151
|
Guyer L, Hofstetter SS, Christ B, Lira BS, Rossi M, Hörtensteiner S. Different mechanisms are responsible for chlorophyll dephytylation during fruit ripening and leaf senescence in tomato. PLANT PHYSIOLOGY 2014; 166:44-56. [PMID: 25033826 PMCID: PMC4149727 DOI: 10.1104/pp.114.239541] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/03/2014] [Indexed: 05/17/2023]
Abstract
Chlorophyll breakdown occurs in different green plant tissues (e.g. during leaf senescence and in ripening fruits). For different plant species, the PHEOPHORBIDE A OXYGENASE (PAO)/phyllobilin pathway has been described to be the major chlorophyll catabolic pathway. In this pathway, pheophorbide (i.e. magnesium- and phytol-free chlorophyll) occurs as a core intermediate. Most of the enzymes involved in the PAO/phyllobilin pathway are known; however, the mechanism of dephytylation remains uncertain. During Arabidopsis (Arabidopsis thaliana) leaf senescence, phytol hydrolysis is catalyzed by PHEOPHYTINASE (PPH), which is specific for pheophytin (i.e. magnesium-free chlorophyll). By contrast, in fruits of different Citrus spp., chlorophyllase, hydrolyzing phytol from chlorophyll, was shown to be active. Here, we enlighten the process of chlorophyll breakdown in tomato (Solanum lycopersicum), both in leaves and fruits. We demonstrate the activity of the PAO/phyllobilin pathway and identify tomato PPH (SlPPH), which, like its Arabidopsis ortholog, was specifically active on pheophytin. SlPPH localized to chloroplasts and was transcriptionally up-regulated during leaf senescence and fruit ripening. SlPPH-silencing tomato lines were impaired in chlorophyll breakdown and accumulated pheophytin during leaf senescence. However, although pheophytin transiently accumulated in ripening fruits of SlPPH-silencing lines, ultimately these fruits were able to degrade chlorophyll like the wild type. We conclude that PPH is the core phytol-hydrolytic enzyme during leaf senescence in different plant species; however, fruit ripening involves other hydrolases, which are active in parallel to PPH or are the core hydrolases in fruits. These hydrolases remain unidentified, and we discuss the question of whether chlorophyllases might be involved.
Collapse
Affiliation(s)
- Luzia Guyer
- Institute of Plant Biology, University of Zurich, CH-8008 Zurich, Switzerland (L.G., S.S.H., B.C., S.H.); andDepartemento de Botânica, Instituto de Biociências, Universidade de São Paulo, CEP05508-090 Sao Paulo, Brazil (B.S.L., M.R.)
| | - Silvia Schelbert Hofstetter
- Institute of Plant Biology, University of Zurich, CH-8008 Zurich, Switzerland (L.G., S.S.H., B.C., S.H.); andDepartemento de Botânica, Instituto de Biociências, Universidade de São Paulo, CEP05508-090 Sao Paulo, Brazil (B.S.L., M.R.)
| | - Bastien Christ
- Institute of Plant Biology, University of Zurich, CH-8008 Zurich, Switzerland (L.G., S.S.H., B.C., S.H.); andDepartemento de Botânica, Instituto de Biociências, Universidade de São Paulo, CEP05508-090 Sao Paulo, Brazil (B.S.L., M.R.)
| | - Bruno Silvestre Lira
- Institute of Plant Biology, University of Zurich, CH-8008 Zurich, Switzerland (L.G., S.S.H., B.C., S.H.); andDepartemento de Botânica, Instituto de Biociências, Universidade de São Paulo, CEP05508-090 Sao Paulo, Brazil (B.S.L., M.R.)
| | - Magdalena Rossi
- Institute of Plant Biology, University of Zurich, CH-8008 Zurich, Switzerland (L.G., S.S.H., B.C., S.H.); andDepartemento de Botânica, Instituto de Biociências, Universidade de São Paulo, CEP05508-090 Sao Paulo, Brazil (B.S.L., M.R.)
| | - Stefan Hörtensteiner
- Institute of Plant Biology, University of Zurich, CH-8008 Zurich, Switzerland (L.G., S.S.H., B.C., S.H.); andDepartemento de Botânica, Instituto de Biociências, Universidade de São Paulo, CEP05508-090 Sao Paulo, Brazil (B.S.L., M.R.)
