151
|
Yip SM, Morash C, Kolinsky MP, Kapoor A, Ong M, Selvarajah S, Nuk J, Compton K, Pouliot F, Lavallée LT, Khalaf DJ, Hamilton RJ, Gotto GT, Rendon RA, Antebi E, Hotte SJ, Malone S, Chi KN, Drachenberg DE, Saad F, Chan J, Ferrario C, Ko J, Shayegan B, Parimi S, So AI, Feifer A, Jansz K, Finch D, Chin JL, Osborne B, Ho KF, Galamo CD, Zardan A, Niazi T. Genetic testing practices among specialist physicians who treat prostate cancer A Canadian, cross-sectional survey. Can Urol Assoc J 2023; 17:326-336. [PMID: 37494316 PMCID: PMC10581730 DOI: 10.5489/cuaj.8403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
INTRODUCTION In patients with prostate cancer (PCa), the identification of an alteration in genes associated with homologous recombination repair (HRR) has implications for prognostication, optimization of therapy, and familial risk mitigation. The aim of this study was to assess the genomic testing landscape of PCa in Canada and to recommend an approach to offering germline and tumor testing for HRR-associated genes. METHODS The Canadian Genitourinary Research Consortium (GURC) administered a cross-sectional survey to a largely academic, multidisciplinary group of investigators across 22 GURC sites between January and June 2022. RESULTS Thirty-eight investigators from all 22 sites responded to the survey. Germline genetic testing was initiated by 34%, while 45% required a referral to a genetic specialist. Most investigators (82%) reported that both germline and tumor testing were needed, with 92% currently offering germline and 72% offering tissue testing to patients with advanced PCa. The most cited reasons for not offering testing were an access gap (50%), uncertainties around who to test and which genes to test, (33%) and interpreting results (17%). A majority reported that patients with advanced PCa (74-80%) should be tested, with few investigators testing patients with localized disease except when there is a family history of PCa (45-55%). CONCLUSIONS Canadian physicians with academic subspecialist backgrounds in genitourinary malignancies recognize the benefits of both germline and somatic testing in PCa; however, there are challenges in accessing testing across practices and specialties. An algorithm to reduce uncertainty for providers when ordering genetic testing for patients with PCa is proposed.
Collapse
Affiliation(s)
- Steven M Yip
- Tom Baker Cancer Centre, University of Calgary, Calgary, AB, Canada
| | | | | | - Anil Kapoor
- St Joseph's Healthcare, McMaster University, Hamilton, ON, Canada
| | - Michael Ong
- Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Shamini Selvarajah
- Department of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network (UHN), Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jennifer Nuk
- Hereditary Cancer Program, BC Cancer, Vancouver, BC, Canada
| | - Katie Compton
- Hereditary Cancer Program, BC Cancer, Vancouver, BC, Canada
| | - Frederic Pouliot
- Centre hospitalier universitaire de Québec, Université Laval, Quebec City, QC, Canada
| | - Luke T Lavallée
- Division of Urology, Department of Surgery, University of Ottawa and Ottawa Hospital Research Institute Epidemiology Program, Ottawa, ON, Canada
| | - Daniel J Khalaf
- Department of Medicine, Medical Oncology Division, BC Cancer, Vancouver Centre, University of British Columbia, Vancouver, BC, Canada
| | - Robert J Hamilton
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Geoffrey T Gotto
- Southern Alberta Institute of Urology, University of Calgary, Calgary, AB, Canada
| | - Ricardo A Rendon
- Queen Elizabeth II Health Sciences Centre, Dalhousie University, Halifax, NS, Canada
| | - Elie Antebi
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Shawn Malone
- The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | - Kim N Chi
- BC Cancer Agency, University of British Columbia, Vancouver, BC, Canada
| | - Darrel E Drachenberg
- Section of Urology, Department of Surgery, University of Manitoba, Winnipeg, MB, Canada
| | - Fred Saad
- Centre Hospitalier de l'Université de Montréal, University of Montreal, Montreal, QC, Canada
| | - Jonathan Chan
- Scarborough Health Network, University of Toronto, ON, Canada
| | | | - Jenny Ko
- Department of Medical Oncology, BC Cancer - Abbotsford, Abbotsford, BC, Canada
| | - Bobby Shayegan
- St Joseph's Healthcare, McMaster University, Hamilton, ON, Canada
| | - Sunil Parimi
- Department of Medical Oncology, BC Cancer-Victoria, BC, Canada
| | - Alan I So
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Andrew Feifer
- Division of Urology, Department of Surgery, University of Toronto, Toronto, ON Canada
- Institute for Better Health, Trillium Health Partners, Mississauga, ON Canada
| | - Kenneth Jansz
- Joseph Brant Hospital, McMaster University, Burlington, ON, Canada
| | - Daygen Finch
- Department of Medical Oncology, BC Cancer Agency - Centre for the Southern Interior, Kelowna, BC, Canada
| | - Joseph L Chin
- Department of Surgery (Urology), University of Western Ontario, London Health Sciences Center, London, ON, Canada
| | | | | | | | | | - Tamim Niazi
- Jewish General Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
152
|
Chao A, Wu RC, Lin CY, Chang TC, Lai CH. Small cell neuroendocrine carcinoma of the cervix: From molecular basis to therapeutic advances. Biomed J 2023; 46:100633. [PMID: 37467967 PMCID: PMC10522988 DOI: 10.1016/j.bj.2023.100633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/02/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023] Open
Abstract
Small cell neuroendocrine carcinoma of the cervix (SCNECC) is an uncommon but aggressive uterine malignancy, the cause of which is generally associated with human papillomavirus (HPV) infection. A lack of clinical trials and evidence-based treatment guidelines poses therapeutic challenges to this rare tumor. At present, published data remain limited to case series and case reports. While clinical management has traditionally followed those of small cell neuroendocrine (SCNE) lung cancer relying on surgery, chemoradiation, and systemic chemotherapy, the prognosis remains dismal. Immune checkpoint inhibitors (ICIs), such as monoclonal antibodies that target programmed death-1 (PD-1) or programmed death-ligand 1 (PD-L1), atezolizumab and durvalumab have proven effective in extensive-stage SCNE lung cancer. Moreover, pembrolizumab has also proven beneficial effects when added onto chemotherapy in metastatic and recurrent HPV-associated non-SCNE cervical cancer. It holds promise to use ICIs in combination with chemoradiation to improve the clinical outcomes of patients with SCNECC. Future advances in our understanding of SCNECC biology - associated with the study of its genomic and molecular aberrations as well as knowledge from SCNE of lung and other extrapulmonary sites- would be helpful in discovering new molecular targets for drug development. Collaborative efforts and establishment of a SCNECC-specific biobank will be essential to achieve this goal.
Collapse
Affiliation(s)
- Angel Chao
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Gynecologic Cancer Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ren-Chin Wu
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Pathology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chiao-Yun Lin
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Gynecologic Cancer Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Chang Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Gynecologic Cancer Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chyong-Huey Lai
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Gynecologic Cancer Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
153
|
Tian Z, Rao Q, He Z, Zhao W, Chen L, Liu J, Wang Y. Effect of 1 H-NMR serum lipoproteins on immunotherapy response in advanced triple-negative breast cancer patients. Cancer Sci 2023; 114:3924-3934. [PMID: 37640025 PMCID: PMC10551590 DOI: 10.1111/cas.15937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023] Open
Abstract
We previously reported the results of a phase II trial of anti-PD-1 antibody plus anti-vascular endothelial growth factor receptor 2 inhibitors and eribulin in heavily pretreated advanced triple-negative breast cancer with a favorable objective response rate (ORR) of 37.0% (NCT04303741). Here we report updated survival outcomes and serum metabolite changes of the study. Proton nuclear magnetic resonance spectroscopy was used to detect metabolite dynamics and explore biomarkers for response. We found that treatment-sensitive patients had higher very low-density lipoprotein-related metabolite expression at baseline. A lipid proteomics model consisting of six metabolites predicted ORR and progression-free survival at 6 months with area under the receiver operating characteristic curves of 0.88 and 0.87, respectively. Serum asparagine and sarcosine concentrations were significantly higher after treatment in treatment-resistant patients. In conclusion, we constructed a model consisting of six metabolites to identify patients who benefit more from the triplet treatment, and asparagine and sarcosine may be associated with treatment resistance.
Collapse
Affiliation(s)
- Zhenluan Tian
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Qunxian Rao
- Department of Gynaecological Oncology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Zhanghai He
- Department of Pathology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Wei Zhao
- Tianjin Key Laboratory of Clinical MultiomicsTianjinChina
| | - Liangyu Chen
- Tianjin Key Laboratory of Clinical MultiomicsTianjinChina
| | - Jieqiong Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
154
|
Elanany MM, Mostafa D, Hamdy NM. Remodeled tumor immune microenvironment (TIME) parade via natural killer cells reprogramming in breast cancer. Life Sci 2023; 330:121997. [PMID: 37536617 DOI: 10.1016/j.lfs.2023.121997] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Breast cancer (BC) is the main cause of cancer-related mortality among women globally. Despite substantial advances in the identification and management of primary tumors, traditional therapies including surgery, chemotherapy, and radiation cannot completely eliminate the danger of relapse and metastatic illness. Metastasis is controlled by microenvironmental and systemic mechanisms, including immunosurveillance. This led to the evolvement of immunotherapies that has gained much attention in the recent years for cancer treatment directed to the innate immune system. The long forgotten innate immune cells known as natural killer (NK) cells have emerged as novel targets for more effective therapeutics for BC. Normally, NK cells has the capacity to identify and eradicate tumor cells either directly or by releasing cytotoxic granules, chemokines and proinflammatory cytokines. Yet, NK cells are exposed to inhibitory signals by cancer cells, which causes them to become dysfunctional in the immunosuppressive tumor microenvironment (TME) in BC, supporting tumor escape and spread. Potential mechanisms of NK cell dysfunction in BC metastasis have been recently identified. Understanding these immunologic pathways driving BC metastasis will lead to improvements in the current immunotherapeutic strategies. In the current review, we highlight how BC evades immunosurveillance by rendering NK cells dysfunctional and we shed the light on novel NK cell- directed therapies.
Collapse
Affiliation(s)
- Mona M Elanany
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt
| | - Dina Mostafa
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt.
| | - Nadia M Hamdy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt.
| |
Collapse
|
155
|
Miller KD, O'Connor S, Pniewski KA, Kannan T, Acosta R, Mirji G, Papp S, Hulse M, Mukha D, Hlavaty SI, Salcido KN, Bertolazzi F, Srikanth YVV, Zhao S, Wellen KE, Shinde RS, Claiborne DT, Kossenkov A, Salvino JM, Schug ZT. Acetate acts as a metabolic immunomodulator by bolstering T-cell effector function and potentiating antitumor immunity in breast cancer. NATURE CANCER 2023; 4:1491-1507. [PMID: 37723305 PMCID: PMC10615731 DOI: 10.1038/s43018-023-00636-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/17/2023] [Indexed: 09/20/2023]
Abstract
Acetate metabolism is an important metabolic pathway in many cancers and is controlled by acetyl-CoA synthetase 2 (ACSS2), an enzyme that catalyzes the conversion of acetate to acetyl-CoA. While the metabolic role of ACSS2 in cancer is well described, the consequences of blocking tumor acetate metabolism on the tumor microenvironment and antitumor immunity are unknown. We demonstrate that blocking ACSS2, switches cancer cells from acetate consumers to producers of acetate thereby freeing acetate for tumor-infiltrating lymphocytes to use as a fuel source. We show that acetate supplementation metabolically bolsters T-cell effector functions and proliferation. Targeting ACSS2 with CRISPR-Cas9 guides or a small-molecule inhibitor promotes an antitumor immune response and enhances the efficacy of chemotherapy in preclinical breast cancer models. We propose a paradigm for targeting acetate metabolism in cancer in which inhibition of ACSS2 dually acts to impair tumor cell metabolism and potentiate antitumor immunity.
Collapse
Affiliation(s)
- Katelyn D Miller
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Seamus O'Connor
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Katherine A Pniewski
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Toshitha Kannan
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Reyes Acosta
- The Wistar Institute of Anatomy and Biology, Vaccine and Immunotherapy Center, Philadelphia, PA, USA
| | - Gauri Mirji
- The Wistar Institute of Anatomy and Biology, Immunology, Microenvironment & Metastasis Program, Philadelphia, PA, USA
| | - Sara Papp
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Michael Hulse
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Dzmitry Mukha
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Sabina I Hlavaty
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Kelsey N Salcido
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Fabrizio Bertolazzi
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
- Cellular and Molecular Biology Program, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Yellamelli V V Srikanth
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Steven Zhao
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Rahul S Shinde
- The Wistar Institute of Anatomy and Biology, Immunology, Microenvironment & Metastasis Program, Philadelphia, PA, USA
| | - Daniel T Claiborne
- The Wistar Institute of Anatomy and Biology, Vaccine and Immunotherapy Center, Philadelphia, PA, USA
| | - Andrew Kossenkov
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Joseph M Salvino
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Zachary T Schug
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA.
| |
Collapse
|
156
|
Zhang H, Jin X, Bian L. TORCHLIGHT trial, brightening the life of more patients with advanced triple-negative breast cancer. TRANSLATIONAL BREAST CANCER RESEARCH : A JOURNAL FOCUSING ON TRANSLATIONAL RESEARCH IN BREAST CANCER 2023; 5:1. [PMID: 38751675 PMCID: PMC11094406 DOI: 10.21037/tbcr-23-33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/25/2023] [Indexed: 05/18/2024]
Abstract
Toripalimab (JS001) is a monoclonal antibody against programmed cell death-1 (PD-1), independently developed by Shanghai Junshi Biosciences Co., LTD, which is the first domestic original PD-1 inhibitor approved in China. TORCHLIGHT is the first phase III trial of PD-1 inhibitor combined chemotherapy in advanced triple-negative breast cancer (TNBC) in China, evaluating the efficacy and safety of toripalimab plus nab-paclitaxel as first- or second-line therapy. Nab-paclitaxel has significant advantages over other chemotherapy drugs, as paclitaxel nanoparticles combine with natural albumin to increase drug delivery and bioavailability of paclitaxel. Firstly, nab-paclitaxel has a higher therapy response; Secondly, albumin carries paclitaxel out of the blood circulation faster, reducing the damage to normal tissues, ensuring the survival of more normal immune cells and exerting immune efficacy. Finally, nab-paclitaxel does not cause allergic reactions caused by organic solvents and does not require glucocorticoid pretreatment, avoiding immune suppression and ensuring the maximum efficacy of immune checkpoint inhibitors (ICIs). In TORCHLIGHT trial, 95% of subjects were on the first line treatment, with only 5% being on the second line, and 56% patients were programmed death-ligand 1 (PD-L1) positive in total population. It achieved the survival benefits of progression-free survival (PFS) and overall survival (OS) dual efficacy end points, which stood out among numerous ICIs in advanced TNBC. TORCHLIGHT trial, as the name of it, like a torch to more patients with advanced TNBC, lighting up their lives. We described the design background of TORCHLIGHT trial and reviewed primary trials of PD-1 or PD-L1 inhibitor in advanced TNBC both domestically and internationally.
