151
|
Bommer M, Benecke A, Gronemeyer H, Rochette-Egly C. TIF2 mediates the synergy between RARalpha 1 activation functions AF-1 and AF-2. J Biol Chem 2002; 277:37961-6. [PMID: 12149266 DOI: 10.1074/jbc.m206001200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear receptors recruit coregulator complexes through both their AF-1 and AF-2 activation domains. Here we demonstrate that TIF2, a p160 coactivator, is able to bridge the two activation domains of the retinoic acid (RA) receptor isotype RARalpha1, resulting in synergistic activation of transcription. Bridging requires the presence of motifs in region A of RARalpha1 and in the activation domain AD1 of TIF2. Notably, only RARalpha1 exerted this interaction, which requires additional unknown factors. This is the first observation of a RAR isotype-selective coactivator interaction. Because another p160 coactivator, SRC-1, has no effect, this is also the first demonstration of a difference between the members of this coactivator family.
Collapse
Affiliation(s)
- Martin Bommer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Universite Louis Pasteur, BP 10142, 67404 Illkirch Cedex, France
| | | | | | | |
Collapse
|
152
|
Su LF, Wang Z, Garabedian MJ. Regulation of GRIP1 and CBP Coactivator activity by Rho GDI modulates estrogen receptor transcriptional enhancement. J Biol Chem 2002; 277:37037-44. [PMID: 12138084 DOI: 10.1074/jbc.m111607200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Estrogen receptor alpha (ER) coordinates gene expression with cellular physiology in part by controlling receptor- cofactor interactions in response to extracellular signals. We have previously shown that the Rho signaling pathway modulates ER transcriptional activation. We now demonstrate that Rho GDI-dependent increase in ER transactivation is dependent on the ER AF-2 coactivator binding site, prompting us to examine regulation of receptor coactivators by Rho GDI. Indeed, Rho GDI cooperates with GRIP1 to increase ER ligand-independent and ligand-dependent transactivation and also enhances GRIP1 transcriptional activity when GRIP1 is tethered to DNA. The GRIP1 activation domain 1 (AD1), which binds CBP/p300, is necessary for Rho GDI to modulate GRIP1 activity. Using E1A to inhibit the endogenous CBP/p300 and a Gal4-CBP fusion protein to assay CBP activity, we find that the effect of Rho GDI on ER transactivation is CBP/p300-dependent. Importantly, the ability of CBP/p300 to transduce the Rho GDI signal to ER occurs through both GRIP1-dependent and -independent pathways. These data suggest a complex interplay between ER transcriptional activation and the Rho signaling pathways through modulation of receptor cofactors, which may have evolved to coordinate receptor-dependent gene expression with Rho-regulated events, such as cell migration. We speculate that dysregulation of the Rho-ER axis may participate in cancer progression.
Collapse
Affiliation(s)
- Laura F Su
- Department of Microbiology, The Kaplan Comprehensive Cancer Center, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
153
|
Wardell SE, Boonyaratanakornkit V, Adelman JS, Aronheim A, Edwards DP. Jun dimerization protein 2 functions as a progesterone receptor N-terminal domain coactivator. Mol Cell Biol 2002; 22:5451-66. [PMID: 12101239 PMCID: PMC133955 DOI: 10.1128/mcb.22.15.5451-5466.2002] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The progesterone receptor (PR) contains two transcription activation function (AF) domains, constitutive AF-1 in the N terminus and AF-2 in the C terminus. AF-2 activity is mediated by a hormone-dependent interaction with a family of steroid receptor coactivators (SRCs). SRC-1 can also stimulate AF-1 activity through a secondary domain that interacts simultaneously with the primary AF-2 interaction site. Other protein interactions and mechanisms that mediate AF-1 activity are not well defined. By interaction cloning, we identified an AP-1 family member, Jun dimerization protein 2 (JDP-2), as a novel PR-interacting protein. JDP-2 was first defined as a c-Jun interacting protein that functions as an AP-1 repressor. PR and JDP-2 interact directly in vitro through the DNA binding domain (DBD) of PR and the basic leucine zipper (bZIP) region of JDP-2. The two proteins also physically associate in mammalian cells, as detected by coimmunoprecipitation, and are recruited in vivo to a progesterone-inducible target gene promoter, as detected by a chromatin immunoprecipitation (ChIP) assay. In cell transfection assays, JDP-2 substantially increased hormone-dependent PR-mediated transactivation and worked primarily by stimulating AF-1 activity. JDP-2 is a substantially stronger coactivator of AF-1 than SRC-1 and stimulates AF-1 independent of SRC-1 pathways. The PR DBD is necessary but not sufficient for JDP-2 stimulation of PR activity; the DBD and AF-1 are required together. JDP-2 lacks an intrinsic activation domain and makes direct protein interactions with other coactivators, including CBP and p300 CBP-associated factor (pCAF), but not with SRCs. These results indicate that JDP-2 stimulates AF-1 activity by the novel mechanism of docking to the DBD and recruiting or stabilizing N-terminal PR interactions with other general coactivators. JDP-2 has preferential activity on PR among the nuclear receptors tested and is expressed in progesterone target cells and tissues, suggesting that it has a physiological role in PR function.
