151
|
Li H, Wang C, Jin Y, Cai Y, Yao J, Meng Q, Wu J, Wang H, Sun H, Liu M. Anti-Postmenopausal osteoporosis effects of Isopsoralen: A bioinformatics-integrated experimental study. Phytother Res 2023; 37:231-251. [PMID: 36123318 DOI: 10.1002/ptr.7609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 01/19/2023]
Abstract
Isopsoralen (IPRN), which comes from the fruit of Psoralea corylifolia, has been identified as a kind of phytoestrogen and has been proven to be effective for the treatment of osteoporosis (OP). However, the mechanisms underlying IPRN's anti-OP effects, especially the anti-postmenopausal osteoporosis (PMOP) effects, remain indistinct. Thus, this study aimed to investigate the effects and mechanisms of IPRN's anti-PMOP activity. In this study, the bioinformatics results predicted that IPRN could resist PMOP by targeting EGFR, AKT1, SRC, CCND1, ESR1 (ER-α), AR, PGR, BRCA1, PTGS2, and IGF1R. An ovariectomized (OVX) mice model and a H2 O2 -induced bone marrow mesenchyml stem cells (BMSCs) model confirmed that IPRN could inhibit the bone loss induced by OVX in mice and promote the osteogenic differentiation in H2 O2 -induced BMSCs by inhibiting oxidative stress and apoptosis. Moreover, IPRN could significantly produce the above effects by upregulating ESR1. IPRN might be a therapeutic agent for PMOP by acting as an estrogen replacement agent and a natural antioxidant.
Collapse
Affiliation(s)
- Hao Li
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yue Jin
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yuanqing Cai
- Department of Orthopaedics, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jialin Yao
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Huihan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Mozhen Liu
- Department of Orthopaedics, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
152
|
Ul-Haq A, Seo H, Jo S, Park H, Kim S, Lee Y, Lee S, Jeong JH, Song H. Characterization of Fecal Microbiomes of Osteoporotic Patients in Korea. Pol J Microbiol 2022; 71:601-613. [PMID: 36537058 PMCID: PMC9944973 DOI: 10.33073/pjm-2022-045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/11/2022] [Indexed: 12/24/2022] Open
Abstract
An imbalanced gut microbiome has been linked to a higher risk of many bone-related diseases. The objective of this study was to discover biomarkers of osteoporosis (OP). So, we collected 76 stool samples (60 human controls and 16 OP patients), extracted DNA, and performed 16S ribosomal ribonucleic acid (rRNA) gene-based amplicon sequencing. Among the taxa with an average taxonomic composition greater than 1%, only the Lachnospira genus showed a significant difference between the two groups. The Linear Discriminant Effect Size analysis and qPCR experiments indicated the Lachnospira genus as a potential biomarker of OP. Moreover, a total of 11 metabolic pathways varied between the two groups. Our study concludes that the genus Lachnospira is potentially crucial for diagnosing and treating osteoporosis. The findings of this study might help researchers better understand OP from a microbiome perspective. This research might develop more effective diagnostic and treatment methods for OP in the future.
Collapse
Affiliation(s)
- Asad Ul-Haq
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Chungnam, Republic of Korea,Division of Rheumatology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Hoonhee Seo
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea,Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Sujin Jo
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea
| | - Hyuna Park
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea
| | - Sukyung Kim
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Youngkyoung Lee
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea
| | - Saebim Lee
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea,Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Je Hoon Jeong
- Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Bucheon, Gyeongi-do, Republic of Korea, H.-Y. Song, Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea; Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Chungnam, Republic of Korea; J.-H. Jeong, Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Bucheon, Gyeongi-do, Republic of Korea;
| | - Ho‑Yeon Song
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea,Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Chungnam, Republic of Korea, H.-Y. Song, Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea; Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Chungnam, Republic of Korea; J.-H. Jeong, Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Bucheon, Gyeongi-do, Republic of Korea;
| |
Collapse
|
153
|
Yano C, Yokomoto-Umakoshi M, Fujita M, Umakoshi H, Yano S, Iwahashi N, Katsuhara S, Kaneko H, Ogata M, Fukumoto T, Terada E, Matsuda Y, Sakamoto R, Ogawa Y. Coexistence of bone and vascular disturbances in patients with endogenous glucocorticoid excess. Bone Rep 2022; 17:101610. [PMID: 36035657 PMCID: PMC9398912 DOI: 10.1016/j.bonr.2022.101610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 10/28/2022] Open
Abstract
Purpose Bone and vascular diseases are considered to share pathogenic mechanisms. Excess glucocorticoids, key regulators of cardiovascular and metabolic homeostasis, may promote both diseases simultaneously. We used endogenous Cushing's syndrome (CS) to investigate whether glucocorticoid excess underlies coexisting bone and vascular diseases. Methods We included 194 patients with adrenal tumors (ATs): autonomous cortisol secretion (ACS, n = 97) and non-functional AT (n = 97). ACS was further classified into overt CS (n = 17) and subclinical CS (SCS, n = 80). Arterial stiffness was defined as a brachial-ankle pulse wave velocity (baPWV) ≥ 1800 cm/s. Results Patients with ACS had higher coexistence rates of vertebral fracture and arterial stiffness (23 % vs. 2 %; p < 0.001) and vertebral fracture and abdominal aortic calcification (22 % vs. 1 %; p < 0.001) than those with non-functional AT. In patients with ACS, baPWV was negatively correlated with trabecular bone score (TBS, r = -0.33; p = 0.002), but not with bone mineral density, and vertebral fracture was associated with arterial stiffness in the logistic regression analysis. In the multivariate analysis of variance, the degree of cortisol excess (defined as CS, SCS, and non-functional AT) determined the correlation between TBS and baPWV (partial η2 = 0.07; p < 0.001). In the analysis of covariance, patients with coexisting vertebral fracture and arterial stiffness had higher levels of serum cortisol after the 1-mg dexamethasone suppression test than those without. Conclusion In endogenous glucocorticoid excess, bone and vascular diseases frequently coexisted, and deteriorated bone quality, not bone loss, was related to arterial stiffness. Thus, glucocorticoid excess may perturb the bone-vascular axis.
Collapse
Affiliation(s)
- Chieko Yano
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Maki Yokomoto-Umakoshi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masamichi Fujita
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hironobu Umakoshi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Seiichi Yano
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Norifusa Iwahashi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunsuke Katsuhara
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroki Kaneko
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Ogata
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tazuru Fukumoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eriko Terada
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yayoi Matsuda
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryuichi Sakamoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
154
|
Zhou HL, Su GH, Zhang RY, Di DS, Wang Q. Association of volatile organic compounds co-exposure with bone health indicators and potential mediators. CHEMOSPHERE 2022; 308:136208. [PMID: 36041527 DOI: 10.1016/j.chemosphere.2022.136208] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/05/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Limited evidence was found in the associations of volatile organic compound (VOC) exposure with bone health indicators. This study aimed to explore the associations of individual and combined metabolites of VOCs (mVOCs) in urine, a representative of the internal exposure level of VOCs, with bone mineral density (BMD), osteoporosis (OP) and fracture, and potential mediators. Data of the National Health Examination and Nutrition Survey 2005-2006 and 2013-2014 was used. Multiple linear and logistic regression modeling were performed to analyze the associations of individual mVOC with bone health indicators. The least absolute shrinkage and selection operator (LASSO) regression was adopted to select mVOCs that were more relevant to bone health indicators for further weight quantile sum (WQS) analysis used for analyzing the associations between multiple VOC co-exposure and bone health indicators. Mediation analysis was used to identify potential mediators. Seventeen mVOC members with detection rate of >50% in urine of all 3478 participants aged ≥20 years (1829 females) were involved. Levels of most mVOCs were higher in women than men. Eight mVOCs were negatively associated with BMDs, and two and four mVOCs were positively associated with OP and fracture risks, respectively. WQS regression revealed decreased femoral neck BMD (β = -0.010 g/cm2, 95% CI: -0.020, -0.0001) and total spine BMD (β = -0.015 g/cm2, 95% CI: -0.028, -0.002) in response to increasing mVOC mixture levels. And alkaline phosphatase (ALP), body mass index (BMI), fasting insulin (FI) and high-density lipoprotein (HDL), were mediators in the associations with proportions of mediating effect ranging from 4.6% to 10.2%. Individual and combined VOC (co-)exposure were associated with reduced BMDs in American adults. ALP, BMI, FI and HDL were demonstrated to be mediators in the association of multiple VOC co-exposure with BMD.
Collapse
Affiliation(s)
- Hao-Long Zhou
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guan-Hua Su
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ru-Yi Zhang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dong-Sheng Di
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Wang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
155
|
Shuai Y, Liu B, Rong L, Shao B, Chen B, Jin L. OSGIN2 regulates osteogenesis of jawbone BMSCs in osteoporotic rats. BMC Mol Cell Biol 2022; 23:22. [PMID: 35729522 PMCID: PMC9215015 DOI: 10.1186/s12860-022-00423-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
Background Augmentation of oxidative stress after estrogen deficiency leading to functional deficiency of jawbone bone marrow mesenchymal stem cells (BMSCs) causes jawbone loss in osteoporosis. OSGIN2, an oxidative stress induced factor, has been found to be associated with skeletal diseases. This study aims to investigate the function of OSGIN2 in jawbone BMSCs of osteoporotic rats. Jawbone BMSCs were used. Results Oxidative stress was increased in jawbone BMSCs of osteoporotic rats, meanwhile OSGIN2 was also up-regulated. Osteogenesis of jawbone BMSCs was declined under oxidative stress, while silence of OSGIN2 ameliorated the osteogenic deficiency. RORα and its downstream osteogenic markers (BSP and OCN) decreased under oxidative stress, while knocking-down of OSGIN2 restored their expressions. Inhibition of OSGIN2 improved the osteogenesis of jawbone BMSCs under oxidative stress, whereas down-regulation of RORα offset the effect. Intra-jawbone infusion of si-OSGIN2 rescued jawbone loss and promoted new bone deposition of osteoporotic rats. Conclusions Oxidative stress is redundant in osteoporosis, which results in up-regulation of OSGIN2. OSGIN2 restricts osteogenic ability of jawbone BMSCs via regulating RORα, while silencing of OSGIN2 rescues the osteogenic deficiency of osteoporotic rats. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-022-00423-8.
Collapse
|
156
|
Wang P, Wang X. Mimicking the native bone regenerative microenvironment for in situ repair of large physiological and pathological bone defects. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
157
|
David K, Narinx N, Antonio L, Evenepoel P, Claessens F, Decallonne B, Vanderschueren D. Bone health in ageing men. Rev Endocr Metab Disord 2022; 23:1173-1208. [PMID: 35841491 DOI: 10.1007/s11154-022-09738-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2022] [Indexed: 01/11/2023]
Abstract
Osteoporosis does not only affect postmenopausal women, but also ageing men. The burden of disease is projected to increase with higher life expectancy both in females and males. Importantly, osteoporotic men remain more often undiagnosed and untreated compared to women. Sex steroid deficiency is associated with bone loss and increased fracture risk, and circulating sex steroid levels have been shown to be associated both with bone mineral density and fracture risk in elderly men. However, in contrast to postmenopausal osteoporosis, the contribution of relatively small decrease of circulating sex steroid concentrations in the ageing male to the development of osteoporosis and related fractures, is probably only minor. In this review we provide several clinical and preclinical arguments in favor of a 'bone threshold' for occurrence of hypogonadal osteoporosis, corresponding to a grade of sex steroid deficiency that in general will not occur in many elderly men. Testosterone replacement therapy has been shown to increase bone mineral density in men, however data in osteoporotic ageing males are scarce, and evidence on fracture risk reduction is lacking. We conclude that testosterone replacement therapy should not be used as a sole bone-specific treatment in osteoporotic elderly men.
Collapse
Affiliation(s)
- Karel David
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Herestraat 49, ON1bis box 902, 3000 , Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Nick Narinx
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Herestraat 49, ON1bis box 902, 3000 , Leuven, Belgium
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Leen Antonio
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Herestraat 49, ON1bis box 902, 3000 , Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Pieter Evenepoel
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Frank Claessens
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Brigitte Decallonne
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Herestraat 49, ON1bis box 902, 3000 , Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Dirk Vanderschueren
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Herestraat 49, ON1bis box 902, 3000 , Leuven, Belgium.
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
158
|
Xu C, Weng Z, Liu Q, Xu J, Liang J, Li W, Hu J, Huang T, Zhou Y, Gu A. Association of air pollutants and osteoporosis risk: The modifying effect of genetic predisposition. ENVIRONMENT INTERNATIONAL 2022; 170:107562. [PMID: 36228550 DOI: 10.1016/j.envint.2022.107562] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/20/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Limited studies have examined the association between air pollutants and osteoporosis incidence; however, the results are conflicting. We aimed to quantify the effects of selected air pollutants on osteoporosis risk and explore the modifying effect of genetic predisposition. METHODS A total of 422,955 subjects who did not have osteoporosis at baseline in the UK Biobank were included from 2006 to 2010. We conducted a Cox proportional hazards model with adjustment for covariates to examine the association between air pollutant scores and individual air pollutants and incident osteoporosis. Furthermore, a polygenic risk score (PRS) of osteoporosis was built and examined to determine whether genetic susceptibility modified the effect of air pollutants on osteoporosis. The relationship between air pollutants and osteoporosis was examined by using a restricted cubic spline (RCS) method. RESULTS After confounder adjustment, the results showed a remarkable increase in the risk of osteoporosis with each 10 unit increase in exposure to air pollution (hazard ratio: 1.06, 95 % confidence interval: 1.03-1.08), PM2.5 (1.94, 1.52-2.48), NO2 (1.06, 1.02-1.10), and NOX (1.03, 1.01-1.04). However, no significant association was observed between PM10 or PM2.5-10 exposure and osteoporosis. Subjects with high air pollutant exposure levels and a high PRS had a noteworthy increase in osteoporosis risk compared to those with low air pollutant exposure levels and a low PRS. Air pollutants and genetic variants exerted additive effects on the risk of osteoporosis. Positive correlations were observed between osteoporosis and PM2.5 (P < 0.001), NO2 (P = 0.001), and NOx (P = 0.002) exposure. CONCLUSIONS Exposure to PM2.5, NO2 and NOx was associated with an increase in osteoporosis risk, and this effect was more pronounced in populations with high genetic risk. The association between PM2.5, NO2 and NOx exposure and osteoporosis is modified by genetic variations.