| |
Collapse
|
152
|
Pérez-Ruiz JM, Guinea M, Puerto-Galán L, Cejudo FJ. NADPH thioredoxin reductase C is involved in redox regulation of the Mg-chelatase I subunit in Arabidopsis thaliana chloroplasts. MOLECULAR PLANT 2014; 7:1252-1255. [PMID: 24658415 DOI: 10.1093/mp/ssu032] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- Juan Manuel Pérez-Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, 41092-Sevilla, Spain
| | - Manuel Guinea
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, 41092-Sevilla, Spain Present address: Umea Plant Science Centre, Department of Plant Physiology, Umea University, S-901 87 Umea, Sweden
| | - Leonor Puerto-Galán
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, 41092-Sevilla, Spain
| | - Francisco Javier Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, 41092-Sevilla, Spain
| |
Collapse
|
153
|
Tomiyama M, Inoue SI, Tsuzuki T, Soda M, Morimoto S, Okigaki Y, Ohishi T, Mochizuki N, Takahashi K, Kinoshita T. Mg-chelatase I subunit 1 and Mg-protoporphyrin IX methyltransferase affect the stomatal aperture in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2014; 127:553-63. [PMID: 24840863 PMCID: PMC4683165 DOI: 10.1007/s10265-014-0636-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 03/26/2014] [Indexed: 05/23/2023]
Abstract
To elucidate the molecular mechanisms of stomatal opening and closure, we performed a genetic screen using infrared thermography to isolate stomatal aperture mutants. We identified a mutant designated low temperature with open-stomata 1 (lost1), which exhibited reduced leaf temperature, wider stomatal aperture, and a pale green phenotype. Map-based analysis of the LOST1 locus revealed that the lost1 mutant resulted from a missense mutation in the Mg-chelatase I subunit 1 (CHLI1) gene, which encodes a subunit of the Mg-chelatase complex involved in chlorophyll synthesis. Transformation of the wild-type CHLI1 gene into lost1 complemented all lost1 phenotypes. Stomata in lost1 exhibited a partial ABA-insensitive phenotype similar to that of rtl1, a Mg-chelatase H subunit missense mutant. The Mg-protoporphyrin IX methyltransferase (CHLM) gene encodes a subsequent enzyme in the chlorophyll synthesis pathway. We examined stomatal movement in a CHLM knockdown mutant, chlm, and found that it also exhibited an ABA-insensitive phenotype. However, lost1 and chlm seedlings all showed normal expression of ABA-induced genes, such as RAB18 and RD29B, in response to ABA. These results suggest that the chlorophyll synthesis enzymes, Mg-chelatase complex and CHLM, specifically affect ABA signaling in the control of stomatal aperture and have no effect on ABA-induced gene expression.
Collapse
Affiliation(s)
- Masakazu Tomiyama
- />Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602 Japan
| | - Shin-ichiro Inoue
- />Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602 Japan
| | - Tomo Tsuzuki
- />Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602 Japan
| | - Midori Soda
- />Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602 Japan
| | - Sayuri Morimoto
- />Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602 Japan
| | - Yukiko Okigaki
- />Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602 Japan
| | - Takaya Ohishi
- />Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602 Japan
| | - Nobuyoshi Mochizuki
- />Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa, Kyoto, 606-8502 Japan
| | - Koji Takahashi
- />Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602 Japan
| | - Toshinori Kinoshita
- />Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602 Japan
- />Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602 Japan
| |
Collapse
|
154
|
Kobayashi K, Fujii S, Sasaki D, Baba S, Ohta H, Masuda T, Wada H. Transcriptional regulation of thylakoid galactolipid biosynthesis coordinated with chlorophyll biosynthesis during the development of chloroplasts in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2014; 5:272. [PMID: 24966866 PMCID: PMC4052731 DOI: 10.3389/fpls.2014.00272] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/25/2014] [Indexed: 05/23/2023]
Abstract
Biogenesis of thylakoid membranes in chloroplasts requires the coordinated synthesis of chlorophyll and photosynthetic proteins with the galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), which constitute the bulk of the thylakoid lipid matrix. MGD1 and DGD1 are the key enzymes of MGDG and DGDG synthesis, respectively. We investigated the expression profiles of MGD1 and DGD1 in Arabidopsis to identify the transcriptional regulation that coordinates galactolipid synthesis with the synthesis of chlorophyll and photosynthetic proteins during chloroplast biogenesis. The expression of both MGD1 and DGD1 was repressed in response to defects in chlorophyll synthesis. Moreover, these genes were downregulated by norflurazon-induced chloroplast malfunction via the GENOMES-UNCOUPLED1-mediated plastid signaling pathway. Similar to other photosynthesis-associated nuclear genes, the expression of MGD1 and DGD1 was induced by light, in which both cytokinin signaling and LONG HYPOCOTYL5-mediated light signaling played crucial roles. The expression of these galactolipid-synthesis genes, and particularly that of DGD1 under continuous light, was strongly affected by the activities of the GOLDEN2-LIKE transcription factors, which are potent regulators of chlorophyll synthesis and chloroplast biogenesis. These results suggest tight transcriptional coordination of galactolipid synthesis with the formation of the photosynthetic chlorophyll-protein complexes during leaf development. Meanwhile, unlike the photosynthetic genes, the galactolipid synthesis genes were not upregulated during chloroplast biogenesis in the roots, even though the galactolipids accumulated with chlorophylls, indicating the importance of post-transcriptional regulation of galactolipid synthesis during root greening. Our data suggest that plants utilize complex regulatory mechanisms to modify galactolipid synthesis with chloroplast development during plant growth.