Collapse
Affiliation(s)
- Huiqiang Zhang
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao Jin
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Li Bian
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
157
|
Zhang F, Wang SS. Narrative review on advancing breast cancer treatment: harnessing the power of PD-1/PD-L1 inhibitors for improved patient outcomes. TRANSLATIONAL BREAST CANCER RESEARCH : A JOURNAL FOCUSING ON TRANSLATIONAL RESEARCH IN BREAST CANCER 2023; 5:2. [PMID: 38751671 PMCID: PMC11092991 DOI: 10.21037/tbcr-23-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/21/2023] [Indexed: 05/18/2024]
Abstract
Background and Objective Cancer immunotherapy has significantly advanced the field of oncology, providing novel therapeutic strategies for various malignancies, including breast cancer. The programmed cell death protein 1/programmed cell death-ligand 1 (PD-1/PD-L1) pathway is pivotal in immune regulation, and its inhibitors have demonstrated therapeutic benefits in diverse tumors. This review aims to critically examine the role, clinical efficacy, safety, and future directions of PD-1/PD-L1 inhibitors in breast cancer treatment, with a focus on pembrolizumab, nivolumab, and tislelizumab, and to elucidate the challenges and prospects in this dynamic field. Methods A comprehensive literature search was conducted, adhering to Narrative Review reporting checklist for transparent reporting. Data from selected studies were qualitatively analyzed to synthesize key findings related to the mechanisms of action, clinical applications, and challenges of PD-1/PD-L1 inhibitors in breast cancer. Key Content and Findings PD-1 inhibitors have shown remarkable efficacy in various malignancies, including advanced triple-negative breast cancer (TNBC), where they have been investigated both in combination with chemotherapy and as neoadjuvant/adjuvant treatment. The exploration of these inhibitors in other breast cancer subtypes, such as human epidermal growth factor receptor-positive and hormone receptor-positive breast cancer, is ongoing. The review highlights the challenges in patient selection, management of immune-related adverse events (irAEs), and the emergence of resistance mechanisms. It underscores the need for ongoing research focusing on identifying reliable predictive biomarkers, elucidating mechanisms of resistance, and optimizing treatment strategies. Conclusions PD-1/PD-L1 inhibitors hold substantial promise in advancing breast cancer treatment. This review provides critical insights and emphasizes the clinical importance of continued scientific exploration to refine patient selection criteria, improve treatment outcomes, and expand the applications of immunotherapy in breast cancer. Further research is imperative to overcome the existing challenges and realize the full therapeutic potential of these inhibitors in breast cancer and other malignancies.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Medical Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shu-Sen Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
158
|
Bartkeviciene A, Jasukaitiene A, Zievyte I, Stukas D, Ivanauskiene S, Urboniene D, Maimets T, Jaudzems K, Vitkauskiene A, Matthews J, Dambrauskas Z, Gulbinas A. Association between AHR Expression and Immune Dysregulation in Pancreatic Ductal Adenocarcinoma: Insights from Comprehensive Immune Profiling of Peripheral Blood Mononuclear Cells. Cancers (Basel) 2023; 15:4639. [PMID: 37760608 PMCID: PMC10526859 DOI: 10.3390/cancers15184639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Pancreatic cancer, particularly pancreatic ductal adenocarcinoma (PDAC), has an immune suppressive environment that allows tumour cells to evade the immune system. The aryl-hydrocarbon receptor (AHR) is a transcription factor that can be activated by certain exo/endo ligands, including kynurenine (KYN) and other tryptophan metabolites. Once activated, AHR regulates the expression of various genes involved in immune responses and inflammation. Previous studies have shown that AHR activation in PDAC can have both pro-tumorigenic and anti-tumorigenic effects, depending on the context. It can promote tumour growth and immune evasion by suppressing anti-tumour immune responses or induce anti-tumour effects by enhancing immune cell function. In this study involving 30 PDAC patients and 30 healthy individuals, peripheral blood samples were analysed. PDAC patients were categorized into Low (12 patients) and High/Medium (18 patients) AHR groups based on gene expression in peripheral blood mononuclear cells (PBMCs). The Low AHR group showed distinct immune characteristics, including increased levels of immune-suppressive proteins such as PDL1, as well as alterations in lymphocyte and monocyte subtypes. Functional assays demonstrated changes in phagocytosis, nitric oxide production, and the expression of cytokines IL-1, IL-6, and IL-10. These findings indicate that AHR's expression level has a crucial role in immune dysregulation in PDAC and could be a potential target for early diagnostics and personalised therapeutics.
Collapse
Affiliation(s)
- Arenida Bartkeviciene
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Aldona Jasukaitiene
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Inga Zievyte
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Darius Stukas
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Sandra Ivanauskiene
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Daiva Urboniene
- Department of Laboratory Medicine, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (D.U.); (A.V.)
| | - Toivo Maimets
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia;
| | - Kristaps Jaudzems
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia;
| | - Astra Vitkauskiene
- Department of Laboratory Medicine, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (D.U.); (A.V.)
| | - Jason Matthews
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 1046 Blindern, 0317 Oslo, Norway;
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Zilvinas Dambrauskas
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Antanas Gulbinas
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| |
Collapse
|
159
|
Wu Y, Ai H, Xi Y, Tan J, Qu Y, Xu J, Luo F, Dou C. Osteoclast-derived apoptotic bodies inhibit naive CD8 + T cell activation via Siglec15, promoting breast cancer secondary metastasis. Cell Rep Med 2023; 4:101165. [PMID: 37607544 PMCID: PMC10518580 DOI: 10.1016/j.xcrm.2023.101165] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/18/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023]
Abstract
The bone microenvironment promotes cancer cell proliferation and dissemination. During periodic bone remodeling, osteoclasts undergo apoptosis, producing large numbers of apoptotic bodies (ABs). However, the biological role of osteoclast-derived ABs, which are residents of the bone-tumor niche, remains largely unknown. Here, we discover that AB-null MRL/lpr mice show resistance to breast cancer cell implantation, with more CD8+ T cell infiltrations and a higher survival rate. We uncover that the membranous Siglec15 on osteoclast-derived ABs binds with sialylated Toll-like receptor 2 (TLR2) and blocks downstream co-stimulatory signaling, leading to the inhibition of naive CD8+ T cell activation. In addition, our study shows that treatment with Siglec15 neutralizing antibodies significantly reduces the incidence of secondary metastases and improves the survival rate of mice with advanced breast cancer bone metastasis. Our findings reveal the immunosuppressive function of osteoclast-derived ABs in the bone-tumor niche and demonstrate the potential of Siglec15 as a common target for anti-resorption and immunotherapy.
Collapse
Affiliation(s)
- Yutong Wu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hongbo Ai
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yuhang Xi
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jiulin Tan
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ying Qu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jianzhong Xu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Fei Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Ce Dou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
160
|
Zhao H, Lin Z, Zhang Y, Liu J, Chen Q. Investigating the Heterogeneity of Immune Cells in Triple-Negative Breast Cancer at the Single-Cell Level before and after Paclitaxel Chemotherapy. Int J Mol Sci 2023; 24:14188. [PMID: 37762493 PMCID: PMC10532302 DOI: 10.3390/ijms241814188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Despite the numerous treatments for triple-negative breast cancer (TNBC), chemotherapy is still one of the most effective methods. However, the impact of chemotherapy on immune cells is not yet clear. Therefore, this study aims to explore the different roles of immune cells and their relationship with treatment outcomes in the tumor and blood before and after paclitaxel therapy. We analyzed the single-cell sequencing data of immune cells in tumors and blood before and after paclitaxel treatment. We confirmed a high correlation between T cells, innate lymphoid cells (ILCs), and therapeutic efficacy. The differences in T cells were analyzed related to therapeutic outcomes before and after paclitaxel treatment. In the effective treatment group, post-treatment tumor-infiltrating CD8+ T cells were associated with elevated inflammation, cytokines, and Toll-like-receptor-related gene expression, which were expected to enhance anti-tumor capabilities in tumor immune cells. Moreover, we found that the expression of immune-checkpoint-related genes is also correlated with treatment outcomes. In addition, an ILC subgroup, b_ILC1-XCL1, in which the corresponding marker gene XCL1 was highly expressed, was mainly present in the effective treatment group and was also associated with higher patient survival rates. Overall, we found differences in gene expression in T cells across different groups and a correlation between the expression of immune checkpoint genes in T cells, the b_ILC1-XCL1 subgroup, and patient prognosis.
Collapse
Affiliation(s)
- Heng Zhao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, College Town, Fuzhou 350117, China; (H.Z.); (Z.L.); (Y.Z.); (J.L.)
| | - Zhang Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, College Town, Fuzhou 350117, China; (H.Z.); (Z.L.); (Y.Z.); (J.L.)
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yangfan Zhang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, College Town, Fuzhou 350117, China; (H.Z.); (Z.L.); (Y.Z.); (J.L.)
| | - Jingjing Liu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, College Town, Fuzhou 350117, China; (H.Z.); (Z.L.); (Y.Z.); (J.L.)
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, College Town, Fuzhou 350117, China; (H.Z.); (Z.L.); (Y.Z.); (J.L.)
| |
Collapse
|
161
|
Angelico G, Broggi G, Tinnirello G, Puzzo L, Vecchio GM, Salvatorelli L, Memeo L, Santoro A, Farina J, Mulé A, Magro G, Caltabiano R. Tumor Infiltrating Lymphocytes (TILS) and PD-L1 Expression in Breast Cancer: A Review of Current Evidence and Prognostic Implications from Pathologist's Perspective. Cancers (Basel) 2023; 15:4479. [PMID: 37760449 PMCID: PMC10526828 DOI: 10.3390/cancers15184479] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
With the rise of novel immunotherapies able to stimulate the antitumor immune response, increasing literature concerning the immunogenicity of breast cancer has been published in recent years. Numerous clinical studies have been conducted in order to identify novel biomarkers that could reflect the immunogenicity of BC and predict response to immunotherapy. In this regard, TILs have emerged as an important immunological biomarker related to the antitumor immune response in BC. TILs are more frequently observed in triple-negative breast cancer and HER2+ subtypes, where increased TIL levels have been linked to a better response to neoadjuvant chemotherapy and improved survival. PD-L1 is a type 1 transmembrane protein ligand expressed on T lymphocytes, B lymphocytes, and antigen-presenting cells and is considered a key inhibitory checkpoint involved in cancer immune regulation. PD-L1 immunohistochemical expression in breast cancer is observed in about 10-30% of cases and is extremely variable based on tumor stage and molecular subtypes. Briefly, TNBC shows the highest percentage of PD-L1 positivity, followed by HER2+ tumors. On the other hand, PD-L1 is rarely expressed (0-10% of cases) in hormone-receptor-positive BC. The prognostic role of PD-L1 expression in BC is still controversial since different immunohistochemistry (IHC) clones, cut-off points, and scoring systems have been utilized across published studies. In the present paper, an extensive review of the current knowledge of the immune landscape of BC is provided. TILS and PD-L1 expression across different BC subtypes are discussed, providing a guide for their pathological assessment and reporting.
Collapse
Affiliation(s)
- Giuseppe Angelico
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (G.T.); (L.P.); (G.M.V.); (L.S.); (J.F.); (G.M.); (R.C.)
| | - Giuseppe Broggi
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (G.T.); (L.P.); (G.M.V.); (L.S.); (J.F.); (G.M.); (R.C.)
| | - Giordana Tinnirello
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (G.T.); (L.P.); (G.M.V.); (L.S.); (J.F.); (G.M.); (R.C.)
| | - Lidia Puzzo
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (G.T.); (L.P.); (G.M.V.); (L.S.); (J.F.); (G.M.); (R.C.)
| | - Giada Maria Vecchio
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (G.T.); (L.P.); (G.M.V.); (L.S.); (J.F.); (G.M.); (R.C.)
| | - Lucia Salvatorelli
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (G.T.); (L.P.); (G.M.V.); (L.S.); (J.F.); (G.M.); (R.C.)
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy;
| | - Angela Santoro
- Pathology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (A.S.); (A.M.)
| | - Jessica Farina
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (G.T.); (L.P.); (G.M.V.); (L.S.); (J.F.); (G.M.); (R.C.)
| | - Antonino Mulé
- Pathology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (A.S.); (A.M.)
| | - Gaetano Magro
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (G.T.); (L.P.); (G.M.V.); (L.S.); (J.F.); (G.M.); (R.C.)
| | - Rosario Caltabiano
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (G.T.); (L.P.); (G.M.V.); (L.S.); (J.F.); (G.M.); (R.C.)
| |
Collapse
|
162
|
Liu Y, Hu Y, Xue J, Li J, Yi J, Bu J, Zhang Z, Qiu P, Gu X. Advances in immunotherapy for triple-negative breast cancer. Mol Cancer 2023; 22:145. [PMID: 37660039 PMCID: PMC10474743 DOI: 10.1186/s12943-023-01850-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Immunotherapy has recently emerged as a treatment strategy which stimulates the human immune system to kill tumor cells. Tumor immunotherapy is based on immune editing, which enhances the antigenicity of tumor cells and increases the tumoricidal effect of immune cells. It also suppresses immunosuppressive molecules, activates or restores immune system function, enhances anti-tumor immune responses, and inhibits the growth f tumor cell. This offers the possibility of reducing mortality in triple-negative breast cancer (TNBC). MAIN BODY Immunotherapy approaches for TNBC have been diversified in recent years, with breakthroughs in the treatment of this entity. Research on immune checkpoint inhibitors (ICIs) has made it possible to identify different molecular subtypes and formulate individualized immunotherapy schedules. This review highlights the unique tumor microenvironment of TNBC and integrates and analyzes the advances in ICI therapy. It also discusses strategies for the combination of ICIs with chemotherapy, radiation therapy, targeted therapy, and emerging treatment methods such as nanotechnology, ribonucleic acid vaccines, and gene therapy. Currently, numerous ongoing or completed clinical trials are exploring the utilization of immunotherapy in conjunction with existing treatment modalities for TNBC. The objective of these investigations is to assess the effectiveness of various combined immunotherapy approaches and determine the most effective treatment regimens for patients with TNBC. CONCLUSION This review provides insights into the approaches used to overcome drug resistance in immunotherapy, and explores the directions of immunotherapy development in the treatment of TNBC.
