151
|
Straub RH, Cutolo M. Glucocorticoids and chronic inflammation. Rheumatology (Oxford) 2016; 55:ii6-ii14. [DOI: 10.1093/rheumatology/kew348] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 08/23/2016] [Indexed: 12/20/2022] Open
|
152
|
Abstract
Immunosuppression strategies that selectively inhibit effector T cells while preserving and even enhancing CD4FOXP3 regulatory T cells (Treg) permit immune self-regulation and may allow minimization of immunosuppression and associated toxicities. Many immunosuppressive drugs were developed before the identity and function of Treg were appreciated. A good understanding of the interactions between Treg and immunosuppressive agents will be valuable to the effective design of more tolerable immunosuppression regimens. This review will discuss preclinical and clinical evidence regarding the influence of current and emerging immunosuppressive drugs on Treg homeostasis, stability, and function as a guideline for the selection and development of Treg-friendly immunosuppressive regimens.
Collapse
Affiliation(s)
- Akiko Furukawa
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Steven A Wisel
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
153
|
Glucocorticoid-induced leucine zipper (GILZ) in immuno suppression: master regulator or bystander? Oncotarget 2016; 6:38446-57. [PMID: 26498359 PMCID: PMC4770713 DOI: 10.18632/oncotarget.6197] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/12/2015] [Indexed: 12/20/2022] Open
Abstract
Induction of glucocorticoid-induced leucine zipper (GILZ) by glucocorticoids has been reported to be essential for their anti-inflammatory actions. At the same time, GILZ is actively downregulated under inflammatory conditions, resulting in an enhanced pro-inflammatory response. Two papers published in the recent past showed elevated GILZ expression in the late stage of an inflammation. Still, the manuscripts suggest seemingly contradictory roles of endogenous GILZ: one of them suggested compensatory actions by elevated corticosterone levels in GILZ knockout mice, while our own manuscript showed a distinct phenotype upon GILZ knockout in vivo. Herein, we discuss the role of GILZ in inflammation with a special focus on the influence of endogenous GILZ on macrophage responses and suggest a cell-type specific action of GILZ as an explanation for the conflicting results as presented in recent reports.
Collapse
|
154
|
Georgatza D, Gorgogietas VA, Kylindri P, Charalambous MC, Papadopoulou KK, Hayes JM, Psarra AMG. The triterpene echinocystic acid and its 3-O-glucoside derivative are revealed as potent and selective glucocorticoid receptor agonists. Int J Biochem Cell Biol 2016; 79:277-287. [DOI: 10.1016/j.biocel.2016.08.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 07/19/2016] [Accepted: 08/29/2016] [Indexed: 12/20/2022]
|
155
|
Havakuk O, Konigstein M, Ben Assa E, Arbel Y, Abramowitz Y, Halkin A, Bazan S, Shmilovich H, Keren G, Finkelstein A, Banai S. Steroid therapy and conduction disturbances after transcatheter aortic valve implantation. Cardiovasc Ther 2016; 34:325-9. [DOI: 10.1111/1755-5922.12202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Ofer Havakuk
- Interventional Cardiology; Tel-Aviv Medical Center; Tel-Aviv Israel
- The Sackler Faculty of Medicine; Tel-Aviv University; Tel Aviv Israel
| | - Maayan Konigstein
- Interventional Cardiology; Tel-Aviv Medical Center; Tel-Aviv Israel
- The Sackler Faculty of Medicine; Tel-Aviv University; Tel Aviv Israel
| | - Eyal Ben Assa
- Interventional Cardiology; Tel-Aviv Medical Center; Tel-Aviv Israel
- The Sackler Faculty of Medicine; Tel-Aviv University; Tel Aviv Israel
| | - Yaron Arbel
- Interventional Cardiology; Tel-Aviv Medical Center; Tel-Aviv Israel
- The Sackler Faculty of Medicine; Tel-Aviv University; Tel Aviv Israel
| | - Yigal Abramowitz
- Interventional Cardiology; Tel-Aviv Medical Center; Tel-Aviv Israel
- The Sackler Faculty of Medicine; Tel-Aviv University; Tel Aviv Israel
| | - Amir Halkin
- Interventional Cardiology; Tel-Aviv Medical Center; Tel-Aviv Israel
- The Sackler Faculty of Medicine; Tel-Aviv University; Tel Aviv Israel
| | - Samuel Bazan
- Interventional Cardiology; Tel-Aviv Medical Center; Tel-Aviv Israel
- The Sackler Faculty of Medicine; Tel-Aviv University; Tel Aviv Israel
| | - Haim Shmilovich
- Interventional Cardiology; Tel-Aviv Medical Center; Tel-Aviv Israel
- The Sackler Faculty of Medicine; Tel-Aviv University; Tel Aviv Israel
| | - Gad Keren
- Interventional Cardiology; Tel-Aviv Medical Center; Tel-Aviv Israel
- The Sackler Faculty of Medicine; Tel-Aviv University; Tel Aviv Israel
| | - Ariel Finkelstein
- Interventional Cardiology; Tel-Aviv Medical Center; Tel-Aviv Israel
- The Sackler Faculty of Medicine; Tel-Aviv University; Tel Aviv Israel
| | - Shmuel Banai
- Interventional Cardiology; Tel-Aviv Medical Center; Tel-Aviv Israel
- The Sackler Faculty of Medicine; Tel-Aviv University; Tel Aviv Israel
| |
Collapse
|
156
|
Korean Red Ginseng extract induces angiogenesis through activation of glucocorticoid receptor. J Ginseng Res 2016; 41:477-486. [PMID: 29021694 PMCID: PMC5628332 DOI: 10.1016/j.jgr.2016.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Our previous studies have demonstrated that ginsenoside-Rg1 can promote angiogenesis in vitro and in vivo through activation of the glucocorticoid receptor (GR). Furthermore, microRNA (miRNA) expression profiling has shown that Rg1 can modulate the expression of a subset of miRNAs to induce angiogenesis. Moreover, Rb1 was shown to be antiangiogenic through activation of a different pathway. These studies highlight the important functions of miRNAs on ginseng-regulated physiological processes. The aim of this study was to determine the angiogenic properties of Korean Red Ginseng extract (KGE). METHODS AND RESULTS Combining in vitro and in vivo data, KGE at 500 μg/mL was found to induce angiogenesis. According to the miRNA sequencing, 484 differentially expressed miRNAs were found to be affected by KGE. Among them, angiogenic-related miRNAs; miR-15b, -23a, -214, and -377 were suppressed by KGE. Meanwhile, their corresponding angiogenic proteins were stimulated, including vascular endothelial growth factor, vascular endothelial growth factor receptor-2, endothelial nitric oxide synthase, and MET transmembrane tyrosine kinase. The miRNAs-regulated signaling pathways of KGE were then found by Cignal 45-Pathway Reporter Array, proving that KGE could activate GR. CONCLUSION KGE was found capable of inducing angiogenesis both in vivo and in vitro models through activating GR. This study provides a valuable insight into the angiogenic mechanisms depicted by KGE in relation to specific miRNAs.
Collapse
|
157
|
Xu HF, Fang XY, Zhu SH, Xu XH, Zhang ZX, Wang ZF, Zhao ZQ, Ding YJ, Tao LY. Glucocorticoid treatment inhibits intracerebral hemorrhage‑induced inflammation by targeting the microRNA‑155/SOCS‑1 signaling pathway. Mol Med Rep 2016; 14:3798-804. [PMID: 27601160 DOI: 10.3892/mmr.2016.5716] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 06/08/2016] [Indexed: 11/06/2022] Open
Abstract
Intracerebral hemorrhage (ICH) results in inflammation, and glucocorticoids have been proven to be effective inhibitors of ICH‑induced inflammation. However, the precise underlying mechanisms of ICH‑induced inflammation and glucocorticoid function remain largely undefined. Using a mouse ICH model, the present study demonstrated that the short non‑coding RNA molecule microRNA‑155 (miR‑155) is involved in the inflammatory process initiated by ICH in mice. Increased mRNA expression levels of miR‑155, as well as the pro‑inflammatory cytokines interferon‑β (IFN‑β), tumor necrosis factor‑α (TNF‑α) and interleukin‑6 (IL‑6), were observed in vivo following ICH. By contrast, the expression level of suppressor of cytokine signaling 1 (SOCS‑1) protein was reduced in the ICH group compared with control mice. Similar results were observed in vitro using astrocytes, the primary effector cells in ICH. Compared with wild type astrocytes, astrocytes overexpressing miR‑155 exhibited significant inhibition of SOCS‑1 protein expression levels. These results suggest that miR‑155 contributes to the development of ICH‑induced inflammation in mice by downregulating SOCS‑1 protein expression levels and promoting pro‑inflammatory cytokine (IFN‑β, TNF‑α and IL‑6) production. Expression levels of miR‑155 and pro‑inflammatory cytokines in the ICH group were significantly decreased following dexamethasone administration. This suggests that glucocorticoids attenuate ICH‑induced inflammation by targeting the miR‑155/SOCS‑1 signaling pathway in mice. In conclusion, the results of the present study demonstrated that the miR‑155/SOCS‑1 signaling pathway is required for ICH‑induced inflammation, and glucocorticoids inhibit this process by targeting the miR‑155/SOCS‑1 signaling pathway.
