared with wild-type mice. Furthermore, bacterial load was increased in gammadelta T cell-deficient mice, yet antibiotic treatment did not change mortality. Additionally, we found that recruitment of neutrophils and myeloid suppressor cells to the site of infection was diminished in gammadelta T cell-deficient mice. Finally, we found that circulating levels of IFN-gamma were increased, and systemic levels of IL-10 were decreased in gammadelta T cell-deficient mice after CLP compared with wild-type mice. gammadelta T cell-deficient mice also had increased intestinal permeability after CLP compared with wild-type mice. Neutralization of IFN-gamma abrogated the increase in intestinal permeability in gammadelta T cell-deficient mice. The intestines taken from gammadelta T cell-deficient mice had decreased myeloperoxidase yet had increased tissue damage as compared with wild-type mice. Collectively, our data suggest that gammadelta T cells modulate the response to sepsis and may be a potential therapeutic target.
Collapse
Affiliation(s)
- Johannes Tschöp
- The Laboratory of Trauma, Sepsis and Inflammation Research, Department of Surgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0558, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Rogler G. The effects of NOD2/CARD15 mutations on the function of the intestinal barrier. J Crohns Colitis 2007; 1:53-60. [PMID: 21172185 DOI: 10.1016/j.crohns.2007.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 08/16/2007] [Indexed: 02/08/2023]
Abstract
NOD2 variants have been identified to be a susceptibility factor for Crohn's disease. The NOD2 protein is an intracellular sensor of the bacterial wall product muramyl dipeptide (MDP) and activates the transcription factor NF-kappaB upon MDP-binding. NOD2 variants are associated with reduced NF-kappaB activation and reduced production of epithelial derived antibacterial peptides such as defensins. A reduced expression of defensins is described and found in patients with Crohn's disease and ulcerative colitis especially when NOD2 variants are present. Furthermore recent evidence from mouse models suggests that the ability of intestinal epithelial cells to activate NF-kappaB upon bacterial stimulation protects from mucosal inflammation. Taken together these data indicate that NOD2 mediated NF-kappaB activation, subsequent induction of anti-microbial peptides such as defensins and induction of cytokine expression are essential for the function of the intestinal barrier and for the prevention of bacterial translocation. The data indicate why a defect in the induction of this acute defense response is associated with chronic inflammation. Invading bacteria that cannot be readily detected and eliminated may start a backup mechanism of inflammation finally resulting in chronic inflammatory reaction followed by further impairment of the mucosal barrier.
Collapse
Affiliation(s)
- Gerhard Rogler
- Clinic for Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital Zürich, Rämistrasse 100, 8091 Zürich, Switzerland
| |
Collapse
|
158
|
Montufar-Solis D, Schaefer J, Hicks MJ, Klein JR. Massive but selective cytokine dysregulation in the colon of IL-10-/- mice revealed by multiplex analysis. Int Immunol 2007; 20:141-54. [PMID: 18046045 DOI: 10.1093/intimm/dxm126] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
IL-10-deficient mice develop enterocolitis due to a failure of cytokine regulation; however, the full scope of that response remains poorly defined. Using multiplex analysis to quantify the activity of 23 regulatory and effector cytokines produced by colonic leukocytes, we demonstrate a vast dysregulation process of 18 cytokines in IL-10-/- mice from 7 to 27 weeks of age. Of those, IL-12p40, IL-6, granulocyte macrophage colony-stimulating factor, IFN-gamma, IL-13 and monocyte chemoattractant protein-1 (MCP-1) had the highest single correlations with pathology (r = 0.7766-0.7016). Importantly, there were strong associations (r = 0.7071-0.9074) between those cytokines and as many as 10 additional cytokines, indicating a high degree of cytokine complexity as disease progressed. IL-17 was notable in that it was produced at high levels by colonic leukocytes from IL-10-/- mice with pathology ranging from mild to severe, though it was not produced by healthy IL-10-/- mice lacking pathology. Tumor necrosis factor alpha (TNFalpha) by itself displayed only a modest association with pathology (r = 0.6340), ranking sixth lowest, though it cross-correlated strongly with the synthesis of 12 other cytokines, implying that the destructive effects associated with TNFalpha may be due to interactions of multiple cytokine activities. IL-23 expression did not correlate with pathology, possibly suggesting that IL-23 is involved in the initiation but not the perpetuation of inflammation. Four cytokines (IL-2, IL-3, IL-4 and IL-5) remained negative in IL-10-/- mice, demonstrating that cytokine dysregulation was not universal. These findings emphasize the need to better understand cytokine networks in chronic inflammation and they provide a rationale for combining immunotherapies in the treatment of intestinal inflammation.