Collapse
Affiliation(s)
- Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Yueting Hu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Jingying Li
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Jiang Yi
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Jiawen Bu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Zhenyong Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| | - Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
163
|
Wang L, Ding X, Qiu X. Mechanism of breast cancer immune microenvironment in prognosis of heart failure. Comput Biol Med 2023; 164:107339. [PMID: 37586207 DOI: 10.1016/j.compbiomed.2023.107339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/15/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
The treatment of breast cancer can potentially impose a burden on the heart, leading to an increased risk of heart failure. Studies have shown that more than half of breast cancer patients die from non-tumor-related causes, with cardiovascular disease (CVD) being the leading cause of death. However, the underlying mechanism linking breast cancer prognosis and heart failure remains unclear. To investigate this, we conducted an analysis where we compared the differentially expressed genes (DEGs) in early and advanced breast cancer with genes associated with heart failure. This analysis revealed 18 genes that overlapped between the two conditions, with 15 of them being related to immune function. This suggests that immune pathways may play a role in the prognosis of breast cancer patients with heart failure. Using gene expression data from 1260 breast cancer patients, we further examined the impact of these 15 genes on survival time. Additionally, through enrichment analysis, we explored the functions and pathways associated with these genes in relation to breast cancer and heart failure. By constructing a transformer model, we discovered that the expression patterns of these 15 genes can accurately predict the occurrence of heart failure. The model achieved an AUC of 0.86 and an AUPR of 0.91. Moreover, through analysis of single-cell sequencing data from breast cancer patients undergoing PD-1 treatment and experiencing heart failure, we identified a significant number of cell-type-specific genes that were shared between both diseases. This suggests that changes in gene expression in immune cells following breast cancer treatment may be associated with the development of heart failure.
Collapse
Affiliation(s)
- Lida Wang
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, China.
| | - Xiaolei Ding
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, China.
| | - Xun Qiu
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
164
|
Liu Y, Han D, Parwani AV, Li Z. Applications of Artificial Intelligence in Breast Pathology. Arch Pathol Lab Med 2023; 147:1003-1013. [PMID: 36800539 DOI: 10.5858/arpa.2022-0457-ra] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2022] [Indexed: 02/19/2023]
Abstract
CONTEXT.— Increasing implementation of whole slide imaging together with digital workflow and advances in computing capacity enable the use of artificial intelligence (AI) in pathology, including breast pathology. Breast pathologists often face a significant workload, with diagnosis complexity, tedious repetitive tasks, and semiquantitative evaluation of biomarkers. Recent advances in developing AI algorithms have provided promising approaches to meet the demand in breast pathology. OBJECTIVE.— To provide an updated review of AI in breast pathology. We examined the success and challenges of current and potential AI applications in diagnosing and grading breast carcinomas and other pathologic changes, detecting lymph node metastasis, quantifying breast cancer biomarkers, predicting prognosis and therapy response, and predicting potential molecular changes. DATA SOURCES.— We obtained data and information by searching and reviewing literature on AI in breast pathology from PubMed and based our own experience. CONCLUSIONS.— With the increasing application in breast pathology, AI not only assists in pathology diagnosis to improve accuracy and reduce pathologists' workload, but also provides new information in predicting prognosis and therapy response.
Collapse
Affiliation(s)
- Yueping Liu
- From the Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China (Liu, Han)
| | - Dandan Han
- From the Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China (Liu, Han)
| | - Anil V Parwani
- The Department of Pathology, The Ohio State University, Columbus (Parwani, Li)
| | - Zaibo Li
- From the Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China (Liu, Han)
| |
Collapse
|
165
|
Dai YW, Wang WM, Zhou X. Development of a CD8 + T cell-based molecular classification for predicting prognosis and heterogeneity in triple-negative breast cancer by integrated analysis of single-cell and bulk RNA-sequencing. Heliyon 2023; 9:e19798. [PMID: 37810147 PMCID: PMC10559128 DOI: 10.1016/j.heliyon.2023.e19798] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Background Triple-negative breast cancer (TNBC), although the most intractable subtype, is characterized by abundant immunogenicity, which enhances responsiveness to immunotherapeutic measures. Methods First, we identified CD8+ T cell core genes (TRCG) based on single-cell sequence and traditional transcriptome sequencing and then used this data to develop a first-of-its-kind classification system based on CD8+ T cells in patients with TNBC. Next, TRCG-related patterns were systematically analyzed, and their correlation with genomic features, immune activity (microenvironment associated with immune infiltration), and clinicopathological characteristics were assessed in the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), the Cancer Genome Atlas (TCGA), GSE103091, GSE96058 databases. Additionally, a CD8+ T cell-related prognostic signature (TRPS) was developed to quantify a patient-specific TRCG pattern. What's more, the genes-related TRPS was validated by polymerase chain reaction (PCR) experiment. Results This study, for the first time, distinguished two subsets in patients with TNBC based on the TRCG. The immune microenvironment and prognostic stratification between these have distinct heterogeneity. Furthermore, this study constructed a novel scoring system named TRPS, which we show to be a robust prognostic marker for TNBC that is related to the intensity of immune infiltration and immunotherapy. Moreover, the levels of genes related the TRPS were validated by quantitative Real-Time PCR. Conclusions Consequently, this study unraveled an association between the TRCG and the tumor microenvironment in TNBC. TRPS model represents an effective tool for survival prediction and treatment guidance in TNBC that can also help identify individual variations in TME and stratify patients who are sensitive to anticancer immunotherapy.
Collapse
Affiliation(s)
- Yin-wei Dai
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, China
| | - Wei-ming Wang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiang Zhou
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, China
| |
Collapse
|
166
|
Huang C, Chen B, Wang X, Xu J, Sun L, Wang D, Zhao Y, Zhou C, Gao Q, Wang Q, Chen Z, Wang M, Zhang X, Xu W, Shen B, Zhu W. Gastric cancer mesenchymal stem cells via the CXCR2/HK2/PD-L1 pathway mediate immunosuppression. Gastric Cancer 2023; 26:691-707. [PMID: 37300724 DOI: 10.1007/s10120-023-01405-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Anti-PD-1 immunotherapy has emerged as an important therapeutic modality in advanced gastric cancer (GC). However, drug resistance frequently develops, limiting its effectiveness. METHODS The role of gastric cancer mesenchymal stem cells (GCMSCs) in anti-PD-1 resistance was evaluated in vivo in NPGCD34+ or NCGPBMC xenograft mouse model. In addition, we investigated CD8+T cell infiltration and effector function by spectral cytometry and IHC. The effects of GCMSCs conditional medium (GCMSC-CM) on GC cell lines were characterized at the level of the proteome, secretome using western blot, and ELISA assays. RESULTS We reported that GCMSCs mediated tolerance mechanisms contribute to tumor immunotherapy tolerance. GCMSC-CM attenuated the antitumor activity of PD-1 antibody and inhibited immune response in humanized mouse model. In GC cells under serum deprivation and hypoxia, GCMSC-CM promoted GC cells proliferation via upregulating PD-L1 expression. Mechanistically, GCMSC-derived IL-8 and AKT-mediated phosphorylation facilitated HK2 nuclear localization. Phosphorylated-HK2 promoted PD-L1 transcription by binding to HIF-1α. What is more, GCMSC-CM also induced lactate overproduction in GC cells in vitro and xenograft tumors in vivo, leading to impaired function of CD8+ T cells. Furthermore, CXCR1/2 receptor depletion, CXCR2 receptor antagonist AZD5069 and IL-8 neutralizing antibody application also significantly reversed GCMSCs mediated immunosuppression, restoring the antitumor capacity of PD-1 antibody. CONCLUSIONS Our findings reveal that blocking GCMSCs-derived IL-8/CXCR2 pathway decreasing PD-L1 expression and lactate production, improving antitumor efficacy of anti-PD-1 immunotherapy, may be of value for the treatment of advanced gastric carcinoma.
Collapse
Affiliation(s)
- Chao Huang
- School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu, China
| | - Bin Chen
- School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu, China
- Department of Clinical Laboratory, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Xin Wang
- Department of Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juan Xu
- Department of Laboratory Medicine, Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Li Sun
- School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu, China
- Department of Clinical Laboratory, Kunshan First People's Hospital, Kunshan, China
| | - Deqiang Wang
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuanyuan Zhao
- School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu, China
| | - Chenglin Zhou
- Department of Laboratory Medicine, Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Qiuzhi Gao
- School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu, China
| | - Qianqian Wang
- School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu, China
| | - Zhihong Chen
- Department of Gastrointestinal Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mei Wang
- School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu, China
| | - Xu Zhang
- School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu, China
| | - Wenrong Xu
- School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu, China
| | - Bo Shen
- Department of Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Zhu
- School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu, China.
| |
Collapse
|
167
|
Chung C, Yeung VTY, Wong KCW. Prognostic and predictive biomarkers with therapeutic targets in breast cancer: A 2022 update on current developments, evidence, and recommendations. J Oncol Pharm Pract 2023; 29:1343-1360. [PMID: 35971313 DOI: 10.1177/10781552221119797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To evaluate and validate the recent and emerging data for prognostic and predictive biomarkers with therapeutic targets in breast cancer. DATA SOURCES A literature search from January 2015 to March 2022 was performed using the key terms breast cancer, clinical practice guidelines, gene mutations, genomic assay, immune cancer therapy, predictive and/or prognostic biomarkers, and targeted therapies. STUDY SELECTION AND DATA EXTRACTION Relevant clinical trials, meta-analyses, seminal articles, and published evidence- and consensus-based clinical practice guidelines in the English language were identified, reviewed and evaluated. DATA SYNTHESIS Breast cancer is a biologically heterogeneous disease, leading to wide variability in treatment responses and survival outcomes. Biomarkers for breast cancer are evolving from traditional biomarkers in immunohistochemistry (IHC) such as estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor type 2 (HER2) to genetic biomarkers with therapeutic implications (e.g. breast cancer susceptibility gene 1/2 [BRCA1/2], estrogen receptor α [ESR1] gene mutation, HER2 gene mutation, microsatellite instability [MSI], phosphatidylinositol 3-kinase catalytic subunit 3Cα [PIK3CA] gene mutation, neurotrophic tyrosine receptor kinase [NTRK] gene mutation). In addition, current data are most robust for biomarkers in immunotherapy (e.g. programmed cell death receptor ligand-1 [PD-L1], microsatellite instability-high [MSI-H] or deficient mismatch repair [dMMR]). Oncotype DX assay remains the best validated gene expression assay that is both predictive and prognostic whereas MammaPrint is prognostic for genomic risk. CONCLUSIONS Biomarker-driven therapies have the potential to confer greater therapeutic advantages than standard-of-care therapies. The purported survival benefits associated with biomarker-driven therapies should be weighed against their potential harms.
Collapse
Affiliation(s)
- Clement Chung
- Department of Pharmacy, Houston Methodist West Hospital, Houston, TX, USA
| | - Vanessa T Y Yeung
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Kenneth C W Wong
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong SAR
| |
Collapse
|
168
|
Zhu S, Wu Y, Song B, Yi M, Yan Y, Mei Q, Wu K. Recent advances in targeted strategies for triple-negative breast cancer. J Hematol Oncol 2023; 16:100. [PMID: 37641116 PMCID: PMC10464091 DOI: 10.1186/s13045-023-01497-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Triple-negative breast cancer (TNBC), a highly aggressive subtype of breast cancer, negatively expresses estrogen receptor, progesterone receptor, and the human epidermal growth factor receptor 2 (HER2). Although chemotherapy is the main form of treatment for patients with TNBC, the effectiveness of chemotherapy for TNBC is still limited. The search for more effective therapies is urgent. Multiple targeted therapeutic strategies have emerged according to the specific molecules and signaling pathways expressed in TNBC. These include PI3K/AKT/mTOR inhibitors, epidermal growth factor receptor inhibitors, Notch inhibitors, poly ADP-ribose polymerase inhibitors, and antibody-drug conjugates. Moreover, immune checkpoint inhibitors, for example, pembrolizumab, atezolizumab, and durvalumab, are widely explored in the clinic. We summarize recent advances in targeted therapy and immunotherapy in TNBC, with the aim of serving as a reference for the development of individualized treatment of patients with TNBC in the future.
Collapse
Affiliation(s)
- Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Song
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Yuheng Yan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
169
|
Li J, Ren M, Bi F, Chen Y, Li Z. Favorable response to PD-1 inhibitor plus chemotherapy as first-line treatment for metastatic follicular dendritic cell sarcoma of the spleen: a case report. Front Immunol 2023; 14:1228653. [PMID: 37691960 PMCID: PMC10485249 DOI: 10.3389/fimmu.2023.1228653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023] Open
Abstract
Follicular dendritic cell sarcoma (FDCS) is an uncommon low-grade malignant sarcoma. For localized FDCS, surgery is the most commonly recommended therapy option. However, there is no standard treatment protocol for metastatic FDCS. Here, we present a 68-year-old female with primary spleen FDCS who had multiple peritoneal metastases. She was treated with sintilimab (PD-1 inhibitor) plus chemotherapy (epirubicin plus ifosfamide) as first-line treatment achieving partial response (PR) and a relatively long progression-free survival (PFS) of 17 months. This case suggests that PD-1 inhibitor plus chemotherapy as first-line therapy seem to be a promising treatment option for metastatic FDCS.
Collapse
Affiliation(s)
- Jielang Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Min Ren
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Bi
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ye Chen
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiping Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
170
|
Tong L, Yu X, Wang S, Chen L, Wu Y. Research Progress on Molecular Subtyping and Modern Treatment of Triple-Negative Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:647-658. [PMID: 37644916 PMCID: PMC10461741 DOI: 10.2147/bctt.s426121] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
Breast cancer has become the most common malignant tumor worldwide. Triple-negative breast cancer (TNBC) is a type of breast cancer that is negative for estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Compared with other molecular subtypes of breast cancer, TNBC is the most aggressive and highly heterogeneous. TNBC is insensitive to endocrine and anti-HER2 therapy, and chemotherapy is currently the main systemic treatment. With the continuous development of detection techniques and deepening research on TNBC molecular subtypes, drugs targeting immune checkpoints and different targets have emerged, such as atezolizumab, pembrolizumab, poly (ADP-ribose) polymerase (PARP) inhibitors, trophoblast cell-surface antigen 2 (TROP-2), and antibody-drug conjugates. These therapies provide new hope for TNBC treatment. Based on the analysis and classification of TNBC, this article summarizes the immunotherapy, targeted therapy, and new treatment combinations, providing references for the precise treatment of TNBC in the future.