Collapse
Affiliation(s)
- Hong-Fei Xu
- Department of Forensic Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Xiao-Yun Fang
- Jiangsu Patent Examination Assistance Center Under State Intellectual Property Office of The People's Republic of China, Suzhou, Jiangsu 215163, P.R. China
| | - Shao-Hua Zhu
- Department of Forensic Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Xue-Hua Xu
- Department of Forensic Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zhi-Xiang Zhang
- Department of Forensic Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zu-Feng Wang
- Department of Forensic Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zi-Qin Zhao
- Department of Forensic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yu-Jie Ding
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Lu-Yang Tao
- Department of Forensic Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
158
|
Lesovaya E, Yemelyanov A, Swart AC, Swart P, Haegeman G, Budunova I. Discovery of Compound A--a selective activator of the glucocorticoid receptor with anti-inflammatory and anti-cancer activity. Oncotarget 2016; 6:30730-44. [PMID: 26436695 PMCID: PMC4741564 DOI: 10.18632/oncotarget.5078] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/19/2015] [Indexed: 12/19/2022] Open
Abstract
Glucocorticoids are among the most effective anti-inflammatory drugs, and are widely used for cancer therapy. Unfortunately, chronic treatment with glucocorticoids results in multiple side effects. Thus, there was an intensive search for selective glucocorticoid receptor (GR) activators (SEGRA), which retain therapeutic potential of glucocorticoids, but with fewer adverse effects. GR regulates gene expression by transactivation (TA), by binding as homodimer to gene promoters, or transrepression (TR), via diverse mechanisms including negative interaction between monomeric GR and other transcription factors. It is well accepted that metabolic and atrophogenic effects of glucocorticoids are mediated by GR TA. Here we summarized the results of extensive international collaboration that led to discovery and characterization of Compound A (CpdA), a unique SEGRA with a proven “dissociating” GR ligand profile, preventing GR dimerization and shifting GR activity towards TR both in vitro and in vivo. We outlined here the unusual story of compound's discovery, and presented a comprehensive overview of CpdA ligand properties, its anti-inflammatory effects in numerous animal models of inflammation and autoimmune diseases, as well as its anti-cancer effects. Finally, we presented mechanistic analysis of CpdA and glucocorticoid effects in skin, muscle, bone, and regulation of glucose and fat metabolism to explain decreased CpdA side effects compared to glucocorticoids. Overall, the results obtained by our and other laboratories underline translational potential of CpdA and its derivatives for treatment of inflammation, autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Ekaterina Lesovaya
- Department of Chemical Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia
| | - Alexander Yemelyanov
- Pulmonary Division, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Amanda C Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Pieter Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Irina Budunova
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
159
|
Antenatal endogenous and exogenous glucocorticoids and their impact on immune ontogeny and long-term immunity. Semin Immunopathol 2016; 38:739-763. [DOI: 10.1007/s00281-016-0575-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 05/30/2016] [Indexed: 12/13/2022]
|
160
|
Wong C, Bezhaeva T, Rothuizen TC, Metselaar JM, de Vries MR, Verbeek FPR, Vahrmeijer AL, Wezel A, van Zonneveld AJ, Rabelink TJ, Quax PHA, Rotmans JI. Liposomal prednisolone inhibits vascular inflammation and enhances venous outward remodeling in a murine arteriovenous fistula model. Sci Rep 2016; 6:30439. [PMID: 27460883 PMCID: PMC4962038 DOI: 10.1038/srep30439] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/01/2016] [Indexed: 12/20/2022] Open
Abstract
Arteriovenous fistulas (AVF) for hemodialysis access have a 1-year primary patency rate of only 60%, mainly as a result of maturation failure that is caused by insufficient outward remodeling and intimal hyperplasia. The exact pathophysiology remains unknown, but the inflammatory vascular response is thought to play an important role. In the present study we demonstrate that targeted liposomal delivery of prednisolone increases outward remodeling of the AVF in a murine model. Liposomes accumulate in the post-anastomotic area of the venous outflow tract in which the vascular pathology is most prominent in failed AVFs. On a histological level, we observed a reduction of lymphocytes and granulocytes in the vascular wall. In addition, a strong anti-inflammatory effect of liposomal prednisolone on macrophages was demonstrated in vitro. Therefore, treatment with liposomal prednisolone might be a valuable strategy to improve AVF maturation.
Collapse
Affiliation(s)
- ChunYu Wong
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden Medical Center, Leiden, The Netherlands
| | - Taisiya Bezhaeva
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden Medical Center, Leiden, The Netherlands
| | - Tonia C Rothuizen
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden Medical Center, Leiden, The Netherlands
| | - Josbert M Metselaar
- Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, The Netherlands.,Enceladus Pharmaceuticals BV, The Netherlands
| | - Margreet R de Vries
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden Medical Center, Leiden, The Netherlands.,Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Floris P R Verbeek
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Anouk Wezel
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands.,Leiden Academic Center for Drug Research, Leiden, The Netherlands
| | - Anton-Jan van Zonneveld
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden Medical Center, Leiden, The Netherlands
| | - Ton J Rabelink
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden Medical Center, Leiden, The Netherlands
| | - Paul H A Quax
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden Medical Center, Leiden, The Netherlands.,Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Joris I Rotmans
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden Medical Center, Leiden, The Netherlands
| |
Collapse
|
161
|
Epidermal Mineralocorticoid Receptor Plays Beneficial and Adverse Effects in Skin and Mediates Glucocorticoid Responses. J Invest Dermatol 2016; 136:2417-2426. [PMID: 27464843 DOI: 10.1016/j.jid.2016.07.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/30/2016] [Accepted: 07/11/2016] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (GCs) regulate skin homeostasis and combat cutaneous inflammatory diseases; however, adverse effects of chronic GC treatments limit their therapeutic use. GCs bind and activate the GC receptor and the mineralocorticoid receptor (MR), transcription factors that recognize identical hormone responsive elements. Whether epidermal MR mediates beneficial or deleterious GC effects is of great interest for improving GC-based skin therapies. MR epidermal knockout mice exhibited increased keratinocyte proliferation and differentiation and showed resistance to GC-induced epidermal thinning. However, crucially, loss of epidermal MR rendered mice more sensitive to inflammatory stimuli and skin damage. MR epidermal knockout mice showed increased susceptibility to phorbol 12-myristate 13-acetate-induced inflammation with higher cytokine induction. Likewise, cultured MR epidermal knockout keratinocytes had increased phorbol 12-myristate 13-acetate-induced NF-κB activation, highlighting an anti-inflammatory function for MR. GC-induced transcription was reduced in MR epidermal knockout keratinocytes, at least partially due to decreased recruitment of GC receptor to hormone responsive element-containing sequences. Our results support a role for epidermal MR in adult skin homeostasis and demonstrate nonredundant roles for MR and GC receptor in mediating GC actions.
Collapse
|
162
|
Zhou PZ, Zhu YM, Zou GH, Sun YX, Xiu XL, Huang X, Zhang QH. Relationship Between Glucocorticoids and Insulin Resistance in Healthy Individuals. Med Sci Monit 2016; 22:1887-94. [PMID: 27258456 PMCID: PMC4913831 DOI: 10.12659/msm.895251] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background The aim of this study was to determine the correlation between glucocorticoids (GCs) and insulin resistance (IR) in healthy individuals by conducting a systematic meta-analysis. Material/Methods A systematic literature review was conducted using 9 electronic databases. Only case-control studies investigating fasting plasma glucose (FPG) and IR were enrolled based on strictly established selection criteria. Statistical analyses were performed by Stata software, version 12.0 (Stata Corporation, College Station, Texas, USA). Results Among 496 initially retrieved articles, only 6 papers published in English were eventually included in this meta-analysis. A total of 201 healthy individuals (105 in GC group and 96 in control group) were included in the 6 studies. In 4 of these 6 studies, dexamethasone was used, and in the other 2 studies prednisolone was given. This meta-analysis revealed that the FPG, fasting insulin (FINS), and homeostasis model assessment of insulin resistance (HOMA-IR) levels in the GC group were all significantly higher than that in the control group (FPG: SMD=2.65, 95%CI=1.42~3.88, P<0.001; FINS: SMD=2.48, 95%CI=1.01~3.95, P=0.001; HOMA-IR: SMD=38.30, 95%CI=24.38~52.22, P<0.001). Conclusions In conclusion, our present study revealed that therapies using GCs might result in elevated FPG, FINS, and HOMA-IR, and thereby contribute to IR in healthy individuals.
Collapse
Affiliation(s)
- Peng-Zhen Zhou
- Department of Reproductive Medicine, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China (mainland)
| | - Yong-Mei Zhu
- Department of Pediatric Orthopaedic, Yantaishan Hospital, Yantai, Shandong, China (mainland)
| | - Guang-Hui Zou
- Department of Reproductive Medicine, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China (mainland)
| | - Yu-Xia Sun
- Department of Reproductive Medicine, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China (mainland)
| | - Xiao-Lin Xiu
- Department of Reproductive Medicine, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China (mainland)
| | - Xin Huang
- Department of Reproductive Medicine, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China (mainland)
| | - Qun-Hui Zhang
- Department of Rheumatism and Immunology, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China (mainland)
| |
Collapse
|
163
|
The Interactome of the Glucocorticoid Receptor and Its Influence on the Actions of Glucocorticoids in Combatting Inflammatory and Infectious Diseases. Microbiol Mol Biol Rev 2016; 80:495-522. [PMID: 27169854 DOI: 10.1128/mmbr.00064-15] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoids (GCs) have been widely used for decades as a first-line treatment for inflammatory and autoimmune diseases. However, their use is often hampered by the onset of adverse effects or resistance. GCs mediate their effects via binding to glucocorticoid receptor (GR), a transcription factor belonging to the family of nuclear receptors. An important aspect of GR's actions, including its anti-inflammatory capacity, involves its interactions with various proteins, such as transcription factors, cofactors, and modifying enzymes, which codetermine receptor functionality. In this review, we provide a state-of-the-art overview of the protein-protein interactions (PPIs) of GR that positively or negatively affect its anti-inflammatory properties, along with mechanistic insights, if known. Emphasis is placed on the interactions that affect its anti-inflammatory effects in the presence of inflammatory and microbial diseases.
Collapse
|
164
|
Dumbell R, Matveeva O, Oster H. Circadian Clocks, Stress, and Immunity. Front Endocrinol (Lausanne) 2016; 7:37. [PMID: 27199894 PMCID: PMC4852176 DOI: 10.3389/fendo.2016.00037] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022] Open
Abstract
In mammals, molecular circadian clocks are present in most cells of the body, and this circadian network plays an important role in synchronizing physiological processes and behaviors to the appropriate time of day. The hypothalamic-pituitary-adrenal endocrine axis regulates the response to acute and chronic stress, acting through its final effectors - glucocorticoids - released from the adrenal cortex. Glucocorticoid secretion, characterized by its circadian rhythm, has an important role in synchronizing peripheral clocks and rhythms downstream of the master circadian pacemaker in the suprachiasmatic nucleus. Finally, glucocorticoids are powerfully anti-inflammatory, and recent work has implicated the circadian clock in various aspects and cells of the immune system, suggesting a tight interplay of stress and circadian systems in the regulation of immunity. This mini-review summarizes our current understanding of the role of the circadian clock network in both the HPA axis and the immune system, and discusses their interactions.