Collapse
Affiliation(s)
- Suzanne E Wardell
- Program in Molecular Biology, Department of Pathology, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
154
|
Lewandowski S, Kalita K, Kaczmarek L. Estrogen receptor beta. Potential functional significance of a variety of mRNA isoforms. FEBS Lett 2002; 524:1-5. [PMID: 12135731 DOI: 10.1016/s0014-5793(02)03015-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent cloning of estrogen receptor beta (ERbeta) was followed by the discovery of a variety of its isoforms. This review describes the complexity of ERbeta mRNAs in various species for which most data have been gathered so far. The most surprising finding is the great variation in isoform structure among various mammalian species. This may reflect either the fact that only a very limited number of isoforms have been described so far or between-species specificity, especially as common elements in closely related species could still be noted. Isoform variations, as detected mainly at the mRNA sequence level, should result in profound functional differences at the level of proteins as already shown in selected cases. Thus, it is proposed that the diversity of ERbeta isoforms implies a functional role of this phenomenon in cellular physiology and pathology of estrogen response.
Collapse
Affiliation(s)
- Sebastian Lewandowski
- Nencki Institute, Department of Molecular and Cellular Neurobiology, Pasteura 3, 02-093 Warsaw, Poland
| | | | | |
Collapse
|
155
|
Nguyen NH, Apriletti JW, Cunha Lima ST, Webb P, Baxter JD, Scanlan TS. Rational design and synthesis of a novel thyroid hormone antagonist that blocks coactivator recruitment. J Med Chem 2002; 45:3310-20. [PMID: 12109914 DOI: 10.1021/jm0201013] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent efforts have focused on the design and synthesis of thyroid hormone (T(3)) antagonists as potential therapeutic agents and chemical probes to understand hormone-signaling pathways. We previously reported the development of novel first-generation T(3) antagonists DIBRT, HY-4, and GC-14 using the "extension hypothesis" as a general guideline in hormone antagonist design.(1-3) These compounds contain extensions at the 5'-position (DIBRT, GC-14) of the outer thyronine ring or from the bridging carbon (HY-4). All of these compounds have only a modest affinity and potency for the thyroid hormone receptor (TR) that limits studies of their antagonistic actions. Here, we report the design and synthesis of a novel series of 5'-phenylethynyl derivatives sharing the GC-1 halogen-free thyronine scaffold.(4) One compound (NH-3) is a T(3) antagonist with negligible TR agonist activity and improved TR binding affinity and potency that allow for further characterization of its observed activity. One mechanism for antagonism appears to be the ability of NH-3 to block TR-coactivator interactions. NH-3 will be a useful pharmacological tool for further study of T(3) signaling and TR function.
Collapse
Affiliation(s)
- Ngoc-Ha Nguyen
- Program in Chemistry and Chemical Biology, Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143-0446, USA
| | | | | | | | | | | |
Collapse
|
156
|
Cheng S, Brzostek S, Lee SR, Hollenberg AN, Balk SP. Inhibition of the dihydrotestosterone-activated androgen receptor by nuclear receptor corepressor. Mol Endocrinol 2002; 16:1492-501. [PMID: 12089345 DOI: 10.1210/mend.16.7.0870] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nuclear receptor corepressor (NCoR) mediates transcriptional repression by unliganded nuclear receptors and certain steroid hormone receptors (SHRs) bound to nonphysiological antagonists, but has not been found to regulate SHRs bound to their natural ligands. This report demonstrates that NCoR interacts directly with the androgen receptor (AR) and represses dihydrotestosterone-stimulated AR transcriptional activity. The NCoR C terminus, containing the receptor interacting domains, was necessary for repression, which was ablated by mutations in the corepressor nuclear receptor (CoRNR) boxes. In contrast, the NCoR N terminus, containing domains that can recruit histone deacetylases, was not necessary for repression. Binding studies in vitro with a series of glutathione-S-transferase-NCoR and -AR fusion proteins demonstrated a direct interaction that was similarly dependent upon the NCoR corepressor nuclear receptor boxes and AR ligand binding domain and was independent of ligand and helix 12 in the AR ligand binding domain. This NCoR-AR interaction was further demonstrated in mammalian two-hybrid assays and by coimmunoprecipitation of the endogenous proteins from a prostate cancer cell line. Finally, AR transcriptional activity could be enhanced in vivo by sequestration of endogenous NCoR with unliganded thyroid hormone receptor. These results demonstrate that AR, in contrast to other SHRs, is regulated by NCoR and suggest the possibility of developing selective AR modulators that enhance this interaction.