Collapse
Affiliation(s)
- Koichi Kobayashi
- Graduate School of Arts and Sciences, The University of TokyoTokyo, Japan
| | - Sho Fujii
- Graduate School of Arts and Sciences, The University of TokyoTokyo, Japan
| | - Daichi Sasaki
- Graduate School of Arts and Sciences, The University of TokyoTokyo, Japan
| | - Shinsuke Baba
- Center for Biological Resources and Informatics, Tokyo Institute of TechnologyYokohama, Japan
| | - Hiroyuki Ohta
- Center for Biological Resources and Informatics, Tokyo Institute of TechnologyYokohama, Japan
- Earth-Life Science Institute, Tokyo Institute of TechnologyTokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology AgencyTokyo, Japan
| | - Tatsuru Masuda
- Graduate School of Arts and Sciences, The University of TokyoTokyo, Japan
| | - Hajime Wada
- Graduate School of Arts and Sciences, The University of TokyoTokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology AgencyTokyo, Japan
| |
Collapse
|
155
|
Apitz J, Schmied J, Lehmann MJ, Hedtke B, Grimm B. GluTR2 Complements a hema1 Mutant Lacking Glutamyl-tRNA Reductase 1, but is Differently Regulated at the Post-Translational Level. ACTA ACUST UNITED AC 2014; 55:645-57. [DOI: 10.1093/pcp/pcu016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
156
|
Ethylene-orchestrated circuitry coordinates a seedling's response to soil cover and etiolated growth. Proc Natl Acad Sci U S A 2014; 111:3913-20. [PMID: 24599595 DOI: 10.1073/pnas.1402491111] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The early life of terrestrial seed plants often starts under the soil in subterranean darkness. Over time and through adaptation, plants have evolved an elaborate etiolation process that enables seedlings to emerge from soil and acquire autotrophic ability. This process, however, requires seedlings to be able to sense the soil condition and relay this information accordingly to modulate both the seedlings' growth and the formation of photosynthetic apparatus. The mechanism by which soil overlay drives morphogenetic changes in plants, however, remains poorly understood, particularly with regard to the means by which the cellular processes of different organs are coordinated in response to disparate soil conditions. Here, we illustrate that the soil overlay quantitatively activates seedlings' ethylene production, and an EIN3/EIN3-like 1-dependent ethylene-response cascade is required for seedlings to successfully emerge from the soil. Under soil, an ERF1 pathway is activated in the hypocotyl to slow down cell elongation, whereas a PIF3 pathway is activated in the cotyledon to control the preassembly of photosynthetic machinery. Moreover, this latter PIF3 pathway appears to be coupled to the ERF1-regulated upward-growth rate. The coupling of these two pathways facilitates the synchronized progression of etioplast maturation and hypocotyl growth, which, in turn, ultimately enables seedlings to maintain the amount of protochlorophyllide required for rapid acquisition of photoautotrophic capacity without suffering from photooxidative damage during the dark-to-light transition. Our findings illustrate the existence of a genetic signaling pathway driving soil-induced plant morphogenesis and define the specific role of ethylene in orchestrating organ-specific soil responses in Arabidopsis seedlings.
Collapse
|
157
|
Jarvis P, López-Juez E. Biogenesis and homeostasis of chloroplasts and other plastids. Nat Rev Mol Cell Biol 2014; 14:787-802. [PMID: 24263360 DOI: 10.1038/nrm3702] [Citation(s) in RCA: 423] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chloroplasts are the organelles that define plants, and they are responsible for photosynthesis as well as numerous other functions. They are the ancestral members of a family of organelles known as plastids. Plastids are remarkably dynamic, existing in strikingly different forms that interconvert in response to developmental or environmental cues. The genetic system of this organelle and its coordination with the nucleocytosolic system, the import and routing of nucleus-encoded proteins, as well as organellar division all contribute to the biogenesis and homeostasis of plastids. They are controlled by the ubiquitin-proteasome system, which is part of a network of regulatory mechanisms that integrate plastid development into broader programmes of cellular and organismal development.