Collapse
Affiliation(s)
- Ling Tong
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, People’s Republic of China
- Department of Breast Surgery, Affiliated Hospital of Jiangnan University, Wuxi, People’s Republic of China
| | - Xiangling Yu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, People’s Republic of China
| | - Shan Wang
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, People’s Republic of China
- Department of Breast Surgery, Affiliated Hospital of Jiangnan University, Wuxi, People’s Republic of China
| | - Ling Chen
- Department of Breast Surgery, Affiliated Hospital of Jiangnan University, Wuxi, People’s Republic of China
| | - Yibo Wu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, People’s Republic of China
| |
Collapse
|
171
|
Wei X, Ruan H, Zhang Y, Qin T, Zhang Y, Qin Y, Li W. Pan-cancer analysis of IFN-γ with possible immunotherapeutic significance: a verification of single-cell sequencing and bulk omics research. Front Immunol 2023; 14:1202150. [PMID: 37646041 PMCID: PMC10461559 DOI: 10.3389/fimmu.2023.1202150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/17/2023] [Indexed: 09/01/2023] Open
Abstract
Background Interferon-gamma (IFN-γ), commonly referred to as type II interferon, is a crucial cytokine that coordinates the tumor immune process and has received considerable attention in tumor immunotherapy research. Previous studies have discussed the role and mechanisms associated with IFN-γ in specific tumors or diseases, but the relevant role of IFN-γ in pan-cancer remains uncertain. Methods TCGA and GTEx RNA expression data and clinical data were downloaded. Additionally, we analyzed the role of IFN-γ on tumors by using a bioinformatic approach, which included the analysis of the correlation between IFN-γ in different tumors and expression, prognosis, functional status, TMB, MSI, immune cell infiltration, and TIDE. We also developed a PPI network for topological analysis of the network, identifying hub genes as those having a degree greater than IFN-γ levels. Result IFN-γ was differentially expressed and predicted different survival statuses in a majority of tumor types in TCGA. Additionally, IFN-γ expression was strongly linked to factors like infiltration of T cells, immune checkpoints, immune-activating genes, immunosuppressive genes, chemokines, and chemokine receptors, as well as tumor purity, functional statuses, and prognostic value. Also, prognosis, CNV, and treatment response were all substantially correlated with IFN-γ-related gene expression. Particularly, the IFN-γ-related gene STAT1 exhibited the greatest percentage of SNVs and the largest percentage of SNPs in UCEC. Elevated expression levels of IFN-γ-related genes were found in a wide variety of tumor types, and this was shown to be positively linked to drug sensitivity for 20 different types of drugs. Conclusion IFN-γ is a good indicator of response to tumor immunotherapy and is likely to limit tumor progression, offering a novel approach for immunotherapy's future development.
Collapse
Affiliation(s)
- Xiaoying Wei
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region and Research Center of Health Management, Guangxi Academy of Medical Sciences, Nanning, China
| | - Hanyi Ruan
- Department of Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yan Zhang
- Department of Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Tianyu Qin
- Department of Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yujie Zhang
- Department of Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yan Qin
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region and Research Center of Health Management, Guangxi Academy of Medical Sciences, Nanning, China
| | - Wei Li
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region and Research Center of Health Management, Guangxi Academy of Medical Sciences, Nanning, China
| |
Collapse
|
172
|
Mo W, Liu S, Zhao X, Wei F, Li Y, Sheng X, Cao W, Ding M, Zhang W, Chen X, Meng L, Yao S, Diao W, Wei H, Guo H. ROS Scavenging Nanozyme Modulates Immunosuppression for Sensitized Cancer Immunotherapy. Adv Healthc Mater 2023; 12:e2300191. [PMID: 37031357 DOI: 10.1002/adhm.202300191] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/24/2023] [Indexed: 04/10/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs), two immunosuppressive myeloid components within the tumor microenvironment (TME), represent fundamental barriers in cancer immunotherapy, whereas current nanomedicines rarely exert dual modulatory roles on these cell types simultaneously. Reactive oxygen species (ROS) not only mediates MDSC-induced immunosuppression but also triggers differentiation and polarization of M2-TAMs. Herein, an ROS scavenging nanozyme, Zr-CeO, with enhanced superoxide dismutase- and catalase-like activities for renal tumor growth inhibition is reported. Mechanistically, intracellular ROS scavenging by Zr-CeO significantly attenuates MDSC immunosuppression via dampening the unfolded protein response, hinders M2-TAM polarization through the ERK and STAT3 pathways, but barely affects neoplastic cells and cancer-associated fibroblasts. Furthermore, Zr-CeO enhances the antitumor effect of PD-1 inhibition in murine renal and breast tumor models, accompanied with substantially decreased MDSC recruitment and reprogrammed phenotype of TAMs in the tumor mass. Upon cell isolation, reversed immunosuppressive phenotypes of MDSCs and TAMs are identified. In addition, Zr-CeO alone or combination therapy enhances T lymphocyte infiltration and IFN-γ production within the TME. Collectively, a promising strategy to impair the quantity and function of immunosuppressive myeloid cells and sensitize immunotherapy in both renal and breast cancers is provided.
Collapse
Affiliation(s)
- Wenjing Mo
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Shujie Liu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Xiaozhi Zhao
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Fayun Wei
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Yuhang Li
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Xinan Sheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genitourinary Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Wenmin Cao
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Meng Ding
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Wenlong Zhang
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Xiaoqing Chen
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Longxiyu Meng
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Sheng Yao
- Shanghai Junshi Biosciences Co., Ltd., 200126, Shanghai, China
- TopAlliance Biosciences, Inc., Rockville, MD, 20850, USA
| | - Wenli Diao
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| |
Collapse
|
173
|
Girithar HN, Staats Pires A, Ahn SB, Guillemin GJ, Gluch L, Heng B. Involvement of the kynurenine pathway in breast cancer: updates on clinical research and trials. Br J Cancer 2023; 129:185-203. [PMID: 37041200 PMCID: PMC10338682 DOI: 10.1038/s41416-023-02245-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/04/2023] [Accepted: 03/17/2023] [Indexed: 04/13/2023] Open
Abstract
Breast cancer (BrCa) is the leading cause of cancer incidence and mortality in women worldwide. While BrCa treatment has been shown to be highly successful if detected at an early stage, there are few effective strategies to treat metastatic tumours. Hence, metastasis remains the main cause in most of BrCa deaths, highlighting the need for new approaches in this group of patients. Immunotherapy has been gaining attention as a new treatment for BrCa metastasis and the kynurenine pathway (KP) has been suggested as one of the potential targets. The KP is the major biochemical pathway in tryptophan (TRP) metabolism, catabolising TRP to nicotinamide adenine dinucleotide (NAD+). The KP has been reported to be elevated under inflammatory conditions such as cancers and that its activity suppresses immune surveillance. Dysregulation of the KP has previously been reported implicated in BrCa. This review aims to discuss and provide an update on the current mechanisms involved in KP-mediated immune suppression and cancer growth. Furthermore, we also provide a summary on 58 studies about the involvement of the KP and BrCa and five clinical trials targeting KP enzymes and their outcome.
Collapse
Affiliation(s)
- Hemaasri-Neya Girithar
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ananda Staats Pires
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Seong Beom Ahn
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gilles J Guillemin
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Laurence Gluch
- The Strathfield Breast Centre, Strathfield, NSW, Australia
| | - Benjamin Heng
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
174
|
Brito Baleeiro R, Liu P, Chard Dunmall LS, Di Gioia C, Nagano A, Cutmore L, Wang J, Chelala C, Nyambura LW, Walden P, Lemoine N, Wang Y. Personalized neoantigen viro-immunotherapy platform for triple-negative breast cancer. J Immunother Cancer 2023; 11:e007336. [PMID: 37586771 PMCID: PMC10432671 DOI: 10.1136/jitc-2023-007336] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) corresponds to approximately 20% of all breast tumors, with a high propensity for metastasis and a poor prognosis. Because TNBC displays a high mutational load compared with other breast cancer types, a neoantigen-based immunotherapy strategy could be effective. One major bottleneck in the development of a neoantigen-based vaccine for TNBC is the selection of the best targets, that is, tumor-specific neoantigens which are presented at the surface of tumor cells and capable of eliciting robust immune responses. In this study, we aimed to set up a platform for identification and delivery of immunogenic neoantigens in a vaccine regimen for TNBC using oncolytic vaccinia virus (VV). METHODS We used bioinformatic tools and cell-based assays to identify immunogenic neoantigens in TNBC patients' samples, human and murine cell lines. Immunogenicity of the neoantigens was tested in vitro (human) and ex vivo (murine) in T-cell assays. To assess the efficacy of our regimen, we used a preclinical model of TNBC where we treated tumor-bearing mice with neoantigens together with oncolytic VV and evaluated the effect on induction of neoantigen-specific CD8+T cells, tumor growth and survival. RESULTS We successfully identified immunogenic neoantigens and generated neoantigen-specific CD8+T cells capable of recognizing a human TNBC cell line expressing the mutated gene. Using a preclinical model of TNBC, we showed that our tumor-specific oncolytic VV was able to change the tumor microenvironment, attracting and maintaining mature cross-presenting CD8α+dendritic cells and effector T-cells. Moreover, when delivered in a prime/boost regimen together with oncolytic VV, long peptides encompassing neoantigens were able to induce neoantigen-specific CD8+T cells, slow tumor growth and increase survival. CONCLUSIONS Our study provides a promising approach for the development of neoantigen-based immunotherapies for TNBC. By identifying immunogenic neoantigens and developing a delivery system through tumor-specific oncolytic VV, we have demonstrated that neoantigen-based vaccines could be effective in inducing neoantigen-specific CD8+T cells response with significant impact on tumor growth. Further studies are needed to determine the safety and efficacy of this approach in clinical trials.
Collapse
Affiliation(s)
- Renato Brito Baleeiro
- Centre for Cancer Biomarkers and Biotherapeutics, Queen Mary University of London, London, UK
| | - Peng Liu
- Centre for Cancer Biomarkers and Biotherapeutics, Queen Mary University of London, London, UK
| | - Louisa S Chard Dunmall
- Centre for Cancer Biomarkers and Biotherapeutics, Queen Mary University of London, London, UK
| | - Carmela Di Gioia
- Centre for Cancer Biomarkers and Biotherapeutics, Queen Mary University of London, London, UK
| | - Ai Nagano
- Centre for Cancer Biomarkers and Biotherapeutics, Queen Mary University of London, London, UK
| | - Lauren Cutmore
- Centre for Cancer Biomarkers and Biotherapeutics, Queen Mary University of London, London, UK
| | - Jun Wang
- Centre for Cancer Biomarkers and Biotherapeutics, Queen Mary University of London, London, UK
| | - Claude Chelala
- Centre for Cancer Biomarkers and Biotherapeutics, Queen Mary University of London, London, UK
| | - Lydon Wainaina Nyambura
- Department of Dermatology, Venerology and Allergology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Walden
- Department of Dermatology, Venerology and Allergology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Nicholas Lemoine
- Centre for Cancer Biomarkers and Biotherapeutics, Queen Mary University of London, London, UK
- Zhengzhou University, Zhengzhou, Henan, China
| | - Yaohe Wang
- Centre for Cancer Biomarkers and Biotherapeutics, Queen Mary University of London, London, UK
- Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
175
|
Lim C, Hwang D, Yazdimamaghani M, Atkins HM, Hyun H, Shin Y, Ramsey JD, Rädler PD, Mott KR, Perou CM, Sokolsky-Papkov M, Kabanov AV. High-Dose Paclitaxel and its Combination with CSF1R Inhibitor in Polymeric Micelles for Chemoimmunotherapy of Triple Negative Breast Cancer. NANO TODAY 2023; 51:101884. [PMID: 37484164 PMCID: PMC10357922 DOI: 10.1016/j.nantod.2023.101884] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The presence of immunosuppressive immune cells in tumors is a significant barrier to the generation of therapeutic immune responses. Similarly, in vivo triple-negative breast cancer (TNBC) models often contain prevalent, immunosuppressive tumor-associated macrophages in the tumor microenvironment (TME), resulting in breast cancer initiation, invasion, and metastasis. Here, we test systemic chemoimmunotherapy using small-molecule agents, paclitaxel (PTX), and colony-stimulating factor 1 receptor (CSF1R) inhibitor, PLX3397, to enhance the adaptive T cell immunity against TNBCs in immunocompetent mouse TNBC models. We use high-capacity poly(2-oxazoline) (POx)-based polymeric micelles to greatly improve the solubility of insoluble PTX and PLX3397 and widen the therapeutic index of such drugs. The results demonstrate that high-dose PTX in POx, even as a single agent, exerts strong effects on TME and induces long-term immune memory. In addition, we demonstrate that the PTX and PLX3397 combination provides consistent therapeutic improvement across several TNBC models, resulting from the repolarization of the immunosuppressive TME and enhanced T cell immune response that suppress both the primary tumor growth and metastasis. Overall, the work emphasizes the benefit of drug reformulation and outlines potential translational path for both PTX and PTX with PLX3397 combination therapy using POx polymeric micelles for the treatment of TNBC.
Collapse
Affiliation(s)
- Chaemin Lim
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Duhyeong Hwang
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mostafa Yazdimamaghani
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hannah Marie Atkins
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, 27606, USA
| | - Hyesun Hyun
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yuseon Shin
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, South Korea
| | - Jacob D Ramsey
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Patrick D Rädler
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kevin R Mott
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marina Sokolsky-Papkov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexander V Kabanov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
176
|
Morrison L, Okines A. Systemic Therapy for Metastatic Triple Negative Breast Cancer: Current Treatments and Future Directions. Cancers (Basel) 2023; 15:3801. [PMID: 37568617 PMCID: PMC10417818 DOI: 10.3390/cancers15153801] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Until recently, despite its heterogenous biology, metastatic triple negative breast cancer (TNBC) was treated as a single entity, with successive lines of palliative chemotherapy being the only systemic option. Significant gene expression studies have demonstrated the diversity of TNBC, but effective differential targeting of the four main (Basal-like 1 and 2, mesenchymal and luminal androgen receptor) molecular sub-types has largely eluded researchers. The introduction of immunotherapy, currently useful only for patients with PD-L1 positive cancers, led to the stratification of first-line therapy using this immunohistochemical biomarker. Germline BRCA gene mutations can also be targeted with PARP inhibitors in both the adjuvant and metastatic settings. In contrast, the benefit of the anti-Trop-2 antibody-drug conjugate (ADC) Sacituzumab govitecan (SG) does not appear confined to patients with tumours expressing high levels of Trop-2, leading to its potential utility for any patient with an estrogen receptor (ER)-negative, HER2-negative advanced breast cancer (ABC). Most recently, low levels of HER2 expression, detected in up to 60% of TNBC, predicts benefit from the potent HER2-directed antibody-drug conjugate trastuzumab deruxtecan (T-DXd), defining an additional treatment option for this sub-group. Regrettably, despite recent advances, the median survival of TNBC continues to lag far behind the approximately 5 years now expected for patients with ER-positive or HER2-positive breast cancers. We review the data supporting immunotherapy, ADCs, and targeted agents in subgroups of patients with TNBC, and current clinical trials that may pave the way to further advances in this challenging disease.