Collapse
Affiliation(s)
- Shinta Cheng
- Cancer Biology Program, Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
157
|
Sakamoto T, Eguchi H, Omoto Y, Ayabe T, Mori H, Hayashi SI. Estrogen receptor-mediated effects of tamoxifen on human endometrial cancer cells. Mol Cell Endocrinol 2002; 192:93-104. [PMID: 12088871 DOI: 10.1016/s0303-7207(02)00086-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Tamoxifen is an estrogen receptor (ER)-antagonist that is widely used for the treatment of breast cancer, although it increases the risk of endometrial cancer. The mechanism mediating the stimulatory effect of tamoxifen on endometrial cancer is presently unknown. In this study we examined the effects of tamoxifen on Ishikawa 3H-12 endometrial cancer cells and MCF-7 breast cancer cells. Ishikawa cell growth was stimulated by 4-hydroxytamoxifen and accompanied by increased transcriptional activity of the endogenous ER. These stimulatory effects did not occur in MCF-7 cells. The relative transcriptional activity of the activation function (AF) 1 domain of ERalpha compared with that of the AF2 domain was 4-fold higher in Ishikawa cells than in MCF-7 cells. Mitogen-activated protein (MAP) kinase, which stimulates the transcriptional activity of AF1, was constitutively activated in Ishikawa cells, but not in MCF-7 cells. These observations suggest that the constitutively activated MAP kinase-signaling pathway in Ishikawa cells enhances the transcriptional activity of ERalpha via the AF1 domain. This ERalpha activation pathway may be involved in the stimulatory effect of tamoxifen on the development and/or progression of endometrial cancer.
Collapse
Affiliation(s)
- Takako Sakamoto
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, 2-11-1 Kaga Itabashi-ku, 173-8605, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
158
|
Vottero A, Kino T, Combe H, Lecomte P, Chrousos GP. A novel, C-terminal dominant negative mutation of the GR causes familial glucocorticoid resistance through abnormal interactions with p160 steroid receptor coactivators. J Clin Endocrinol Metab 2002; 87:2658-67. [PMID: 12050230 DOI: 10.1210/jcem.87.6.8520] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Primary cortisol resistance is a rare, inherited or sporadic form of generalized end-organ insensitivity to glucocorticoids. Here, we report a kindred in which affected members had a heterozygous T to G base substitution at nucleotide 2373 of exon 9alpha of the GR gene, causing substitution of Ile by Met at position 747. This mutation was located close to helix 12, at the C terminus of the ligand-binding domain, which has a pivotal role in the formation of activation function (AF)-2, a subdomain that interacts with p160 coactivators. The affinity of the mutant GR for dexamethasone was decreased by about 2-fold, and its transcriptional activity on the glucocorticoid-responsive mouse mammary tumor virus promoter was compromised by 20- to 30-fold. In addition, the mutant GR functioned as a dominant negative inhibitor of wild-type receptor-induced transactivation. The mutant GR through its intact AF-1 domain bound to a p160 coactivator, but failed to do so through its AF-2 domain. Overexpression of a p160 coactivator restored the transcriptional activity and reversed the negative transdominant activity of the mutant GR. Interestingly, green fluorescent protein (GFP)-fused GRalphaI747M had a slight delay in its translocation from the cytoplasm into the nucleus and formed coarser nuclear speckles than GFP-fused wild-type GRalpha. Similarly, a GFP-fused p160 coactivator had a distinctly different distribution in the nucleus in the presence of mutant vs. wild-type receptor, presenting also as coarser speckling. We conclude that the mutation at amino acid 747 of the GR causes familial, autosomal dominant glucocorticoid resistance by decreasing ligand binding affinity and transcriptional activity, and by exerting a negative transdominant effect on the wild-type receptor. The mutant receptor has an ineffective AF-2 domain, which leads to an abnormal interaction with p160 coactivators and a distinct nuclear distribution of both.
Collapse
Affiliation(s)
- Alessandra Vottero
- Pediatric and Reproductive Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, MSC 1583, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
159
|
Abstract
Estrogen regulates a plethora of functionally dissimilar processes in a broad range of tissues. Recent progress in the study of the molecular mechanism of action of estrogen(s) has revealed why different cells can respond to the same hormone in a different manner. Three of these findings are of particular importance: (i) There are two genetically and functionally distinct estrogen receptors that have distinct expression patterns in vivo; (ii) the positive and negative transcriptional activities of these receptors require them to engage transcription cofactors (coactivators or corepressors) in target cells; and (iii) not all cofactors are functionally equivalent, nor are they expressed in the same manner in all cells. Thus, although the estrogen receptor is required for a cell to respond to an estrogenic stimulus, the nature and extent of that response are determined by the proteins, pathways, and processes with which the receptor interacts.