Collapse
Affiliation(s)
- Cheng Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Zhenkun Weng
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Jin Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China; Department of Maternal, Child, and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jingjia Liang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Wenxiang Li
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Jia Hu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Suzhou Institute of Advanced Study in Public Health, Gusu School, Nanjing Medical University, Suzhou, China; Suzhou Center for Disease Prevention and Control, Suzhou, China
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yong Zhou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
159
|
Bollmann A, Sons HC, Schiefer JL, Fuchs PC, Windolf J, Suschek CV. Comparative Study of the Osteogenic Differentiation Potential of Adipose Tissue-Derived Stromal Cells and Dedifferentiated Adipose Cells of the Same Tissue Origin under Pro and Antioxidant Conditions. Biomedicines 2022; 10:biomedicines10123071. [PMID: 36551827 PMCID: PMC9776284 DOI: 10.3390/biomedicines10123071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Adipose tissue-derived stromal cells (ASCs) play an important role in various therapeutic approaches to bone regeneration. However, such applications become challenging when the obtained cells show a functional disorder, e.g., an impaired osteogenic differentiation potential (ODP). In addition to ASCs, human adipose tissue is also a source for another cell type with therapeutic potential, the dedifferentiated fat cells (DFATs), which can be obtained from mature adipocytes. Here, we for the first time compared the ODPs of each donors ASC and DFAT obtained from the same adipose tissue sample as well as the role of oxidative stress or antioxidative catalase on their osteogenic outcome. Osteogenic potential of ASC and DFAT from nine human donors were compared in vitro. Flow cytometry, staining for calcium accumulation with alizarin red, alkaline phosphatase assay and Western blots were used over an osteogenic induction period of up to 14 days. H2O2 was used to induce oxidative stress and catalase was used as an antioxidative measure. We have found that ASC and DFAT cultures' ODPs are nearly identical. If ASCs from an adipose tissue sample showed good or bad ODP, so did the corresponding DFAT cultures. The inter-individual variability of the donor ODPs was immense with a maximum factor of about 20 and correlated neither with the age nor the sex of the donors of the adipose tissue. Oxidative stress in the form of exogenously added H2O2 led to a significant ODP decrease in both cell types, with this ODP decrease being significantly lower in DFAT cultures than in the corresponding ASC cultures. Regardless of the individual cell culture-specific ODP, however, exogenously applied catalase led to an approx. 2.5-fold increase in osteogenesis in the ASC and DFAT cultures. Catalase appears to be a potent pro-osteogenic factor, at least in vitro. A new finding that points to innovative strategies and therapeutic approaches in bone regeneration. Furthermore, our results show that DFATs behave similarly to ASCs of the same adipose tissue sample with respect to ODPs and could therefore be a very attractive and readily available source of multipotent stem cells in bone regenerative therapies.
Collapse
Affiliation(s)
- Anne Bollmann
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Hans Christian Sons
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Jennifer Lynn Schiefer
- Department of Plastic Surgery, Hand Surgery, Burn Center, Merheim Hospital Cologne, University of Witten/Herdecke, Ostmerheimer Straße 200, 51109 Köln, Germany
| | - Paul C. Fuchs
- Department of Plastic Surgery, Hand Surgery, Burn Center, Merheim Hospital Cologne, University of Witten/Herdecke, Ostmerheimer Straße 200, 51109 Köln, Germany
| | - Joachim Windolf
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Christoph Viktor Suschek
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
- Correspondence:
| |
Collapse
|
160
|
Daphnetin Alleviates Senile and Disuse Osteoporosis by Distinct Modulations of Bone Formation and Resorption. Antioxidants (Basel) 2022; 11:antiox11122365. [PMID: 36552574 PMCID: PMC9774389 DOI: 10.3390/antiox11122365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Senile and disuse osteoporosis have distinct bone turnover status and lack effective treatments. In this study, senescence-accelerated mouse prone 8 (SAMP8) and hindlimb unloading mouse models were used to explore the protective effects of daphnetin on these two types of osteoporosis, and primary osteoblasts and bone marrow monocyte-derived osteoclasts, as well as pre-osteoblast MC3T3-E1, and osteoclast precursor RAW264.7 cells were used to investigate the underlying mechanisms. The results showed that daphnetin administration effectively improved bone remodeling in both senile and disuse osteoporosis, but with different mechanisms. In senile osteoporosis with low bone turnover, daphnetin inhibited NOX2-mediated ROS production in osteoblasts, resulting in accelerated osteogenic differentiation and bone formation, while in disuse osteoporosis with high bone turnover, daphnetin restored SIRT3 expression, maintained mitochondrial homeostasis, and additionally upregulated SOD2 to eliminate ROS in osteoclasts, resulting in attenuation of osteoclast differentiation and bone resorption. These findings illuminated that daphnetin has promising potential for the prevention and treatment of senile and disuse osteoporosis. The different mechanisms may provide clues and basis for targeted prevention and treatment of osteoporosis according to distinct bone turnover status.
Collapse
|
161
|
Wawrzyniak N, Gramza-Michałowska A, Kołodziejski P, Suliburska J. Effect of calcium lactate in standard diet on selected markers of oxidative stress and inflammation in ovariectomized rats. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Abstract
The effectiveness of calcium depends on its source, i.e., salt it is supplied with. This study aimed to determine the effects of calcium lactate in diet on inflammation and oxidative stress markers in ovariectomized rats. A total of 40 female Wistar rats were included in this study, which were divided into four groups. The control group was fed a standard diet, whereas the remaining three groups were ovariectomized and provided a standard diet containing calcium carbonate (OVX), a calcium-deficient diet (OVX_DEF), or a diet containing calcium lactate (OVX_CaL). The nutritional intervention lasted for 12 weeks, and then, the rats were sacrificed. Tissue and blood samples were taken and evaluated for cyclooxygenase 1 (COX-1), cyclooxygenase 2, and thiobarbituric acid reactive substance contents in the liver and serum, and total antioxidant status and lipoxygenase 1 contents only in the serum using enzyme-linked immunosorbent assay. Differences were observed in the effects of calcium carbonate and calcium lactate on the COX-1 content in the serum of ovariectomized rats: a lower COX-1 concentration was observed in the case of the calcium lactate diet. No significant differences were observed for the other parameters.
Collapse
Affiliation(s)
- Natalia Wawrzyniak
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31 , 60-624 Poznań , Poland
| | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31 , 60-624 Poznań , Poland
| | - Paweł Kołodziejski
- Department of Animal Physiology, Biochemistry and Biostructure, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Wojska Polskiego 28 , 60-637 Poznań , Poland
| | - Joanna Suliburska
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31 , 60-624 Poznań , Poland
| |
Collapse
|
162
|
Protective Effect of Photobiomodulation against Hydrogen Peroxide-Induced Oxidative Damage by Promoting Autophagy through Inhibition of PI3K/AKT/mTOR Pathway in MC3T3-E1 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7223353. [DOI: 10.1155/2022/7223353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/10/2022] [Accepted: 10/22/2022] [Indexed: 11/24/2022]
Abstract
Photobiomodulation (PBM) has been repeatedly reported to play a major role in the regulation of osteoblast proliferation and mineralization. Autophagy is closely associated with various pathophysiological processes in osteoblasts, while its role in oxidative stress is even more critical. However, there is still no clear understanding of the mechanism of the role of autophagy in the regulation of osteoblast mineralization and apoptosis under oxidative stress by PBM. It was designed to investigate the impact of 808 nm PBM on autophagy and apoptosis in mouse preosteoblast MC3T3-E1 treated with hydrogen peroxide (H2O2) through PI3K/AKT/mTOR pathway. PBM could inhibit MC3T3-E1 cell apoptosis under oxidative stress and promote the expression of osteogenic proteins, while enhancing the level of autophagy. In contrast, 3-methyladenine (3-MA) inhibited the expression of osteoblast autophagy under oxidative stress conditions, increased apoptosis, and plus counteracted the effect of PBM on osteoblasts. We also found that PBM suppressed the activated PI3K/AKT/mTOR pathway during oxidative stress and induced autophagy in osteoblasts. PBM promoted autophagy of MC3T3 cells and was further blocked by 740 Y-P, which reversed the effect of PBM on MC3T3 cells with H2O2. In conclusion, PBM promotes autophagy and improves the level of osteogenesis under oxidative stress by inhibiting the PI3K/AKT/mTOR pathway. Our results can lay the foundation for the clinical usage of PBM in the treatment of osteoporosis.
Collapse
|
163
|
Li Y, Li F. Mechanism and Prospect of Gastrodin in Osteoporosis, Bone Regeneration, and Osseointegration. Pharmaceuticals (Basel) 2022; 15:1432. [PMID: 36422561 PMCID: PMC9698149 DOI: 10.3390/ph15111432] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/14/2023] Open
Abstract
Gastrodin, a traditional Chinese medicine ingredient, is widely used to treat vascular and neurological diseases. However, recently, an increasing number of studies have shown that gastrodin has anti-osteoporosis effects, and its mechanisms of action include its antioxidant effect, anti-inflammatory effect, and anti-apoptotic effect. In addition, gastrodin has many unique advantages in promoting bone healing in tissue engineering, such as inducing high hydrophilicity in the material surface, its anti-inflammatory effect, and pro-vascular regeneration. Therefore, this paper summarized the effects and mechanisms of gastrodin on osteoporosis and bone regeneration in the current research. Here we propose an assumption that the use of gastrodin in the surface loading of oral implants may greatly promote the osseointegration of implants and increase the success rate of implants. In addition, we speculated on the potential mechanisms of gastrodin against osteoporosis, by affecting actin filament polymerization, renin-angiotensin system (RAS) and ferroptosis, and proposed that the potential combination of gastrodin with Mg2+, angiotensin type 2 receptor blockers or artemisinin may greatly inhibit osteoporosis. The purpose of this review is to provide a reference for more in-depth research and application of gastrodin in the treatment of osteoporosis and implant osseointegration in the future.
Collapse
Affiliation(s)
| | - Fenglan Li
- Department of Prosthodontics, Shanxi Provincial People’s Hospital, Shanxi Medical University, Taiyuan 030000, China
| |
Collapse
|
164
|
Lin C, Yang Q, Guo D, Xie J, Yang YS, Chaugule S, DeSouza N, Oh WT, Li R, Chen Z, John AA, Qiu Q, Zhu LJ, Greenblatt MB, Ghosh S, Li S, Gao G, Haynes C, Emerson CP, Shim JH. Impaired mitochondrial oxidative metabolism in skeletal progenitor cells leads to musculoskeletal disintegration. Nat Commun 2022; 13:6869. [PMID: 36369293 PMCID: PMC9652319 DOI: 10.1038/s41467-022-34694-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
Although skeletal progenitors provide a reservoir for bone-forming osteoblasts, the major energy source for their osteogenesis remains unclear. Here, we demonstrate a requirement for mitochondrial oxidative phosphorylation in the osteogenic commitment and differentiation of skeletal progenitors. Deletion of Evolutionarily Conserved Signaling Intermediate in Toll pathways (ECSIT) in skeletal progenitors hinders bone formation and regeneration, resulting in skeletal deformity, defects in the bone marrow niche and spontaneous fractures followed by persistent nonunion. Upon skeletal fracture, Ecsit-deficient skeletal progenitors migrate to adjacent skeletal muscle causing muscle atrophy. These phenotypes are intrinsic to ECSIT function in skeletal progenitors, as little skeletal abnormalities were observed in mice lacking Ecsit in committed osteoprogenitors or mature osteoblasts. Mechanistically, Ecsit deletion in skeletal progenitors impairs mitochondrial complex assembly and mitochondrial oxidative phosphorylation and elevates glycolysis. ECSIT-associated skeletal phenotypes were reversed by in vivo reconstitution with wild-type ECSIT expression, but not a mutant displaying defective mitochondrial localization. Collectively, these findings identify mitochondrial oxidative phosphorylation as the prominent energy-driving force for osteogenesis of skeletal progenitors, governing musculoskeletal integrity.