Collapse
Affiliation(s)
| | - Alicia Okines
- Breast Unit, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| |
Collapse
|
177
|
Zhao W, Chang Y, Wu Z, Jiang X, Li Y, Xie R, Fu D, Sun C, Gao J. Identification of PIMREG as a novel prognostic signature in breast cancer via integrated bioinformatics analysis and experimental validation. PeerJ 2023; 11:e15703. [PMID: 37483962 PMCID: PMC10358341 DOI: 10.7717/peerj.15703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023] Open
Abstract
Background Phosphatidylinositol binding clathrin assembly protein interacting mitotic regulator (PIMREG) expression is upregulated in a variety of cancers. However, its potential role in breast cancer (BC) remains uncertain. Methods The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were used to gather relevant information. The expression of PIMREG and its clinical implication in BC were assessed by using Wilcoxon rank-sum test. The prognostic value of PIMREG in BC was evaluated through the Cox regression model and nomogram, and visualized by Kaplan-Meier survival curves. Genes/proteins that interact with PIMREG in BC were also identified through GeneMANIA and MaxLink. Gene set enrichment analysis (GSEA) was then performed. The correlations of the immune cell infiltration and immune checkpoints with the expression of PIMREG in BC were explored via TIMER, TISIDB, and GEPIA. Potential drugs that interact with PIMREG in BC were explored via Q-omic. The siRNA transfection, CCK-8, and transwell migration assay were conducted to explore the function of PIMREG in cell proliferation and migration. Results PIMREG expression was significantly higher in infiltrating ductal carcinoma, estrogen receptor negative BC, and progestin receptor negative BC. High expression of PIMREG was associated with poor overall survival, disease-specific survival, and progression-free interval. A nomogram based on PIMREG was developed with a satisfactory prognostic value. PIMREG also had a high diagnostic ability, with an area under the curve of 0.940. Its correlations with several immunomodulators were also observed. Immune checkpoint CTLA-4 was significantly positively associated with PIMREG. HDAC2 was found as a potentially critical link between PIMREG and BRCA1/2. In addition, PIMREG knockdown could inhibit cell proliferation and migration in BC. Conclusions The high expression of PIMREG is associated with poor prognosis and immune checkpoints in BC. HDAC2 may be a critical link between PIMREG and BRCA1/2, potentially a therapeutic target.
Collapse
Affiliation(s)
- Wenjing Zhao
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuanjin Chang
- School of Medicine, Jiangnan College, WuXi, JiangSu, China
| | - Zhaoye Wu
- School of Medicine, Jiangnan College, WuXi, JiangSu, China
| | - Xiaofan Jiang
- School of Medicine, Jiangnan College, WuXi, JiangSu, China
| | - Yong Li
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ruijin Xie
- School of Medicine, Jiangnan College, WuXi, JiangSu, China
| | - Deyuan Fu
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chenyu Sun
- Department of General Surgery, The second Affiliated Hospital of Anhui Medical University, Anhui, China
- Department of Medicine, AMITA Health Saint Joseph Hospital, Chicago, IL, USA
| | - Ju Gao
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
178
|
Cabioglu N, Bayram A, Emiroglu S, Onder S, Karatay H, Oner G, Tukenmez M, Muslumanoglu M, Igci A, Aydiner A, Saip P, Yavuz E, Ozmen V. Diverging prognostic effects of CD155 and CD73 expressions in locally advanced triple-negative breast cancer. Front Oncol 2023; 13:1165257. [PMID: 37519808 PMCID: PMC10374450 DOI: 10.3389/fonc.2023.1165257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Background Immune checkpoint inhibition, combined with novel biomarkers, may provide alternative pathways for treating chemotherapy-resistant triple-negative breast cancer (TNBC). This study investigates the expression of new immune checkpoint receptors, including CD155 and CD73, which play a role in T and natural killer (NK) cell activities, in patients with residual TNBC after neoadjuvant chemotherapy (NAC). Methods The expression of biomarkers was immunohistochemically examined by staining archival tissue from surgical specimens (n = 53) using specific monoclonal antibodies for PD-L1, CD155, and CD73. Results Of those, 59.2% (29/49) were found to be positive (>1%) for PD-L1 on the tumour and tumour-infiltrating lymphocytes (TILs), while CD155 (30/53, 56.6%) and CD73 (24/53, 45.3%) were detected on tumours. Tumour expressions of CD155 and CD73 significantly correlated with PD-L1 expression on the tumour (p = 0.004 for CD155, p = 0.001 for CD73). Patients with CD155 positivity ≥10% were more likely to have a poor chemotherapy response, as evidenced by higher MDACC Residual Cancer Burden Index scores and Class II/III than those without CD155 expression (100% vs 82.6%, p = 0.03). At a median follow-up time of 80 months (range, 24-239), patients with high CD73 expression showed improved 10-year disease-free survival (DFS) and disease-specific survival (DSS) rates compared to those with low CD73 expression. In contrast, patients with CD155 (≥10%) expression exhibited a decreasing trend in 10-year DFS and DSS compared to cases with lower expression, although statistical significance was not reached. However, patients with coexpression of CD155 (≥10%) and low CD73 were significantly more likely to have decreased 10-year DFS and DSS rates compared to others (p = 0.005). Conclusion These results demonstrate high expression of CD73 and CD155 in patients with residual tumours following NAC. CD155 expression was associated with a poor response to NAC and poor prognosis in this chemotherapy-resistant TNBC cohort, supporting the use of additional immune checkpoint receptor inhibitor therapy. Interestingly, the interaction between CD155 and CD73 at lower levels resulted in a worse outcome than either marker alone, which calls for further investigation in future studies.
Collapse
Affiliation(s)
- Neslihan Cabioglu
- Department of General Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Aysel Bayram
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Selman Emiroglu
- Department of General Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Semen Onder
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Huseyin Karatay
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
- Department of Pathology, Basaksehir Cam Sakura Hospital, Istanbul, Türkiye
| | - Gizem Oner
- Department of General Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Edegem, Belgium
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
| | - Mustafa Tukenmez
- Department of General Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Mahmut Muslumanoglu
- Department of General Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Abdullah Igci
- Department of General Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
- Department of General Surgery, American Hospital, Istanbul, Türkiye
| | - Adnan Aydiner
- Department of Medical Oncology, Institute of Oncology, Istanbul University, Istanbul, Türkiye
| | - Pinar Saip
- Department of Medical Oncology, Institute of Oncology, Istanbul University, Istanbul, Türkiye
| | - Ekrem Yavuz
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Vahit Ozmen
- Department of General Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
- Department of General Surgery, Istanbul Florence Nightingale Hospital, Istanbul, Türkiye
| |
Collapse
|
179
|
Srivastava N, Usmani SS, Subbarayan R, Saini R, Pandey PK. Hypoxia: syndicating triple negative breast cancer against various therapeutic regimens. Front Oncol 2023; 13:1199105. [PMID: 37492478 PMCID: PMC10363988 DOI: 10.3389/fonc.2023.1199105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/05/2023] [Indexed: 07/27/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the deadliest subtypes of breast cancer (BC) for its high aggressiveness, heterogeneity, and hypoxic nature. Based on biological and clinical observations the TNBC related mortality is very high worldwide. Emerging studies have clearly demonstrated that hypoxia regulates the critical metabolic, developmental, and survival pathways in TNBC, which include glycolysis and angiogenesis. Alterations to these pathways accelerate the cancer stem cells (CSCs) enrichment and immune escape, which further lead to tumor invasion, migration, and metastasis. Beside this, hypoxia also manipulates the epigenetic plasticity and DNA damage response (DDR) to syndicate TNBC survival and its progression. Hypoxia fundamentally creates the low oxygen condition responsible for the alteration in Hypoxia-Inducible Factor-1alpha (HIF-1α) signaling within the tumor microenvironment, allowing tumors to survive and making them resistant to various therapies. Therefore, there is an urgent need for society to establish target-based therapies that overcome the resistance and limitations of the current treatment plan for TNBC. In this review article, we have thoroughly discussed the plausible significance of HIF-1α as a target in various therapeutic regimens such as chemotherapy, radiotherapy, immunotherapy, anti-angiogenic therapy, adjuvant therapy photodynamic therapy, adoptive cell therapy, combination therapies, antibody drug conjugates and cancer vaccines. Further, we also reviewed here the intrinsic mechanism and existing issues in targeting HIF-1α while improvising the current therapeutic strategies. This review highlights and discusses the future perspectives and the major alternatives to overcome TNBC resistance by targeting hypoxia-induced signaling.
Collapse
Affiliation(s)
- Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Salman Sadullah Usmani
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Rajasekaran Subbarayan
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
- Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Educations, Chennai, India
| | - Rashmi Saini
- Department of Zoology, Gargi College, University of Delhi, New Delhi, India
| | - Pranav Kumar Pandey
- Dr. R.P. Centre for Opthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
180
|
Ye F, Dewanjee S, Li Y, Jha NK, Chen ZS, Kumar A, Vishakha, Behl T, Jha SK, Tang H. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer. Mol Cancer 2023; 22:105. [PMID: 37415164 PMCID: PMC10324146 DOI: 10.1186/s12943-023-01805-y] [Citation(s) in RCA: 231] [Impact Index Per Article: 115.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/08/2023] [Indexed: 07/08/2023] Open
Abstract
Breast cancer is the second leading cause of death for women worldwide. The heterogeneity of this disease presents a big challenge in its therapeutic management. However, recent advances in molecular biology and immunology enable to develop highly targeted therapies for many forms of breast cancer. The primary objective of targeted therapy is to inhibit a specific target/molecule that supports tumor progression. Ak strain transforming, cyclin-dependent kinases, poly (ADP-ribose) polymerase, and different growth factors have emerged as potential therapeutic targets for specific breast cancer subtypes. Many targeted drugs are currently undergoing clinical trials, and some have already received the FDA approval as monotherapy or in combination with other drugs for the treatment of different forms of breast cancer. However, the targeted drugs have yet to achieve therapeutic promise against triple-negative breast cancer (TNBC). In this aspect, immune therapy has come up as a promising therapeutic approach specifically for TNBC patients. Different immunotherapeutic modalities including immune-checkpoint blockade, vaccination, and adoptive cell transfer have been extensively studied in the clinical setting of breast cancer, especially in TNBC patients. The FDA has already approved some immune-checkpoint blockers in combination with chemotherapeutic drugs to treat TNBC and several trials are ongoing. This review provides an overview of clinical developments and recent advancements in targeted therapies and immunotherapies for breast cancer treatment. The successes, challenges, and prospects were critically discussed to portray their profound prospects.
Collapse
Affiliation(s)
- Feng Ye
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Yuehua Li
- Department of Medical Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, 11439, USA
| | - Ankush Kumar
- Pharmaceutical and Health Sciences, Career Point University, Hamirpur, Himachal Pradesh, India
| | - Vishakha
- Pharmaceutical and Health Sciences, Career Point University, Hamirpur, Himachal Pradesh, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand, India.
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India.
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India.
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
181
|
O'Connell I, Dongre A. Immune Checkpoint Blockade Therapy for Breast Cancer: Lessons from Epithelial-Mesenchymal Transition. Mol Diagn Ther 2023; 27:433-444. [PMID: 37193859 PMCID: PMC10299941 DOI: 10.1007/s40291-023-00652-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2023] [Indexed: 05/18/2023]
Abstract
Immune checkpoint blockade therapies have generated efficacious responses in certain tumor types; however, the responses of breast carcinomas have been largely limited. Moreover, the identity of various parameters that can predict responses to immunotherapies, and at the same time, serve as putative biomarkers that can be therapeutically targeted to enhance the effectiveness of immunotherapies for breast cancers, remains to be comprehensively delineated. Activation of epithelial-mesenchymal plasticity in cancer cells, including those of the breast, increases their tumor-initiating potential and promotes their aggressiveness and resistance to multiple treatment regimens. Moreover, the residence of cancer cells in alternating epithelial or mesenchymal plastic phenotypic states can also influence their immuno-modulatory properties and susceptibilities to immune checkpoint blockade therapies. In this current opinion, we discuss the lessons that can be learnt from epithelial-mesenchymal transition to potentiate the efficacy of immunotherapy for breast cancers. We also discuss strategies to sensitize more-mesenchymal cancer cells to anti-tumor immunity and immune checkpoint blockade therapies, with the hope that these can serve as new translational avenues for the treatment of human breast tumors.
Collapse
Affiliation(s)
- Isabel O'Connell
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, T7-012A VRT, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Anushka Dongre
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, T7-012A VRT, 930 Campus Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
182
|
Kornepati AVR, Rogers CM, Sung P, Curiel TJ. The complementarity of DDR, nucleic acids and anti-tumour immunity. Nature 2023; 619:475-486. [PMID: 37468584 DOI: 10.1038/s41586-023-06069-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/11/2023] [Indexed: 07/21/2023]
Abstract
Immune checkpoint blockade (ICB) immunotherapy is a first-line treatment for selected cancers, yet the mechanisms of its efficacy remain incompletely understood. Furthermore, only a minority of patients with cancer benefit from ICB, and there is a lack of fully informative treatment response biomarkers. Selectively exploiting defects in DNA damage repair is also a standard treatment for cancer, spurred by enhanced understanding of the DNA damage response (DDR). DDR and ICB are closely linked-faulty DDR produces immunogenic cancer neoantigens that can increase the efficacy of ICB therapy, and tumour mutational burden is a good but imperfect biomarker for the response to ICB. DDR studies in ICB efficacy initially focused on contributions to neoantigen burden. However, a growing body of evidence suggests that ICB efficacy is complicated by the immunogenic effects of nucleic acids generated from exogenous DNA damage or endogenous processes such as DNA replication. Chemotherapy, radiation, or selective DDR inhibitors (such as PARP inhibitors) can generate aberrant nucleic acids to induce tumour immunogenicity independently of neoantigens. Independent of their functions in immunity, targets of immunotherapy such as cyclic GMP-AMP synthase (cGAS) or PD-L1 can crosstalk with DDR or the DNA repair machinery to influence the response to DNA-damaging agents. Here we review the rapidly evolving, multifaceted interfaces between DDR, nucleic acid immunogenicity and immunotherapy efficacy, focusing on ICB. Understanding these interrelated processes could explain ICB treatment failures and reveal novel exploitable therapeutic vulnerabilities in cancers. We conclude by addressing major unanswered questions and new research directions.