Collapse
Affiliation(s)
- Rebecca Dumbell
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Olga Matveeva
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Henrik Oster
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| |
Collapse
|
165
|
Nagasawa K, Matsuura N, Takeshita Y, Ito S, Sano Y, Yamada Y, Uchinaka A, Murohara T, Nagata K. Attenuation of cold stress-induced exacerbation of cardiac and adipose tissue pathology and metabolic disorders in a rat model of metabolic syndrome by the glucocorticoid receptor antagonist RU486. Nutr Diabetes 2016; 6:e207. [PMID: 27110688 PMCID: PMC4855259 DOI: 10.1038/nutd.2016.14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 03/07/2016] [Accepted: 03/16/2016] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Chronic stress affects the central nervous system as well as endocrine, metabolic and immune systems. However, the effects of cold stress on cardiovascular and metabolic disorders in metabolic syndrome (MetS) have remained unclear. We recently characterized DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, derived from a cross between Dahl salt-sensitive and Zucker rats, as a new animal model of MetS. We have now investigated the effects of chronic cold stress and glucocorticoid receptor (GR) blockade on cardiac and adipose tissue pathology as well as on metabolic parameters in this model. METHODS DS/obese rats were exposed to cold stress (immersion in ice-cold water to a depth of 1-2 cm for 2 h per day) with or without subcutaneous injection of the GR antagonist RU486 (2 mg kg(-1)day(-1)) for 4 weeks beginning at 9 weeks of age. Age-matched homozygous lean (DahlS.Z-Lepr(+)/Lepr(+)) littermates served as a control. RESULTS Chronic cold stress exacerbated hypertension as well as left ventricular (LV) hypertrophy, fibrosis and diastolic dysfunction in DS/obese rats in a manner sensitive to RU486 treatment. Cold stress with or without RU486 did not affect body weight or fat mass. In contrast, cold stress further increased cardiac oxidative stress as well as macrophage infiltration and proinflammatory gene expression in LV and visceral fat tissue, with all of these effects being attenuated by RU486. Cold stress also further increased GR and 11β-hydroxysteroid dehydrogenase type 1 mRNA and protein abundance in LV and visceral adipose tissue, and these effects were again inhibited by RU486. In addition, RU486 ameliorated the stress-induced aggravation of dyslipidemia, glucose intolerance and insulin resistance in DS/obese rats. CONCLUSIONS Our results implicate GR signaling in cold stress-induced exacerbation of cardiac and adipose tissue pathology as well as of abnormal glucose and lipid metabolism in a rat model of MetS.
Collapse
Affiliation(s)
- K Nagasawa
- Department of Pathophysiological Laboratory Sciences, Nagoya, Japan
| | - N Matsuura
- Department of Pathophysiological Laboratory Sciences, Nagoya, Japan
| | - Y Takeshita
- Department of Pathophysiological Laboratory Sciences, Nagoya, Japan
| | - S Ito
- Department of Pathophysiological Laboratory Sciences, Nagoya, Japan
| | - Y Sano
- Department of Pathophysiological Laboratory Sciences, Nagoya, Japan
| | - Y Yamada
- Department of Pathophysiological Laboratory Sciences, Nagoya, Japan
| | - A Uchinaka
- Department of Pathophysiological Laboratory Sciences, Nagoya, Japan
| | - T Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - K Nagata
- Department of Pathophysiological Laboratory Sciences, Nagoya, Japan
| |
Collapse
|
166
|
van den Heuvel JK, Boon MR, van Hengel I, Peschier-van der Put E, van Beek L, van Harmelen V, van Dijk KW, Pereira AM, Hunt H, Belanoff JK, Rensen PCN, Meijer OC. Identification of a selective glucocorticoid receptor modulator that prevents both diet-induced obesity and inflammation. Br J Pharmacol 2016; 173:1793-804. [PMID: 26990179 DOI: 10.1111/bph.13477] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 02/14/2016] [Accepted: 02/16/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE High-fat diet consumption results in obesity and chronic low-grade inflammation in adipose tissue. Whereas glucocorticoid receptor (GR) antagonism reduces diet-induced obesity, GR agonism reduces inflammation, the combination of which would be desired in a strategy to combat the metabolic syndrome. The purpose of this study was to assess the beneficial effects of the selective GR modulator C108297 on both diet-induced weight gain and inflammation in mice and to elucidate underlying mechanisms. EXPERIMENTAL APPROACH Ten-week-old C57Bl/6 J mice were fed a high-fat diet for 4 weeks while being treated with the selective GR modulator C108297, a full GR antagonist (RU486/mifepristone) or vehicle. KEY RESULTS C108297 and, to a lesser extent, mifepristone reduced body weight gain and fat mass. C108297 decreased food and fructose intake and increased lipolysis in white adipose tissue (WAT) and free fatty acid levels in plasma, resulting in decreased fat cell size and increased fatty acid oxidation. Furthermore, C108297 reduced macrophage infiltration and pro-inflammatory cytokine expression in WAT, as well as in vitro LPS-stimulated TNF-α secretion in macrophage RAW 264.7 cells. However, mifepristone also increased energy expenditure, as measured by fully automatic metabolic cages, and enhanced expression of thermogenic markers in energy-combusting brown adipose tissue (BAT) but did not affect inflammation. CONCLUSIONS AND IMPLICATIONS C108297 attenuates obesity by reducing caloric intake and increasing lipolysis and fat oxidation, and in addition attenuates inflammation. These data suggest that selective GR modulation may be a viable strategy for the reduction of diet-induced obesity and inflammation.
Collapse
Affiliation(s)
- José K van den Heuvel
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariëtte R Boon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Ingmar van Hengel
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Emma Peschier-van der Put
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Lianne van Beek
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Vanessa van Harmelen
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ko Willems van Dijk
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Alberto M Pereira
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Hazel Hunt
- Corcept Therapeutics, Menlo Park, California, USA
| | | | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
167
|
Kadiyala V, Sasse SK, Altonsy MO, Berman R, Chu HW, Phang TL, Gerber AN. Cistrome-based Cooperation between Airway Epithelial Glucocorticoid Receptor and NF-κB Orchestrates Anti-inflammatory Effects. J Biol Chem 2016; 291:12673-12687. [PMID: 27076634 DOI: 10.1074/jbc.m116.721217] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Indexed: 12/11/2022] Open
Abstract
Antagonism of pro-inflammatory transcription factors by monomeric glucocorticoid receptor (GR) has long been viewed as central to glucocorticoid (GC) efficacy. However, the mechanisms and targets through which GCs exert therapeutic effects in diseases such as asthma remain incompletely understood. We previously defined a surprising cooperative interaction between GR and NF-κB that enhanced expression of A20 (TNFAIP3), a potent inhibitor of NF-κB. Here we extend this observation to establish that A20 is required for maximal cytokine repression by GCs. To ascertain the global extent of GR and NF-κB cooperation, we determined genome-wide occupancy of GR, the p65 subunit of NF-κB, and RNA polymerase II in airway epithelial cells treated with dexamethasone, TNF, or both using chromatin immunoprecipitation followed by deep sequencing. We found that GR recruits p65 to dimeric GR binding sites across the genome and discovered additional regulatory elements in which GR-p65 cooperation augments gene expression. GR targets regulated by this mechanism include key anti-inflammatory and injury response genes such as SERPINA1, which encodes α1 antitrypsin, and FOXP4, an inhibitor of mucus production. Although dexamethasone treatment reduced RNA polymerase II occupancy of TNF targets such as IL8 and TNFAIP2, we were unable to correlate specific binding sequences for GR or occupancy patterns with repressive effects on transcription. Our results suggest that cooperative anti-inflammatory gene regulation by GR and p65 contributes to GC efficacy, whereas tethering interactions between GR and p65 are not universally required for GC-based gene repression.
Collapse
Affiliation(s)
- Vineela Kadiyala
- From the Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Sarah K Sasse
- From the Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Mohammed O Altonsy
- From the Department of Medicine, National Jewish Health, Denver, Colorado 80206,; Department of Zoology, Sohag University, Sohag 825224, Egypt, and
| | - Reena Berman
- From the Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Hong W Chu
- From the Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Tzu L Phang
- Department of Medicine, University of Colorado, Denver, Colorado 80045
| | - Anthony N Gerber
- From the Department of Medicine, National Jewish Health, Denver, Colorado 80206,; Department of Medicine, University of Colorado, Denver, Colorado 80045.
| |
Collapse
|
168
|
Vasconcelos AR, Cabral-Costa JV, Mazucanti CH, Scavone C, Kawamoto EM. The Role of Steroid Hormones in the Modulation of Neuroinflammation by Dietary Interventions. Front Endocrinol (Lausanne) 2016; 7:9. [PMID: 26869995 PMCID: PMC4740355 DOI: 10.3389/fendo.2016.00009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/21/2016] [Indexed: 12/20/2022] Open
Abstract
Steroid hormones, such as sex hormones and glucocorticoids, have been demonstrated to play a role in different cellular processes in the central nervous system, ranging from neurodevelopment to neurodegeneration. Environmental factors, such as calorie intake or fasting frequency, may also impact on such processes, indicating the importance of external factors in the development and preservation of a healthy brain. The hypothalamic-pituitary-adrenal axis and glucocorticoid activity play a role in neurodegenerative processes, including in disorders such as in Alzheimer's and Parkinson's diseases. Sex hormones have also been shown to modulate cognitive functioning. Inflammation is a common feature in neurodegenerative disorders, and sex hormones/glucocorticoids can act to regulate inflammatory processes. Intermittent fasting can protect the brain against cognitive decline that is induced by an inflammatory stimulus. On the other hand, obesity increases susceptibility to inflammation, while metabolic syndromes, such as diabetes, are associated with neurodegeneration. Consequently, given that gonadal and/or adrenal steroids may significantly impact the pathophysiology of neurodegeneration, via their effect on inflammatory processes, this review focuses on how environmental factors, such as calorie intake and intermittent fasting, acting through their modulation of steroid hormones, impact on inflammation that contributes to cognitive and neurodegenerative processes.
Collapse
Affiliation(s)
- Andrea Rodrigues Vasconcelos
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - João Victor Cabral-Costa
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Caio Henrique Mazucanti
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Elisa Mitiko Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- *Correspondence: Elisa Mitiko Kawamoto,
| |
Collapse
|
169
|
|
170
|
Effects of histamine H1 receptor signaling on glucocorticoid receptor activity. Role of canonical and non-canonical pathways. Sci Rep 2015; 5:17476. [PMID: 26635083 PMCID: PMC4669453 DOI: 10.1038/srep17476] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/29/2015] [Indexed: 12/20/2022] Open
Abstract
Histamine H1 receptor (H1R) antagonists and glucocorticoid receptor (GR) agonists are used to treat inflammatory conditions such as allergic rhinitis, atopic dermatitis and asthma. Consistent with the high morbidity levels of such inflammatory conditions, these receptors are the targets of a vast number of approved drugs, and in many situations their ligands are co-administered. However, this drug association has no clear rationale and has arisen from clinical practice. We hypothesized that H1R signaling could affect GR-mediated activity, impacting on its transcriptional outcome. Indeed, our results show a dual regulation of GR activity by the H1R: a potentiation mediated by G-protein βγ subunits and a parallel inhibitory effect mediated by Gαq-PLC pathway. Activation of the H1R by its full agonists resulted in a composite potentiating effect. Intriguingly, inactivation of the Gαq-PLC pathway by H1R inverse agonists resulted also in a potentiation of GR activity. Moreover, histamine and clinically relevant antihistamines synergized with the GR agonist dexamethasone to induce gene transactivation and transrepression in a gene-specific manner. Our work provides a delineation of molecular mechanisms underlying the widespread clinical association of antihistamines and GR agonists, which may contribute to future dosage optimization and reduction of well-described side effects associated with glucocorticoid administration.