Collapse
Affiliation(s)
- Chujiao Lin
- Department of Medicine/Division of Rheumatology, UMass Chan Medical School, Worcester, MA, USA
| | - Qiyuan Yang
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, USA
| | - Dongsheng Guo
- Department of Neurology, UMass Chan Medical School, Worcester, MA, USA
| | - Jun Xie
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
- Viral Vector Core, UMass Chan Medical School, Worcester, MA, USA
| | - Yeon-Suk Yang
- Department of Medicine/Division of Rheumatology, UMass Chan Medical School, Worcester, MA, USA
| | - Sachin Chaugule
- Department of Medicine/Division of Rheumatology, UMass Chan Medical School, Worcester, MA, USA
| | - Ngoc DeSouza
- Department of Medicine/Division of Rheumatology, UMass Chan Medical School, Worcester, MA, USA
| | - Won-Taek Oh
- Department of Medicine/Division of Rheumatology, UMass Chan Medical School, Worcester, MA, USA
| | - Rui Li
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, USA
| | - Zhihao Chen
- Department of Medicine/Division of Rheumatology, UMass Chan Medical School, Worcester, MA, USA
| | - Aijaz A John
- Department of Medicine/Division of Rheumatology, UMass Chan Medical School, Worcester, MA, USA
| | - Qiang Qiu
- Department of Medicine/Division of Rheumatology, UMass Chan Medical School, Worcester, MA, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, USA
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY, USA
- Research Divisions, Hospital for Special Surgery, New York, NY, USA
| | - Sankar Ghosh
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Shaoguang Li
- Department of Medicine/Division of Rheumatology, UMass Chan Medical School, Worcester, MA, USA
| | - Guangping Gao
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
- Viral Vector Core, UMass Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA, USA
| | - Cole Haynes
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, USA
| | - Charles P Emerson
- Department of Neurology, UMass Chan Medical School, Worcester, MA, USA
- Wellstone Muscular Dystrophy Program, UMass Chan Medical School, Worcester, MA, USA
| | - Jae-Hyuck Shim
- Department of Medicine/Division of Rheumatology, UMass Chan Medical School, Worcester, MA, USA.
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
165
|
Wu H, Zhang D, Xia H, Li Y, Mao F, Liao Y. SDH5 down-regulation mitigates the damage of osteoporosis via inhibiting the MyD88/NF-κB signaling pathway. Immunopharmacol Immunotoxicol 2022; 45:317-327. [DOI: 10.1080/08923973.2022.2143372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hongzi Wu
- Department of Orthopaedic Surgery, The Center Hospital of Karamay, Karamay City
| | - Dehua Zhang
- Department of Orthopaedic Surgery, The Center Hospital of Karamay, Karamay City
| | - Haijun Xia
- Department of Orthopaedic Surgery, The Center Hospital of Karamay, Karamay City
| | - Yongqi Li
- Department of Orthopaedic Surgery, The Center Hospital of Karamay, Karamay City
| | - Feng Mao
- Department of Orthopaedic Surgery, The Center Hospital of Karamay, Karamay City
| | - Yi Liao
- Department of Orthopaedic Surgery, The Center Hospital of Karamay, Karamay City
| |
Collapse
|
166
|
Perri G, Hill TR, Mathers JC, Walsh JS, Gossiel F, Winther K, Frölich J, Folkestad L, Cold S, Eastell R. Long-Term Selenium-Yeast Supplementation Does Not Affect Bone Turnover Markers: A Randomized Placebo-Controlled Trial. J Bone Miner Res 2022; 37:2165-2173. [PMID: 36093566 PMCID: PMC10087503 DOI: 10.1002/jbmr.4703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/08/2022]
Abstract
Higher selenium status has been associated with lower bone turnover markers (BTM) in epidemiological studies. However, the long-term impact of selenium supplementation on BTMs has not been studied. We investigated the effects of selenium supplementation on BTMs including osteocalcin (OC), procollagen type I N-terminal propeptide (PINP), collagen type I cross-linked C-telopeptide (CTX), and bone alkaline phosphatase (BALP) in the short (6 months) and long term (5 years). A total of 481 Danish men and women (60-74 years) were randomized to receive placebo-yeast versus 100, 200, or 300 μg selenium as selenium-enriched yeast daily for 5 years. Plasma selenium concentration was measured using inductively coupled plasma mass spectrometry, and BTMs were measured in nonfasted samples at baseline, 6 months, and 5 years. Data were analyzed by ANCOVA to investigate the shape of the dose-response relationships. Covariates included age, body mass index, baseline selenium status, baseline BTM, smoking, alcohol, supplement use, and medication. Plasma selenium concentration (mean 86.5 μg/d at baseline) increased significantly with increasing selenium supplementation to 152.6, 209.1, and 253.7 μg/L after 6 months and remained elevated at 5 years (158.4, 222.4, and 275.9 μg/L for 100, 200, and 300 μg supplemental selenium/d, respectively (p < 0.001)). There was no change in plasma selenium concentration in the placebo-treated group. There was no significant effect of selenium supplementation on OC (6 months p = 0.37; 5 years p = 0.63), PINP (6 months p = 0.37; 5 years p = 0.79), CTX (6 months p = 0.91; 5 years p = 0.58) or BALP (6 months p = 0.17; 5 years p = 0.53). The relatively replete baseline selenium status in the study participants may explain this lack of effect. Testing in more deficient populations may provide further insights into the impact of selenium supplementation on bone health. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Giorgia Perri
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tom R Hill
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - John C Mathers
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Jennifer S Walsh
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Fatma Gossiel
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Kristian Winther
- Department of Endocrinology, Odense University Hospital, Odense, Denmark.,Centre for Diabetes, Academic Specialist Centre, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institute, Solna, Sweden
| | - Jacob Frölich
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Lars Folkestad
- Department of Endocrinology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Søren Cold
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Richard Eastell
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|
167
|
Zhao Y, Du Y, Gao Y, Xu Z, Zhao D, Yang M. ATF3 Regulates Osteogenic Function by Mediating Osteoblast Ferroptosis in Type 2 Diabetic Osteoporosis. DISEASE MARKERS 2022; 2022:9872243. [PMID: 36340581 PMCID: PMC9629949 DOI: 10.1155/2022/9872243] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 10/01/2022] [Accepted: 10/10/2022] [Indexed: 08/13/2023]
Abstract
PURPOSE Osteoporosis is a complication of type 2 diabetes, and it is characterized by reduced bone mass, augmented bone fragility, and increased risk of fracture, thus reducing patient quality of life, especially in the elderly. Ferroptosis has been implicated in the pathological process of type 2 diabetic osteoporosis (T2DOP), but the specific underlying mechanisms remain largely unknown. This study clarified the role of activating transcription factor 3 (ATF3) in T2DOP and explored its specific regulatory mechanism, providing a new treatment target for T2DOP. METHODS We cultured hFob1.19 cells in high glucose (HG, 35 mM) and knocked down ATF3 using short hairpin RNA (shRNA). We then measured cell viability, assessed morphology, quantified the expression of ATF3 and glutathione peroxidase 4 (GPX4), detected the levels of reactive oxygen species (ROS) and lipid peroxides, and determined the osteogenic function of osteoblasts. Cystine/glutamate antiporter (system Xc-) activity was evaluated by determining the expression of SLC7A11 and the levels of glutathione (GSH) and extracellular glutamate. We constructed a T2DOP rat model and observed the effect of ATF3 on ferroptosis and T2DOP by knocking down ATF3 using small interfering RNA (siRNA). Then, we evaluated the levels of iron metabolism, lipid peroxidation, and bone turnover in serum, detected the expression of ATF3, SLC7A11, and GPX4 in bone tissues, and assessed bone microstructure using microcomputed tomography. RESULTS ATF3 expression was increased in osteoblasts under HG condition and in T2DOP rats. Inhibiting the function of ATF3 increased GPX4 levels and reduced the accumulation of ROS and lipid peroxides. These changes inhibited the ferroptosis of osteoblasts and improved osteogenic function. In addition, HG induced ATF3 upregulation, resulting in decreased SLC7A11 expression and lower levels of intracellular GSH and extracellular glutamate. CONCLUSION Osteoblast ferroptosis under HG conditions is induced by ATF3-mediated inhibition of system Xc- activity, and these events contribute to T2DOP pathogenesis.
Collapse
Affiliation(s)
- Yantao Zhao
- Department of Joint Surgery, Dalian Municipal Central Hospital, Dalian, Liaoning Province, China
- China Medical University, Shenyang, Liaoning Province, China
| | - Yunxia Du
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Yijie Gao
- Dalian Medical University, Dalian, Liaoning Province, China
| | - Zhijie Xu
- China Medical University, Shenyang, Liaoning Province, China
| | - Dexiang Zhao
- China Medical University, Shenyang, Liaoning Province, China
| | - Maowei Yang
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
168
|
Wu H, Yuan J, Yin H, Jing B, Sun C, Nguepi Tsopmejio IS, Jin Z, Song H. Flammulina velutipes stem regulates oxidative damage and synthesis of yolk precursors in aging laying hens by regulating the liver-blood-ovary axis. Poult Sci 2022; 102:102261. [PMID: 36410067 PMCID: PMC9678783 DOI: 10.1016/j.psj.2022.102261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
Egg production levels in late laying hens are negatively correlated with increasing age. Decreased liver and ovarian function in aging laying hens is accompanied by decreased antioxidant capacity, reproductive hormone levels, and follicular development, resulting in decreased synthesis of yolk precursors. The golden needle mushroom (Flammulina velutipes) has been reported to exhibit anti-inflammatory, antioxidant, and hypolipidemic properties. We aimed to reveal the therapeutic effects of F. velutipes stem (FVS) on liver-blood-ovary axis and investigate the underlying mechanisms. A total of 360 sixty-seven-wk-old laying hens were randomized into 4 treatment groups: 1) basal maize-soybean meal diet (CON); 2) basal maize + 20 g/kg FVS (2% FVS); 3) basal maize + 40 g/kg FVS (4% FVS); and 4) basal maize + 60 g/kg FVS (6% FVS). FVS groups demonstrated significantly increased egg production and ovarian development compared with the CON group. The addition of FVS increased the levels of antioxidant enzymes (GSH-Px, T-SOD, and T-AOC) in the liver, serum, and ovaries and decreased malondialdehyde levels by regulating the expression of proteins related to the Keap1-Nrf2/ARE signaling pathway. Additionally, FVS significantly decreased ovarian apoptosis by regulating Bax, Bcl-2, and caspase3 mRNA and protein expression levels. FVS significantly increased the expression levels of estradiol, progesterone, luteinizing hormone, and follicle stimulating hormone and their respective receptors. With increased levels of estradiol transported to the liver through the bloodstream, targeted binding to estrogen receptor (ER)-α and ER-β led to significant increases in ApoVLDL II, ApoB, and VTG II mRNA expression associated with yolk precursor synthesis. FVS decreased the levels of triglyceride and total cholesterol and significantly increased the expression of lipid metabolism, and transport-related mRNAs (FAS, PPAR-a/γ, and MTTP) in the liver. Therefore, the dietary supplementation of FVS can maintain the productive performance of aging laying hens by alleviating the degree of oxidative stress and regulating the transport of functional substances along the liver-blood-ovary axis, thereby improving the synthesis of yolk precursors.
Collapse
Affiliation(s)
- Haoyuan Wu
- School of Life Science, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Jing Yuan
- School of Life Science, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Haixu Yin
- School of Life Science, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Bo Jing
- School of Life Science, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Chang Sun
- School of Life Science, Jilin Agricultural University, Changchun 130118, P. R. China
| | | | - Zhouyu Jin
- School of Life Science, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Hui Song
- School of Life Science, Jilin Agricultural University, Changchun 130118, P. R. China,Engineering Research Center of the Chinenese Ministry of Education for Bioreactor and Pharmaceutical Development, Changchun, Jilin, 130118, P. R. China,Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Changchun, Jilin, 130118, P. R. China,Corresponding author:
| |
Collapse
|
169
|
Damani JJ, De Souza MJ, VanEvery HL, Strock NCA, Rogers CJ. The Role of Prunes in Modulating Inflammatory Pathways to Improve Bone Health in Postmenopausal Women. Adv Nutr 2022; 13:1476-1492. [PMID: 34978320 PMCID: PMC9526830 DOI: 10.1093/advances/nmab162] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/31/2021] [Accepted: 12/30/2021] [Indexed: 01/28/2023] Open
Abstract
The prevalence of osteoporosis among women aged 50 y and older is expected to reach 13.6 million by 2030. Alternative nonpharmaceutical agents for osteoporosis, including nutritional interventions, are becoming increasingly popular. Prunes (dried plums; Prunus domestica L.) have been studied as a potential whole-food dietary intervention to mitigate bone loss in preclinical models of osteoporosis and in osteopenic postmenopausal women. Sixteen preclinical studies using in vivo rodent models of osteopenia or osteoporosis have established that dietary supplementation with prunes confers osteoprotective effects both by preventing and reversing bone loss. Increasing evidence from 10 studies suggests that, in addition to antiresorptive effects, prunes exert anti-inflammatory and antioxidant effects. Ten preclinical studies have found that prunes and/or their polyphenol extracts decrease malondialdehyde and NO secretion, increase antioxidant enzyme expression, or suppress NF-κB activation and proinflammatory cytokine production. Two clinical trials have investigated the impact of dried plum consumption (50-100 g/d for 6-12 mo) on bone health in postmenopausal women and demonstrated promising effects on bone mineral density and bone biomarkers. However, less is known about the impact of prune consumption on oxidative stress and inflammatory mediators in humans and their possible role in modulating bone outcomes. In this review, the current state of knowledge on the relation between inflammation and bone health is outlined. Findings from preclinical and clinical studies that have assessed the effect of prunes on oxidative stress, inflammatory mediators, and bone outcomes are summarized, and evidence supporting a potential role of prunes in modulating inflammatory and immune pathways is highlighted. Key future directions to bridge the knowledge gap in the field are proposed.