Collapse
Affiliation(s)
- Anand V R Kornepati
- Graduate School of Biomedical Sciences, University of Texas Health, San Antonio, TX, USA
| | - Cody M Rogers
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, TX, USA
| | - Patrick Sung
- Graduate School of Biomedical Sciences, University of Texas Health, San Antonio, TX, USA
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, TX, USA
- University of Texas Health San Antonio MD Anderson Cancer Center, San Antonio, TX, USA
| | - Tyler J Curiel
- Graduate School of Biomedical Sciences, University of Texas Health, San Antonio, TX, USA.
- University of Texas Health San Antonio MD Anderson Cancer Center, San Antonio, TX, USA.
- Department of Medicine, University of Texas Health, San Antonio, TX, USA.
- Dartmouth Health, Dartmouth Cancer Center and the Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| |
Collapse
|
183
|
Tarekegn K, Keskinkilic M, Kristoff TJ, Evans ST, Kalinsky K. The role of immune checkpoint inhibition in triple negative breast cancer. Expert Rev Anticancer Ther 2023; 23:1095-1106. [PMID: 37771270 DOI: 10.1080/14737140.2023.2265059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/26/2023] [Indexed: 09/30/2023]
Abstract
INTRODUCTION Immunotherapy has revolutionized cancer treatment, including TNBC, which has limited options of treatment and poor prognosis. ICIs studied in TNBC include pembrolizumab, nivolumab, atezolizumab, and durvalumab. Initial studies exploring ICI monotherapy demonstrated promising yet limited responses. Subsequent studies, KEYNOTE 522 and KEYNOTE 355, which combined ICI with chemotherapy, have resulted in the FDA approval of pembrolizumab in the early-stage and metastatic setting, respectively. AREAS COVERED This article provides a comprehensive review of the role of ICI in the treatment of TNBC. We reviewed the trials that have evaluated ICI monotherapy, dual therapy, ICI in combination with chemotherapy, targeted therapy, vaccines and radiation. Additionally, we reviewed potential biomarkers of response and immune-related adverse events (irAEs). A literature search was conducted via PubMed and ClinicalTrials.gov as of 5 June 2023. EXPERT OPINION Various approaches combining immunotherapy with chemotherapy, targeted therapy, vaccines and radiation have been assessed. Pembrolizumab remains the only ICI approved in both the early stage and mTNBC. The role of adjuvant pembrolizumab in those who achieved pCR after neoadjuvant therapy is being investigated. Combining ICI with PARP inhibitors and radiation shows promise. More research is needed in identifying predictors of response. Monitoring of irAEs remains crucial.
Collapse
Affiliation(s)
- Kidist Tarekegn
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Merve Keskinkilic
- Department of Medical Oncology, Dokuz Eylül University Faculty of Medicine, Izmir, Turkey
| | | | - Sean T Evans
- Emory University School of Medicine, Atlanta, GA, USA
| | - Kevin Kalinsky
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
184
|
Foldi J, Geyer CE. Precision medicine for metastatic TNBC: the FUTURE is now. Cell Res 2023; 33:491-492. [PMID: 37156878 PMCID: PMC10313756 DOI: 10.1038/s41422-023-00815-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Affiliation(s)
- Julia Foldi
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Charles E Geyer
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- NSABP Foundation, Pittsburgh, PA, USA.
| |
Collapse
|
185
|
Arulraj T, Wang H, Emens LA, Santa-Maria CA, Popel AS. A transcriptome-informed QSP model of metastatic triple-negative breast cancer identifies predictive biomarkers for PD-1 inhibition. SCIENCE ADVANCES 2023; 9:eadg0289. [PMID: 37390206 PMCID: PMC10313177 DOI: 10.1126/sciadv.adg0289] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/26/2023] [Indexed: 07/02/2023]
Abstract
Triple-negative breast cancer (TNBC), a highly metastatic breast cancer subtype, has limited treatment options. While a small number of patients attain clinical benefit with single-agent checkpoint inhibitors, identifying these patients before the therapy remains challenging. Here, we developed a transcriptome-informed quantitative systems pharmacology model of metastatic TNBC by integrating heterogenous metastatic tumors. In silico clinical trial with an anti-PD-1 drug, pembrolizumab, predicted that several features, such as the density of antigen-presenting cells, the fraction of cytotoxic T cells in lymph nodes, and the richness of cancer clones in tumors, could serve individually as biomarkers but had a higher predictive power as combinations of two biomarkers. We showed that PD-1 inhibition neither consistently enhanced all antitumorigenic factors nor suppressed all protumorigenic factors but ultimately reduced the tumor carrying capacity. Collectively, our predictions suggest several candidate biomarkers that might effectively predict the response to pembrolizumab monotherapy and potential therapeutic targets to develop treatment strategies for metastatic TNBC.
Collapse
Affiliation(s)
- Theinmozhi Arulraj
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Leisha A. Emens
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Cesar A. Santa-Maria
- Department of Oncology, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aleksander S. Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
186
|
Zheng Y, Li S, Tang H, Meng X, Zheng Q. Molecular mechanisms of immunotherapy resistance in triple-negative breast cancer. Front Immunol 2023; 14:1153990. [PMID: 37426654 PMCID: PMC10327275 DOI: 10.3389/fimmu.2023.1153990] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
The emergence of immunotherapy has profoundly changed the treatment model for triple-negative breast cancer (TNBC). But the heterogeneity of this disease resulted in significant differences in immunotherapy efficacy, and only some patients are able to benefit from this therapeutic modality. With the recent explosion in studies on the mechanism of cancer immunotherapy drug resistance, this article will focus on the processes of the immune response; summarize the immune evasion mechanisms in TNBC into three categories: loss of tumor-specific antigen, antigen presentation deficiency, and failure to initiate an immune response; together with the aberrant activation of a series of immune-critical signaling pathways, we will discuss how these activities jointly shape the immunosuppressive landscape within the tumor microenvironment. This review will attempt to elucidate the molecular mechanism of drug resistance in TNBC, identify potential targets that may assist in reversing drug resistance, and lay a foundation for research on identifying biomarkers for predicting immune efficacy and selection of breast cancer populations that may benefit from immunotherapy.
Collapse
Affiliation(s)
- Yiwen Zheng
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shujin Li
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongchao Tang
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Xuli Meng
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Qinghui Zheng
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| |
Collapse
|
187
|
Nerone M, Rossi L, Condorelli R, Ratti V, Conforti F, Palazzo A, Graffeo R. Beyond PARP Inhibitors in Advanced Breast Cancer Patients with Germline BRCA1/2 Mutations: Focus on CDK4/6-Inhibitors and Data Review on Other Biological Therapies. Cancers (Basel) 2023; 15:3305. [PMID: 37444415 DOI: 10.3390/cancers15133305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
We explored the outcomes of germline BRCA1/2 pathogenic/likely pathogenic variants (PVs/LPVs) in the endocrine-sensitive disease treated with first-line standard of care cyclin-dependent kinase 4/6 (CDK4/6) inhibitors. Three studies retrospectively showed a reduction in the overall survival (OS) and progression-free survival (PFS) in gBRCA1/2m patients compared to both the germinal BRCA1/2 wild type (gBRCA1/2wt) and the untested population. Regarding the efficacy of PI3Kα inhibitors, there are no subgroups or biomarker analyses in which germinal BRCA status was explored. However, the biological interactions between the PIK3CA/AKT/mTOR pathway and BRCA1/2 at a molecular level could help us to understand the activity of these drugs when used to treat BC in BRCA1/2 PVs/LPVs carriers. The efficacy of trastuzumab deruxtecan (T-DXd), an antibody-drug conjugate (ADC) targeting HER2 for HER2-low and HER2-positive (HER2+) BC, has been increasingly described. Unfortunately, data on T-DXd in HER2+ or HER2-low metastatic BC harboring germinal BRCA1/2 PVs/LPVs is lacking. Including germinal BRCA1/2 status in the subgroup analysis of the registration trials of this ADC would be of great interest, especially in the phase III trial DESTINY-breast04. This trial enrolled patients with HER2-negative (HER2-) and both HR+ and HR- metastatic disease, which can now be categorized as HER2-low. The HER2-low subgroup includes tumors that were previously classified as triple negative, so it is highly likely that some women were germline BRCA1/2 PVs/LPVs carriers and this data was not reported. Germline BRCA1/2 status will be available for a higher number of individuals with BC in the near future, and data on the prognostic and predictive role of these PVs/LPVs is needed in order to choose the best treatment options.
Collapse
Affiliation(s)
- Marta Nerone
- Service of Medical Oncology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland
| | - Lorenzo Rossi
- Service of Medical Oncology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland
| | - Rosaria Condorelli
- Service of Medical Oncology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland
| | - Vilma Ratti
- Service of Medical Oncology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland
| | - Fabio Conforti
- Oncology Unit, Humanitas Gavazzeni, 24125 Bergamo, Italy
| | - Antonella Palazzo
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy
| | - Rossella Graffeo
- Service of Medical Oncology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland
| |
Collapse
|
188
|
Wang J, Sun T, Ouyang Q, Han Y, Xu B. A phase Ib study of TQB2450 plus anlotinib in patients with advanced triple-negative breast cancer. iScience 2023; 26:106876. [PMID: 37275528 PMCID: PMC10238930 DOI: 10.1016/j.isci.2023.106876] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/22/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023] Open
Abstract
This study explored the safety and preliminary efficacy of the anti-PD-L1 antibody TQB2450 combined with the multi-kinase inhibitor anlotinib in advanced triple-negative breast cancer (TNBC). Patients with advanced TNBC who received at least one line of systemic therapy with anthracyclines and/or taxanes were enrolled in the dose-escalation and dose-expansion cohorts. Between May 29, 2019 and September 28, 2020, 34 patients were enrolled (three in the dose-escalation cohort and 31 in the dose-expansion cohort). The ORR was 26.5% (95% CI, 12.9-44.4) and the DCR was 73.5% (95% CI, 55.6-87.1). The median PFS was 5.6 (95% CI, 2.9-7.5) months, and the median OS was not reached. Seventeen (50.0%) patients had grade ≥3 treatment-related adverse events, with the most common being QT interval prolongation (17.6%) and hypertension (14.7%). No treatment-related deaths occurred. TQB2450 combined with anlotinib as a chemotherapy-free treatment shows promising efficacy with a manageable safety profile for patients with previously treated advanced TNBC.
Collapse
Affiliation(s)
- Jiayu Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Sun
- Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Quchang Ouyang
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital, Changsha, China
| | - Yiqun Han
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
189
|
Li G, Hu J, Cho C, Cui J, Li A, Ren P, Zhou J, Wei W, Zhang T, Liu X. Everolimus combined with PD-1 blockade inhibits progression of triple-negative breast cancer. Cell Signal 2023:110729. [PMID: 37257766 DOI: 10.1016/j.cellsig.2023.110729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/27/2023] [Accepted: 05/20/2023] [Indexed: 06/02/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer. Due to rapid progression and a lack of targetable receptors, TNBC is exceptionally difficult to treat. Available treatment options are nonspecific cytotoxic agents, which have had modest success; thus, there is a need for novel therapies for TNBC. The mammalian/mechanistic target of rapamycin (mTOR) signaling pathway is aberrantly activated in TNBC, and this pathway has been shown to promote cancer cell survival and chemoresistance. As such, mTOR inhibition has been considered a potential therapeutic strategy for TNBC. The mTOR inhibitor everolimus (EVE) has been approved for the treatment of estrogen positive breast cancer; however, its efficacy in TNBC is still undetermined. In this study, we evaluated the effects of EVE monotherapy and the mechanism of EVE resistance in the 4 T1 model of TNBC. Whereas EVE monotherapy inhibited mTOR signaling activity, it did not attenuate tumor progression. Additionally, tumors from EVE-treated mice had abnormal vasculature characterized by disorganized architecture and hyperpermeability. We also found that treatment with EVE increased PD-L1 expression in intratumoral vascular endothelial cells, and this increase in endothelial cell-associated PD-L1 corresponded to reduced CD8 + T cell tumor infiltration. Importantly, combination treatment with anti-PD-1 antibody and EVE normalized the tumor vasculature, rescued CD8 + T cell tumor infiltration, and reduced tumor growth. Taken together, our findings improve our current understanding of mechanisms underlying mTOR inhibition resistance in TNBC and identify a novel combination treatment strategy in the treatment of mTOR resistant tumors.
Collapse
Affiliation(s)
- Guangxin Li
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Jiajia Hu
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Christina Cho
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Junwei Cui
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Ao Li
- Department of Pharmacology and Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, USA
| | - Pengwei Ren
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Wei Wei
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Tianxiang Zhang
- Department of Immunobiology, Yale University, New Haven, CT, USA.
| | - Xiaoling Liu
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China.
| |
Collapse
|
190
|
Jacobs F, Agostinetto E, Miggiano C, De Sanctis R, Zambelli A, Santoro A. Hope and Hype around Immunotherapy in Triple-Negative Breast Cancer. Cancers (Basel) 2023; 15:cancers15112933. [PMID: 37296893 DOI: 10.3390/cancers15112933] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Triple-negative breast cancer (TNBC) holds a poor prognosis compared to other breast cancer subtypes, and the development of new effective treatment strategies is an unmet medical need. TNBC has traditionally been considered not amenable to treatment with targeted agents due to a lack of actionable targets. Therefore, chemotherapy has remained the mainstay of systemic treatment for many decades. The advent of immunotherapy raised very hopeful expectations in TNBC, possibly due to higher levels of tumor-infiltrating lymphocytes, PD-L1 expression and tumor mutational burden compared to other breast cancer subtypes, that predict an effective anti-tumor immune-engagement. The results of clinical trials testing immunotherapy in TNBC led to the approval of the combination of immune checkpoint inhibitors and chemotherapy in both early and advanced settings. However, some open questions about the use of immunotherapy in TNBC still exist. These include a deeper understanding of the heterogeneity of the disease, identification of reliable predictive biomarkers of response, determination of the most appropriate chemotherapy backbone and appropriate management of potential long-term immune-related adverse events. In this review we aim to examine the available evidence on the use of immunotherapy strategies in both early and advanced TNBC, to critically discuss some of the limitations encountered in clinical research and to summarize data on novel promising immunotherapeutic strategies beyond PD-(L)1 blockade that have been investigated in the most recent trials.