Collapse
|
171
|
Dejager L, Dendoncker K, Eggermont M, Souffriau J, Van Hauwermeiren F, Willart M, Van Wonterghem E, Naessens T, Ballegeer M, Vandevyver S, Hammad H, Lambrecht B, De Bosscher K, Grooten J, Libert C. Neutralizing TNFα restores glucocorticoid sensitivity in a mouse model of neutrophilic airway inflammation. Mucosal Immunol 2015; 8:1212-25. [PMID: 25760421 DOI: 10.1038/mi.2015.12] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 01/04/2015] [Indexed: 02/04/2023]
Abstract
Asthma is a heterogeneous disorder, evidenced by distinct types of inflammation resulting in different responsiveness to therapy with glucocorticoids (GCs). Tumor necrosis factor α (TNFα) is involved in asthma pathogenesis, but anti-TNFα therapies have not proven broadly effective. The effects of anti-TNFα treatment on steroid resistance have never been assessed. We investigated the role of TNFα blockade using etanercept in the responsiveness to GCs in two ovalbumin-based mouse models of airway hyperinflammation. The first model is GC sensitive and T helper type 2 (Th2)/eosinophil driven, whereas the second reflects GC-insensitive, Th1/neutrophil-predominant asthma subphenotypes. We found that TNFα blockade restores the therapeutic effects of GCs in the GC-insensitive model. An adoptive transfer indicated that the TNFα-induced GC insensitivity occurs in the non-myeloid compartment. Early during airway hyperinflammation, mice are GC insensitive specifically at the level of thymic stromal lymphopoietin (Tslp) transcriptional repression, and this insensitivity is reverted when TNFα is neutralized. Interestingly, TSLP knockout mice displayed increased inflammation in the GC-insensitive model, suggesting a limited therapeutic application of TSLP-neutralizing antibodies in subsets of patients suffering from Th2-mediated asthma. In conclusion, we demonstrate that TNFα reduces the responsiveness to GCs in a mouse model of neutrophilic airway inflammation. Thus antagonizing TNFα may offer a new strategy for therapeutic intervention in GC-resistant asthma.
Collapse
Affiliation(s)
- L Dejager
- Inflammation Research Center, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - K Dendoncker
- Inflammation Research Center, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - M Eggermont
- Inflammation Research Center, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - J Souffriau
- Inflammation Research Center, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - F Van Hauwermeiren
- Inflammation Research Center, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - M Willart
- Inflammation Research Center, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - E Van Wonterghem
- Inflammation Research Center, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - T Naessens
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - M Ballegeer
- Inflammation Research Center, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - S Vandevyver
- Inflammation Research Center, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - H Hammad
- Inflammation Research Center, VIB, Ghent, Belgium.,Department of Respiratory Medicine, Ghent University, Ghent, Belgium
| | - B Lambrecht
- Inflammation Research Center, VIB, Ghent, Belgium.,Department of Respiratory Medicine, Ghent University, Ghent, Belgium.,Department Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - K De Bosscher
- Cytokine Receptor Laboratory, Department of Medical Protein Research, VIB, Ghent, Belgium.,Cytokine Receptor Lab, Department of Biochemistry, Ghent University, Ghent, Belgium
| | - J Grooten
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - C Libert
- Inflammation Research Center, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
172
|
Ai J, Guo L, Zheng Z, Wang SX, Huang B, Li XA. Corticosteroid Therapy Benefits Septic Mice With Adrenal Insufficiency But Harms Septic Mice Without Adrenal Insufficiency. Crit Care Med 2015; 43:e490-8. [PMID: 26308430 PMCID: PMC9798902 DOI: 10.1097/ccm.0000000000001264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Corticosteroid therapy is frequently used in septic patients given the rationale that there is an increased demand for corticosteroid in sepsis, and up to 60% of severe septic patients experience adrenal insufficiency. However, the efficacy of corticosteroid therapy and whether the therapy should be based on the results of adrenal function testing are highly controversial. The lack of an adrenal insufficiency animal model and our poor understanding of the pathogenesis caused by adrenal insufficiency present significant barriers to address this long-standing clinical issue. DESIGN Prospective experimental study. SETTING University laboratory. SUBJECTS Scavenger receptor BI null and adrenal-specific scavenger receptor BI null mice. INTERVENTIONS Sepsis was induced by cecal ligation and puncture. MEASUREMENTS AND MAIN RESULTS Using scavenger receptor BI mice as the first relative adrenal insufficiency animal model, we found that corticosteroid therapy significantly improved the survival in cecal ligation and puncture-treated scavenger receptor BI mice but causes more septic death in wild-type mice. We identified a corticosteroid cocktail that provides effective protection 18 hours post cecal ligation and puncture; using adrenal-specific scavenger receptor BI mice as an inducible corticosteroid-deficient animal model, we found that inducible corticosteroid specifically suppresses interleukin-6 production without affecting tumor necrosis factor-α, nitric oxide, and interleukin-10 production. We further found that inducible corticosteroid does not induce peripheral lymphocyte apoptosis but promotes phagocytic activity of macrophages and neutrophils. CONCLUSIONS This study demonstrates that corticosteroid treatment benefits mice with adrenal insufficiency but harms mice without adrenal insufficiency. This study also reveals that inducible corticosteroid has both immunosuppressive and immunopermissive properties, suppressing interleukin-6 production, promoting phagocytosis of immune effector cells, but not inducing peripheral lymphocyte apoptosis. These findings support our hypothesis that corticosteroid is an effective therapy for a subgroup of septic patients with adrenal insufficiency but harms septic patients without adrenal insufficiency and encourage further efforts to test this hypothesis in clinic.
Collapse
Affiliation(s)
- Junting Ai
- 1Department of Pediatrics, College of Medicine, University of Kentucky, Lexington, KY. 2Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY. 3Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY. 4Kentucky Cancer Registry, College of Medicine, University of Kentucky, Lexington, KY
| | | | | | | | | | | |
Collapse
|
173
|
Corticosteroid Therapy in Sepsis. Crit Care Med 2015; 43:2519-20. [DOI: 10.1097/ccm.0000000000001329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
174
|
Jiang CL, Liu L, Li Z, Buttgereit F. The novel strategy of glucocorticoid drug development via targeting nongenomic mechanisms. Steroids 2015; 102:27-31. [PMID: 26122209 DOI: 10.1016/j.steroids.2015.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 06/13/2015] [Accepted: 06/22/2015] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (GCs) are widely used in clinical practice as potent anti-inflammatory and immunosuppressive agents. Unfortunately, they can also produce numerous and potentially serious side effects that limit their usage. This problem represents the driving force for the intensive search for novel GCs with a better benefit-risk ratio compared to conventional GCs. GCs are believed to take effects mainly through classical genomic mechanisms, which are also largely responsible for GCs' side effects. However, in addition to these genomic effects, GCs also demonstrate rapid genomic-independent activities. It has become increasingly evident that some of the anti-inflammatory, immunosuppressive, anti-allergic and anti-shock effects of GCs could be mediated through nongenomic mechanisms. Thus, theoretically, trying to use nongenomic mechanisms of GCs more intensively may represent a novel strategy for development of GCs with low side effect profile. The new GCs' drugs will take clinical effects mainly via nongenomic mechanisms and do not execute the classical genomic mechanism to reduce side effects.
Collapse
Affiliation(s)
- Chun-Lei Jiang
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, 800 Xiangyin Road, 200433 Shanghai, PR China.
| | - Lei Liu
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, 800 Xiangyin Road, 200433 Shanghai, PR China
| | - Zhen Li
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, 201203 Shanghai, PR China
| | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité University Hospital, 10117 Berlin, Germany.
| |
Collapse
|
175
|
Mérida S, Palacios E, Navea A, Bosch-Morell F. New Immunosuppressive Therapies in Uveitis Treatment. Int J Mol Sci 2015; 16:18778-95. [PMID: 26270662 PMCID: PMC4581271 DOI: 10.3390/ijms160818778] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/03/2015] [Accepted: 08/06/2015] [Indexed: 12/14/2022] Open
Abstract
Uveitis is an inflammatory process that initially starts in the uvea, but can also affect other adjacent eye structures, and is currently the fourth cause of blindness in developed countries. Corticoids are probably the most widespread treatment, but resorting to other immunosuppressive treatments is a frequent practice. Since the implication of different cytokines in uveitis has been well demonstrated, the majority of recent treatments for this disease include inhibitors or antibodies against these. Nevertheless, adequate treatment for each uveitis type entails a difficult therapeutic decision as no clear recommendations are found in the literature, despite the few protocolized clinical assays and many case-control studies done. This review aims to present, in order, the mechanisms and main indications of the most modern immunosuppressive drugs against cytokines.
Collapse
Affiliation(s)
- Salvador Mérida
- Instituto de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, Valencia 46113, Spain.
| | - Elena Palacios
- Oftalmología Médica, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia 46020, Spain.
| | - Amparo Navea
- Instituto de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, Valencia 46113, Spain.
- Oftalmología Médica, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia 46020, Spain.
| | - Francisco Bosch-Morell
- Instituto de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, Valencia 46113, Spain.
- Oftalmología Médica, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia 46020, Spain.
| |
Collapse
|
176
|
Blockade of glucocorticoid receptors with RU486 attenuates cardiac damage and adipose tissue inflammation in a rat model of metabolic syndrome. Hypertens Res 2015; 38:741-50. [PMID: 26155752 DOI: 10.1038/hr.2015.77] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 05/07/2015] [Accepted: 06/04/2015] [Indexed: 12/16/2022]
Abstract
Glucocorticoids are stress hormones that modulate metabolic, inflammatory and cardiovascular processes. We recently characterized DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, derived from a cross between Dahl salt-sensitive (DS) and Zucker rats, as a new animal model of metabolic syndrome (MetS). We have now investigated the effects of glucocorticoid receptor (GR) blockade on cardiac and adipose tissue pathology and gene expression, as well as on glucose metabolism in this model. DS/obese rats were treated with the GR blocker RU486 (2 mg kg(-1) per day, subcutaneous) for 4 weeks beginning at 9 weeks of age. Age-matched homozygous lean (DahlS.Z-Lepr(+)/Lepr(+), or DS/lean) littermates of DS/obese rats served as controls. Treatment of DS/obese rats with RU486 attenuated left ventricular (LV) fibrosis and diastolic dysfunction, as well as cardiac oxidative stress and inflammation, without affecting hypertension or LV hypertrophy. Administration of RU486 to DS/obese rats also inhibited the upregulation of GR and 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) expression at the mRNA and protein levels in the heart; it attenuated adiposity and adipose tissue inflammation, as well as the upregulation of GR and 11β-HSD1 mRNA and protein expression in adipose tissue; it ameliorated fasting hyperinsulinemia as well as insulin resistance and glucose intolerance. Our results thus implicate the glucocorticoid-GR axis in the pathophysiology of MetS, and they suggest that GR blockade has therapeutic potential for the treatment of this condition.