Collapse
Affiliation(s)
- Janhavi J Damani
- Intercollege Graduate Degree Program in Integrative and Biomedical Physiology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Mary Jane De Souza
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - Hannah L VanEvery
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Nicole C A Strock
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - Connie J Rogers
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
- Center for Molecular Immunology and Infectious Disease, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
170
|
Kumar A, Sakhare K, Bhattacharya D, Chattopadhyay R, Parikh P, Narayan KP, Mukherjee A. Communication in non-communicable diseases (NCDs) and role of immunomodulatory nutraceuticals in their management. Front Nutr 2022; 9:966152. [PMID: 36211513 PMCID: PMC9532975 DOI: 10.3389/fnut.2022.966152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022] Open
Abstract
Conveyance of pathogens between organisms causes communicable diseases. On the other hand, a non-communicable disease (NCD) was always thought to have no causative transmissible infective agents. Today, this clear distinction is increasingly getting blurred and NCDs are found to be associated with some transmissible components. The human microbiota carries a congregation of microbes, the majority and the most widely studied being bacteria in the gut. The adult human gut harbors ginormous inhabitant microbes, and the microbiome accommodates 150-fold more genes than the host genome. Microbial communities share a mutually beneficial relationship with the host, especially with respect to host physiology including digestion, immune responses, and metabolism. This review delineates the connection between environmental factors such as infections leading to gut dysbiosis and NCDs and explores the evidence regarding possible causal link between them. We also discuss the evidence regarding the value of appropriate therapeutic immunomodulatory nutritional interventions to reduce the development of such diseases. We behold such immunomodulatory effects have the potential to influence in various NCDs and restore homeostasis. We believe that the beginning of the era of microbiota-oriented personalized treatment modalities is not far away.
Collapse
Affiliation(s)
- Abhiram Kumar
- Esperer Onco Nutrition Pvt. Ltd., Mumbai, India
- Department of Biological Sciences, Birla Institute of Technology and Science – Pilani, Hyderabad, India
| | - Kalyani Sakhare
- Department of Biological Sciences, Birla Institute of Technology and Science – Pilani, Hyderabad, India
| | - Dwaipayan Bhattacharya
- Department of Biological Sciences, Birla Institute of Technology and Science – Pilani, Hyderabad, India
| | | | - Purvish Parikh
- Department of Clinical Haematology, Mahatma Gandhi Medical College and Hospital, Jaipur, India
| | - Kumar P. Narayan
- Department of Biological Sciences, Birla Institute of Technology and Science – Pilani, Hyderabad, India
- *Correspondence: Kumar P. Narayan,
| | | |
Collapse
|
171
|
Bao J, Li Z, Zhang Y, Zhuang Y, Li Y, Wang X, Ren Y, Wang P, Zhang Y, Cheng J. Low Unsaturated Fatty Acids Level in the Vertebral Bone Marrow of Postmenopausal Osteoporosis: A Pilot
2D iDQC‐MRS
on 3.0 T Study. J Magn Reson Imaging 2022; 57:1423-1430. [PMID: 36094322 DOI: 10.1002/jmri.28383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Unsaturated fatty acids (UFAs) of bone marrow play a critical role in osteoporosis. However, it is difficult to resolve the UFA, especially in the presence of trabecular bone, using conventional magnetic resonance spectroscopy (MRS) methods. PURPOSE To preliminarily compare the bone marrow fatty acids (FAs) composition in the presence of trabecular bone of postmenopausal osteoporosis (PMOP) and healthy controls (HC). STUDY TYPE Prospective. SUBJECTS Total thirty-six postmenopausal women were recruited with CT-confirmed PMOP (n = 19) and HC (n = 17). FIELD STRENGTH/SEQUENCES A 3 T scanner. Localized 2D intermolecular double-quantum coherence-based MRS (iDQC-MRS). ASSESSMENT In addition to the conventional water and fat peaks, another four crossing peaks of the FAs were well resolved from the L4 vertebral bone marrow using iDQC-MRS technique: allylic methylene (2.0 ppm), terminal methylene (2.2 ppm), diallylic methylene (2.7 ppm), and olefinic (5.3 ppm). The monounsaturated fatty acids (MOFA) and polyunsaturated fatty acids (PUFAs) were then calculated. STATISTICAL TESTS Differences between PMOP and HC were investigated using the analysis of a t-test, and the relationships were investigated using regression analysis. RESULTS MOFAs and PUFAs fractions were significantly lower in the PMOP group compared to the HC group. In contrast, the saturated FAs fraction is significantly higher in the PMOP group. Additionally, decreased PUFAs, MOFAs were moderately negatively correlated with the volumetric bone mineral density (vBMD) in the PMOP group. Furthermore, increased SFAs in PMOP were strongly associated with vBMD. DATA CONCLUSION Using spectra resolution enhanced 2D iDQC-MRS technique, we observed low unsaturated FAs levels in the vertebral bone marrow of the PMOP patients. The reduced unsaturated FAs levels in PMOP may be associated with dysfunction of the balance between osteoblastogenesis and osteoclastogenesis. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE 1.
Collapse
Affiliation(s)
- Jianfeng Bao
- Department of Magnetic Resonance Imaging The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou China
| | - Zongye Li
- Department of Magnetic Resonance Imaging The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou China
| | - Yue Zhang
- Department of Magnetic Resonance Imaging The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou China
| | - Yuchuan Zhuang
- Department of Imaging Sciences University of Rochester Medical Center Rochester New York USA
| | - Ying Li
- Department of Magnetic Resonance Imaging The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou China
| | - Xiao Wang
- Department of Magnetic Resonance Imaging The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou China
| | - Yanan Ren
- Department of Magnetic Resonance Imaging The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou China
| | - Peipei Wang
- Department of Magnetic Resonance Imaging The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou China
| |
Collapse
|
172
|
Biswas L, Niveria K, Verma AK. Paradoxical role of reactive oxygen species in bone remodelling: implications in osteoporosis and possible nanotherapeutic interventions. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Osteoporosis is a metabolic bone disorder that affects both sexes and is the most common cause of fractures. Osteoporosis therapies primarily inhibit osteoclast activity, and are seldom designed to trigger new bone growth thereby frequently causing severe systemic adverse effects. Physiologically, the intracellular redox state depends on the ratio of pro-oxidants, oxidizing agents (reactive oxygen species, ROS) and antioxidants. ROS is the key contributor to oxidative stress in osteoporosis as changes in redox state are responsible for dynamic bone remodeling and bone regeneration. Imbalances in ROS generation vs. antioxidant systems play a pivotal role in pathogenesis of osteoporosis, stimulating osteoblasts and osteocytes towards osteoclastogenesis. ROS prevents mineralization and osteogenesis, causing increased turnover of bone loss. Alternatively, antioxidants either directly or indirectly, contribute to activation of osteoblasts leading to differentiation and mineralization, thereby reducing osteoclastogenesis. Owing to the unpredictability of immune responsiveness and reported adverse effects, despite promising outcomes from drugs against oxidative stress, treatment in clinics targeting osteoclast has been limited. Nanotechnology-mediated interventions have gained remarkable superiority over other treatment modalities in regenerative medicine. Nanotherapeutic approaches exploit the antioxidant properties of nanoparticles for targeted drug delivery to trigger bone repair, by enhancing their osteogenic and anti-osteoclastogenic potentials to influence the biocompatibility, mechanical properties and osteoinductivity. Therefore, exploiting nanotherapeutics for maintaining the differentiation and proliferation of osteoblasts and osteoclasts is quintessential.
Collapse
Affiliation(s)
- Largee Biswas
- 1Nanobiotech lab, Department of Zoology, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Karishma Niveria
- 1Nanobiotech lab, Department of Zoology, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Anita Kamra Verma
- 1Nanobiotech lab, Department of Zoology, Kirori Mal College, University of Delhi, Delhi 110007, India 2Fellow, Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi 110007, India
| |
Collapse
|
173
|
Strontium-incorporated bioceramic scaffolds for enhanced osteoporosis bone regeneration. Bone Res 2022; 10:55. [PMID: 35999199 PMCID: PMC9399250 DOI: 10.1038/s41413-022-00224-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/15/2022] [Accepted: 05/29/2022] [Indexed: 11/23/2022] Open
Abstract
The restoration of bone defects caused by osteoporosis remains a challenge for surgeons. Strontium ranelate has been applied in preventative treatment approaches due to the biological functions of the trace element strontium (Sr). In this study, we aimed to fabricate bioactive scaffolds through Sr incorporation based on our previously developed modified amino-functional mesoporous bioactive glass (MBG) and to systematically investigate the bioactivity of the resulting scaffold in vitro and in vivo in an osteoporotic rat model. The results suggested that Sr-incorporated amino-functional MBG scaffolds possessed favorable biocompatibility. Moreover, with the incorporation of Sr, osteogenic and angiogenic capacities were upregulated in vitro. The in vivo results showed that the Sr-incorporated amino-functional MBG scaffolds achieved better bone regeneration and vessel formation. Furthermore, bioinformatics analysis indicated that the Sr-incorporated amino-functional MBG scaffolds could reduce reactive oxygen species levels in bone marrow mesenchymal stem cells in the osteoporotic model by activating the cAMP/PKA signaling pathway, thus playing an anti-osteoporosis role while promoting osteogenesis. This study demonstrated the feasibility of incorporating trace elements into scaffolds and provided new insights into biomaterial design for facilitating bone regeneration in the treatment of osteoporosis.
Collapse
|
174
|
Chen C, Zheng Y, Li X, Zhang L, Liu K, Sun S, Zhong Z, Hu H, Liu F, Xiong G, Liao X, Lu H, Bi Y, Chen J, Cao Z. Cysteamine affects skeletal development and impairs motor behavior in zebrafish. Front Pharmacol 2022; 13:966710. [PMID: 36059963 PMCID: PMC9437517 DOI: 10.3389/fphar.2022.966710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022] Open
Abstract
Cysteamine is a kind of feed additive commonly used in agricultural production. It is also the only targeted agent for the treatment of cystinosis, and there are some side effects in clinical applications. However, the potential skeletal toxicity remains to be further elucidated. In this study, a zebrafish model was for the first time utilized to synthetically appraise the skeletal developmental defects induced by cysteamine. The embryos were treated with 0.35, 0.70, and 1.05 mM cysteamine from 6 h post fertilization (hpf) to 72 hpf. Substantial skeletal alterations were manifested as shortened body length, chondropenia, and abnormal somite development. The results of spontaneous tail coiling at 24 hpf and locomotion at 120 hpf revealed that cysteamine decreased behavioral abilities. Moreover, the level of oxidative stress in the skeleton ascended after cysteamine exposure. Transcriptional examination showed that cysteamine upregulated the expression of osteoclast-related genes but did not affect osteoblast-related genes expression. Additionally, cysteamine exposure caused the downregulation of the Notch signaling and activating of Notch signaling partially attenuated skeletal defects. Collectively, our study suggests that cysteamine leads to skeletal developmental defects and reduces locomotion activity. This hazard may be associated with cysteamine-mediated inhibition of the Notch signaling and disorganization of notochordal cells due to oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Chao Chen
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yongliang Zheng
- Department of Hematology, Affiliated Hospital of Jinggangshan University, Ji’an, JX, China
- Department of Hematology, The Second Affiliated Hospital of Xian Jiaotong University, Xi’an, China
| | - Xue Li
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pediatrics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Zhang
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pediatrics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kangyu Liu
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pediatrics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Sujie Sun
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pediatrics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zilin Zhong
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pediatrics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hongmei Hu
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pediatrics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji’an, JX, China
| | - Guanghua Xiong
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji’an, JX, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji’an, JX, China
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji’an, JX, China
| | - Yanlong Bi
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Zigang Cao, ; Jianjun Chen, ; Yanlong Bi,
| | - Jianjun Chen
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pediatrics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Zigang Cao, ; Jianjun Chen, ; Yanlong Bi,
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji’an, JX, China
- *Correspondence: Zigang Cao, ; Jianjun Chen, ; Yanlong Bi,
| |
Collapse
|
175
|
Jiang N, Liu J, Guan C, Ma C, An J, Tang X. Thioredoxin-interacting protein: A new therapeutic target in bone metabolism disorders? Front Immunol 2022; 13:955128. [PMID: 36059548 PMCID: PMC9428757 DOI: 10.3389/fimmu.2022.955128] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/28/2022] [Indexed: 12/05/2022] Open
Abstract
Target identification is essential for developing novel therapeutic strategies in diseases. Thioredoxin-interacting protein (TXNIP), also known as thioredoxin-binding protein-2, is a member of the α-arrestin protein family and is regulated by several cellular stress factors. TXNIP overexpression coupled with thioredoxin inhibits its antioxidant functions, thereby increasing oxidative stress. TXNIP is directly involved in inflammatory activation by interacting with Nod-like receptor protein 3 inflammasome. Bone metabolic disorders are associated with aging, oxidative stress, and inflammation. They are characterized by an imbalance between bone formation involving osteoblasts and bone resorption by osteoclasts, and by chondrocyte destruction. The role of TXNIP in bone metabolic diseases has been extensively investigated. Here, we discuss the roles of TXNIP in the regulatory mechanisms of transcription and protein levels and summarize its involvement in bone metabolic disorders such as osteoporosis, osteoarthritis, and rheumatoid arthritis. TXNIP is expressed in osteoblasts, osteoclasts, and chondrocytes and affects the differentiation and functioning of skeletal cells through both redox-dependent and -independent regulatory mechanisms. Therefore, TXNIP is a potential regulatory and functional factor in bone metabolism and a possible new target for the treatment of bone metabolism-related diseases.