Collapse
Affiliation(s)
- Paul Jarvis
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | |
Collapse
|
158
|
Qadir S, Jamshieed S, Rasool S, Ashraf M, Akram NA, Ahmad P. Modulation of plant growth and metabolism in cadmium-enriched environments. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 229:51-88. [PMID: 24515810 DOI: 10.1007/978-3-319-03777-6_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cadmium (Cd) is a water soluble metal pollutant that is not essential to plant growth.It has attracted attention from soil scientists and plant nutritionists in recent years because of its toxicity and mobility in the soil-plant continuum. Even low levels of Cd (0.1-1 J.!M) cause adverse effects on plant growth and metabolism. Cadmium is known to trigger the synthesis of reactive oxygen species, hinder utilization, uptake and transport of essential nutrients and water, and modify photosynthetic machinery,thereby resulting in plant tissue death. Although the effects of Cd are dose- as well as plant species-dependent, some plants show Cd tolerance through a wide range of cellular responses. Such tolerance results from synthesis of osmolytes,generation of enzymatic and non-enzymatic antioxidants and metal-detoxifying peptides, changes in gene expression, and metal ion homeostasis and compartmentalization of ligand-metal complexes. Cd toxicity in plants produces effects on chlorophyllbio synthesis, reduces photosynthesis, and upsets plant water relations and hormonal and/or nutritional balances. All of these effects on plants and on plant metabolism ultimately reduce growth and productivity.In this review, we describe the extent to which Cd affects underlying metabolic processes in plants and how such altered processes affect plant growth. We review the sources of Cd contamination, its uptake, transportation and bioavailability and accumulation in plants, and its antagonistic and synergistic effects with other metals and compounds. We further address the effects of Cd on plant genetics and metabolism,and how plants respond to mitigate the adverse effects of Cd exposure, as well as strategies(e.g., plant breeding) that can reduce the impact of Cd contamination on plants.
Collapse
Affiliation(s)
- Shaista Qadir
- Department of Botany, Womens Degree College, Moulana Azad Road, Srinagar, Jammu and Kashmir, 190001, India
| | | | | | | | | | | |
Collapse
|
159
|
Hemschemeier A. Photo-bleaching of Chlamydomonas reinhardtii after dark-anoxic incubation. PLANT SIGNALING & BEHAVIOR 2013; 8:e27263. [PMID: 24300667 PMCID: PMC4092315 DOI: 10.4161/psb.27263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/19/2013] [Accepted: 11/19/2013] [Indexed: 05/21/2023]
Abstract
In aerobes, anoxia impairs mitochondrial energy generation as well as biosynthesis and degradation of essential cell components. In a recent analysis we have shown that the unicellular green alga Chlamydomonas reinhardtii responds to anaerobiosis in the dark by significant changes of the transcriptome, which, in summary, were directed at saving and economizing energy. Several of the transcriptional changes were related to photosynthesis and were accompanied by reduced amounts of chlorophylls and plastid lipids as well as lowered photosystem 2 quantum yields. A further noticeable pattern was a transcriptional upregulation of various genes encoding O 2 dependent enzymes of central biosynthetic pathways. However, cells do not divide in dark-anoxia, indicating that C. reinhardtii cannot compensate for the lack of O 2 and light. Upon return to aeration and light, cultures show severe photo-bleaching, which might be a stress reaction, but also part of an acclimation process or its disturbance.
Collapse
|
160
|
Ruppel NJ, Kropp KN, Davis PA, Martin AE, Luesse DR, Hangarter RP. Mutations in GERANYLGERANYL DIPHOSPHATE SYNTHASE 1 affect chloroplast development in Arabidopsis thaliana (Brassicaceae). AMERICAN JOURNAL OF BOTANY 2013; 100:2074-84. [PMID: 24081146 DOI: 10.3732/ajb.1300124] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
PREMISE OF THE STUDY Within plastids, geranylgeranyl diphosphate synthase is a key enzyme in the isoprenoid biosynthetic pathway that catalyzes the formation of geranylgeranyl diphosphate, a precursor molecule to several biochemical pathways including those that lead into the biosynthesis of carotenoids and abscisic acid, prenyllipids such as the chlorophylls, and diterpenes such as gibberellic acid. • METHODS We have identified mutants in the GERANYLGERANYL DIPHOSPHATE SYNTHASE 1 (GGPS1) gene, which encodes the major plastid-localized enzyme geranylgeranyl diphosphate synthase in Arabidopsis thaliana. • KEY RESULTS Two T-DNA insertion mutant alleles (ggps1-2 and ggps1-3) were found to result in seedling-lethal albino and embryo-lethal phenotypes, respectively, indicating that GGPS1 is an essential gene. We also identified a temperature-sensitive leaf variegation mutant (ggps1-1) in A. thaliana that is caused by a point mutation. Total chlorophyll and carotenoid levels were reduced in ggps1-1 white tissues as compared with green tissues. Phenotypes typically associated with a reduction in gibberellic acid were not seen, suggesting that gibberellic acid biosynthesis is not noticeably altered in the mutant. In contrast to other variegated mutants, the ggps1-1 green sector photosynthetic rate was not elevated relative to wild-type tissues. Chloroplast development in green sectors of variegated leaves appeared normal, whereas cells in white sectors contained abnormal plastids with numerous electron translucent bodies and poorly developed internal membranes. • CONCLUSIONS Our results indicate that GGPS1 is a key gene in the chlorophyll biosynthetic pathway.