Collapse
Affiliation(s)
- Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Box 3813, Durham, NC 27710, USA.
| | | |
Collapse
|
160
|
Shughrue PJ, Askew GR, Dellovade TL, Merchenthaler I. Estrogen-binding sites and their functional capacity in estrogen receptor double knockout mouse brain. Endocrinology 2002; 143:1643-50. [PMID: 11956145 DOI: 10.1210/endo.143.5.8772] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Early studies found estrogen-binding sites in the ER knockout (ERalphaKO) mouse brain, suggesting a splice variant of ERalpha or another ER. The discovery of ERbeta suggested that binding was due to ERbeta, although questions about an ERgamma remained. To test this hypothesis, ERbetaKO mice were generated and crossed with ERalphaKO mice, and ERalpha/betaKO animals were used for in vivo binding studies with [(125)I]estrogen. The results revealed nuclear binding sites in the ERalpha/betaKO hypothalamus and amygdala. As the binding resembled the distribution of ERalpha, we evaluated the presence of ERalpha splicing variants. A nonphysiological splice variant of ERalpha was identified in ERalpha/betaKO brain and uterus, but was absent in wild-type mice. ERalpha immunoreactivity was also detected in regions of ERalpha/betaKO brain where residual binding was seen. To ascertain the functionality of the variant, the regulation of PR was assessed in brain. The results revealed that E2 significantly increased PR expression, an indication that the variant can regulate gene transcription. These data demonstrate the presence and functionality of an ERalpha variant in ERalpha/betaKO brain and suggest that the residual binding and regulation of PR in ERalpha/betaKO brain can be accounted for by the variant.
Collapse
Affiliation(s)
- Paul J Shughrue
- Women's Health Research Institute, Wyeth-Ayerst Research, Radnor, PA 19087, USA.
| | | | | | | |
Collapse
|
161
|
Kressler D, Schreiber SN, Knutti D, Kralli A. The PGC-1-related protein PERC is a selective coactivator of estrogen receptor alpha. J Biol Chem 2002; 277:13918-25. [PMID: 11854298 DOI: 10.1074/jbc.m201134200] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) is a tissue-specific coactivator that enhances the activity of many nuclear receptors and coordinates transcriptional programs important for energy metabolism. We describe here a novel PGC-1-related coactivator that is expressed in a similar tissue-specific manner as PGC-1, with the highest levels in heart and skeletal muscle. In contrast to PGC-1, the new coactivator shows high receptor specificity. It enhances potently the activity of estrogen receptor (ER) alpha, while having only small effects on other receptors. Because of its nuclear receptor selectivity, we have termed the new protein PERC (PGC-1 related Estrogen Receptor Coactivator). We show here that the coactivation function of PERC relies on a bipartite transcriptional activation domain and two LXXLL motifs that interact with the AF2 domain of ERalpha in an estrogen-dependent manner. PERC and PGC-1 are likely to have different functions in ER signaling. Whereas PERC acts selectively on ERalpha and not on the second estrogen receptor ERbeta, PGC-1 coactivates strongly both ERs. Moreover, PERC and PGC-1 show distinct preferences for enhancing ERalpha in different promoter contexts. Finally, PERC enhances the ERalpha-mediated response to the partial agonist tamoxifen, while PGC-1 modestly represses it. The two coactivators are likely to mediate distinct, tissue-specific responses to estrogens.
Collapse
Affiliation(s)
- Dieter Kressler
- Division of Biochemistry, Biozentrum of the University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
162
|
Bundred N, Howell A. Fulvestrant (Faslodex): current status in the therapy of breast cancer. Expert Rev Anticancer Ther 2002; 2:151-60. [PMID: 12113237 DOI: 10.1586/14737140.2.2.151] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Fulvestrant (Faslodex, formerly ICI 182,780) is a potent steroidal antiestrogen that mediates its effects by estrogen receptor downregulation. It appears to act as a pure antiestrogen and exhibits none of the negative side effects associated with the partial agonist activity of tamoxifen. It has been shown to be as effective as the oral aromatase inhibitor anastrozole in postmenopausal women with advanced breast cancer who have progressed on prior endocrine therapy, principally tamoxifen. It therefore provides the clinician with an alternative therapeutic strategy following the development of tamoxifen resistance. Fulvestrant might also have potential as a follow-on therapy after tamoxifen in an adjuvant setting and help alleviate some of the concerns surrounding long-term (up to 5 years) tamoxifen therapy.
Collapse
Affiliation(s)
- Nigel Bundred
- Academic Department of Surgery, University Hospital of South Manchester, Research and Teaching, Nell Lane, Manchester, M20 2LR, UK.
| | | |
Collapse
|
163
|
Yi P, Driscoll MD, Huang J, Bhagat S, Hilf R, Bambara RA, Muyan M. The effects of estrogen-responsive element- and ligand-induced structural changes on the recruitment of cofactors and transcriptional responses by ER alpha and ER beta. Mol Endocrinol 2002; 16:674-93. [PMID: 11923465 DOI: 10.1210/mend.16.4.0810] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Estrogen signaling is mediated by ER alpha and -beta. ERs are converted from an inactive form to a transcriptionally active state through conformational changes induced by ligand and estrogen-responsive element (ERE) sequences. We show here that ER alpha and ER beta bind to an ERE independently from ER ligands. We found that although the binding affinity of ER beta for an ERE is 2-fold lower than that of ER alpha, both ERs use the same nucleotides for DNA contacts. We show that both EREs and ligands are independent modulators of ER conformation. Specifically, the ERE primarily determines the receptor-DNA affinity, whereas the structure of the ER ligand dictates the affinity of ER for particular cofactors. We found that the ligand-dependent cofactor transcriptional intermediary factor-2, through a distinct surface, also interacts with ER alpha preferentially and independently of ligand. The extent of interaction, however, is dependent upon the ER-ERE affinity. In transfected cells, ER alpha is more transcriptionally active than ER beta. The ERE sequence, however, determines the potency of gene induction when either ER subtype binds to an agonist. Antagonists prevent ERs from inducing transcription independently from ERE sequences. Thus, ERE- and ligand-induced structural changes are independent determinants for the recruitment of cofactors and transcriptional responses. The ability of ER alpha to differentially recruit a cofactor could contribute to ER subtype-specific gene responses.