Collapse
Affiliation(s)
- Flavia Jacobs
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, MI, Italy
- Academic Trials Promoting Team, Institut Jules Bordet, L'Université Libre de Bruxelles (U.L.B.), 1070 Brussels, Belgium
| | - Elisa Agostinetto
- Academic Trials Promoting Team, Institut Jules Bordet, L'Université Libre de Bruxelles (U.L.B.), 1070 Brussels, Belgium
| | - Chiara Miggiano
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, MI, Italy
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, 20090 Pieve Emanuele, MI, Italy
| | - Rita De Sanctis
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, MI, Italy
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, 20090 Pieve Emanuele, MI, Italy
| | - Alberto Zambelli
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, MI, Italy
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, 20090 Pieve Emanuele, MI, Italy
| | - Armando Santoro
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, MI, Italy
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, 20090 Pieve Emanuele, MI, Italy
| |
Collapse
|
191
|
Zhou Y, Zhou J, Hao X, Shi H, Li X, Wang A, Hu Z, Yang Y, Jiang Z, Wang T. Efficacy relevance of PD-L1 expression on circulating tumor cells in metastatic breast cancer patients treated with anti-PD-1 immunotherapy. Breast Cancer Res Treat 2023:10.1007/s10549-023-06972-6. [PMID: 37227611 DOI: 10.1007/s10549-023-06972-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/03/2023] [Indexed: 05/26/2023]
Abstract
PURPOSE Breast cancer has become the leading cause of cancer mortality in women. Although immune checkpoint inhibitors targeting programmed death-1 (PD-1) are promising, it remains unclear whether PD-L1 expression on circulating tumor cells (CTCs) has predictive and prognostic values in predicting and stratifying metastatic breast cancer (MBC) patients who can benefit from anti-PD-1 immunotherapy. METHODS Twenty six MBC patients that received anti-PD-1 immunotherapy were enrolled in this study. The peptide-based Pep@MNPs method was used to isolate and enumerate CTCs from 2.0 ml of peripheral venous blood. The expression of PD-L1 on CTCs was evaluated by an established immunoscoring system categorizing into four classes (negative, low, medium, and high). RESULTS Our data showed that 92.3% (24/26) of patients had CTCs, 83.3% (20/26) of patients had PD-L1-positive CTCs, and 65.4% (17/26) of patients had PD-L1-high CTCs. We revealed that the clinical benefit rate (CBR) of patients with a cut-off value of ≥ 35% PD-L1-high CTCs (66.6%) was higher than the others (29.4%). We indicated that PD-L1 expression on CTCs from MBC patients treated with anti-PD-1 monotherapy was dynamic. We demonstrated that MBC patients with a cut-off value of ≥ 35% PD-L1-high CTCs had longer PFS (P = 0.033) and OS (P = 0.00058) compared with patients with a cut-off value of < 35% PD-L1-high CTCs. CONCLUSION Our findings suggested that PD-L1 expression on CTCs could predict the therapeutic response and clinical outcomes, providing a valuable predictive and prognostic biomarker for patients treated with anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Ying Zhou
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Jinmei Zhou
- Breast Cancer Department, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaopeng Hao
- Department of General Surgery, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Haoyuan Shi
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Xuejie Li
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Anqi Wang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Zhiyuan Hu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China.
- School of Nanoscience and Technology, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China.
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China.
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China.
- School of Nanoscience and Technology, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China.
| | - Zefei Jiang
- Breast Cancer Department, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Tao Wang
- Breast Cancer Department, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
- Anhui Medical University, Hefei, China.
- Southern Medical University, Guangzhou, China.
| |
Collapse
|
192
|
Tan X, Li Y, Hou Z, Zhang M, Li L, Wei J. Combination therapy with PD-1 inhibition plus rapamycin and metformin enhances anti-tumor efficacy in triple negative breast cancer. Exp Cell Res 2023:113647. [PMID: 37225011 DOI: 10.1016/j.yexcr.2023.113647] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/26/2023]
Abstract
Immunotherapy using PD-1/PD-L1 inhibitors has been proved to be effective in triple negative breast cancer (TNBC), albeit only in a fraction of patients. Emerging evidences indicate mTOR blockade and metformin may re-orchestrate the immune system in tumors. Herein, in this study we aimed to evaluate the anti-tumor efficacy of PD-1 monoclonal antibody with mTOR inhibitor rapamycin or with the anti-diabetic drug metformin. The status of PD-1/PD-L1 and mTOR pathway was determined through analyzing the TCGA and CCLE data in TNBCs as well as by detection at mRNA and protein level. The inhibition of tumor growth and metastasis by anti-PD-1 combined with rapamycin or with metformin was evaluated in allograft mouse model of TNBC. The effects of combination therapy on the AMPK, mTOR and PD-1/PD-L1 pathways were also evaluated. The combination treatment with PD-1 McAb and rapamycin/metformin had additive effects on suppression of tumor growth and distant metastasis in mice. Compared with the control group and the monotherapy, combined PD-1 McAb with either rapamycin or metformin exhibited more obvious effects on induction of necrosis, CD8+ T lymphocytes infiltrating and inhibition of PD-L1 expression in TNBC homograft. In vitro study showed either rapamycin or metformin not only decreased PD-L1 expression, but increased p-AMPK expression and therefore led to down-regulation of p-S6. In summary, combination of PD-1 antagonist with either rapamycin or metformin led to more infiltrating TILs and decreased PD-L1 resulting in enhanced antitumor immunity and blockade of PD-1/PD-L1 pathway. Our results suggested such combination therapy may be a potential therapeutic strategy for TNBC patients.
Collapse
Affiliation(s)
- Xiaoying Tan
- Department of Pathology, School of Basic Medical Sciences, Shandong University, 44(#) Wenhuaxi Road, Jinan, Shandong, 250012, PR China
| | - Yan Li
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, 440(#) Jiyan Road, Jinan, Shandong, 250117, PR China
| | - Zhihui Hou
- Department of Pathology, School of Basic Medical Sciences, Shandong University, 44(#) Wenhuaxi Road, Jinan, Shandong, 250012, PR China
| | - Mingwei Zhang
- Department of Pathology, School of Basic Medical Sciences, Shandong University, 44(#) Wenhuaxi Road, Jinan, Shandong, 250012, PR China
| | - Li Li
- Department of Pathology, School of Basic Medical Sciences, Shandong University, 44(#) Wenhuaxi Road, Jinan, Shandong, 250012, PR China; Department of Pathology, Qilu Hospital of Shandong University, 107(#) Wenhuaxi Road, Jinan, Shandong, 250012, PR China.
| | - Junmin Wei
- Department of Oncology, Cancer Center, Qilu Hospital of Shandong University, 107(#) Wenhuaxi Road, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
193
|
Tseng LM, Lau KY, Chen JL, Chu PY, Huang TT, Lee CH, Wang WL, Chang YY, Huang CT, Huang CC, Chao TC, Tsai YF, Lai JI, Dai MS, Liu CY. Regorafenib induces damage-associated molecular patterns, cancer cell death and immune modulatory effects in a murine triple negative breast cancer model. Exp Cell Res 2023; 429:113652. [PMID: 37209991 DOI: 10.1016/j.yexcr.2023.113652] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Damage associated molecular patterns (DAMPs), including calreticulin (CRT) exposure, high-mobility group box 1 protein (HMGB1) elevation, and ATP release, characterize immunogenic cell death (ICD) and may play a role in cancer immunotherapy. Triple negative breast cancer (TNBC) is an immunogenic subtype of breast cancer with higher lymphocyte infiltration. Here, we found that regorafenib, a multi-target angiokinase inhibitor previously known to suppress STAT3 signaling, induced DAMPs and cell death in TNBC cells. Regorafenib induced the expression of HMGB1 and CRT, and the release of ATP. Regorafenib-induced HMGB1 and CRT were attenuated following STAT3 overexpression. In a 4T1 syngeneic murine model, regorafenib treatment increased HMGB1 and CRT expression in xenografts, and effectively suppressed 4T1 tumor growth. Immunohistochemical staining revealed increased CD4+ and CD8+ tumor-infiltrating T cells in 4T1 xenografts following regorafenib treatment. Regorafenib treatment or programmed death-1 (PD-1) blockade using anti-PD-1 monoclonal antibody reduced lung metastasis of 4T1 cells in immunocompetent mice. While regorafenib increases the proportion of MHC II high expression on dendritic cells in mice with smaller tumors, the combination of regorafenib and PD-1 blockade did not show a synergistic effect on anti-tumor activity. These results suggest that regorafenib induces ICD and suppresses tumor progression in TNBC. It should be carefully evaluated when developing a combination therapy with an anti-PD-1 antibody and a STAT3 inhibitor.
Collapse
Affiliation(s)
- Ling-Ming Tseng
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan; Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ka-Yi Lau
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ji-Lin Chen
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua City, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; Department of Health Food, Chung Chou University of Science and Technology, Changhua, Taiwan
| | - Tzu-Ting Huang
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chia-Han Lee
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wan-Lun Wang
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan; Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yuan-Ya Chang
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Teng Huang
- Division of Hematology & Oncology, Department of Medicine, Yang-Ming Branch of Taipei City Hospital, Taipei, Taiwan
| | - Chi-Cheng Huang
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan; Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ta-Chung Chao
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Chemotherapy, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Fang Tsai
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan; Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jiun-I Lai
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ming-Shen Dai
- Hematology/Oncology, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan
| | - Chun-Yu Liu
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
194
|
Elmakaty I, Abdo R, Elsabagh A, Elsayed A, Malki MI. Comparative efficacy and safety of PD-1/PD-L1 inhibitors in triple negative breast cancer: a systematic review and network meta-analysis of randomized controlled trials. Cancer Cell Int 2023; 23:90. [PMID: 37170090 PMCID: PMC10173590 DOI: 10.1186/s12935-023-02941-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/07/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Triple-Negative Breast Cancer (TNBC) is a lethal subtype of breast cancer with limited treatment options. The purpose of this Network Meta-Analysis (NMA) is to compare the efficacy and safety of inhibitors of programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) in treating TNBC. METHODS Our search strategy was used in six databases: PubMed, Cochrane Library, Cumulative Index to Nursing and Allied Health Literature database, Embase, Scopus, and Web of Science up to November 2nd, 2022, as well as a thorough search in the most used trial registries. We included phase II and III randomized controlled trials that looked at the efficacy of PD-1/PD-L1 inhibitors in the treatment of TNBC and reported either Overall Survival (OS), Progression-Free Survival (PFS), or pathological Complete Response (pCR). The risk of bias was assessed utilizing Cochrane's risk of bias 2 tool, and the statistical analysis was performed using a frequentist contrast-based method for NMA by employing standard pairwise meta-analysis applying random effects model. RESULTS 12 trials (5324 patients) were included in our NMA including seven phase III trials. Pembrolizumab in a neoadjuvant setting achieved a pooled OS of 0.82 (95% Confidence Interval (CI) 0.65 to 1.03), a PFS of 0.82 (95% CI 0.71 to 0.94) and a pCR 2.79 (95% CI 1.07 to 7.24) compared to Atezolizumab's OS of 0.92 (95% CI 0.74 to 1.15), PFS of 0.82 (95% CI 0.69 to 0.97), and pCR of 1.94 (95% CI 0.86 to 4.37). Atezolizumab had less grade ≥ 3 adverse events (OR 1.48, 95% CI 0.90 to 2.42) than Pembrolizumab (OR 1.90, 95% CI 1.08 to 3.33) in the neoadjuvant setting. CONCLUSIONS PD-1/PD-L1 inhibitors exhibited varying efficacy in terms of OS, PFS, and pCR. They were associated with an increase in immune-related adverse effects. When used early in the course of TNBC, PD-1/PD-L1 inhibitors exert their maximum benefit. Durvalumab as a maintenance treatment instead of chemotherapy has shown promising outcomes. Future studies should focus on PD-L1 expression status and TNBC subtypes, since these factors may contribute to the design of individualized TNBC therapy regimens. Systematic review registration PROSPERO Identifier: CRD42022380712.
Collapse
Affiliation(s)
- Ibrahim Elmakaty
- College of Medicine, QU Health, Qatar University, P. O. Box: 2713, Doha, Qatar
| | - Ruba Abdo
- College of Medicine, QU Health, Qatar University, P. O. Box: 2713, Doha, Qatar
| | - Ahmed Elsabagh
- College of Medicine, QU Health, Qatar University, P. O. Box: 2713, Doha, Qatar
| | - Abdelrahman Elsayed
- College of Medicine, QU Health, Qatar University, P. O. Box: 2713, Doha, Qatar
| | - Mohammed Imad Malki
- Pathology Unit, Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
195
|
Berner M, Hartmann A, Erber R. Role of Surgical Pathologist for Detection of Predictive Immuno-oncological Factors in Breast Cancer. Adv Anat Pathol 2023; 30:195-202. [PMID: 36418243 DOI: 10.1097/pap.0000000000000382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Immune checkpoint inhibitors (ICIs) have changed therapy strategies in breast cancer (BC) patients suffering from triple-negative breast cancer (TNBC). For example, in Europe the anti-programmed cell death 1 ligand 1 (PD-L1) ICI Azetolizumab is approved for adult patients with locally advanced or metastasized TNBC (mTNBC), depending on the immunohistochemical (IHC) PD-L1 expression of immune cells in the tumor area [immune cell (IC) score ≥1%); the anti-programmed cell death 1 (PD-1) ICI pembrolizumab is approved for mTNBC if PD-L1 Combined Positive Score (CPS), that is PD-L1 expression on tumor and/or immune cells, is ≥10. For early TNBC, in contrast, neoadjuvant use of pembrolizumab is approved in the United States and Europe independent from PD-L1 IHC expression. The determination of PD-L1 expression in tumor tissue to predict response to ICI therapy requires sensitive immunostaining with appropriate primary antibodies and staining protocols and a standardized and meticulous assessment of PD-L1 IHC stained breast cancer tissue slides. For the selection of the test material and continuous quality control of the dyeing, high standards must be applied. The evaluation is carried out according to various evaluation algorithms (scores). Here, the role of PD-L1 in BC and the currently most relevant PD-L1 assays and scores for TNBC will be explained. Furthermore, other tissue-based biomarkers potentially predictive for ICI therapy response in BC, for example, tumor mutational burden (TMB), will be presented in this review.