Collapse
Affiliation(s)
- Na Jiang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jinjin Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Conghui Guan
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Chengxu Ma
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Jinyang An
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xulei Tang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Xulei Tang,
| |
Collapse
|
176
|
Jörg DJ, Fuertinger DH, Cherif A, Bushinsky DA, Mermelstein A, Raimann JG, Kotanko P. Modeling osteoporosis to design and optimize pharmacological therapies comprising multiple drug types. eLife 2022; 11:76228. [PMID: 35942681 PMCID: PMC9363122 DOI: 10.7554/elife.76228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/26/2022] [Indexed: 11/13/2022] Open
Abstract
For the treatment of postmenopausal osteoporosis, several drug classes with different mechanisms of action are available. Since only a limited set of dosing regimens and drug combinations can be tested in clinical trials, it is currently unclear whether common medication strategies achieve optimal bone mineral density gains or are outperformed by alternative dosing schemes and combination therapies that have not been explored so far. Here, we develop a mathematical framework of drug interventions for postmenopausal osteoporosis that unifies fundamental mechanisms of bone remodeling and the mechanisms of action of four drug classes: bisphosphonates, parathyroid hormone analogs, sclerostin inhibitors, and receptor activator of NF-κB ligand inhibitors. Using data from several clinical trials, we calibrate and validate the model, demonstrating its predictive capacity for complex medication scenarios, including sequential and parallel drug combinations. Via simulations, we reveal that there is a large potential to improve gains in bone mineral density by exploiting synergistic interactions between different drug classes, without increasing the total amount of drug administered.
Collapse
Affiliation(s)
- David J Jörg
- Biomedical Modeling and Simulation Group, Global Research and Development, Fresenius Medical Care Germany, Bad Homburg, Germany
| | - Doris H Fuertinger
- Biomedical Modeling and Simulation Group, Global Research and Development, Fresenius Medical Care Germany, Bad Homburg, Germany
| | | | - David A Bushinsky
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, United States
| | | | | | - Peter Kotanko
- Renal Research Institute, New York, United States.,Icahn School of Medicine at Mount Sinai, New York, United States
| |
Collapse
|
177
|
Nrf2 signaling activation by a small molecule activator compound 16 inhibits hydrogen peroxide-induced oxidative injury and death in osteoblasts. Cell Death Dis 2022; 8:353. [PMID: 35941127 PMCID: PMC9360014 DOI: 10.1038/s41420-022-01146-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/08/2022]
Abstract
We explored the potential activity of compound 16 (Cpd16), a novel small molecule Nrf2 activator, in hydrogen peroxide (H2O2)-stimulated osteoblasts. In the primary murine/human osteoblasts and MC3T3-E1 murine osteoblastic cells, Cpd16 treatment at micro-molar concentrations caused disassociation of Keap1-Nrf2 and Nrf2 cascade activation. Cpd16 induced stabilization of Nrf2 protein and its nuclear translocation, thereby increasing the antioxidant response elements (ARE) reporter activity and Nrf2 response genes transcription in murine and human osteoblasts. Significantly, Cpd16 mitigated oxidative injury in H2O2-stimulited osteoblasts. H2O2-provoked apoptosis as well as programmed necrosis in osteoblasts were significantly alleviated by the novel Nrf2 activator. Cpd16-induced Nrf2 activation and osteoblasts protection were stronger than other known Nrf2 activators. Dexamethasone- and nicotine-caused oxidative stress and death in osteoblasts were attenuated by Cpd16 as well. Cpd16-induced osteoblast cytoprotection was abolished by Nrf2 short hairpin RNA or knockout, but was mimicked by Keap1 knockout. Keap1 Cys151S mutation abolished Cpd16-induced Nrf2 cascade activation and osteoblasts protection against H2O2. Importantly, weekly Cpd16 administration largely ameliorated trabecular bone loss in ovariectomy mice. Together, Cpd16 alleviates H2O2-induced oxidative stress and death in osteoblasts by activating Nrf2 cascade.
Collapse
|
178
|
Yang P, Feng Q, Meng L, Tang R, Jiang Y, Liu H, Si H, Li M. The mechanism underlying the TC-G 1008 rescue of reactive oxygen species (ROS)-induced osteoblast apoptosis by the upregulation of peroxiredoxin 1. Int J Biochem Cell Biol 2022; 151:106276. [PMID: 35953014 DOI: 10.1016/j.biocel.2022.106276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/20/2022] [Accepted: 08/06/2022] [Indexed: 10/15/2022]
Abstract
Osteoporosis is a common bone disease in the elderly with high morbidity and mortality. Previous studies have shown ROS-revulsive osteoblast apoptosis to be involved in the pathogenesis of osteoporosis. At present, a research hotspot exists on the topic of the ROS-targeted clinical treatment of osteoporosis. TC-G 1008, a potent and selective GPR39 agonist, exerts a conspicuous influence on a myriad of cellular processes, ranging from cellular redox status, to gene expression, to cell apoptosis. However, the underlying mechanism by which TC-G 1008 regulates osteoblast function under oxidative stress has not yet been elucidated. The purpose of this study was to investigate the effect and underlying mechanism of TC-G 1008 in the rescue of ROS-induced apoptosis by upregulating peroxiredoxin (Prx1). In this study, experimental results demonstrated that TC-G 1008 could activate GPR39, which then accelerated ROS obliteration and apoptosis inhibition in osteoblasts via Prx1 upregulation through the nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2). Interestingly, being regarded as an 'information' molecule rather than an anti-oxidase molecule, Prx1 was shown to restrict the dissociation of the apoptosis signal-regulating kinase 1 (ASK1)/thioredoxin (Trx) under oxidative stress, which signified the activation of the ASK1 pathway, thereby resulting in the suppression of apoptosis. In summary, this study explores the double mechanism of TC-G 1008 in osteoblast apoptosis amelioration under oxidative stress through (i) ROS elimination and (ii) ASK1/Trx signal suppression, both of which contribute to increased Prx1 expression, and the results suggest that TC-G 1008 has great potential in the clinical treatment of osteoporosis.
Collapse
Affiliation(s)
- Panpan Yang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Qiushi Feng
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Lingxiao Meng
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Rong Tang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Yujun Jiang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Hongrui Liu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Haipeng Si
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua West Road 107, Jinan 250012, China.
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China.
| |
Collapse
|
179
|
Zhang Y, Kou Y, Yang P, Rong X, Tang R, Liu H, Li M. ED-71 inhibited osteoclastogenesis by enhancing EphrinB2-EphB4 signaling between osteoclasts and osteoblasts in osteoporosis. Cell Signal 2022; 96:110376. [PMID: 35690294 DOI: 10.1016/j.cellsig.2022.110376] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Osteoporosis is a degenerative skeletal disease essentially caused by bone remodeling disorder. EphrinB2-EphB4 signaling play critical regulatory roles in bone remodeling via communication between osteoclasts and osteoblasts. Eldecalcitol (ED-71), a new vitamin D analog, is a high-potential drug for treating osteoporosis; however, its mechanism has yet to be determined. This study aims to investigate whether EphrinB2-EphB4 signal mediates the process of osteoporosis improved by ED-71. MATERIALS AND METHODS An ovariectomized (OVX) rat model was constructed in vivo. ED-71 at 30 ng/kg was orally administered once daily for 8 weeks. Osteoclast activity and EphrinB2-EphB4 expression were evaluated by hematoxylin and eosin staining, tartrate-resistant acid phosphatase (TRAP) staining, and immunohistochemical staining. The mRNA levels of oxidation stress factors in the bone tissue were tested by reverse transcription polymerase chain reaction (RT-PCR). An H2O2-stimulated model in vitro was established to simulate the status of osteoporosis. Osteoclastogenesis and associated protein were detected by TRAP staining, F-actin ring formation assay, PCR, and Western blot analysis. EprhrinB2 and EphB4 levels were determined by immunofluorescence, PCR, and Western blot analysis. EprhrinB2 small-interfering RNA knocked down the EprhrinB2 in osteoclasts, and an EphB4 antibody blocked EphB4 in osteoblasts. RESULTS ED-71 prevented bone loss and decreased the number of osteoclasts in vivo relative to the OVX group. In addition, the bone tissue of OVX rat displayed as an increased level of oxidation stress, which could be inhibited by ED-71. In vitro, in the simulation of osteoporosis with H2O2, ED-71 reversed the increase H2O2-induced oxidative stress. ED-71 then inhibited osteoclastogenesis and osteoclast function, accompanied by increased EphrinB2 expression in osteoclasts. Notably, EphrinB2 knockdown reversed the inhibitory effect of ED-71 on osteoclasts. ED-71 also enhanced EphB4 expression in osteoblasts in vivo and in vitro. Further research showed that ED-71 inhibited osteoclastogenesis in co-culture systems, which was weakened by blocking EphB4 in osteoblasts. CONCLUSIONS ED-71 inhibited osteoclastogenesis by enhancing EphrinB2-EphB4 signaling between osteoclasts and osteoblasts, preventing osteoporosis. This theory explains the role of ED-71 in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Yuying Kou
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Panpan Yang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Xing Rong
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Rong Tang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Hongrui Liu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China.
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China.
| |
Collapse
|
180
|
Effect of Administration of Azithromycin and/or Probiotic Bacteria on Bones of Estrogen-Deficient Rats. Pharmaceuticals (Basel) 2022; 15:ph15080915. [PMID: 35893739 PMCID: PMC9331654 DOI: 10.3390/ph15080915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
The gut microbiota plays an important role in maintaining homeostasis, including that of the skeletal system. Antibiotics may affect the skeletal system directly or indirectly by influencing the microbiota. Probiotic bacteria have been reported to favorably affect bones in conditions of estrogen deficiency. The aim of this study was to investigate the effects of azithromycin (AZM) administered alone or with probiotic bacteria (Lactobacillus rhamnosus; LR) on bones in estrogen-deficient rats. The experiments were carried out on mature rats divided into five groups: non-ovariectomized (NOVX) control rats, ovariectomized (OVX) control rats, and OVX rats treated with: LR, AZM, or AZM with LR. The drugs were administered for 4 weeks. Serum biochemical parameters, bone mineralization, histomorphometric parameters, and mechanical properties were examined. Estrogen deficiency increased bone turnover and worsened cancellous bone microarchitecture and mechanical properties. The administration of LR or AZM slightly favorably affected some skeletal parameters of estrogen-deficient rats. The administration of AZM with LR did not lead to the addition of the effects observed for the separate treatments, indicating that the effects could be microbiota-mediated.
Collapse
|
181
|
Malluche HH, Davenport DL, Lima F, Monier-Faugere MC. Prevalence of low bone formation in untreated patients with osteoporosis. PLoS One 2022; 17:e0271555. [PMID: 35853025 PMCID: PMC9295966 DOI: 10.1371/journal.pone.0271555] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/01/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Osteoporosis treatment usually starts with an antiresorber and switches to an anabolic agent if it fails. It is known that suppressing bone resorption also results in reduced bone formation. In addition, patients with prior treatment with antiresorbers may have reduced response to subsequent anabolic treatment. This study determined the prevalence of low bone formation in untreated osteoporosis patients to identify patients who may not be optimally treated under the current paradigm. METHODS This is a cross-sectional study of bone samples stored in the Kentucky Bone Registry. Included samples were from adult patients presenting for workup of osteoporosis. Exclusion criteria were other diseases or treatments affecting bone. Patients underwent iliac crest bone biopsies after tetracycline labeling for identification of bone formation. RESULTS 107 patients met study criteria, 92 White and 5 Black women and 10 White men. Forty percent of patients (43/107) had low bone formation/bone surface (BFR/BS < 0.56 mm3/cm2/yr). Clinical and serum parameters did not differ between formation groups, except for type II diabetes, which was found exclusively in the low formation group. CONCLUSIONS Starting treatment of osteoporotic patients with an antiresorber in all patients appears not optimal for a significant portion.
Collapse
Affiliation(s)
- Hartmut H. Malluche
- Division of Nephrology, Department of Medicine, Bone and Mineral Metabolism, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| | - Daniel L. Davenport
- Division of Healthcare Outcomes and Optimal Patient Services, Department of Surgery, University of Kentucky, Lexington, Kentucky, United States of America
| | - Florence Lima
- Division of Nephrology, Department of Medicine, Bone and Mineral Metabolism, University of Kentucky, Lexington, Kentucky, United States of America
| | - Marie-Claude Monier-Faugere
- Division of Nephrology, Department of Medicine, Bone and Mineral Metabolism, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
182
|
Matta Reddy A, Iqbal M, Chopra H, Urmi S, Junapudi S, Bibi S, Kumar Gupta S, Nirmala Pangi V, Singh I, Abdel-Daim MM. Pivotal role of vitamin D in mitochondrial health, cardiac function, and human reproduction. EXCLI JOURNAL 2022; 21:967-990. [PMID: 36110560 PMCID: PMC9441677 DOI: 10.17179/excli2022-4935] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/24/2022] [Indexed: 11/04/2022]
Abstract
Vitamin D, a secosteroid hormone, appears to have significant beneficial effects on various physiological systems, including the musculoskeletal system. Vitamin D assists in the regulation of numerous critical biological functions and physiological processes in humans, including inflammation, oxidative stress, and mitochondrial respiration, and is also linked to cardiac diseases. It is also reported that vitamin D plays a central role in molecular and cellular mechanisms, which reduce oxidative stress, and tissue damage and regulate cellular health. On the other side, hypovitaminosis D reduces mitochondrial activity and increases oxidative stress and inflammation in the body. Hypervitaminosis D increases the prevalence and severity of cellular damage. It has also been reported that vitamin D is involved in many functions of the reproductive system in human and critically play an important role in the reproductive tissues of women and men. Its role is very well defined, starting from female menarche to menopause, pregnancy, and lactation, and finally in male fertility. Hence, the appropriate amount of vitamin D is necessary to maintain the normal function of cell organelles. Based on recent studies, it is understood that vitamin D is involved in the biological activities of mitochondria in cells, especially in cardiomyocytes. In this review, we emphasized the role of vitamin D in mitochondrial respiration, which could significantly influence heart health and human reproduction.