Collapse
Affiliation(s)
- Nicholas J Ruppel
- Indiana University, Department of Biology, 915 E 3rd Street, Bloomington, Indiana 47405 USA
| | | | | | | | | | | |
Collapse
|
161
|
Richter AS, Grimm B. Thiol-based redox control of enzymes involved in the tetrapyrrole biosynthesis pathway in plants. FRONTIERS IN PLANT SCIENCE 2013; 4:371. [PMID: 24065975 PMCID: PMC3778395 DOI: 10.3389/fpls.2013.00371] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/30/2013] [Indexed: 05/20/2023]
Abstract
The last decades of research brought substantial insights into tetrapyrrole biosynthetic pathway in photosynthetic organisms. Almost all genes have been identified and roles of seemingly all essential proteins, leading to the synthesis of heme, siroheme, phytochromobilin, and chlorophyll (Chl), have been characterized. Detailed studies revealed the existence of a complex network of transcriptional and post-translational control mechanisms for maintaining a well-adjusted tetrapyrrole biosynthesis during plant development and adequate responses to environmental changes. Among others one of the known post-translational modifications is regulation of enzyme activities by redox modulators. Thioredoxins and NADPH-dependent thioredoxin reductase C (NTRC) adjust the activity of tetrapyrrole synthesis to the redox status of plastids. Excessive excitation energy of Chls in both photosystems and accumulation of light-absorbing unbound tetrapyrrole intermediates generate reactive oxygen species, which interfere with the plastid redox poise. Recent reports highlight ferredoxin-thioredoxin and NTRC-dependent control of key steps in tetrapyrrole biosynthesis in plants. In this review we introduce the regulatory impact of these reductants on the stability and activity of enzymes involved in 5-aminolevulinic acid synthesis as well as in the Mg-branch of the tetrapyrrole biosynthetic pathway and we propose molecular mechanisms behind this redox control.
Collapse
Affiliation(s)
| | - Bernhard Grimm
- *Correspondence: Bernhard Grimm, Department of Plant Physiology, Institute of Biology, Mathematisch-Naturwissenschaftliche-Fakultät I, Humboldt-University Berlin, Philippstrasse 13, 10115 Berlin, Germany e-mail:
| |
Collapse
|
162
|
Richter AS, Peter E, Rothbart M, Schlicke H, Toivola J, Rintamäki E, Grimm B. Posttranslational influence of NADPH-dependent thioredoxin reductase C on enzymes in tetrapyrrole synthesis. PLANT PHYSIOLOGY 2013; 162:63-73. [PMID: 23569108 PMCID: PMC3641230 DOI: 10.1104/pp.113.217141] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/03/2013] [Indexed: 05/20/2023]
Abstract
The NADPH-dependent thioredoxin reductase C (NTRC) is involved in redox-related regulatory processes in chloroplasts and nonphotosynthetic active plastids. Together with 2-cysteine peroxiredoxin, it forms a two-component peroxide-detoxifying system that acts as a reductant under stress conditions. NTRC stimulates in vitro activity of magnesium protoporphyrin IX monomethylester (MgPMME) cyclase, most likely by scavenging peroxides. Reexamination of tetrapyrrole intermediate levels of the Arabidopsis (Arabidopsis thaliana) knockout ntrc reveals lower magnesium protoporphyrin IX (MgP) and MgPMME steady-state levels, the substrate and the product of MgP methyltransferase (CHLM) preceding MgPMME cyclase, while MgP strongly accumulates in mutant leaves after 5-aminolevulinic acid feeding. The ntrc mutant has a reduced capacity to synthesize 5-aminolevulinic acid and reduced CHLM activity compared with the wild type. Although transcript levels of genes involved in chlorophyll biosynthesis are not significantly altered in 2-week-old ntrc seedlings, the contents of glutamyl-transfer RNA reductase1 (GluTR1) and CHLM are reduced. Bimolecular fluorescence complementation assay confirms a physical interaction of NTRC with GluTR1 and CHLM. While ntrc contains partly oxidized CHLM, the wild type has only reduced CHLM. As NTRC also stimulates CHLM activity in vitro, it is proposed that NTRC has a regulatory impact on the redox status of conserved cysteine residues of CHLM. It is hypothesized that a deficiency of NTRC leads to a lower capacity to reduce cysteine residues of GluTR1 and CHLM, affecting the stability and, thereby, altering the activity in the entire tetrapyrrole synthesis pathway.
Collapse
|
163
|
Yamatani H, Sato Y, Masuda Y, Kato Y, Morita R, Fukunaga K, Nagamura Y, Nishimura M, Sakamoto W, Tanaka A, Kusaba M. NYC4, the rice ortholog of Arabidopsis THF1, is involved in the degradation of chlorophyll - protein complexes during leaf senescence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:652-62. [PMID: 23432654 DOI: 10.1111/tpj.12154] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/02/2013] [Accepted: 02/12/2013] [Indexed: 05/21/2023]
Abstract
Yellowing/chlorophyll breakdown is a prominent phenomenon in leaf senescence, and is associated with the degradation of chlorophyll - protein complexes. From a rice mutant population generated by ionizing radiation, we isolated nyc4-1, a stay-green mutant with a defect in chlorophyll breakdown during leaf senescence. Using gene mapping, nyc4-1 was found to be linked to two chromosomal regions. We extracted Os07g0558500 as a candidate for NYC4 via gene expression microarray analysis, and concluded from further evidence that disruption of the gene by a translocation-related event causes the nyc4 phenotype. Os07g0558500 is thought to be the ortholog of THF1 in Arabidopsis thaliana. The thf1 mutant leaves show variegation in a light intensity-dependent manner. Surprisingly, the Fv /Fm value remained high in nyc4-1 during the dark incubation, suggesting that photosystem II retained its function. Western blot analysis revealed that, in nyc4-1, the PSII core subunits D1 and D2 were significantly retained during leaf senescence in comparison with wild-type and other non-functional stay-green mutants, including sgr-2, a mutant of the key regulator of chlorophyll degradation SGR. The role of NYC4 in degradation of chlorophyll and chlorophyll - protein complexes during leaf senescence is discussed.