Collapse
Affiliation(s)
- Dina Montufar-Solis
- Department of Diagnostic Sciences, Dental Branch, University of Texas Health Science Center at Houston, 6516 MD Anderson Boulevard, Houston, TX, USA
| | | | | | | |
Collapse
|
159
|
Garrett WS, Lord GM, Punit S, Lugo-Villarino G, Mazmanian S, Ito S, Glickman JN, Glimcher LH. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell 2007; 131:33-45. [PMID: 17923086 PMCID: PMC2169385 DOI: 10.1016/j.cell.2007.08.017] [Citation(s) in RCA: 731] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 07/09/2007] [Accepted: 08/13/2007] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) has been attributed to overexuberant host immunity or the emergence of harmful intestinal flora. The transcription factor T-bet orchestrates inflammatory genetic programs in both adaptive and innate immunity. We describe a profound and unexpected function for T-bet in influencing the behavior of host inflammatory activity and commensal bacteria. T-bet deficiency in the innate immune system results in spontaneous and communicable ulcerative colitis in the absence of adaptive immunity and increased susceptibility to colitis in immunologically intact hosts. T-bet controls the response of the mucosal immune system to commensal bacteria by regulating TNF-alpha production in colonic dendritic cells, critical for colonic epithelial barrier maintenance. Loss of T-bet influences bacterial populations to become colitogenic, and this colitis is communicable to genetically intact hosts. These findings reveal a novel function for T-bet as a peacekeeper of host-commensal relationships and provide new perspectives on the pathophysiology of IBD.
Collapse
Affiliation(s)
- Wendy S. Garrett
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA
| | - Graham M. Lord
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA
- Department of Nephrology and Transplantation, King’s College, London, SE1 9RT, UK
- NIHR Biomedical Research Centre at Guy’s & St Thomas’ NHS Foundation Trust and King’s College London, UK
| | - Shivesh Punit
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA
| | | | - Sarkis Mazmanian
- Division of Biology, California Institute of Technology, Pasadena, CA
| | - Susumu Ito
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Jonathan N. Glickman
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Laurie H. Glimcher
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
160
|
Gibson DL, Ma C, Rosenberger CM, Bergstrom KSB, Valdez Y, Huang JT, Khan MA, Vallance BA. Toll-like receptor 2 plays a critical role in maintaining mucosal integrity during Citrobacter rodentium-induced colitis. Cell Microbiol 2007; 10:388-403. [PMID: 17910742 DOI: 10.1111/j.1462-5822.2007.01052.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Inflammatory bowel diseases and infectious gastroenteritis likely occur when the integrity of intestinal barriers is disrupted allowing luminal bacterial products to cross into the intestinal mucosa, stimulating immune cells and triggering inflammation. While specific Toll-like receptors (TLR) are involved in the generation of inflammatory responses against enteric bacteria, their contributions to the maintenance of intestinal mucosal integrity are less clear. These studies investigated the role of TLR2 in a model of murine colitis induced by the bacterial pathogen Citrobacter rodentium. C. rodentium supernatants specifically activated TLR2 in vitro while infected TLR2-/- mice suffered a lethal colitis coincident with colonic mucosal ulcerations, bleeding and increased cell death but not increased pathogen burden. TLR2-/- mice suffered impaired epithelial barrier function mediated via zonula occludens (ZO)-1 in naïve mice and claudin-3 in infected mice, suggesting this could underlie their susceptibility. TLR2 deficiency was also associated with impaired production of IL-6 by bone marrow-derived macrophages and infected colons cultured ex vivo. As IL-6 has antiapoptotic and epithelial repair capabilities, its reduced expression could contribute to the impaired mucosal integrity. These studies report for the first time that TLR2 plays a critical role in maintaining intestinal mucosal integrity during infection by a bacterial pathogen.