Collapse
Affiliation(s)
- Alavala Matta Reddy
- Department of Zoology, School of Life and Health Sciences, Adikavi Nannaya University, Rajahmundry 533296, Andhra Pradesh, India
| | - Mumtaz Iqbal
- College of Arts and Science, University of South Florida, Tampa, FL33620, USA
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab140401, India
| | - Shaheda Urmi
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL33612, USA
| | - Sunil Junapudi
- Department of Pharmaceutical Chemistry, Geethanjali College of Pharmacy, Cherryal, Keesara, Medchalmalkajgiri District, Telangana, 501301, India
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan,Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China,*To whom correspondence should be addressed: Shabana Bibi, Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan; Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China, E-mail:
| | | | - Viajaya Nirmala Pangi
- School of Life and Health Sciences, Adikavi Nannaya University, Rajahamahendravaram, Andhra Pradesh, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab140401, India
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231 Jeddah 21442, Saudi Arabia,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
183
|
Brazão V, Colato RP, Santello FH, Duarte A, Goulart A, Sampaio PA, Pacheco Silva CB, Tirapelli CR, Costa RM, Tostes RC, do Prado JC. Melatonin regulates antioxidant defense and inflammatory response by activating Nrf2-dependent mechanisms and inhibiting NFkappaB expression in middle-aged T. cruzi infected rats. Exp Gerontol 2022; 167:111895. [PMID: 35843349 DOI: 10.1016/j.exger.2022.111895] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/29/2022]
Abstract
Oxidative stress with higher levels of leptin and inflammatory response are key processes related to pathogenesis of both T. cruzi infection and aging. Nuclear factor erythroid 2-related factor 2 (Nrf2) controls the expression of several genes implicated in the oxidative stress response in many pathological conditions. Melatonin is a pleiotropic hormone with, antioxidant, anti-inflammatory and anti-aging actions. Then, we hypothesized that Nrf2 response is impaired during the acute T. cruzi (9 days) infection and that melatonin rescues Nrf2 responses. Young (5 weeks-old) and middle-aged (18 months-old) male Wistar rats were infected with T. cruzi. Nrf2 translocation and markers of inflammation and oxidative stress were analyzed in blood and spleen. Increased apoptosis levels and oxidative stress indicators were observed in the rat spleen during T. cruzi infection. These responses were accompanied by decreased Nrf2 expression and increased expression of nuclear factor kappa B (NFκB). Melatonin (5 mg/kg/day; p.o. gavage) attenuated the superoxide anion (O2-) and hydrogen peroxide (H2O2) production induced by T. cruzi infection. Increased expressions of catalase and superoxide dismutase (SOD) were detected in the spleen of melatonin-treated rats infected with T. cruzi. Melatonin treatment inhibited the spleen NF-κB activation and downregulates the levels of circulating interleukin (IL)-4, IL-10 and tumor necrosis factor (TNF)-α in T. cruzi middle-aged infected rats. Increased levels of the chemokine CXCL1 in middle-aged control rats was observed, confirming that aging alters the production of this chemokine. In T. cruzi infected young animals, CXCL1 was up-regulated when compared to non-infected young ones. For young or middle-aged animals, melatonin treatment had no significant effect on CXCL1 levels. Our findings demonstrate an important role for Nrf2/NF-kB regulation as a possible mechanism by which melatonin attenuates oxidative stress, and provide new insights for further studies of this indoleamine as a therapeutic co-adjuvant agent against T. cruzi infection.
Collapse
Affiliation(s)
- Vânia Brazão
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Rafaela Pravato Colato
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fabricia Helena Santello
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Andressa Duarte
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Amanda Goulart
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Pedro Alexandre Sampaio
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carla B Pacheco Silva
- Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Carlos Renato Tirapelli
- Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Rafael M Costa
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, SP, Brazil; Special Academic Unit of Health Sciences, Federal University of Jatai, Jatai, GO, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, SP, Brazil
| | - José Clóvis do Prado
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
184
|
Wang F, Guo J, Wang S, Wang Y, Chen J, Hu Y, Zhang H, Xu K, Wei Y, Cao L, Chen X, Jing Y, Su J. B-cell lymphoma-3 controls mesenchymal stem cell commitment and senescence during skeletal aging. Clin Transl Med 2022; 12:e955. [PMID: 35804493 PMCID: PMC9270574 DOI: 10.1002/ctm2.955] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Fuxiao Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Jiawei Guo
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Sicheng Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, China.,Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Yili Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Jiao Chen
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Yan Hu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Hao Zhang
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Yan Wei
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Liehu Cao
- Department of Orthopedics, Shanghai Baoshan Luodian Hospital, Baoshan District, Shanghai, China
| | - Xiao Chen
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China.,Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
185
|
Zhang J, Song M, Cui Y, Shao B, Zhang X, Cao Z, Li Y. T-2 toxin-induced femur lesion is accompanied by autophagy and apoptosis associated with Wnt/β-catenin signaling in mice. ENVIRONMENTAL TOXICOLOGY 2022; 37:1653-1661. [PMID: 35289972 DOI: 10.1002/tox.23514] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/29/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
T-2 toxin is one of the most common mycotoxins found in grain foods, animal feed, and other agricultural by-products causing food contamination and health threat. The skeletal system is the main target tissue for T-2 toxin. T-2 toxin exposure is also recognized as a potential contributor to multiple types of bone diseases, including Kashin-Beck disease. However, the mechanisms of T-2 toxin-induced bone toxicity remain unclear. In this study, 60 male C57BL/6 mice were exposed T-2 toxin with 0, 0.5, 1 or 2 mg/kg body weight by intragastric administration for 28 days, respectively. Femora were collected for the detections of femur lesion, bone formation factors, oxidative stress, autophagy, apoptosis, and Wnt/β-catenin signaling. Our research showed that T-2 toxin caused bone formation disorders, presenting as the reduction of the BMD and femur length, bone structure changes and abnormal bone formation proteins expressions, along with enhanced oxidative stress. Meanwhile, T-2 toxin increased expressions of autophagy-related proteins (Beclin 1, ATG5, p62, and LC3), and promoted apoptosis in mouse femur. Moreover, T-2 toxin suppressed the Wnt/β-catenin signaling and expressions of downstream target genes. Taken together, our data indicated T-2 toxin-induced femur lesion was accompanied by autophagy and apoptosis, which was associated with Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yilong Cui
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Bing Shao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zheng Cao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
186
|
Li Y, Zhuang Q, Tao L, Zheng K, Chen S, Yang Y, Feng C, Wang Z, Shi H, Shi J, Fang Y, Xiao L, Geng D, Wang Z. Urolithin B suppressed osteoclast activation and reduced bone loss of osteoporosis via inhibiting ERK/NF-κB pathway. Cell Prolif 2022; 55:e13291. [PMID: 35708050 PMCID: PMC9528769 DOI: 10.1111/cpr.13291] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 12/05/2022] Open
Abstract
Objectives The main target of current drugs for alleviating bone loss is osteoclasts. However, the long‐term application of such drugs will also cause side effects. Therefore, it is of great need to develop new and safer therapeutics for osteoporosis. In recent years, drug development based on gut microbiota has gradually attracted attention. This manuscript investigates the inhibitory effect of urolithin B (UB) on osteoclastogenesis and differentiation in vitro and in ovariectomized (OVX) mice. Materials and Methods CCK‐8 was used to analyse the cytotoxicity of UB; BMMs cells were differentiated into osteoclasts by RANKL, and respectively treated with 1, 5, and 25 μmol/L UB during this process. After one week of intervention, tartrate‐resistant acid phosphatase (TRAP) staining was used to analyse the number and average area of osteoclasts. F‐actin staining and immunofluorescence staining were conducted to evaluate the morphology and function of osteoclasts. Bone resorption function of osteoclasts was detected by Pit Formation Assay. The expression of osteoclast‐related protein genes in RAW264.7 cells were investigated via western blot and RT‐PCR assays. Western blot analysis of RANKL‐mediated activation of MAPK/NF‐κB pathway after 0, 5, 15, 30, 60 min of intervention. For in vivo experiments, OVX mice received intraperitoneal injection of 10, 50 mg/kg every two days, 8 weeks later, the femurs of mice were taken for morphological analysis, and the serum content of CTX‐1, a bone metabolism index, was analysed. Results UB could inhibit the osteoclast differentiation of rankl‐induced bone marrow macrophages (BMMs) and RAW264.7 cells in vitro, suppress the uptake activity of hydroxyapatite and expression of osteoclast‐related gene MMP9, CTSK, NFATc1 and c‐fos. Furthermore, UB repressed the rankl‐induced phosphorylation and degradation of IκB and the phosphorylation of P65 in the NF‐κB pathway of RAW264.7 cells, and also down‐regulated the phosphorylation level of ERK in the MAPK pathway. For in vivo studies, UB‐treated OVX mice showed more significant improved various parameters of distal femur compared with the control group, with fewer NFATc1, MMP9 and TRAP‐positive osteoclasts in bone tissues, and less serum content of CTX‐1. Conclusion Urolithin B attenuated bone loss in OVX mice by inhibiting the formation and activation of osteoclasts via down‐regulation of the ERK/NF‐κB signalling pathway.
Collapse
Affiliation(s)
- Yajun Li
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China.,Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Qi Zhuang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Lihong Tao
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China.,Department of Rheumatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Kai Zheng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuangshuang Chen
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China.,Department of Rheumatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Yunshang Yang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China.,Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Chengcheng Feng
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Zhifang Wang
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Haiwei Shi
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Jiandong Shi
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Yiling Fang
- Department of General Practice, The First People's Hospital of Zhangjiagang, Soochow University, Zhangjiagang, China
| | - Long Xiao
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China.,Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China.,Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhirong Wang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China.,Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| |
Collapse
|
187
|
Pain in Hemophilia: Unexplored Role of Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11061113. [PMID: 35740010 PMCID: PMC9220316 DOI: 10.3390/antiox11061113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 02/04/2023] Open
Abstract
Hemophilia is the most common X-linked bleeding diathesis caused by the genetic deficiency of coagulation factors VIII or IX. Despite treatment advances and improvements in clinical management to prevent bleeding, management of acute and chronic pain remains to be established. Repeated bleeding of the joints leads to arthropathy, causing pain in hemophilia. However, mechanisms underlying the pathogenesis of pain in hemophilia remain underexamined. Herein, we describe the novel perspectives on the role for oxidative stress in the periphery and the central nervous system that may contribute to pain in hemophilia. Specifically, we cross examine preclinical and clinical studies that address the contribution of oxidative stress in hemophilia and related diseases that affect synovial tissue to induce acute and potentially chronic pain. This understanding would help provide potential treatable targets using antioxidants to ameliorate pain in hemophilia.
Collapse
|
188
|
Wen S, Zhou Y, Yim WY, Wang S, Xu L, Shi J, Qiao W, Dong N. Mechanisms and Drug Therapies of Bioprosthetic Heart Valve Calcification. Front Pharmacol 2022; 13:909801. [PMID: 35721165 PMCID: PMC9204043 DOI: 10.3389/fphar.2022.909801] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Valve replacement is the main therapy for valvular heart disease, in which a diseased valve is replaced by mechanical heart valve (MHV) or bioprosthetic heart valve (BHV). Since the 2000s, BHV surpassed MHV as the leading option of prosthetic valve substitute because of its excellent hemocompatible and hemodynamic properties. However, BHV is apt to structural valve degeneration (SVD), resulting in limited durability. Calcification is the most frequent presentation and the core pathophysiological process of SVD. Understanding the basic mechanisms of BHV calcification is an essential prerequisite to address the limited-durability issues. In this narrative review, we provide a comprehensive summary about the mechanisms of BHV calcification on 1) composition and site of calcifications; 2) material-associated mechanisms; 3) host-associated mechanisms, including immune response and foreign body reaction, oxidative stress, metabolic disorder, and thrombosis. Strategies that target these mechanisms may be explored for novel drug therapy to prevent or delay BHV calcification.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Weihua Qiao
- *Correspondence: Weihua Qiao, ; Nianguo Dong,
| | | |
Collapse
|
189
|
He Q, Yang J, Chen D, Li Y, Gong D, Ge H, Wang Z, Wang H, Chen P. 12-Deoxyphorbol-13-Hexadecanoate Abrogates OVX-Induced Bone Loss in Mice and Osteoclastogenesis via Inhibiting ROS Level and Regulating RANKL-Mediated NFATc1 Activation. Front Pharmacol 2022; 13:899776. [PMID: 35721216 PMCID: PMC9204068 DOI: 10.3389/fphar.2022.899776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/25/2022] [Indexed: 01/07/2023] Open
Abstract
Osteoporosis is a major health problem in the elderly. Almost every bone can fracture due to the increased bone fragility in osteoporosis, posing a major challenge to public health. 12-Deoxyphorbol-13-hexadecanoate (DHD), one of the main bioactive components of Stellera chamaejasme L. (Lang Du), is considered to have antitumor, antibacterial, and antifungal properties. However, the role of DHD in osteoporosis is still elusive. In this study, we demonstrated for the first time that DHD inhibits the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis and bone resorption in a dose- and time-dependent manner without exhibiting cytotoxicity in vitro. Mechanistically, we found that DHD not only represses the expression of osteoclasts marker genes by suppressing RANKL-induced mitogen-activated protein kinase (MAPK) and calcium signaling pathways but also scavenges reactive oxygen species (ROS) through enhancing cytoprotective enzymes expression. Furthermore, DHD inhibits the activation of nuclear factor of activated T cells 1 (NFATc1) during RANKL-induced osteoclasts formation. Preclinical studies revealed that DHD protects against bone loss in ovariectomy (OVX) mice. In sum, our data confirmed that DHD could potentially inhibit osteoclastogenesis by abrogating RANKL-induced MAPK, calcium, and NFATc1 signaling pathways and promoting the expression of ROS scavenging enzymes, thereby preventing OVX-induced bone loss. Thus, DHD may act as a novel therapeutic agent to manage osteoporosis.