Collapse
Affiliation(s)
- Hiroshi Yamatani
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Czarnecki O, Grimm B. New insights in the topology of the biosynthesis of 5-aminolevulinic acid. PLANT SIGNALING & BEHAVIOR 2013; 8:e23124. [PMID: 23299429 PMCID: PMC3657009 DOI: 10.4161/psb.23124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The formation of 5-aminolevulinic acid (ALA) at the beginning of the pathway is the rate limiting step of tetrapyrrole biosynthesis and target of multiple timely and spatially organized control mechanisms. Recent discovery of a glutamyl-tRNA reductase-binding protein (GluTRBP), reveals a new insight in the topology of regulation of plant ALA biosynthesis.
Collapse
Affiliation(s)
- Olaf Czarnecki
- Humboldt-Universität zu Berlin; Institute of Biology; Department of Plant Physiology; Berlin, Germany
- Oak Ridge National Laboratory, Biosciences Division, Plant Systems Biology, Oak Ridge, TN USA
| | - Bernhard Grimm
- Humboldt-Universität zu Berlin; Institute of Biology; Department of Plant Physiology; Berlin, Germany
- Correspondence to: Bernhard Grimm,
| |
Collapse
|
165
|
Quesada V, Sarmiento-Mañús R, González-Bayón R, Hricová A, Ponce MR, Micol JL. PORPHOBILINOGEN DEAMINASE deficiency alters vegetative and reproductive development and causes lesions in Arabidopsis. PLoS One 2013; 8:e53378. [PMID: 23308205 PMCID: PMC3540089 DOI: 10.1371/journal.pone.0053378] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/27/2012] [Indexed: 01/30/2023] Open
Abstract
The Arabidopsis rugosa1 (rug1) mutant has irregularly shaped leaves and reduced growth. In the absence of pathogens, leaves of rug1 plants have spontaneous lesions reminiscent of those seen in lesion-mimic mutants; rug1 plants also express cytological and molecular markers associated with defence against pathogens. These rug1 phenotypes are made stronger by dark/light transitions. The rug1 mutant also has delayed flowering time, upregulation of the floral repressor FLOWERING LOCUS C (FLC) and downregulation of the flowering promoters FT and SOC1/AGL20. Vernalization suppresses the late flowering phenotype of rug1 by repressing FLC. Microarray analysis revealed that 280 nuclear genes are differentially expressed between rug1 and wild type; almost a quarter of these genes are involved in plant defence. In rug1, the auxin response is also affected and several auxin-responsive genes are downregulated. We identified the RUG1 gene by map-based cloning and found that it encodes porphobilinogen deaminase (PBGD), also known as hydroxymethylbilane synthase, an enzyme of the tetrapyrrole biosynthesis pathway, which produces chlorophyll, heme, siroheme and phytochromobilin in plants. PBGD activity is reduced in rug1 plants, which accumulate porphobilinogen. Our results indicate that Arabidopsis PBGD deficiency impairs the porphyrin pathway and triggers constitutive activation of plant defence mechanisms leading to leaf lesions and affecting vegetative and reproductive development.