Collapse
|
177
|
Deng Q, Waxse B, Riquelme D, Zhang J, Aguilera G. Helix 8 of the ligand binding domain of the glucocorticoid receptor (GR) is essential for ligand binding. Mol Cell Endocrinol 2015; 408:23-32. [PMID: 25676569 PMCID: PMC4417367 DOI: 10.1016/j.mce.2015.01.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 01/16/2015] [Accepted: 01/30/2015] [Indexed: 12/20/2022]
Abstract
Membrane association of estrogen receptors (ER) depends on cysteine palmitoylation and two leucines in the ligand binding domain (LBD), conserved in most steroid receptors. The role of this region, corresponding to helix 8 of the glucocorticoid receptor (GR) LBD, on membrane association of GR was studied in 4B cells, expressing endogenous GR, and Cos-7 cells transfected EGFP-GR constructs. 4B cells preloaded with radiolabeled palmitic acid showed no radioactivity incorporation into immunoprecipitated GR. Moreover, mutation C683A (corresponding to ER palmitoylation site) did not affect corticosterone-induced membrane association of GR. Mutations L687-690A, L682A, E680G and K685G prevented membrane and also nuclear localization through reduced ligand binding. L687-690A mutation decreased association of GR with heat shock protein 90 and transcriptional activity, without overt effects on receptor protein stability. The data demonstrate that palmitoylation does not mediate membrane association of GR, but that the region 680-690 (helix 8) is critical for ligand binding and receptor function.
Collapse
Affiliation(s)
- Qiong Deng
- Section on Endocrine Physiology, PDEGEN, NICHD, NIH, Bethesda, Maryland, USA; College of Animal Sciences, Jilin University, China
| | - Bennett Waxse
- Section on Organelle Biology, CBMP, NICHD, NIH, Bethesda, Maryland, USA
| | - Denise Riquelme
- Section on Endocrine Physiology, PDEGEN, NICHD, NIH, Bethesda, Maryland, USA
| | - Jiabao Zhang
- College of Animal Sciences, Jilin University, China
| | - Greti Aguilera
- Section on Endocrine Physiology, PDEGEN, NICHD, NIH, Bethesda, Maryland, USA.
| |
Collapse
|
178
|
Ayyar VS, Almon RR, Jusko WJ, DuBois DC. Quantitative tissue-specific dynamics of in vivo GILZ mRNA expression and regulation by endogenous and exogenous glucocorticoids. Physiol Rep 2015; 3:3/6/e12382. [PMID: 26056061 PMCID: PMC4510616 DOI: 10.14814/phy2.12382] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoids (GC) are steroid hormones, which regulate metabolism and immune function. Synthetic GCs, or corticosteroids (CS), have appreciable clinical utility via their ability to suppress inflammation in immune-mediated diseases like asthma and rheumatoid arthritis. Recent work has provided insight to novel GC-induced genes that mediate their anti-inflammatory effects, including glucocorticoid-induced leucine zipper (GILZ). Since GILZ comprises an important part of GC action, its regulation by both drug and hormone will influence CS therapy. In addition, GILZ expression is often employed as a biomarker of GC action, which requires judicious selection of sampling time. Understanding the in vivo regulation of GILZ mRNA expression over time will provide insight into both the physiological regulation of GILZ by endogenous GC and the dynamics of its enhancement by CS. A highly quantitative qRT-PCR assay was developed for measuring GILZ mRNA expression in tissues obtained from normal and CS-treated rats. This assay was applied to measure GILZ mRNA expression in eight tissues; to determine its endogenous regulation over time; and to characterize its dynamics in adipose tissue, muscle, and liver following treatment with CS. We demonstrate that GILZ mRNA is expressed in several tissues. GILZ mRNA expression in adipose tissue displayed a robust circadian rhythm that was entrained with the circadian oscillation of endogenous corticosterone; and is strongly enhanced by acute and chronic dosing. Single dosing also enhanced GILZ mRNA in muscle and liver, but the dynamics varied. In conclusion, GILZ is widely expressed in the rat and highly regulated by endogenous and exogenous GCs.
Collapse
Affiliation(s)
- Vivaswath S Ayyar
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Richard R Almon
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York
| | - William J Jusko
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York
| | - Debra C DuBois
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
179
|
Sustained interleukin-1β exposure modulates multiple steps in glucocorticoid receptor signaling, promoting split-resistance to the transactivation of prominent anti-inflammatory genes by glucocorticoids. Mediators Inflamm 2015; 2015:347965. [PMID: 25977599 PMCID: PMC4421076 DOI: 10.1155/2015/347965] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/22/2015] [Accepted: 02/26/2015] [Indexed: 12/12/2022] Open
Abstract
Clinical treatment with glucocorticoids (GC) can be complicated by cytokine-induced glucocorticoid low-responsiveness (GC-resistance, GCR), a condition associated with a homogeneous reduction in the expression of GC-receptor- (GR-) driven anti-inflammatory genes. However, GR level and phosphorylation changes modify the expression of individual GR-responsive genes differently. As sustained IL-1β exposure is key in the pathogenesis of several major diseases with prevalent GCR, we examined GR signaling and the mRNA expression of six GR-driven genes in cells cultured in IL-1β and afterwards challenged with GC. After a GC challenge, sustained IL-1β exposure reduced the cytoplasmic GR level, GR(Ser203) and GR(Ser211) phosphorylation, and GR nuclear translocation and led to selective GCR in the expression of the studied genes. Compared to GC alone, in a broad range of GC doses plus sustained IL-1β, FKBP51 mRNA expression was reduced by 1/3, TTP by 2/3, and IRF8 was completely knocked down. In contrast, high GC doses did not change the expression of GILZ and DUSP1, while IGFBP1 was increased by 5-fold. These effects were cytokine-selective, IL-1β dose- and IL-1R1-dependent. The integrated gain and loss of gene functions in the "split GCR" model may provide target cells with a survival advantage by conferring resistance to apoptosis, chemotherapy, and GC.
Collapse
|
180
|
Burke SJ, May AL, Noland RC, Lu D, Brissova M, Powers AC, Sherrill EM, Karlstad MD, Campagna SR, Stephens JM, Collier JJ. Thiobenzothiazole-modified Hydrocortisones Display Anti-inflammatory Activity with Reduced Impact on Islet β-Cell Function. J Biol Chem 2015; 290:13401-16. [PMID: 25851902 DOI: 10.1074/jbc.m114.632190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoids signal through the glucocorticoid receptor (GR) and are administered clinically for a variety of situations, including inflammatory disorders, specific cancers, rheumatoid arthritis, and organ/tissue transplantation. However, glucocorticoid therapy is also associated with additional complications, including steroid-induced diabetes. We hypothesized that modification of the steroid backbone is one strategy to enhance the therapeutic potential of GR activation. Toward this goal, two commercially unavailable, thiobenzothiazole-containing derivatives of hydrocortisone (termed MS4 and MS6) were examined using 832/13 rat insulinoma cells as well as rodent and human islets. We found that MS4 had transrepression properties but lacked transactivation ability, whereas MS6 retained both transactivation and transrepression activities. In addition, MS4 and MS6 both displayed anti-inflammatory activity. Furthermore, MS4 displayed reduced impact on islet β-cell function in both rodent and human islets. Similar to dexamethasone, MS6 promoted adipocyte development in vitro, whereas MS4 did not. Moreover, neither MS4 nor MS6 activated the Pck1 (Pepck) gene in primary rat hepatocytes. We conclude that modification of the functional groups attached to the D-ring of the hydrocortisone steroid molecule produces compounds with altered structure-function GR agonist activity with decreased impact on insulin secretion and reduced adipogenic potential but with preservation of anti-inflammatory activity.
Collapse
Affiliation(s)
- Susan J Burke
- From the Laboratory of Islet Biology and Inflammation, the Departments of Nutrition and
| | - Amanda L May
- Chemistry, University of Tennessee, Knoxville, Tennessee 37996
| | | | - Danhong Lu
- the Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina 27701
| | - Marcela Brissova
- the Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, and
| | - Alvin C Powers
- the Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, and the Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, the Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee 37212
| | | | - Michael D Karlstad
- the Department of Surgery, Graduate School of Medicine, University of Tennessee Medical Center, Knoxville, Tennessee 37920, and
| | | | - Jacqueline M Stephens
- the Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808
| | - J Jason Collier
- From the Laboratory of Islet Biology and Inflammation, the Departments of Nutrition and the Department of Surgery, Graduate School of Medicine, University of Tennessee Medical Center, Knoxville, Tennessee 37920, and
| |
Collapse
|
181
|
Solano ME, Kowal MK, O'Rourke GE, Horst AK, Modest K, Plösch T, Barikbin R, Remus CC, Berger RG, Jago C, Ho H, Sass G, Parker VJ, Lydon JP, DeMayo FJ, Hecher K, Karimi K, Arck PC. Progesterone and HMOX-1 promote fetal growth by CD8+ T cell modulation. J Clin Invest 2015; 125:1726-38. [PMID: 25774501 DOI: 10.1172/jci68140] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/29/2015] [Indexed: 12/20/2022] Open
Abstract
Intrauterine growth restriction (IUGR) affects up to 10% of pregnancies in Western societies. IUGR is a strong predictor of reduced short-term neonatal survival and impairs long-term health in children. Placental insufficiency is often associated with IUGR; however, the molecular mechanisms involved in the pathogenesis of placental insufficiency and IUGR are largely unknown. Here, we developed a mouse model of fetal-growth restriction and placental insufficiency that is induced by a midgestational stress challenge. Compared with control animals, pregnant dams subjected to gestational stress exhibited reduced progesterone levels and placental heme oxygenase 1 (Hmox1) expression and increased methylation at distinct regions of the placental Hmox1 promoter. These stress-triggered changes were accompanied by an altered CD8+ T cell response, as evidenced by a reduction of tolerogenic CD8+CD122+ T cells and an increase of cytotoxic CD8+ T cells. Using progesterone receptor- or Hmox1-deficient mice, we identified progesterone as an upstream modulator of placental Hmox1 expression. Supplementation of progesterone or depletion of CD8+ T cells revealed that progesterone suppresses CD8+ T cell cytotoxicity, whereas the generation of CD8+CD122+ T cells is supported by Hmox1 and ameliorates fetal-growth restriction in Hmox1 deficiency. These observations in mice could promote the identification of pregnancies at risk for IUGR and the generation of clinical interventional strategies.