Collapse
Affiliation(s)
- Mandy Berner
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | | | | |
Collapse
|
196
|
Lu L, Risch E, Halaban R, Zhen P, Bacchiocchi A, Risch HA. Dynamic changes of circulating soluble PD-1/PD-L1 and its association with patient survival in immune checkpoint blockade-treated melanoma. Int Immunopharmacol 2023; 118:110092. [PMID: 37004344 DOI: 10.1016/j.intimp.2023.110092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023]
Abstract
Immune checkpoint PD-1 and its ligand PD-L1 lead to T cell exhaustion, and a high level of circulating soluble PD-L1 at baseline indicates a poor prognosis in melanoma and other solid tumor types. Here we show that the dynamic changes of circulating soluble PD-1 and PD-L1 across the course of immune checkpoint blockades (ICBs) and their changes associate with patient survival in melanoma in a retrospective study. A high change of soluble PD-L1 level at a time-point but not PD-1 significantly increased the mortality, whereas a high change of soluble PD-1/PD-L1 ratio significantly reduced the mortality. After the initial immunotherapy, both soluble PD-1 and PD-L1 increased. However, the change pattern of soluble PD-L1 level was particularly dependent on patients' survival status. These findings indicate that the magnitudes of circulating soluble PD-L1 and PD-1/PD-L1 ratio changes over the time may reflect the patients' response to ICBs or the progression of the disease and predict the survival in melanoma patients treated with ICBs.
Collapse
|
197
|
Qian K, Liu Q. Narrative review on the role of immunotherapy in early triple negative breast cancer: unveiling opportunities and overcoming challenges. TRANSLATIONAL BREAST CANCER RESEARCH : A JOURNAL FOCUSING ON TRANSLATIONAL RESEARCH IN BREAST CANCER 2023; 4:16. [PMID: 38751461 PMCID: PMC11093071 DOI: 10.21037/tbcr-23-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/20/2023] [Indexed: 05/18/2024]
Abstract
Background and Objective Triple negative breast cancer (TNBC) represents a highly aggressive breast cancer subtype, historically managed with chemotherapy regimens predominantly involving anthracyclines and taxanes, yielding unfavorable prognoses. This review endeavors to offer a thorough examination of the present state of treatment strategies for early stage triple negative breast cancer (eTNBC), with a particular emphasis on immunotherapy modalities, combination therapies, predictive biomarkers, and ongoing clinical trials. The principal aim of this review is to meticulously assess the available literature, ascertain significant discoveries, and engage in discussions regarding their potential implications for future research endeavors, clinical applications, and policy formulation. Methods This review was conducted using PubMed and Google Scholar databases, with the latest update performed in March 2023. The search strategy was designed to ensure a comprehensive analysis of the literature, with a focus on recent advancements. Key Content and Findings We critically assess the current eTNBC treatment landscape, covering efficacy and limitations of monotherapy, combination therapies, and predictive biomarkers. We highlight promising results from recent trials, address controversies surrounding chemotherapy, and explore optimal approaches for adjuvant and neoadjuvant therapy (NAT). Insights into personalized treatment strategies, ongoing trials, and future perspectives are provided, advancing our understanding of therapeutic options for eTNBC. Conclusions Through a comprehensive analysis of the literature, this review highlights the potential of immunotherapy, particularly in combination with chemotherapy, as a promising approach for treating eTNBC. However, further research is warranted to optimize treatment strategies, refine patient selection criteria, and identify reliable biomarkers for predicting response to immune checkpoint inhibitors (ICIs). The findings of this review hold significant implications for future research, clinical practice, and policy-making, offering valuable insights into the current challenges and advancements in eTNBC treatment. Ultimately, this knowledge can contribute to improved patient outcomes, enhanced quality of life, and the development of more effective therapeutic approaches for eTNBC.
Collapse
Affiliation(s)
- Keyang Qian
- Department of Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
198
|
Allegra A, Murdaca G, Mirabile G, Gangemi S. Redox Signaling Modulates Activity of Immune Checkpoint Inhibitors in Cancer Patients. Biomedicines 2023; 11:1325. [PMID: 37238995 PMCID: PMC10215686 DOI: 10.3390/biomedicines11051325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Although immunotherapy is already a staple of cancer care, many patients may not benefit from these cutting-edge treatments. A crucial field of research now focuses on figuring out how to improve treatment efficacy and assess the resistance mechanisms underlying this uneven response. For a good response, immune-based treatments, in particular immune checkpoint inhibitors, rely on a strong infiltration of T cells into the tumour microenvironment. The severe metabolic environment that immune cells must endure can drastically reduce effector activity. These immune dysregulation-related tumour-mediated perturbations include oxidative stress, which can encourage lipid peroxidation, ER stress, and T regulatory cells dysfunction. In this review, we have made an effort to characterize the status of immunological checkpoints, the degree of oxidative stress, and the part that latter plays in determining the therapeutic impact of immunological check point inhibitors in different neoplastic diseases. In the second section of the review, we will make an effort to assess new therapeutic possibilities that, by affecting redox signalling, may modify the effectiveness of immunological treatment.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Giuseppe Murdaca
- Department of Internal Medicine, Ospedale Policlinico San Martino IRCCS, University of Genova, Viale Benedetto XV, n. 6, 16132 Genova, Italy
| | - Giuseppe Mirabile
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
199
|
Yam C, Mittendorf EA, Garber HR, Sun R, Damodaran S, Murthy RK, Ramirez D, Karuturi M, Layman RM, Ibrahim N, Rauch GM, Adrada BE, Candelaria RP, White JB, Ravenberg E, Clayborn A, Ding QQ, Symmans WF, Prabhakaran S, Thompson AM, Valero V, Tripathy D, Huo L, Moulder SL, Litton JK. A phase II study of neoadjuvant atezolizumab and nab-paclitaxel in patients with anthracycline-resistant early-stage triple-negative breast cancer. Breast Cancer Res Treat 2023; 199:457-469. [PMID: 37061619 DOI: 10.1007/s10549-023-06929-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/30/2023] [Indexed: 04/17/2023]
Abstract
PURPOSE Neoadjuvant anti-PD-(L)1 therapy improves the pathological complete response (pCR) rate in unselected triple-negative breast cancer (TNBC). Given the potential for long-term morbidity from immune-related adverse events (irAEs), optimizing the risk-benefit ratio for these agents in the curative neoadjuvant setting is important. Suboptimal clinical response to initial neoadjuvant therapy (NAT) is associated with low rates of pCR (2-5%) and may define a patient selection strategy for neoadjuvant immune checkpoint blockade. We conducted a single-arm phase II study of atezolizumab and nab-paclitaxel as the second phase of NAT in patients with doxorubicin and cyclophosphamide (AC)-resistant TNBC (NCT02530489). METHODS Patients with stage I-III, AC-resistant TNBC, defined as disease progression or a < 80% reduction in tumor volume after 4 cycles of AC, were eligible. Patients received atezolizumab (1200 mg IV, Q3weeks × 4) and nab-paclitaxel (100 mg/m2 IV,Q1 week × 12) as the second phase of NAT before undergoing surgery followed by adjuvant atezolizumab (1200 mg IV, Q3 weeks, × 4). A two-stage Gehan-type design was employed to detect an improvement in pCR/residual cancer burden class I (RCB-I) rate from 5 to 20%. RESULTS From 2/15/2016 through 1/29/2021, 37 patients with AC-resistant TNBC were enrolled. The pCR/RCB-I rate was 46%. No new safety signals were observed. Seven patients (19%) discontinued atezolizumab due to irAEs. CONCLUSION This study met its primary endpoint, demonstrating a promising signal of activity in this high-risk population (pCR/RCB-I = 46% vs 5% in historical controls), suggesting that a response-adapted approach to the utilization of neoadjuvant immunotherapy should be considered for further evaluation in a randomized clinical trial.
Collapse
Affiliation(s)
- Clinton Yam
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Dan L. Duncan Building (CPB5.3542), 1515 Holcombe Blvd. Unit 1354, Houston, TX, 77030, USA.
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Elizabeth A Mittendorf
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
- Breast Oncology Program, Dana-Farber/Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Haven R Garber
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Dan L. Duncan Building (CPB5.3542), 1515 Holcombe Blvd. Unit 1354, Houston, TX, 77030, USA
| | - Ryan Sun
- Department of Biostatistics, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Senthil Damodaran
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Dan L. Duncan Building (CPB5.3542), 1515 Holcombe Blvd. Unit 1354, Houston, TX, 77030, USA
| | - Rashmi K Murthy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Dan L. Duncan Building (CPB5.3542), 1515 Holcombe Blvd. Unit 1354, Houston, TX, 77030, USA
| | - David Ramirez
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Dan L. Duncan Building (CPB5.3542), 1515 Holcombe Blvd. Unit 1354, Houston, TX, 77030, USA
| | - Meghan Karuturi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Dan L. Duncan Building (CPB5.3542), 1515 Holcombe Blvd. Unit 1354, Houston, TX, 77030, USA
| | - Rachel M Layman
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Dan L. Duncan Building (CPB5.3542), 1515 Holcombe Blvd. Unit 1354, Houston, TX, 77030, USA
| | - Nuhad Ibrahim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Dan L. Duncan Building (CPB5.3542), 1515 Holcombe Blvd. Unit 1354, Houston, TX, 77030, USA
| | - Gaiane M Rauch
- Department of Breast Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Beatriz E Adrada
- Department of Breast Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rosalind P Candelaria
- Department of Breast Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason B White
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Dan L. Duncan Building (CPB5.3542), 1515 Holcombe Blvd. Unit 1354, Houston, TX, 77030, USA
| | - Elizabeth Ravenberg
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Dan L. Duncan Building (CPB5.3542), 1515 Holcombe Blvd. Unit 1354, Houston, TX, 77030, USA
| | - Alyson Clayborn
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Dan L. Duncan Building (CPB5.3542), 1515 Holcombe Blvd. Unit 1354, Houston, TX, 77030, USA
| | - Qing Qing Ding
- Department of Pathology, Division of Pathology-Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - W Fraser Symmans
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sabitha Prabhakaran
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alastair M Thompson
- Section of Breast Surgery, Division of Surgical Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Vicente Valero
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Dan L. Duncan Building (CPB5.3542), 1515 Holcombe Blvd. Unit 1354, Houston, TX, 77030, USA
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Dan L. Duncan Building (CPB5.3542), 1515 Holcombe Blvd. Unit 1354, Houston, TX, 77030, USA
| | - Lei Huo
- Department of Pathology, Division of Pathology-Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stacy L Moulder
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Dan L. Duncan Building (CPB5.3542), 1515 Holcombe Blvd. Unit 1354, Houston, TX, 77030, USA
| | - Jennifer K Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Dan L. Duncan Building (CPB5.3542), 1515 Holcombe Blvd. Unit 1354, Houston, TX, 77030, USA.
| |
Collapse
|
200
|
Ransohoff JD, Ritter V, Purington N, Andrade K, Han S, Liu M, Liang SY, John EM, Gomez SL, Telli ML, Schapira L, Itakura H, Sledge GW, Bhatt AS, Kurian AW. Antimicrobial exposure is associated with decreased survival in triple-negative breast cancer. Nat Commun 2023; 14:2053. [PMID: 37045824 PMCID: PMC10097670 DOI: 10.1038/s41467-023-37636-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
Antimicrobial exposure during curative-intent treatment of triple-negative breast cancer (TNBC) may lead to gut microbiome dysbiosis, decreased circulating and tumor-infiltrating lymphocytes, and inferior outcomes. Here, we investigate the association of antimicrobial exposure and peripheral lymphocyte count during TNBC treatment with survival, using integrated electronic medical record and California Cancer Registry data in the Oncoshare database. Of 772 women with stage I-III TNBC treated with and without standard cytotoxic chemotherapy - prior to the immune checkpoint inhibitor era - most (654, 85%) used antimicrobials. Applying multivariate analyses, we show that each additional total or unique monthly antimicrobial prescription is associated with inferior overall and breast cancer-specific survival. This antimicrobial-mortality association is independent of changes in neutrophil count, is unrelated to disease severity, and is sustained through year three following diagnosis, suggesting antimicrobial exposure negatively impacts TNBC survival. These results may inform mechanistic studies and antimicrobial prescribing decisions in TNBC and other hormone receptor-independent cancers.
Collapse
Grants
- R01 AI143757 NIAID NIH HHS
- HHSN261201800032I NCI NIH HHS
- HHSN261201800015I NCI NIH HHS
- NU58DP006344 NCCDPHP CDC HHS
- P30 CA124435 NCI NIH HHS
- T32 HG000044 NHGRI NIH HHS
- HHSN261201800009I NCI NIH HHS
- This work was supported by Breast Cancer Research Foundation, the Susan and Richard Levy Gift Fund, the Suzanne Pride Bryan Fund for Breast Cancer Research, the Jan Weimer Junior Faculty Chair in Breast Oncology, the Regents of the University of California’s California Breast Cancer Research Program (16OB-0149 and 19IB-0124), the BRCA Foundation, the G. Willard Miller Foundation, and the Biostatistics Shared Resource of the NIH-funded Stanford Cancer Institute (P30CA124435). The collection of cancer incidence data used in this study was supported by the California Department of Public Health pursuant to California Health and Safety Code Section 103885; the Centers for Disease Control and Prevention’s National Program of Cancer Registries, under Cooperative Agreement No. 5NU58DP006344; and the National Cancer Institute’s SEER Program under Contract No. HHSN261201800032I awarded to the University of California, San Francisco, Contract No. HHSN261201800015I awarded to the University of Southern California, and Contract No. HHSN261201800009I awarded to the Public Health Institute, Cancer Registry of Greater California. K.A. was supported by NIH 5T32HG000044. This work was further supported by a Stand Up 2 Cancer grant, a V Foundation Fellowship, and Damon Runyon Clinical Investigator Award and NIH R01AI14375702 (to A.S.B.).
Collapse
Affiliation(s)
- Julia D Ransohoff
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Victor Ritter
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Natasha Purington
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Karen Andrade
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Summer Han
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Mina Liu
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Su-Ying Liang
- Palo Alto Medical Foundation Research Institute, Sutter Health, Palo Alto, CA, USA
| | - Esther M John
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Scarlett L Gomez
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Melinda L Telli
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Lidia Schapira
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Haruka Itakura
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - George W Sledge
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ami S Bhatt
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Allison W Kurian
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|