Collapse
Affiliation(s)
- Víctor Quesada
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, Spain
| | | | - Rebeca González-Bayón
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, Spain
| | - Andrea Hricová
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, Spain
| |
Collapse
|
166
|
Rodríguez-Celma J, Pan IC, Li W, Lan P, Buckhout TJ, Schmidt W. The transcriptional response of Arabidopsis leaves to Fe deficiency. FRONTIERS IN PLANT SCIENCE 2013; 4:276. [PMID: 23888164 PMCID: PMC3719017 DOI: 10.3389/fpls.2013.00276] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/04/2013] [Indexed: 05/20/2023]
Abstract
Due to its ease to donate or accept electrons, iron (Fe) plays a crucial role in respiration and metabolism, including tetrapyrrole synthesis, in virtually all organisms. In plants, Fe is a component of the photosystems and thus essential for photosynthesis. Fe deficiency compromises chlorophyll (Chl) synthesis, leading to interveinal chlorosis in developing leaves and decreased photosynthetic activity. To gain insights into the responses of photosynthetically active cells to Fe deficiency, we conducted transcriptional profiling experiments on leaves from Fe-sufficient and Fe-deficient plants using the RNA-seq technology. As anticipated, genes associated with photosynthesis and tetrapyrrole metabolism were dramatically down-regulated by Fe deficiency. A sophisticated response comprising the down-regulation of HEMA1 and NYC1, which catalyze the first committed step in tetrapyrrole biosynthesis and the conversion of Chl b to Chl a at the commencement of Chl breakdown, respectively, and the up-regulation of CGLD27, which is conserved in plastid-containing organisms and putatively involved in xanthophyll biosynthesis, indicates a carefully orchestrated balance of potentially toxic tetrapyrrole intermediates and functional end products to avoid photo-oxidative damage. Comparing the responses to Fe deficiency in leaves to that in roots confirmed subgroup 1b bHLH transcription factors and POPEYE/BRUTUS as important regulators of Fe homeostasis in both leaf and root cells, and indicated six novel players with putative roles in Fe homeostasis that were highly expressed in leaves and roots and greatly induced by Fe deficiency. The data further revealed down-regulation of organ-specific subsets of genes encoding ribosomal proteins, which may be indicative of a change in ribosomal composition that could bias translation. It is concluded that Fe deficiency causes a massive reorganization of plastid activity, which is adjusting leaf function to the availability of Fe.
Collapse
Affiliation(s)
| | - I Chun Pan
- Academia Sinica, Institute of Plant and Microbial BiologyTaipei, Taiwan
| | - Wenfeng Li
- Academia Sinica, Institute of Plant and Microbial BiologyTaipei, Taiwan
| | - Ping Lan
- Academia Sinica, Institute of Plant and Microbial BiologyTaipei, Taiwan
| | | | - Wolfgang Schmidt
- Academia Sinica, Institute of Plant and Microbial BiologyTaipei, Taiwan
- Biotechnology Center, National Chung-Hsing UniversityTaichung, Taiwan
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan UniversityTaipei, Taiwan
- *Correspondence: Wolfgang Schmidt, Academia Sinica, Institute of Plant and Microbial Biology, Academia Road 128, Taipei 11529, Taiwan e-mail:
| |
Collapse
|
167
|
Kobayashi K, Narise T, Sonoike K, Hashimoto H, Sato N, Kondo M, Nishimura M, Sato M, Toyooka K, Sugimoto K, Wada H, Masuda T, Ohta H. Role of galactolipid biosynthesis in coordinated development of photosynthetic complexes and thylakoid membranes during chloroplast biogenesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:250-61. [PMID: 22978702 DOI: 10.1111/tpj.12028] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 08/21/2012] [Accepted: 09/10/2012] [Indexed: 05/17/2023]
Abstract
The galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the predominant lipids in thylakoid membranes and indispensable for photosynthesis. Among the three isoforms that catalyze MGDG synthesis in Arabidopsis thaliana, MGD1 is responsible for most galactolipid synthesis in chloroplasts, whereas MGD2 and MGD3 are required for DGDG accumulation during phosphate (Pi) starvation. A null mutant of Arabidopsis MGD1 (mgd1-2), which lacks both galactolipids and shows a severe defect in chloroplast biogenesis under nutrient-sufficient conditions, accumulated large amounts of DGDG, with a strong induction of MGD2/3 expression, during Pi starvation. In plastids of Pi-starved mgd1-2 leaves, biogenesis of thylakoid-like internal membranes, occasionally associated with invagination of the inner envelope, was observed, together with chlorophyll accumulation. Moreover, the mutant accumulated photosynthetic membrane proteins upon Pi starvation, indicating a compensation for MGD1 deficiency by Pi stress-induced galactolipid biosynthesis. However, photosynthetic activity in the mutant was still abolished, and light-harvesting/photosystem core complexes were improperly formed, suggesting a requirement for MGDG for proper assembly of these complexes. During Pi starvation, distribution of plastid nucleoids changed concomitantly with internal membrane biogenesis in the mgd1-2 mutant. Moreover, the reduced expression of nuclear- and plastid-encoded photosynthetic genes observed in the mgd1-2 mutant under Pi-sufficient conditions was restored after Pi starvation. In contrast, Pi starvation had no such positive effects in mutants lacking chlorophyll biosynthesis. These observations demonstrate that galactolipid biosynthesis and subsequent membrane biogenesis inside the plastid strongly influence nucleoid distribution and the expression of both plastid- and nuclear-encoded photosynthetic genes, independently of photosynthesis.