Collapse
|
182
|
González FB, Villar SR, Fernández Bussy R, Martin GH, Pérol L, Manarin R, Spinelli SV, Pilon C, Cohen JL, Bottasso OA, Piaggio E, Pérez AR. Immunoendocrine dysbalance during uncontrolled T. cruzi infection is associated with the acquisition of a Th-1-like phenotype by Foxp3(+) T cells. Brain Behav Immun 2015; 45:219-32. [PMID: 25483139 PMCID: PMC7126853 DOI: 10.1016/j.bbi.2014.11.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/27/2014] [Accepted: 11/28/2014] [Indexed: 12/20/2022] Open
Abstract
We previously showed that Trypanosomacruzi infection in C57BL/6 mice results in a lethal infection linked to unbalanced pro- and anti-inflammatory mediators production. Here, we examined the dynamics of CD4(+)Foxp3(+) regulatory T (Treg) cells within this inflammatory and highly Th1-polarized environment. Treg cells showed a reduced proliferation rate and their frequency is progressively reduced along infection compared to effector T (Teff) cells. Also, a higher fraction of Treg cells showed a naïve phenotype, meanwhile Teff cells were mostly of the effector memory type. T. cruzi infection was associated with the production of pro- and anti-inflammatory cytokines, notably IL-27p28, and with the induction of T-bet and IFN-γ expression in Treg cells. Furthermore, endogenous glucocorticoids released in response to T. cruzi-driven immune activation were crucial to sustain the Treg/Teff cell balance. Notably, IL-2 plus dexamethasone combined treatment before infection was associated with increased Treg cell proliferation and expression of GATA-3, IL-4 and IL-10, and increased mice survival time. Overall, our results indicate that therapies aimed at specifically boosting Treg cells, which during T. cruzi infection are overwhelmed by the effector immune response, represent new opportunities for the treatment of Chagas disease, which is actually only based on parasite-targeted chemotherapy.
Collapse
Affiliation(s)
- Florencia B. González
- IDICER-CONICET, Institute of Clinical and Experimental Immunology of Rosario and Immunology Institute, Faculty of Medical Sciences, National University of Rosario, Argentina
| | - Silvina R. Villar
- IDICER-CONICET, Institute of Clinical and Experimental Immunology of Rosario and Immunology Institute, Faculty of Medical Sciences, National University of Rosario, Argentina
| | - Rodrigo Fernández Bussy
- IDICER-CONICET, Institute of Clinical and Experimental Immunology of Rosario and Immunology Institute, Faculty of Medical Sciences, National University of Rosario, Argentina
| | | | - Louis Pérol
- INSERM U932, 26 rue d’Ulm, 75005 Paris, France,Institut Curie, Section Recherche, 26 rue d’Ulm, 75005 Paris, France
| | - Romina Manarin
- IDICER-CONICET, Institute of Clinical and Experimental Immunology of Rosario and Immunology Institute, Faculty of Medical Sciences, National University of Rosario, Argentina
| | - Silvana V. Spinelli
- IDICER-CONICET, Institute of Clinical and Experimental Immunology of Rosario and Immunology Institute, Faculty of Medical Sciences, National University of Rosario, Argentina
| | | | - José Laurent Cohen
- INSERM U955, Equipe 21, Créteil, France,Université Paris-Est, UMR_S955, UPEC, Créteil, France,AP-HP, Hôpital Henri-Mondor – A. Chenevier, CIC-BT-504, Créteil, France
| | - Oscar A. Bottasso
- IDICER-CONICET, Institute of Clinical and Experimental Immunology of Rosario and Immunology Institute, Faculty of Medical Sciences, National University of Rosario, Argentina
| | - Eliane Piaggio
- INSERM U932, 26 rue d'Ulm, 75005 Paris, France; Institut Curie, Section Recherche, 26 rue d'Ulm, 75005 Paris, France; INSERM Center of Clinical Investigation (CBT507 IGR-Curie), 75005 Paris, France.
| | - Ana R. Pérez
- IDICER-CONICET, Institute of Clinical and Experimental Immunology of Rosario and Immunology Institute, Faculty of Medical Sciences, National University of Rosario, Argentina,Corresponding authors at: IDICER-CONICET, Instituto de Inmunología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Santa Fe 3100, 2000 Rosario, Argentina (A.R. Pérez). INSERM U932, 26 rue d’Ulm, 75005 Paris, France (E. Piaggio).
| |
Collapse
|
183
|
|
184
|
Cruz-Topete D, Cidlowski JA. One hormone, two actions: anti- and pro-inflammatory effects of glucocorticoids. Neuroimmunomodulation 2015; 22:20-32. [PMID: 25227506 PMCID: PMC4243162 DOI: 10.1159/000362724] [Citation(s) in RCA: 295] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoids are essential steroid hormones secreted from the adrenal gland in response to stress. Since their discovery in the 1940s, glucocorticoids have been widely prescribed to treat inflammatory disorders and hematological cancers. In the traditional view, glucocorticoids are regarded as anti-inflammatory molecules; however, emerging evidence suggests that glucocorticoid actions are more complex than previously anticipated. The anti-inflammatory activity of glucocorticoids is attributed to the repression of pro-inflammatory genes through signal transduction by their steroid receptor, the glucocorticoid receptor (GR). The mechanisms modulating the pro-inflammatory effects of glucocorticoids are not well understood. In this review, we discuss recent findings that provide insights into the mechanism by which GR signaling can play a dual role in the regulation of the immune response. We hypothesize that these apparently opposite processes are working together to prepare the immune system to respond to a stressor (pro-inflammatory effects) and subsequently restore homeostasis (anti-inflammatory effects). Finally, we propose that determining the mechanisms which underlie the tissue-specific effects of glucocorticoids will provide an excellent tool to develop more efficient and selective glucocorticoid therapies.
Collapse
Affiliation(s)
- Diana Cruz-Topete
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health, Department of Health and Human Services, Research Triangle Park, N.C., USA
| | | |
Collapse
|
185
|
Abstract
Critical illness represents a major challenge for the human body, implicating that an adequate stress response is indispensable for survival. Therefore, for a long time, activation of the hypothalamic pituitary adrenal axis was assumed to be increased to respond to this stressful situation. Recent novel insights, however, provided evidence that the HPA-axis is regulated differently during critical illness. Cortisol metabolism was shown to be reduced which contributed to hypercortisolism in an energy efficient way without increasing cortisol production dramatically. Yet, the concomitant low ACTH levels, explained by negative feedback inhibition, could lead to an understimulation of the adrenal gland and affect adrenal structure and function, given the crucial role of ACTH for adrenal gland maintenance. This side-effect could negatively affect outcome predominantly in the prolonged phase of critical illness and could explain the increased incidence of adrenal failure in these patients. Altogether, novel findings represent a paradigm shift in our current understanding of HPA-axis regulation during critical illness and redirect future research perspectives with an urgent need to well-designed clinical trials to further explore HPA-axis functioning during critical illness.
Collapse
|
186
|
Rafacho A, Ortsäter H, Nadal A, Quesada I. Glucocorticoid treatment and endocrine pancreas function: implications for glucose homeostasis, insulin resistance and diabetes. J Endocrinol 2014; 223:R49-62. [PMID: 25271217 DOI: 10.1530/joe-14-0373] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glucocorticoids (GCs) are broadly prescribed for numerous pathological conditions because of their anti-inflammatory, antiallergic and immunosuppressive effects, among other actions. Nevertheless, GCs can produce undesired diabetogenic side effects through interactions with the regulation of glucose homeostasis. Under conditions of excess and/or long-term treatment, GCs can induce peripheral insulin resistance (IR) by impairing insulin signalling, which results in reduced glucose disposal and augmented endogenous glucose production. In addition, GCs can promote abdominal obesity, elevate plasma fatty acids and triglycerides, and suppress osteocalcin synthesis in bone tissue. In response to GC-induced peripheral IR and in an attempt to maintain normoglycaemia, pancreatic β-cells undergo several morphofunctional adaptations that result in hyperinsulinaemia. Failure of β-cells to compensate for this situation favours glucose homeostasis disruption, which can result in hyperglycaemia, particularly in susceptible individuals. GC treatment does not only alter pancreatic β-cell function but also affect them by their actions that can lead to hyperglucagonaemia, further contributing to glucose homeostasis imbalance and hyperglycaemia. In addition, the release of other islet hormones, such as somatostatin, amylin and ghrelin, is also affected by GC administration. These undesired GC actions merit further consideration for the design of improved GC therapies without diabetogenic effects. In summary, in this review, we consider the implication of GC treatment on peripheral IR, islet function and glucose homeostasis.
Collapse
Affiliation(s)
- Alex Rafacho
- Department of Physiological SciencesCenter of Biological Sciences, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, BrazilDepartment of Clinical Science and EducationSödersjukhuset, Karolinska Institutet, SE-11883 Stockholm, SwedenInstitute of Bioengineering and the Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM)Miguel Hernández University, University Avenue s/n, 03202, Elche, Spain
| | - Henrik Ortsäter
- Department of Physiological SciencesCenter of Biological Sciences, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, BrazilDepartment of Clinical Science and EducationSödersjukhuset, Karolinska Institutet, SE-11883 Stockholm, SwedenInstitute of Bioengineering and the Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM)Miguel Hernández University, University Avenue s/n, 03202, Elche, Spain
| | - Angel Nadal
- Department of Physiological SciencesCenter of Biological Sciences, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, BrazilDepartment of Clinical Science and EducationSödersjukhuset, Karolinska Institutet, SE-11883 Stockholm, SwedenInstitute of Bioengineering and the Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM)Miguel Hernández University, University Avenue s/n, 03202, Elche, Spain
| | - Ivan Quesada
- Department of Physiological SciencesCenter of Biological Sciences, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, BrazilDepartment of Clinical Science and EducationSödersjukhuset, Karolinska Institutet, SE-11883 Stockholm, SwedenInstitute of Bioengineering and the Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM)Miguel Hernández University, University Avenue s/n, 03202, Elche, Spain
| |
Collapse
|
187
|
Qin C, Yang YH, May L, Gao X, Stewart AG, Tu Y, Woodman OL, Ritchie RH. Cardioprotective potential of annexin-A1 mimetics in myocardial infarction. Pharmacol Ther 2014; 148:47-65. [PMID: 25460034 DOI: 10.1016/j.pharmthera.2014.11.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 11/14/2014] [Indexed: 12/15/2022]
Abstract
Myocardial infarction (MI) and its resultant heart failure remains a major cause of death in the world. The current treatments for patients with MI are revascularization with thrombolytic agents or interventional procedures. These treatments have focused on restoring blood flow to the ischemic tissue to prevent tissue necrosis and preserve organ function. The restoration of blood flow after a period of ischemia, however, may elicit further myocardial damage, called reperfusion injury. Pharmacological interventions, such as antioxidant and Ca(2+) channel blockers, have shown premises in experimental settings; however, clinical studies have shown limited success. Thus, there is a need for the development of novel therapies to treat reperfusion injury. The therapeutic potential of glucocorticoid-regulated anti-inflammatory mediator annexin-A1 (ANX-A1) has recently been recognized in a range of systemic inflammatory disorders. ANX-A1 binds to and activates the family of formyl peptide receptors (G protein-coupled receptor family) to inhibit neutrophil activation, migration and infiltration. Until recently, studies on the cardioprotective actions of ANX-A1 and its peptide mimetics (Ac2-26, CGEN-855A) have largely focused on its anti-inflammatory effects as a mechanism of preserving myocardial viability following I-R injury. Our laboratory provided the first evidence of the direct protective action of ANX-A1 on myocardium, independent of inflammatory cells in vitro. We now review the potential for ANX-A1 based therapeutics to be seen as a "triple shield" therapy against myocardial I-R injury, limiting neutrophil infiltration and preserving both cardiomyocyte viability and contractile function. This novel therapy may thus represent a valuable clinical approach to improve outcome after MI.