Collapse
Affiliation(s)
- Qi He
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junzheng Yang
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Delong Chen
- Department of Orthopaedic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Yejia Li
- Department of Orthopedics, Shunde Hospital, Guangzhou University of Chinese Medicine, Foshan, China
| | - Dawei Gong
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Orthopedics, Wendeng Orthopaedic and Traumatologic Hospital of Shandong Province, Weihai, China
| | - Hui Ge
- Department of Orthopedics, Guangzhou Hospital of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Zihao Wang
- Queen’s University Belfast, Belfast, United Kingdom
| | - Haibin Wang
- Department of Orthopaedics, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Haibin Wang, ; Peng Chen,
| | - Peng Chen
- Department of Orthopaedics, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Haibin Wang, ; Peng Chen,
| |
Collapse
|
190
|
Sharma AR, Sharma G, Lee YH, Chakraborty C, Lee SS, Seo EM. Sodium Selenite Promotes Osteoblast Differentiation via The WNT/ß-Catenin Signaling Pathway. CELL JOURNAL 2022; 24:309-315. [PMID: 35892229 PMCID: PMC9315210 DOI: 10.22074/cellj.2022.8314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/03/2021] [Indexed: 11/14/2022]
Abstract
Objective Osteoporosis is regarded as a silent disorder affecting bone slowly, leading to an increased risk of fractures. Lately, selenium has been found to be associated with the acquisition and maintenance of bone health by affecting the bone remodeling process. However, the mechanism of action of selenium on bone is poorly understood. Here, the objective of this study is to examine the protective effects and mechanism of sodium selenite on the differentiation process of osteoblasts as well as under oxidative stress-induced conditions by evaluating the expression of osteoblast differentiation markers in the sodium selenite and/or hydrogen peroxide (H2O2)-treated MC3T3-E1 cell line. Materials and Methods In this experimental study, we confirmed the inducible osteogenic effect of sodium selenite on MC3T3-E1 cells. Moreover, we investigated the recovery of expression levels of osteogenic markers of sodium selenite in (H2O2)-treated MC3T3-E1 cells. Results It was observed that sodium selenite could promote alkaline phosphatase (ALP) activity and collagen synthesis in pre-osteoblasts. Also, sodium selenite enhanced the mRNA expression levels of osteogenic transcriptional factors, like osterix (OSX) and runt-related transcription factor 2 (Runx2). In addition, the terminal differentiation markers, such as osteocalcin (OCN) and collagen 1α (Col1α) were also increased after the treatment of sodium selenite. Also treatment of sodium selenite recused the (H2O2)-induced inhibition of osteoblastic differentiation of pre-osteoblasts cells via the WNT signaling pathway, implicating its antioxidant activity. Furthermore, sodium selenite restored the (H2O2) repressed β-catenin stability and axin-2 reporter activity in MC3T3-E1 cells. Conclusion It may be concluded that sodium selenite can stimulate bone formation and rescue the oxidative repression of osteogenesis by activating WNT signaling pathways. Further detailed studies on the role of selenium and its ability to stimulate bone formation via the WNT signaling pathway may project it as a potential therapeutic intervention for osteoporosis.
Collapse
Affiliation(s)
- Ashish Ranjan Sharma
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, Gangwon-do,
Republic of Korea
| | - Garima Sharma
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, Gangwon-do,
Republic of Korea
| | - Yeon-Hee Lee
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, Gangwon-do,
Republic of Korea
| | - Chiranjib Chakraborty
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, Gangwon-do,
Republic of Korea,Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Rd, Kolkata, West
Bengal, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, Gangwon-do,
Republic of Korea,Institute for Skeletal Aging and Orthopedic SurgeryHallym University-Chuncheon Sacred Heart HospitalChuncheon-siGangwon-doRepublic of Korea
Emails:,
| | - Eun-Min Seo
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, Gangwon-do,
Republic of Korea,Institute for Skeletal Aging and Orthopedic SurgeryHallym University-Chuncheon Sacred Heart HospitalChuncheon-siGangwon-doRepublic of Korea
Emails:,
| |
Collapse
|
191
|
Li L, Hu G, Xie R, Yang J, Shi X, Jia Z, Qu X, Wang M, Wu Y. Salubrinal-mediated activation of eIF2α signaling improves oxidative stress-induced BMSCs senescence and senile osteoporosis. Biochem Biophys Res Commun 2022; 610:70-76. [DOI: 10.1016/j.bbrc.2022.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/09/2022] [Indexed: 11/26/2022]
|
192
|
Leonurine Protects Bone Mesenchymal Stem Cells from Oxidative Stress by Activating Mitophagy through PI3K/Akt/mTOR Pathway. Cells 2022; 11:cells11111724. [PMID: 35681421 PMCID: PMC9179429 DOI: 10.3390/cells11111724] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/08/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis bears an imbalance between bone formation and resorption, which is strongly related to oxidative stress. The function of leonurine on bone marrow-derived mesenchymal stem cells (BMSCs) under oxidative stress is still unclear. Therefore, this study was aimed at identifying the protective effect of leonurine on H2O2 stimulated rat BMSCs. We found that leonurine can alleviate cell apoptosis and promote the differentiation ability of rat BMSCs induced by oxidative stress at an appropriate concentration at 10 μM. Meanwhile, the intracellular ROS level and the level of the COX2 and NOX4 mRNA decreased after leonurine treatment in vitro. The ATP level and mitochondrial membrane potential were upregulated after leonurine treatment. The protein level of PINK1 and Parkin showed the same trend. The mitophage in rat BMSCs blocked by 3-MA was partially rescued by leonurine. Bioinformatics analysis and leonurine-protein coupling provides a strong direct combination between leonurine and the PI3K protein at the position of Asp841, Glu880, Val882. In conclusion, leonurine protects the proliferation and differentiation of BMSCs from oxidative stress by activating mitophagy, which depends on the PI3K/Akt/mTOR pathway. The results showed that leonurine may have potential usage in osteoporosis and bone defect repair in osteoporosis patients.
Collapse
|
193
|
Anti-Osteoporotic Effect of Viscozyme-Assisted Polysaccharide Extracts from Portulaca oleracea L. on H2O2-Treated MC3T3-E1 Cells and Zebrafish. SEPARATIONS 2022. [DOI: 10.3390/separations9050128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
This study aims to screen and characterize the protective effect of polysaccharides from Portulaca oleracea L. (POP) against H2O2-stimulated osteoblast apoptosis in vivo and in vitro. The enzymes viscozyme, celluclast, α-amylase, and β-glucanase were used to extract POPs. Among all enzyme-assisted POPs, the first participating fraction of viscozyme extract POP (VPOP1) exhibited the highest antioxidant activity. Hoechst 33342 and acridine orange/ethidium bromide staining and flow cytometry of MC3T3 cells revealed that VPOP1 inhibited apoptosis in a dose-dependent manner. Moreover, VPOP1 increased the expression levels of heme oxygenase-1 (HO-1) and NADPH quinine oxidoreductase 1 (NQO1) and decreased the expression levels of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and Kelch-like ECH-associated protein 1 (Keap1) in H2O2-induced cells compared with their controls. The results of an in vivo experiment show that VPOP1 significantly reduced reactive oxygen species generation and lipid peroxidation in zebrafish at 72 h post-fertilization and promoted bone growth at 9 days post-fertilization. Furthermore, VPOP1 was identified via 1-phenyl-3-methyl-5-pyrazolone derivatization as an acidic heteropolysaccharide comprising mannose and possessing a molecular weight of approximately 7.6 kDa. Collectively, VPOP1 was selected as a potential anti-osteoporotic functional food because of its protective activity against H2O2-induced damage in vitro and in vivo.
Collapse
|
194
|
Carletti A, Cardoso C, Lobo-Arteaga J, Sales S, Juliao D, Ferreira I, Chainho P, Dionísio MA, Gaudêncio MJ, Afonso C, Lourenço H, Cancela ML, Bandarra NM, Gavaia PJ. Antioxidant and Anti-inflammatory Extracts From Sea Cucumbers and Tunicates Induce a Pro-osteogenic Effect in Zebrafish Larvae. Front Nutr 2022; 9:888360. [PMID: 35614979 PMCID: PMC9125325 DOI: 10.3389/fnut.2022.888360] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/31/2022] [Indexed: 12/24/2022] Open
Abstract
Bone metabolic disorders such as osteoporosis are characterized by the loss of mineral from the bone tissue leading to its structural weakening and increased susceptibility to fractures. A growing body of evidence suggests that inflammation and oxidative stress play an important role in the pathophysiological processes involved in the rise of these conditions. As the currently available therapeutic strategies are often characterized by toxic effects associated with their long-term use, natural antioxidants and anti-inflammatory compounds such as polyphenols promise to be a valuable alternative for the prevention and treatment of these disorders. In this scope, the marine environment is becoming an important source of bioactive compounds with potential pharmacological applications. Here, we explored the bioactive potential of three species of holothurians (Echinodermata) and four species of tunicates (Chordata) as sources of antioxidant and anti-inflammatory compounds with a particular focus on polyphenolic substances. Hydroethanolic and aqueous extracts were obtained from animals' biomass and screened for their content of polyphenols and their antioxidant and anti-inflammatory properties. Hydroethanolic fractions of three species of tunicates displayed high polyphenolic content associated with strong antioxidant potential and anti-inflammatory activity. Extracts were thereafter tested for their capacity to promote bone formation and mineralization by applying an assay that uses the developing operculum of zebrafish (Danio rerio) to assess the osteogenic activity of compounds. The same three hydroethanolic fractions from tunicates were characterized by a strong in vivo osteogenic activity, which positively correlated with their anti-inflammatory potential as measured by COX-2 inhibition. This study highlights the therapeutic potential of polyphenol-rich hydroethanolic extracts obtained from three species of tunicates as a substrate for the development of novel drugs for the treatment of bone disorders correlated to oxidative stress and inflammatory processes.
Collapse
Affiliation(s)
- Alessio Carletti
- Faculty of Biomedical Sciences and Medicine (FCBM), University of Algarve, Faro, Portugal
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Carlos Cardoso
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA), Algés, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Jorge Lobo-Arteaga
- Division of Environmental Oceanography, Portuguese Institute for the Sea and Atmosphere, Algés, Portugal
- Marine and Environmental Sciences Centre (MARE), NOVA University of Lisbon, Lisbon, Portugal
| | - Sabrina Sales
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA), Algés, Portugal
| | - Diana Juliao
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA), Algés, Portugal
| | - Inês Ferreira
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA), Algés, Portugal
| | - Paula Chainho
- Marine and Environmental Sciences Centre (MARE), NOVA University of Lisbon, Lisbon, Portugal
| | - Maria Ana Dionísio
- Marine and Environmental Sciences Centre (MARE), NOVA University of Lisbon, Lisbon, Portugal
| | - Maria J. Gaudêncio
- Division of Environmental Oceanography, Portuguese Institute for the Sea and Atmosphere, Algés, Portugal
| | - Cláudia Afonso
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA), Algés, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Helena Lourenço
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA), Algés, Portugal
| | - M. Leonor Cancela
- Faculty of Biomedical Sciences and Medicine (FCBM), University of Algarve, Faro, Portugal
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
- Centre for BioMedical Research (CBMR), University of Algarve, Faro, Portugal
| | - Narcisa M. Bandarra
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA), Algés, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Paulo J. Gavaia
- Faculty of Biomedical Sciences and Medicine (FCBM), University of Algarve, Faro, Portugal
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| |
Collapse
|
195
|
Orcinol Glucoside Improves Senile Osteoporosis through Attenuating Oxidative Stress and Autophagy of Osteoclast via Activating Nrf2/Keap1 and mTOR Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5410377. [PMID: 35585885 PMCID: PMC9110208 DOI: 10.1155/2022/5410377] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/28/2022] [Accepted: 04/04/2022] [Indexed: 12/21/2022]
Abstract
Oxidative stress and autophagy play essential roles in the development of senile osteoporosis which is characterized by disrupted osteoclastic bone resorption and osteoblastic bone formation. Orcinol glucoside (OG), a phenolic glycoside isolated from Curculigo orchioides Gaertn, possesses antiosteoporotic properties. This study examined the protective effects of OG on bone loss in SAMP6 mice and explored the underlying mechanisms. The osteoporotic SAMP6 mice were treated with OG oral administration. RAW264.7 cells were induced to differentiate into osteoclast by RANKL and H2O2 in vitro and received OG treatment. The results demonstrated that OG attenuated bone loss in SAMP6 mice and inhibited the formation and bone resorption activities of osteoclast and reduced levels of oxidative stress in bone tissue of SAMP6 mice and osteoclast. Furthermore, OG activated Nrf2/Keap1 signaling pathway and enhanced the phosphorylation of mTOR and p70S6K which are consequently suppressing autophagy. Of note, the effect of OG on Nrf2/Keap1 signaling was neutralized by the mTOR inhibitor rapamycin. Meanwhile, the inhibitory effect of OG on autophagy was reversed by the Nrf2 inhibitor ML385.Conclusively, OG attenuated bone loss by inhibiting formation, differentiation, and bone resorption activities of osteoclast. Regulation of Nrf2/Keap1 and mTOR signals is a possible mechanism by which OG suppressed oxidative and autophagy of osteoclasts. Thus, OG prevented senile osteoporosis through attenuating oxidative stress and autophagy of osteoclast via activating Nrf2/Keap1 and mTOR signaling pathway.