Collapse
Affiliation(s)
- Koichi Kobayashi
- Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Tokyo, 153-8902, Japan
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Takafumi Narise
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Yokohama, 226-8501, Midori-ku, Japan
| | - Kintake Sonoike
- Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Tokyo, 162-8480, Shinjuku-ku, Japan
| | - Haruki Hashimoto
- Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Tokyo, 153-8902, Japan
| | - Naoki Sato
- Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Tokyo, 153-8902, Japan
| | - Maki Kondo
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Mayuko Sato
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kiminori Toyooka
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Keiko Sugimoto
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Hajime Wada
- Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Tokyo, 153-8902, Japan
| | - Tatsuru Masuda
- Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Tokyo, 153-8902, Japan
| | - Hiroyuki Ohta
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Yokohama, 226-8501, Midori-ku, Japan
| |
Collapse
|
168
|
Kobayashi K, Obayashi T, Masuda T. Role of the G-box element in regulation of chlorophyll biosynthesis in Arabidopsis roots. PLANT SIGNALING & BEHAVIOR 2012; 7:922-6. [PMID: 22827944 PMCID: PMC3474686 DOI: 10.4161/psb.20760] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Regulation of chlorophyll metabolism comprises strong transcriptional control together with a range of post-translational mechanisms during chloroplast biogenesis. Recently we reported that chlorophyll biosynthesis in Arabidopsis thaliana roots is regulated by auxin/cytokinin signaling via the combination of two transcription factors, LONG-HYPOCOTYL5 (HY5) and GOLDEN2-LIKE2 (GLK2). In this study, we examined the involvement of cis-elements in the expression of chlorophyll biosynthesis genes. Searches for predicted cis-elements in key chlorophyll biosynthesis genes and their co-expressed genes revealed coexistence of the G-box motif and the CCAATC motif, which may be targeted by HY5 and GLK factors, respectively, in their promoter regions. Deletion of the G-box from the promoter of the CHLH gene encoding the H subunit of Mg-chelatase resulted in the absence of its expression in roots but not in shoots, showing a differing involvement of the G-box in CHLH expression between shoots and roots. Our data suggest that transcription factors and cis-elements participating chlorophyll biosynthesis are substantially changed during organ differentiation, which may be linked to the differentiation of plastids.
Collapse
Affiliation(s)
- Koichi Kobayashi
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
| | | | | |
Collapse
|
169
|
Hamza I, Dailey HA. One ring to rule them all: trafficking of heme and heme synthesis intermediates in the metazoans. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1617-32. [PMID: 22575458 DOI: 10.1016/j.bbamcr.2012.04.009] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/15/2012] [Accepted: 04/19/2012] [Indexed: 12/17/2022]
Abstract
The appearance of heme, an organic ring surrounding an iron atom, in evolution forever changed the efficiency with which organisms were able to generate energy, utilize gasses and catalyze numerous reactions. Because of this, heme has become a near ubiquitous compound among living organisms. In this review we have attempted to assess the current state of heme synthesis and trafficking with a goal of identifying crucial missing information, and propose hypotheses related to trafficking that may generate discussion and research. The possibilities of spatially organized supramolecular enzyme complexes and organelle structures that facilitate efficient heme synthesis and subsequent trafficking are discussed and evaluated. Recently identified players in heme transport and trafficking are reviewed and placed in an organismal context. Additionally, older, well established data are reexamined in light of more recent studies on cellular organization and data available from newer model organisms. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Iqbal Hamza
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA.
| | | |
Collapse
|
170
|
Kobayashi K, Baba S, Obayashi T, Sato M, Toyooka K, Keränen M, Aro EM, Fukaki H, Ohta H, Sugimoto K, Masuda T. Regulation of root greening by light and auxin/cytokinin signaling in Arabidopsis. THE PLANT CELL 2012; 24:1081-95. [PMID: 22415275 PMCID: PMC3336121 DOI: 10.1105/tpc.111.092254] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 02/10/2012] [Accepted: 02/25/2012] [Indexed: 05/18/2023]
Abstract
Tight coordination between plastid differentiation and plant development is best evidenced by the synchronized development of photosynthetic tissues and the biogenesis of chloroplasts. Here, we show that Arabidopsis thaliana roots demonstrate accelerated chlorophyll accumulation and chloroplast development when they are detached from shoots. However, this phenomenon is repressed by auxin treatment. Mutant analyses suggest that auxin transported from the shoot represses root greening via the function of indole-3-acetic acid14, auxin response factor7 (ARF7), and ARF19. Cytokinin signaling, on the contrary, is required for chlorophyll biosynthesis in roots. The regulation by auxin/cytokinin is dependent on the transcription factor long hypocotyl5 (HY5), which is required for the expression of key chlorophyll biosynthesis genes in roots. The expression of yet another root greening transcription factor, golden2-like2 (GLK2), was found to be regulated in opposing directions by auxin and cytokinin. Furthermore, both the hormone signaling and the GLK transcription factors modified the accumulation of HY5 in roots. Overexpression of GLKs in the hy5 mutant provided evidence that GLKs require HY5 to maximize their activities in root greening. We conclude that the combination of HY5 and GLKs, functioning downstream of light and auxin/cytokinin signaling pathways, is responsible for coordinated expression of the key genes in chloroplast biogenesis.
Collapse
Affiliation(s)
- Koichi Kobayashi
- Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|