Collapse
Affiliation(s)
- Deanna L Gibson
- Division of Gastroenterology, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | |
Collapse
|
161
|
Singh AB, Sugimoto K, Dhawan P, Harris RC. Juxtacrine activation of EGFR regulates claudin expression and increases transepithelial resistance. Am J Physiol Cell Physiol 2007; 293:C1660-8. [PMID: 17855771 DOI: 10.1152/ajpcell.00274.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Heparin-binding (HB)-EGF, a ligand for EGF receptors, is synthesized as a membrane-anchored precursor that is potentially capable of juxtacrine activation of EGF receptors. However, the physiological importance of such juxtacrine signaling remains poorly described, due to frequent inability to distinguish effects mediated by membrane-anchored HB-EGF vs. mature "secreted HB-EGF." In our studies, using stable expression of a noncleavable, membrane-anchored rat HB-EGF isoform (MDCK(rat5aa) cells) in Madin-Darby canine kidney (MDCK) II cells, we observed a significant increase in transepithelial resistance (TER). Similar significant increases in TER were observed on stable expression of an analogous, noncleavable, membrane-anchored human HB-EGF construct (MDCK(human5aa) cells). The presence of noncleavable, membrane-anchored HB-EGF led to alterations in the expression of selected claudin family members, including a marked decrease in claudin-2 in MDCK(rat5aa) cells compared with the control MDCK cells. Reexpression of claudin-2 in MDCK(rat5aa) cells largely prevented the increases in TER. Ion substitution studies indicated decreased paracellular ionic permeability of Na(+) in MDCK(rat5aa) cells, further indicating that the altered claudin-2 expression mediated the increased TER seen in these cells. In a Ca(2+)-switch model, increased phosphorylation of EGF receptor and Akt was observed in MDCK(rat5aa) cells compared with the control MDCK cells, and inhibition of these pathways inhibited TER changes specifically in MDCK(rat5aa) cells. Therefore, we hypothesize that juxtacrine activation of EGFR by membrane-anchored HB-EGF may play an important role in the regulation of tight junction proteins and TER.
Collapse
Affiliation(s)
- Amar B Singh
- Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232-4794, USA.
| | | | | | | |
Collapse
|
162
|
Zhou P, Li E, Shea-Donohue T, Singer SM. Tumour necrosis factor alpha contributes to protection against Giardia lamblia infection in mice. Parasite Immunol 2007; 29:367-74. [PMID: 17576366 PMCID: PMC2443547 DOI: 10.1111/j.1365-3024.2007.00953.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Giardia lamblia is a ubiquitous parasite that causes diarrhoea. Effective control of Giardia infections in mice has been shown to involve IgA, T cells, mast cells and IL-6. We now show that Tumour necrosis factor alpha (TNFalpha) also plays an important role in the early control of giardiasis. Mice treated with neutralizing anti-TNFalpha antibodies or genetically deficient in TNFalpha were infected with the G. lamblia clone GS/(M)-H7. In both cases, mice lacking TNFalpha had much higher parasite numbers than controls during the first 2 weeks of infections. However, anti-parasite IgA levels, mast cell responses, and IL-4 and IL-6 mRNA levels do not appear significantly altered in the absence of TNFalpha. In addition, we show that mice infected with G. lamblia exhibit increased intestinal permeability, similar to human Giardia infection, and that this increase occurs in both wild-type and TNFalpha deficient mice. We conclude that TNFalpha is essential for host resistance to G. lamblia infection, and that it does not exert its effects through mechanisms previously implicated in control of this parasite.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Erqiu Li
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Terez Shea-Donohue
- Department of Medicine and Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Steven M. Singer
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
163
|