Collapse
Affiliation(s)
- Ping Yi
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
164
|
Abstract
Selective estrogen receptor modulators (SERMs) mimic estrogen action in certain tissues while opposing it in others. The therapeutic effectiveness of SERMs such as tamoxifen and raloxifene in breast cancer depends on their antiestrogenic activity. In the uterus, however, tamoxifen is estrogenic. Here, we show that both tamoxifen and raloxifene induce the recruitment of corepressors to target gene promoters in mammary cells. In endometrial cells, tamoxifen, but not raloxifene, acts like estrogen by stimulating the recruitment of coactivators to a subset of genes. The estrogen-like activity of tamoxifen in the uterus requires a high level of steroid receptor coactivator 1 (SRC-1) expression. Thus cell type- and promoter-specific differences in coregulator recruitment determine the cellular response to SERMs.
Collapse
Affiliation(s)
- Yongfeng Shang
- Department of Adult Oncology, Dana-Farber Cancer Institute, 44 Binney Street, and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
165
|
He B, Minges JT, Lee LW, Wilson EM. The FXXLF motif mediates androgen receptor-specific interactions with coregulators. J Biol Chem 2002; 277:10226-35. [PMID: 11779876 DOI: 10.1074/jbc.m111975200] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The androgen receptor (AR) activation function 2 region of the ligand binding domain binds the LXXLL motifs of p160 coactivators weakly, engaging instead in an androgen-dependent, interdomain interaction with an FXXLF motif in the AR NH(2) terminus. Here we show that FXXLF motifs are present in previously reported AR coactivators ARA70/RFG, ARA55/Hic-5, and ARA54, which account for their selection in yeast two-hybrid screens. Mammalian two-hybrid assays, ligand dissociation rate studies, and glutathione S-transferase adsorption assays indicate androgen-dependent selective interactions of these FXXLF motifs with the AR ligand binding domain. Mutagenesis of residues within activation function 2 indicates distinct but overlapping binding sites where specificity depends on sequences within and flanking the FXXLF motif. Mutagenesis of the FXXLF motifs eliminated interaction with the ligand binding domain but only modestly reduced AR coactivation in transcription assays. The studies indicate that the FXXLF binding motif is specific for the AR and mediates interactions both within the AR and with coregulatory proteins.
Collapse
Affiliation(s)
- Bin He
- Laboratory for Reproductive Biology and the Department of Biochemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
166
|
Hall JM, McDonnell DP, Korach KS. Allosteric regulation of estrogen receptor structure, function, and coactivator recruitment by different estrogen response elements. Mol Endocrinol 2002; 16:469-86. [PMID: 11875105 DOI: 10.1210/mend.16.3.0814] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Hormone-activated ERs (ERalpha and ERbeta) bind with high affinity to specific DNA sequences, estrogen response elements (EREs), located within the regulatory regions of target genes. Once considered to function solely as receptor tethers, there is an increasing amount of recent evidence to suggest that the sequence of the ERE can influence receptor activity. In this study, we have performed a systematic analysis of the role of different EREs in ER pharmacology. Specifically, by measuring ER activity on the vitellogenin A2, complement 3 gene, pS2, and lactoferrin EREs, we demonstrate that the activities of E2 and xenoestrogen ligands through ERalpha and ERbeta are significantly influenced by the nature of the response element. Using a series of ERalpha and ERbeta interacting peptides that contain the coactivator-binding motif LXXLL, we show that the type of ERE with which the receptor associates regulates the structure of the coactivator pocket on ER. Furthermore, using a novel ELISA developed to measure ER-coactivator interactions revealed that these different conformational states of ERalpha and ERbeta are functionally relevant, as they dictate receptor coactivator binding preference. Together, these results indicate that the DNA response element is a key regulator of receptor structure and biological activity and suggest the ERE sequence influences the recruitment of coactivators to the ER at target gene promoters. We propose that DNA-induced alteration of protein structure and coregulator recruitment may serve as a universal regulatory component for differential gene expression by other nuclear hormone receptors and unrelated transcription factors.
Collapse
Affiliation(s)
- Julie M Hall
- Receptor Biology Section, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
167
|
Abstract
Deaths from breast cancer have fallen markedly over the past decade due, in part, to the use of endocrine agents that reduce the levels of circulating oestrogens or compete with oestrogen for binding to its receptor. However, many breast tumours either fail to respond or become resistant to endocrine therapies. By understanding the mechanisms that underlie this resistance, we might be able to develop strategies for overcoming or bypassing it.