Collapse
|
196
|
Schoppa AM, Chen X, Ramge JM, Vikman A, Fischer V, Haffner-Luntzer M, Riegger J, Tuckermann J, Scharffetter-Kochanek K, Ignatius A. Osteoblast lineage Sod2 deficiency leads to an osteoporosis-like phenotype in mice. Dis Model Mech 2022; 15:274992. [PMID: 35394023 PMCID: PMC9118037 DOI: 10.1242/dmm.049392] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/25/2022] [Indexed: 12/19/2022] Open
Abstract
Osteoporosis is a systemic metabolic skeletal disease characterized by low bone mass and strength associated with fragility fractures. Oxidative stress, which results from elevated intracellular reactive oxygen species (ROS) and arises in the aging organism, is considered one of the critical factors contributing to osteoporosis. Mitochondrial (mt)ROS, as the superoxide anion (O2−) generated during mitochondrial respiration, are eliminated in the young organism by antioxidant defense mechanisms, including superoxide dismutase 2 (SOD2), the expression and activity of which are decreased in aging mesenchymal progenitor cells, accompanied by increased mtROS production. Using a mouse model of osteoblast lineage cells with Sod2 deficiency, we observed significant bone loss in trabecular and cortical bones accompanied by decreased osteoblast activity, increased adipocyte accumulation in the bone marrow and augmented osteoclast activity, suggestive of altered mesenchymal progenitor cell differentiation and osteoclastogenesis. Furthermore, osteoblast senescence was increased. To date, there are only a few studies suggesting a causal association between mtROS and cellular senescence in tissue in vivo. Targeting SOD2 to improve redox homeostasis could represent a potential therapeutic strategy for maintaining bone health during aging. Summary: Osteoblast-lineage specific Sod2 deficiency in mice leads to increased mtROS, impaired osteoblast function, increased adipogenesis, increased osteoclast activity and increased osteoblast senescence, resulting in bone loss.
Collapse
Affiliation(s)
- Astrid M Schoppa
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081 Ulm, Germany
| | - Xiangxu Chen
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081 Ulm, Germany
| | - Jan-Moritz Ramge
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081 Ulm, Germany
| | - Anna Vikman
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081 Ulm, Germany
| | - Verena Fischer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081 Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081 Ulm, Germany
| | - Jana Riegger
- Department of Orthopedics, Division for Biochemistry of Joint and Connective Tissue Diseases, Ulm University Medical Center, 89081 Ulm, Germany
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, 89081 Ulm, Germany
| | | | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
197
|
Patel K, Mangu SR, Sukhdeo SV, Sharan K. Ethanolic extract from the root and leaf of Sida cordifolia promotes osteoblast activity and prevents ovariectomy-induced bone loss in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154024. [PMID: 35263671 DOI: 10.1016/j.phymed.2022.154024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Sida cordifolia is traditionally found in the Indian system of medicine, well known for its medicinal and nutritional properties among local natives. PURPOSE The present study aims to investigate the osteo-protective effect of root and leaf ethanolic extract of S. cordifolia (RE and LE) and its underlying mechanism. METHODS Antioxidant activity of RE and LE was assessed. Total phenolic and flavonoid content were determined. HPLC profiling of RE and LE was performed to examine the polyphenol content. The effect of RE and LE on osteoblast cells proliferation, differentiation, mineralization, and expression of the protein associated with osteogenesis were evaluated using primary calvarial osteoblast culture. Skeletal effects of RE and LE of S. cordifolia were investigated in C57BL/6J ovariectomized mice. Micro CT was employed to evaluate the alteration in trabecular and cortical bone microarchitecture. Histology studies were performed on the isolated vertebra. qPCR analysis and western blotting was done to check the key bone markers. RESULTS RE and LE showed a potent antioxidant activity, owing to a notable polyphenol content. Both RE and LE did not alter the cell viability but significantly increased the osteoblast cell proliferation, differentiation, and mineralization. Moreover, they enhanced the mRNA expression of osteogenic genes. Both RE and LE stimulated the activation of ERK, AKT, and CREB. Both RE and LE had no direct effect on osteoclastogenesis, but both increased Opg/Rankl ratio expression in osteoblast cells. Both RE and LE at 750 mg/kg/day significantly improved the trabecular and cortical microarchitecture of femur and tibia by increasing bone mineral density, bone volume fraction, trabecular number, and trabecular thickness, and decreasing trabecular separation and structural model index in ovariectomized mice. Furthermore, vertebral histology of lumbar vertebrae revealed that RE and LE significantly enhance the vertebral bone mass and exert osteo-protective effects by stimulating osteoblast function and inhibiting osteoclast function. CONCLUSION In conclusion, both RE and LE stimulate osteoblast differentiation through activating ERK, AKT, and CREB signalling pathways and indirectly inhibits osteoclast differentiation. RE and LE also improve the trabecular and cortical microarchitecture of ovariectomized mice, making it a promising agent to prevent postmenopausal bone loss.
Collapse
Affiliation(s)
- Kalpana Patel
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Svvs Ravi Mangu
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shinde Vijay Sukhdeo
- Department of Meat and Marine Sciences, CSIR- Central Food Technological Research Institute, Mysuru, India
| | - Kunal Sharan
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
198
|
Menopause Hormone Therapy in the Management of Postmenopausal Osteoporosis. Cancer J 2022; 28:204-207. [PMID: 35594468 DOI: 10.1097/ppo.0000000000000592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT This narrative review analyzes the customization of menopause hormone therapy (MHT) for osteoporosis prevention and treatment in the context of the patients' age and menopausal age. In short, MHT is indicated in most women suffering from menopause before the age of 45 years except for breast cancer survivors. These women should be treated with MHT until the age of 50 years. For women who have entered menopause at around the age of 50 years, risks associated with MHT are low, and MHT is a safe option, provided there is an indication for it. We suggest that pursuing MHT entails different risks than initiating it, after the age of 60 years. In both cases, advantages and risks should be evaluated. We suggest using risk calculators to assess the magnitude of these risks and choosing regimens that entail the lowest breast and thrombosis risks.
Collapse
|
199
|
Mendelsohn DH, Schnabel K, Mamilos A, Sossalla S, Pabel S, Duerr GD, Keller K, Schmitt VH, Barsch F, Walter N, Wong RMY, El Khassawna T, Niedermair T, Alt V, Rupp M, Brochhausen C. Structural Analysis of Mitochondrial Dynamics-From Cardiomyocytes to Osteoblasts: A Critical Review. Int J Mol Sci 2022; 23:4571. [PMID: 35562962 PMCID: PMC9101187 DOI: 10.3390/ijms23094571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 12/04/2022] Open
Abstract
Mitochondria play a crucial role in cell physiology and pathophysiology. In this context, mitochondrial dynamics and, subsequently, mitochondrial ultrastructure have increasingly become hot topics in modern research, with a focus on mitochondrial fission and fusion. Thus, the dynamics of mitochondria in several diseases have been intensively investigated, especially with a view to developing new promising treatment options. However, the majority of recent studies are performed in highly energy-dependent tissues, such as cardiac, hepatic, and neuronal tissues. In contrast, publications on mitochondrial dynamics from the orthopedic or trauma fields are quite rare, even if there are common cellular mechanisms in cardiovascular and bone tissue, especially regarding bone infection. The present report summarizes the spectrum of mitochondrial alterations in the cardiovascular system and compares it to the state of knowledge in the musculoskeletal system. The present paper summarizes recent knowledge regarding mitochondrial dynamics and gives a short, but not exhaustive, overview of its regulation via fission and fusion. Furthermore, the article highlights hypoxia and its accompanying increased mitochondrial fission as a possible link between cardiac ischemia and inflammatory diseases of the bone, such as osteomyelitis. This opens new innovative perspectives not only for the understanding of cellular pathomechanisms in osteomyelitis but also for potential new treatment options.
Collapse
Affiliation(s)
- Daniel H. Mendelsohn
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany; (D.H.M.); (K.S.); (A.M.); (T.N.)
- Central Biobank Regensburg, University Regensburg, University Hospital Regensburg, 93053 Regensburg, Germany
- Department of Trauma Surgery, University Medical Centre Regensburg, 93053 Regensburg, Germany; (N.W.); (V.A.); (M.R.)
| | - Katja Schnabel
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany; (D.H.M.); (K.S.); (A.M.); (T.N.)
- Central Biobank Regensburg, University Regensburg, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Andreas Mamilos
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany; (D.H.M.); (K.S.); (A.M.); (T.N.)
| | - Samuel Sossalla
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany; (S.S.); (S.P.)
| | - Steffen Pabel
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany; (S.S.); (S.P.)
| | - Georg Daniel Duerr
- Department of Cardiovascular Surgery, University Medical Center Mainz (Johannes Gutenberg-University Mainz), 55131 Mainz, Germany;
| | - Karsten Keller
- Department of Cardiology, Cardiology I, University Medical Center Mainz (Johannes Gutenberg-University Mainz), 55131 Mainz, Germany; (K.K.); (V.H.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz (Johannes Gutenberg-University Mainz), 55131 Mainz, Germany
- Department of Sports Medicine, Medical Clinic VII, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Volker H. Schmitt
- Department of Cardiology, Cardiology I, University Medical Center Mainz (Johannes Gutenberg-University Mainz), 55131 Mainz, Germany; (K.K.); (V.H.S.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, 55131 Mainz, Germany
| | - Friedrich Barsch
- Institute for Exercise and Occupational Medicine, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany;
| | - Nike Walter
- Department of Trauma Surgery, University Medical Centre Regensburg, 93053 Regensburg, Germany; (N.W.); (V.A.); (M.R.)
| | - Ronald Man Yeung Wong
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China;
| | - Thaqif El Khassawna
- Department of Experimental Trauma Surgery, Justus-Liebig-University Giessen, 35390 Giessen, Germany;
| | - Tanja Niedermair
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany; (D.H.M.); (K.S.); (A.M.); (T.N.)
- Central Biobank Regensburg, University Regensburg, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Volker Alt
- Department of Trauma Surgery, University Medical Centre Regensburg, 93053 Regensburg, Germany; (N.W.); (V.A.); (M.R.)
| | - Markus Rupp
- Department of Trauma Surgery, University Medical Centre Regensburg, 93053 Regensburg, Germany; (N.W.); (V.A.); (M.R.)
| | - Christoph Brochhausen
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany; (D.H.M.); (K.S.); (A.M.); (T.N.)
- Central Biobank Regensburg, University Regensburg, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
200
|
Fang H, Deng Z, Liu J, Chen S, Deng Z, Li W. The Mechanism of Bone Remodeling After Bone Aging. Clin Interv Aging 2022; 17:405-415. [PMID: 35411139 PMCID: PMC8994557 DOI: 10.2147/cia.s349604] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/29/2022] [Indexed: 01/02/2023] Open
Abstract
Senescence mainly manifests as a series of degenerative changes in the morphological structure and function of the body. Osteoporosis is a systemic bone metabolic disease characterized by destruction of bone microstructure, low bone mineral content, decreased bone strength, and increased brittleness and fracture susceptibility. Osteoblasts, osteoclasts and osteocytes are the main cellular components of bones. However, in the process of aging, due to various self or environmental factors, the body’s function and metabolism are disordered, and osteoporosis will appear in the bones. Here, we summarize the mechanism of aging, and focus on the impact of aging on bone remodeling homeostasis, including the mechanism of ion channels on bone remodeling. Finally, we summarized the current clinical medications, targets and defects for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Huankun Fang
- Hand and Foot Surgery Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
- Medical College, Shantou University, Shantou, Guangdong, 515041, People’s Republic of China
| | - Zhiqin Deng
- Hand and Foot Surgery Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
| | - Jianquan Liu
- Hand and Foot Surgery Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
| | - Siyu Chen
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
- Correspondence: Zhenhan Deng, Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, 3002 Sungang West Road, Shenzhen City, 518025, People’s Republic of China, Tel +86 13928440786, Fax +86 755-83366388, Email
| | - Wencui Li
- Hand and Foot Surgery Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
- Wencui Li, Department of Hand and Foot Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, 3002 Sungang West Road, Shenzhen City, 518025, People’s Republic of China, Tel +86 13923750767, Email
| |
Collapse
|