Collapse
Affiliation(s)
- Chengxue Qin
- Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Yuan H Yang
- Centre for Inflammatory Diseases Monash University and Monash Medical Centre, Clayton, Victoria, Australia
| | - Lauren May
- Department of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Xiaoming Gao
- Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Alastair G Stewart
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Yan Tu
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Owen L Woodman
- School of Medical Sciences, RMIT University, Bundoora 3083, Victoria, Australia
| | - Rebecca H Ritchie
- Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia; Department of Medicine, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
188
|
Mahajan S, Saini A, Kalra R, Gupta P. Frienemies of infection: A chronic case of host nuclear receptors acting as cohorts or combatants of infection. Crit Rev Microbiol 2014; 42:526-34. [PMID: 25358058 DOI: 10.3109/1040841x.2014.970122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Macrophages and dendritic cells provide critical effector functions to efficiently resist and promptly eliminate infection. Pattern recognition receptors signaling operative in these cell types is imperative for their innate properties. However, it is now emerging that besides these conventional signaling pathways, nuclear receptors coupled gene regulation and transrepression pathways assemble immune regulatory networks. A couple of these networks associated with members of nuclear receptor superfamily decide heterogeneity in macrophages and dendritic cells population and thereby play decisive role in determining protective immunity against bacteria, viruses, fungi, protozoa and helminths. Pathogens also direct shift in the expression of nuclear receptors and their target genes and this is proclaimed to be a sui generis mechanism whereby microbes disconnect the genomic component from the peripheral immune response. Many endogenous and synthetic nuclear receptor ligands have been tested in various in vitro and in vivo infection models to study their effect on pathogen burden. Here, we discuss current advances in our understanding of the composite interactions between nuclear receptor and pathogens and their implications on the causatum infectious diseases.
Collapse
Affiliation(s)
- Sahil Mahajan
- a Department of Molecular Biology , CSIR Institute of Microbial Technology , Chandigarh , India
| | - Ankita Saini
- a Department of Molecular Biology , CSIR Institute of Microbial Technology , Chandigarh , India
| | - Rashi Kalra
- a Department of Molecular Biology , CSIR Institute of Microbial Technology , Chandigarh , India
| | - Pawan Gupta
- a Department of Molecular Biology , CSIR Institute of Microbial Technology , Chandigarh , India
| |
Collapse
|
189
|
Ayroldi E, Macchiarulo A, Riccardi C. Targeting glucocorticoid side effects: selective glucocorticoid receptor modulator or glucocorticoid-induced leucine zipper? A perspective. FASEB J 2014; 28:5055-70. [PMID: 25205742 DOI: 10.1096/fj.14-254755] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (GCs) are steroid hormones that are necessary for life and important in health and disease. They regulate crucial homeostatic functions, including metabolism, cell growth, and development. Although GCs are regulated by circadian rhythm, increased production is associated with stress. Synthetic GCs are a valuable resource for anti-inflammatory and immunosuppressive therapy. Natural and synthetic GCs transduce signals mainly through GC receptor (GR) activation. Extensive research has explored the downstream targets of the GR, and optimization of GC therapy has required collaborative efforts. One highly promising approach involves new dissociative GR modulators. Because transrepression and transactivation of GR genes induce beneficial and adverse effects, respectively, this approach favors transrepression. Another approach involves the use of GC-dependent genes to generate proteins to mediate therapeutic GC effects. In a third approach, drug discovery is used to identify agents that selectively target GR isoforms to obtain differential gene transcription and effects. In this review, we focus on mechanisms of GR function compatible with the use of dissociative drugs. We highlight GC-induced leucine zipper (GILZ), a gene cloned in our laboratory, as a mediator of GC anti-inflammatory and immunosuppressive effects, to outline our perspective on the future of GC therapy.
Collapse
Affiliation(s)
- Emira Ayroldi
- Department of Medicine, Section of Pharmacology, and
| | - Antonio Macchiarulo
- Department of Chemistry and Drug Technology, University of Perugia, Perugia, Italy
| | | |
Collapse
|
190
|
Malek G, Lad EM. Emerging roles for nuclear receptors in the pathogenesis of age-related macular degeneration. Cell Mol Life Sci 2014; 71:4617-36. [PMID: 25156067 DOI: 10.1007/s00018-014-1709-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/14/2014] [Accepted: 08/18/2014] [Indexed: 12/20/2022]
Abstract
Age-related macular degeneration (AMD) is the leading cause of vision loss in the elderly in the Western world. Over the last 30 years, our understanding of the pathogenesis of the disease has grown exponentially thanks to the results of countless epidemiology, genetic, histological, and biochemical studies. This information, in turn, has led to the identification of multiple biologic pathways potentially involved in development and progression of AMD, including but not limited to inflammation, lipid and extracellular matrix dysregulation, and angiogenesis. Nuclear receptors are a superfamily of transcription factors that have been shown to regulate many of the pathogenic pathways linked with AMD and as such they are emerging as promising targets for therapeutic intervention. In this review, we will present the fundamental phenotypic features of AMD and discuss our current understanding of the pathobiological disease mechanisms. We will introduce the nuclear receptor superfamily and discuss the current literature on their effects on AMD-related pathophysiology.
Collapse
Affiliation(s)
- Goldis Malek
- Department of Ophthalmology, Duke University School of Medicine, 2351 Erwin Road, AERI Room 4006, Durham, NC, 27710, USA,
| | | |
Collapse
|
191
|
Mousavizadeh R, Backman L, McCormack RG, Scott A. Dexamethasone decreases substance P expression in human tendon cells: an in vitro study. Rheumatology (Oxford) 2014; 54:318-23. [PMID: 25150176 DOI: 10.1093/rheumatology/keu315] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Glucocorticoid injections are used by rheumatologists to treat chronic tendinopathy. Surprisingly, the mechanisms by which corticosteroids induce pain relief in this condition have not been investigated. Previous studies have shown local substance P (SP) levels to be correlated with tendon pain and tissue pathology. The objective of this study was to determine whether SP production in human tenocytes is modulated by exposure to dexamethasone. METHODS Human tendon fibroblasts were cultured in the presence or absence of dexamethasone (1-400 nM), an inhibitor of the glucocorticoid receptor, RU486, recombinant TGF-β (2.5 or 5.0 ng/ml) or an inhibitor of the TGF-β receptor (A83.01), recombinant human IL-1β and IL-6. Expression levels of the genes encoding for SP (TAC1) and its preferred receptor (NK1R), IL-1α, IL-1β and IL-6 were determined with quantitative PCR and protein levels of SP were examined by EIA and western blot. RESULTS Exposure of human tendon cells to dexamethasone resulted in a time-dependent reduction of mRNA for SP in both hamstrings and Achilles tenocytes, whereas NK1R was unaffected. The reduction of SP mRNA was dependent on signalling through the glucocorticoid receptor. SP protein was substantially decreased by dexamethasone. Dexamethasone also prevented induction of SP by IL-1β and by cyclic mechanical loading. CONCLUSION This study demonstrates that dexamethasone treatment of human tendon fibroblasts reduces the expression of SP through a glucocorticoid receptor-dependent pathway. Drugs interfering with SP signalling could be a future target in the treatment of tendinopathy.
Collapse
Affiliation(s)
- Rouhollah Mousavizadeh
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada, Umeå University, Institute for Integrative Medical Biology, Section for Anatomy, Umeå, Sweden, Department of Orthopedic Surgery and Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Ludvig Backman
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada, Umeå University, Institute for Integrative Medical Biology, Section for Anatomy, Umeå, Sweden, Department of Orthopedic Surgery and Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Robert G McCormack
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada, Umeå University, Institute for Integrative Medical Biology, Section for Anatomy, Umeå, Sweden, Department of Orthopedic Surgery and Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Alex Scott
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada, Umeå University, Institute for Integrative Medical Biology, Section for Anatomy, Umeå, Sweden, Department of Orthopedic Surgery and Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
192
|
Vandevyver S, Dejager L, Libert C. Comprehensive overview of the structure and regulation of the glucocorticoid receptor. Endocr Rev 2014; 35:671-93. [PMID: 24937701 DOI: 10.1210/er.2014-1010] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glucocorticoids are among the most prescribed drugs worldwide for the treatment of numerous immune and inflammatory disorders. They exert their actions by binding to the glucocorticoid receptor (GR), a member of the nuclear receptor superfamily. There are several GR isoforms resulting from alternative RNA splicing and translation initiation of the GR transcript. Additionally, these isoforms are all subject to several transcriptional, post-transcriptional, and post-translational modifications, all of which affect the protein's stability and/or function. In this review, we summarize recent knowledge on the distinct GR isoforms and the processes that generate them. We also review the importance of all known transcriptional, post-transcriptional, and post-translational modifications, including the regulation of GR by microRNAs. Moreover, we discuss the crucial role of the putative GR-bound DNA sequence as an allosteric ligand influencing GR structure and activity. Finally, we describe how the differential composition and distinct regulation at multiple levels of different GR species could account for the wide and diverse effects of glucocorticoids.
Collapse
Affiliation(s)
- Sofie Vandevyver
- Inflammation Research Center (S.V., L.D., C.L.), Flanders Institute for Biotechnology, B9052 Ghent, Belgium; and Department of Biomedical Molecular Biology (S.V., L.D., C.L.), Ghent University, B9052 Ghent, Belgium
| | | | | |
Collapse
|
193
|
Ge W, Li D, Gao Y, Cao X. The Roles of Lysosomes in Inflammation and Autoimmune Diseases. Int Rev Immunol 2014; 34:415-31. [DOI: 10.3109/08830185.2014.936587] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
194
|
Cheng Q, Morand E, Yang YH. Development of novel treatment strategies for inflammatory diseases-similarities and divergence between glucocorticoids and GILZ. Front Pharmacol 2014; 5:169. [PMID: 25100999 PMCID: PMC4102084 DOI: 10.3389/fphar.2014.00169] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 06/25/2014] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoids (GC) are the most commonly prescribed medications for patients with inflammatory diseases, despite their well-known adverse metabolic effects. Previously, it was understood that the anti-inflammatory effects of the GC/GC receptor (GR) complex were mediated via transrepression, whilst the adverse metabolic effects were mediated via transactivation. It has recently become clear that this “divergent actions” paradigm of GC actions is likely insufficient. It has been reported that the GC/GR-mediated transactivation also contributes to the anti-inflammatory actions of GC, via up-regulation of key anti-inflammatory proteins. One of these is glucocorticoid-induced leucine zipper (GILZ), which inhibits inflammatory responses in a number of important immune cell lineages in vitro, as well as in animal models of inflammatory diseases in vivo. This review aims to compare the GILZ and GC effects on specific cell lineages and animal models of inflammatory diseases. The fact that the actions of GILZ permit a GILZ-based gene therapy to lack GC-like adverse effects presents the potential for development of new strategies to treat patients with inflammatory diseases.