Collapse
Affiliation(s)
- Simak Ali
- Department of Cancer Medicine and Cancer Research Campaign Laboratories, Faculty of Medicine, Imperial College of Science, Technology & Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK.
| | | |
Collapse
|
168
|
Cavarretta ITR, Mukopadhyay R, Lonard DM, Cowsert LM, Bennett CF, O'Malley BW, Smith CL. Reduction of coactivator expression by antisense oligodeoxynucleotides inhibits ERalpha transcriptional activity and MCF-7 proliferation. Mol Endocrinol 2002; 16:253-70. [PMID: 11818499 DOI: 10.1210/mend.16.2.0770] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Steroid receptor RNA activator (SRA) is a novel coactivator for steroid receptors that acts as an RNA molecule, whereas steroid receptor coactivator (SRC) family members, such as steroid receptor coactivator-1 (SRC-1) and transcriptional intermediary factor 2 (TIF2) exert their biological effects as proteins. Individual overexpression of each of these coactivators, which can form multimeric complexes in vivo, results in stimulated ERalpha transcriptional activity in transient transfection assays. However there is no information on the consequences of reducing SRC-1, TIF2, or SRA expression, singly or in combination, on ERalpha transcriptional activity. We therefore developed antisense oligodeoxynucleotides (asODNs) to SRA, SRC-1, and TIF2 mRNAs, which rapidly and specifically reduced the expression of each of these coactivators. ERalpha-dependent gene expression was reduced in a dose-dependent fashion by up to 80% in cells transfected with these oligonucleotides. Furthermore, treatment of cells with combinations of SRA, SRC-1, and TIF2 asODNs reduced ERalpha transcriptional activity to an extent greater than individual asODN treatment alone, suggesting that these coactivators cooperate, in at least an additive fashion, to activate ERalpha-dependent target gene expression. Finally, treatment of MCF-7 cells with asODN against SRC-1 and TIF2 revealed a requirement of these coactivators, but not SRA, for hormone-dependent DNA synthesis and induction of estrogen-dependent pS2 gene expression, indicating that SRA and SRC family coactivators can fulfill specific functional roles. Taken together, we have developed a rapid method to reduce endogenous coactivator expression that enables an assessment of the in vivo role of specific coactivators on ERalpha biological action and avoids potential artifacts arising from overexpression of coactivators in transient transfection assays.
Collapse
MESH Headings
- Blotting, Western
- Cell Division/drug effects
- Down-Regulation/drug effects
- Estrogen Receptor alpha
- Estrogens/metabolism
- Estrogens/pharmacology
- Gene Expression Regulation/drug effects
- HeLa Cells
- Histone Acetyltransferases
- Humans
- Nuclear Receptor Coactivator 1
- Nuclear Receptor Coactivator 2
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/pharmacology
- RNA, Long Noncoding
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Receptors, Estrogen/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Substrate Specificity
- Time Factors
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic/drug effects
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Ilaria T R Cavarretta
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030-3498, USA
| | | | | | | | | | | | | |
Collapse
|
169
|
Zhou ZX, He B, Hall SH, Wilson EM, French FS. Domain interactions between coregulator ARA(70) and the androgen receptor (AR). Mol Endocrinol 2002; 16:287-300. [PMID: 11818501 DOI: 10.1210/mend.16.2.0765] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The coregulator function of AR-associated protein 70 (ARA(70)) was investigated to further characterize its interaction with the AR. Using a yeast two-hybrid assay, androgen-dependent binding of ARA(70) deletion mutants to the AR ligand-binding domain (LBD) was strongest with ARA(70) amino acids 321-441 of the 614 amino acid ARA(70) protein. Mutations adjacent to or within an FxxLF motif in this 120-amino acid region abolished androgen-dependent binding to the AR-LBD both in yeast and in glutathione-S-transferase affinity matrix assays. Yeast one-hybrid assays revealed an intrinsic ARA(70) transcriptional activation domain within amino acids 296-441. In yeast assays the ARA(70) domains for transcriptional activation and for binding to the AR-LBD were inhibited by the C-terminal region of ARA(70). Full-length ARA(70) increased androgen-dependent AR transactivation in transient cotransfection assays using a mouse mammary tumor virus-luciferase reporter in CV1 cells. ARA(70) also increased constitutive transcriptional activity of an AR NH(2)-terminal-DNA binding domain fragment and bound this region in glutathione-S-transferase affinity matrix assays. Binding was independent of the ARA(70) FxxLF motif. The results identify an ARA(70) motif required for androgen-dependent interaction with the AR-LBD and demonstrate that ARA(70) can interact with the NH(2)-terminal and carboxyl-terminal regions of AR.