Mankertz J, Schulzke JD. Altered permeability in inflammatory bowel disease: pathophysiology and clinical implications. Curr Opin Gastroenterol 2007; 23:379-83. [PMID: 17545772 DOI: 10.1097/mog.0b013e32816aa392] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW To present the mechanisms behind barrier disturbance in inflammatory bowel disease and their functional consequences. RECENT FINDINGS A reduction in tight junction strands, strand breaks and alteration of tight junction protein content and composition characterize Crohn's disease. In ulcerative colitis, epithelial leaks appear early as a result of microerosions, upregulated epithelial apoptosis and tight junction protein changes with pronounced increases in claudin-2. T-helper type 1 cytokine effects by interferon-gamma and tumour necrosis factor alpha are important for epithelial damage in Crohn's disease. Interleukin-13 is the key effector cytokine in ulcerative colitis, stimulating epithelial cell apoptosis, and can upregulate claudin-2 expression. Together with interleukin-13-induced epithelial restitution arrest, this may explain why ulcer lesions occur in early stages of ulcerative colitis but are only observed in advanced inflammatory stages in Crohn's disease. SUMMARY Barrier dysfunction in inflammatory bowel disease contributes to diarrhea by a leak flux mechanism and can cause mucosal inflammation secondary to luminal antigen uptake. Barrier abnormalities, such as epithelial tight junction changes and apoptotic leaks, gross mucosal lesions, and epithelial restitution arrest are responsible for these abnormalities and are the result of immune dysregulation. Studying the underlying mechanisms is important in understanding the pathophysiology of inflammatory bowel disease and developing therapeutic strategies.
Collapse
Affiliation(s)
- Joachim Mankertz
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Campus Benjamin Franklin, Berlin, Germany
| | | |
Collapse
|
164
|
Wu L, Feng BS, He SH, Zheng PY, Croitoru K, Yang PC. Bacterial peptidoglycan breaks down intestinal tolerance via mast cell activation: the role of TLR2 and NOD2. Immunol Cell Biol 2007; 85:538-45. [PMID: 17563761 DOI: 10.1038/sj.icb.7100079] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intestinal microbes are believed to be involved in the pathogenesis of inflammatory bowel disease. Microbes and their products are generally well tolerated by intestinal epithelial cells in the intestinal tract of healthy individuals. It is of significance to understand what breaks down the established tolerance leading to intestinal barrier dysfunction and intestinal inflammation. T84 monolayer transported peptidoglycan (PGN) was determined by enzyme-linked immune assay. Mast cell line HMC-1 cell activation in response to PGN stimulation was observed with electron microscopy and measurement of histamine release. T84 monolayer barrier function was determined by recording the transepithelial electric resistance (TER) and measuring the permeability in response to PGN-induced HMC-1 cell activation. Expression of Toll-like receptor (TLR) 2 and nucleotide-binding oligomerization domain (NOD) 2 were determined by immunocytochemistry, real-time reverse transcription (RT)-PCR and Western blot. Exposure to PGN alone did not alter TER and permeability of T84 monolayers. T84 monolayers transported PGN from the apical chamber to the basal chamber of transwell system. TLR2 expressed on the surface of HMC-1 cells. HMC-1 cells absorbed PGN. HMC-1 cells released histamine in response to the PGN stimulation, which was blocked by pretreatment with antibodies or small interfering RNA against TLR2 or NOD2. In a co-culture system, T84 monolayer transported PGN activated HMC-1 cells and increased the horseradish peroxidase flux. TLR2 mediated the PGN-absorption in HMC-1 cells. Blockade of TLR2 or NOD2 abolished PGN-induced HMC-1 cell activation and T84 monolayer barrier dysfunction. T84 monolayer transported PGN activates HMC-1 cells to release chemical mediators to induce T84 monolayer dysfunction that are mediated by TLR2 and NOD2.
Collapse
Affiliation(s)
- Linda Wu
- Pathology & Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | |
Collapse
|