Collapse
Affiliation(s)
- Qiang Cheng
- Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Monash University Faculty of Medicine, Nursing and Health Sciences, Monash Medical Centre Clayton, VIC, Australia
| | - Eric Morand
- Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Monash University Faculty of Medicine, Nursing and Health Sciences, Monash Medical Centre Clayton, VIC, Australia
| | - Yuan Hang Yang
- Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Monash University Faculty of Medicine, Nursing and Health Sciences, Monash Medical Centre Clayton, VIC, Australia
| |
Collapse
|
195
|
Petrillo MG, Fettucciari K, Montuschi P, Ronchetti S, Cari L, Migliorati G, Mazzon E, Bereshchenko O, Bruscoli S, Nocentini G, Riccardi C. Transcriptional regulation of kinases downstream of the T cell receptor: another immunomodulatory mechanism of glucocorticoids. BMC Pharmacol Toxicol 2014; 15:35. [PMID: 24993777 PMCID: PMC4105561 DOI: 10.1186/2050-6511-15-35] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/25/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Glucocorticoids affect peripheral immune responses, including modulation of T-cell activation, differentiation, and apoptosis. The quantity and quality of T-cell receptor (TCR)-triggered intracellular signals modulate T-cell function. Thus, glucocorticoids may affect T cells by interfering with the TCR signaling cascade. The purpose of the study was to search for glucocorticoid-modulated kinases downstream of the TCR. METHODS Gene modulation in lymphoid cells either treated with glucocorticoids or from glucocorticoid-treated mice was studied using a RNase protection assay, real-time PCR, and western blotting. The sensitivity of genetically modified thymocytes to glucocorticoid-induced apoptosis was studied by performing hypotonic propidium iodide staining and flow cytometry. The Student's t-test was employed for statistical evaluation. RESULTS We found that transcription of Itk, a non-receptor tyrosine kinase of the Tec family, was up-regulated in a mouse T-cell hybridoma by the synthetic glucocorticoid dexamethasone. In contrast, dexamethasone down-regulated the expression of Txk, a Tec kinase that functions redundantly with Itk, and Lck, the Src kinase immediately downstream of the TCR. We investigated the expression of Itk, Txk, and Lck in thymocytes and mature lymphocytes following in vitro and in vivo dexamethasone treatment at different time points and doses. Kinase expression was differentially modulated and followed distinct kinetics. Itk was up-regulated in all cell types and conditions tested. Txk was strongly up-regulated in mature lymphocytes but only weakly up-regulated or non-modulated in thymocytes in vitro or in vivo, respectively. Conversely, Lck was down-regulated in thymocytes, but not modulated or up-regulated in mature lymphocytes in the different experimental conditions. This complex behaviour correlates with the presence of both positive and negative glucocorticoid responsive elements (GRE and nGRE, respectively) in the Itk, Txk and Lck genes. To investigate the function associated with Itk up-regulation, dexamethasone-induced apoptosis of thymocytes from Itk-deficient mice was evaluated. Our results demonstrated that Itk deficiency causes increased sensitivity to dexamethasone but not to other pro-apoptotic stimuli. CONCLUSIONS Modulation of Itk, Txk, and Lck in thymocytes and mature lymphocytes is another mechanism by which glucocorticoids modulate T-cell activation and differentiation. Itk up-regulation plays a protective role in dexamethasone-treated thymocytes.
Collapse
Affiliation(s)
| | - Katia Fettucciari
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Paolo Montuschi
- Department of Pharmacology, Faculty of Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | | | - Luigi Cari
- Department of Medicine, University of Perugia, Perugia, Italy
| | | | - Emanuela Mazzon
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Centro Neurolesi “Bonino-Pulejo”, Messina, Italy
| | | | | | - Giuseppe Nocentini
- Department of Medicine, University of Perugia, Perugia, Italy
- Department of Medicine, Section of Pharmacology, Severi Square 1, University of Perugia, I-06132 San Sisto, Perugia, Italy
| | - Carlo Riccardi
- Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
196
|
Blecharz KG, Burek M, Bauersachs J, Thum T, Tsikas D, Widder J, Roewer N, Förster CY. Inhibition of proteasome-mediated glucocorticoid receptor degradation restores nitric oxide bioavailability in myocardial endothelial cells in vitro. Biol Cell 2014; 106:219-35. [PMID: 24749543 DOI: 10.1111/boc.201300083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 04/15/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND INFORMATION Glucocorticoids (GCs), including the synthetic GC derivate dexamethasone, are widely used as immunomodulators. One of the numerous side effects of dexamethasone therapy is hypertension arising from reduced release of the endothelium-derived vasodilator nitric oxide (NO). RESULTS Herein, we described the role of dexamethasone and its glucocorticoid receptor (GR) in the regulation of NO synthesis in vitro using the mouse myocardial microvascular endothelial cell line, MyEND. GC treatment caused a firm decrease of extracellular NO levels, whereas the expression of endothelial NO synthase (eNOS) was not affected. However, GC application induced an impairment of tetrahydrobiopterin (BH4 ) concentrations as well as GTP cyclohydrolase-1 (GTPCH-1) expression, both essential factors for NO production upstream of eNOS. Moreover, dexamethasone stimulation resulted in a substantially decreased GR gene and protein expression in MyEND cells. Importantly, inhibition of proteasome-mediated proteolysis of the GR or overexpression of an ubiquitination-defective GR construct improved the bioavailability of BH4 and strengthened GTPCH-1 expression and eNOS activity. CONCLUSIONS Summarising our results, we propose a new mechanism involved in the regulation of NO signalling by GCs in myocardial endothelial cells. We suggest that a sufficient GR protein expression plays a crucial role for the management of GC-induced harmful adverse effects, including deregulations of vasorelaxation arising from disturbed NO biosynthesis.
Collapse
Affiliation(s)
- Kinga G Blecharz
- University of Würzburg, Department of Anaesthesia and Critical Care, Würzburg, 97080, Germany
| | | | | | | | | | | | | | | |
Collapse
|
197
|
Weitnauer M, Schmidt L, Ng Kuet Leong N, Muenchau S, Lasitschka F, Eckstein V, Hübner S, Tuckermann J, Dalpke AH. Bronchial epithelial cells induce alternatively activated dendritic cells dependent on glucocorticoid receptor signaling. THE JOURNAL OF IMMUNOLOGY 2014; 193:1475-84. [PMID: 24965772 DOI: 10.4049/jimmunol.1400446] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Airway epithelial cells mount a tolerogenic microenvironment that reduces the proinflammatory potential of respiratory dendritic cells (DCs). We recently demonstrated that tracheal epithelial cells continuously secrete soluble mediators that affect the reactivity of local innate immune cells. Using transcriptional profiling, we now observed that conditioning of DCs by tracheal epithelial cells regulated 98 genes under homeostatic conditions. Among the most upregulated genes were Ms4a8a and Ym1, marker genes of alternatively activated myeloid cells. Ex vivo analysis of respiratory DCs from nonchallenged mice confirmed a phenotype of alternative activation. Bioinformatic analysis showed an overrepresentation of hormone-nuclear receptors within the regulated genes, among which was the glucocorticoid receptor. In line with a role for glucocorticoids, pharmacological blockade as well as genetic manipulation of the glucocorticoid receptor within DCs inhibited Ms4a8a and Ym1 expression as well as MHC class II and CD86 regulation upon epithelial cell conditioning. Within epithelial cell-conditioned medium, low amounts of glucocorticoids were present. Further analysis showed that airway epithelial cells did not produce glucocorticoids de novo, yet were able to reactivate inactive dehydrocorticosterone enzymatically. The results show that airway epithelial cells regulate local immune responses, and this modulation involves local production of glucocorticoids and induction of an alternative activation phenotype in DCs.
Collapse
Affiliation(s)
- Michael Weitnauer
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Lotte Schmidt
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, 69120 Heidelberg, Germany; Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Nathalie Ng Kuet Leong
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Stephanie Muenchau
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Felix Lasitschka
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Volker Eckstein
- Department of Medicine V, University Hospital Heidelberg, 69120 Heidelberg, Germany; and
| | - Sabine Hübner
- Institute of General Zoology and Endocrinology, University of Ulm, 89081 Ulm, Germany
| | - Jan Tuckermann
- Institute of General Zoology and Endocrinology, University of Ulm, 89081 Ulm, Germany
| | - Alexander H Dalpke
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| |
Collapse
|
198
|
Kuchuk NO, Hoes JN, Bijlsma JWJ, Jacobs JWG. Glucocorticoid-induced osteoporosis: an overview. ACTA ACUST UNITED AC 2014. [DOI: 10.2217/ijr.14.24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
199
|
|
200
|
Patel R, Williams-Dautovich J, Cummins CL. Minireview: new molecular mediators of glucocorticoid receptor activity in metabolic tissues. Mol Endocrinol 2014; 28:999-1011. [PMID: 24766141 DOI: 10.1210/me.2014-1062] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The glucocorticoid receptor (GR) was one of the first nuclear hormone receptors cloned and represents one of the most effective drug targets available today for the treatment of severe inflammation. The physiologic consequences of endogenous or exogenous glucocorticoid excess are well established and include hyperglycemia, insulin resistance, fatty liver, obesity, and muscle wasting. However, at the molecular and tissue-specific level, there are still many unknown protein mediators of glucocorticoid response and thus, much remains to be uncovered that will help determine whether activation of the GR can be tailored to improve therapeutic efficacy while minimizing unwanted side effects. This review summarizes recent discoveries of tissue-selective modulators of glucocorticoid signaling that are important in mediating the unwanted side effects of therapeutic glucocorticoid use, emphasizing the downstream molecular effects of GR activation in the liver, adipose tissue, muscle, and pancreas.
Collapse
Affiliation(s)
- Rucha Patel
- Department of Pharmaceutical Sciences (R.P., J.W-D., C.L.C.), University of Toronto, Toronto, Ontario, M5S 3M2, Canada; and Banting and Best Diabetes Centre (C.L.C.), Toronto, Ontario M5G 2C4 Canada
| | | | | |
Collapse
|