Collapse
Affiliation(s)
- Zhong-xun Zhou
- Department of Pediatrics, The Laboratories for Reproductive Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7500, USA
| | | | | | | | | |
Collapse
|
170
|
Kino T, Slobodskaya O, Pavlakis GN, Chrousos GP. Nuclear receptor coactivator p160 proteins enhance the HIV-1 long terminal repeat promoter by bridging promoter-bound factors and the Tat-P-TEFb complex. J Biol Chem 2002; 277:2396-405. [PMID: 11704662 DOI: 10.1074/jbc.m106312200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report that p160 nuclear receptor coactivators potentiate the transactivating activity of Tat, the most potent virally encoded transactivator of HIV-1. One of the p160 proteins (GRIP1) is tethered to the HIV-1 long terminal repeat (LTR) through kappaB-responsive elements, most likely via NF-kappaB, with which it also associates through its coactivator motifs (LXXLL motifs, "NR boxes"). Indeed, the Tat-stimulated kappaB-defective HIV-1 LTR had a markedly impaired response to GRIP1, whereas NR box-defective GRIP1 proteins lost part of their Tat coactivator effect on the HIV-1 LTR. Through its N-terminal basic helix-loop-helix and C-terminal domains, GRIP1 binds to the N-terminal region of Tat and to the host cell protein cyclin T1, respectively, which is normally complexed with CDK9 as P-TEFb. Thus, NF-kappaB is crucial for tethering p160 coactivator molecules to the HIV-1 LTR, allowing full activation of this promoter by Tat. Interestingly, cotransfection of Tat, GRIP1, and cyclin T1 enhanced not only the activity of the HIV-1 LTR, but also the glucocorticoid receptor-mediated stimulation of the mouse mammary tumor virus (MMTV) promoter, suggesting that Tat can also attract the P-TEFb complex to the MMTV LTR through GRIP1. Thus, it appears that the coactivator complexes of the HIV-1 and MMTV LTRs both include p160 coactivators and use similar coactivator and elongation complexes for their transcription. Tat may function as an adaptor molecule, efficiently stimulating the processes of transcription initiation and elongation through potentiation of the coupling of p160 coactivators and the P-TEFb complex.
Collapse
Affiliation(s)
- Tomoshige Kino
- Pediatric and Reproductive Endocrinology Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
171
|
Saville B, Poukka H, Wormke M, Janne OA, Palvimo JJ, Stoner M, Samudio I, Safe S. Cooperative coactivation of estrogen receptor alpha in ZR-75 human breast cancer cells by SNURF and TATA-binding protein. J Biol Chem 2002; 277:2485-2497. [PMID: 11696545 DOI: 10.1074/jbc.m109021200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SNURF is a small RING finger protein that binds the zinc finger region of steroid hormone receptors and enhances Sp1- and androgen receptor-mediated transcription in COS and CV-1 cells. In this study, we show that SNURF coactivates both wild-type estrogen receptor alpha (ERalpha) (4-fold)- and HE19 (ERalpha deletion of activation function 1 (AF1)) (210-fold)-mediated activation of an estrogen-responsive element promoter in ZR-75 cells. In mammalian two-hybrid assays in ZR-75 cells SNURF interactions were estrogen (E2)-dependent and were not observed with the antiestrogen ICI 182,780. ERalpha interacted with multiple regions of SNURF; SNURF interactions with ERalpha were dependent on AF2, and D538N, E542Q, and D545N mutations in helix 12 abrogated both SNURF-ERalpha binding and coactivation. Moreover, peptide fusion proteins that inhibit interactions between helix 12 of ERalpha with LXXLL box-containing proteins also blocked ERalpha coactivation by SNURF. However, cotransfection of SNURF with prototypical steroid receptor coactivators 1, 2, and 3 that contain LXXLL box motifs did not enhance E2 responsiveness, whereas TATA-binding protein (TBP) and SNURF cooperatively coactivated ERalpha-mediated transactivation. The results are consistent with a unique model for cooperative coactivation of ERalpha that requires ligand binding, repositioning of helix 12, recruitment of TBP, and interaction with SNURF, which binds both ERalpha and TBP.
Collapse
Affiliation(s)
- Bradley Saville
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | | | | | | | |
Collapse
|
172
|
Lee SR, Ramos SM, Ko A, Masiello D, Swanson KD, Lu ML, Balk SP. AR and ER interaction with a p21-activated kinase (PAK6). Mol Endocrinol 2002; 16:85-99. [PMID: 11773441 DOI: 10.1210/mend.16.1.0753] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A human protein termed p21-activated kinase 6 (PAK6), based on homology to the PAK family of serine/threonine kinases, was cloned as an AR interacting protein. PAK6 was a 75-kDa protein with a predicted N-terminal Cdc42/Rac interactive binding domain and a C-terminal kinase domain. PAK6 bound strongly to GTP-Cdc42 and weakly to GTP-Rac. In contrast to most PAKs, kinase activity was not stimulated by Cdc42 or Rac, but could be stimulated by AR binding. PAK6 interacted with the intact AR in a mammalian one-hybrid assay and bound in vitro, without ligand, to the hinge region between the AR DNA- and ligand-binding domains. PAK6 also bound to the ERalpha, and binding was enhanced by 4-hydroxytamoxifen. AR and ERalpha transcriptional activities were inhibited by PAK6 in transient transfections with episomal and integrated reporter genes. AR inhibition was not reversed by transfection with an activated Cdc42 mutant, Cdc42V12, which by itself also inhibited AR transactivation. Epitope-tagged PAK6 was primarily cytoplasmic in the absence or presence of AR and hormone. PAK6 transcripts were expressed most highly in brain and testis, with lower levels in multiple tissues including prostate and breast. PAK6 interaction provides a mechanism for cross-talk between steroid hormone receptors and Cdc42-mediated signal transduction pathways and could contribute to the effects of tamoxifen in breast cancer and in other tissues.
Collapse
Affiliation(s)
- Suzanne R Lee
- Cancer Biology Program, Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | |
Collapse
|
173
|
Aneskievich BJ. Deletion of RAR carboxyl terminus reveals promoter- and receptor-specific AF-1 effects. Biochem Biophys Res Commun 2001; 289:950-6. [PMID: 11741282 DOI: 10.1006/bbrc.2001.6081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Retinoic acid receptors (RARs) are transcription factors with both amino-terminal ligand-independent and carboxyl-terminal ligand-dependent activation functions (AF-1 and AF-2, respectively). RAR-dependent gene activation in keratinocytes was investigated via expression of varied RARalpha and RARgamma carboxyl terminal truncation mutants lacking the AF-2 domain. Overexpression of the AF-1 domain of RARalpha or RARgamma was sufficient to decrease transcriptional activation of retinoid-dependent genes in keratinocytes. Conversely, expression of the same constructs was associated with an increase in expression of endogenous and synthetic reporter genes otherwise negatively regulated by RARs. These effects on transcription driven by some but not all retinoid-sensitive promoters tested could be alleviated by mutation of a serine phosphorylation site in the A/B domain. These results further support the promoter-specificity previously attributed to the RAR AF-1 region and functionally define a particular amino acid residue likely to contribute to the regulation of RARs and other proteins in the transcription complex.
Collapse
Affiliation(s)
- B J Aneskievich
- Department of Pharmaceutical Sciences, University of Connecticut, 372 Fairfield Road, U-92, Connecticut 06269, USA.
| |
Collapse
|
174
|
Wärnmark A, Wikström A, Wright AP, Gustafsson JA, Härd T. The N-terminal regions of estrogen receptor alpha and beta are unstructured in vitro and show different TBP binding properties. J Biol Chem 2001; 276:45939-44. [PMID: 11595744 DOI: 10.1074/jbc.m107875200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The N-terminal regions of the estrogen receptor alpha (ER alpha-N) and beta (ER beta-N) were expressed and purified to homogeneity. Using NMR and circular dichroism spectroscopy, we conclude that both ER alpha-N and ER beta-N are unstructured in solution. The TATA box-binding protein (TBP) has been shown previously to interact with ER alpha-N in vitro and to potentiate ER-activated transcription. We used surface plasmon resonance and circular dichroism spectroscopy to confirm and further characterize the ER-N-TBP interaction. Our results show that the intrinsically unstructured ER alpha-N interacts with TBP, and suggest that structural changes are induced in ER alpha-N upon TBP interaction. Conformational changes upon target factor interaction have not previously been demonstrated for any N-terminal region of nuclear receptors. In addition, no binding of ER beta-N to TBP was detected. This difference in TBP binding could imply differential recruitment of target proteins by ER alpha-N and ER beta-N. The affinity of the ER alpha-N-TBP interaction was determined to be in the micromolar range (K(D) = 10(-6) to 10(-5) m). Our results support models of TBP as a target protein for the N-terminal activation domain of ER alpha. Further, our results suggest that target proteins can induce and/or stabilize ordered structure in N-terminal regions of nuclear receptors upon interaction.
Collapse
Affiliation(s)
- A Wärnmark
- Department of Biosciences, Novum, Karolinska Institutet, Huddinge SE-141 57, Sweden.
| | | | | | | | | |
Collapse
|
175
|
Loven MA, Likhite VS, Choi I, Nardulli AM. Estrogen response elements alter coactivator recruitment through allosteric modulation of estrogen receptor beta conformation. J Biol Chem 2001; 276:45282-8. [PMID: 11574541 DOI: 10.1074/jbc.m106211200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Estrogen receptor beta (ERbeta) activates transcription by binding to estrogen response elements (EREs) and coactivator proteins that act as bridging proteins between the receptor and the basal transcription machinery. Although the imperfect vitellogenin B1, pS2, and oxytocin (OT) EREs each differ from the consensus vitellogenin A2 ERE sequence by a single base pair, ERbeta activates transcription of reporter plasmids containing A2, pS2, B1, and OT EREs to different extents. To explain how these differences in transactivation might occur, we have examined the interaction of ERbeta with these EREs and monitored recruitment of the coactivators amplified in breast cancer (AIB1) and transcription intermediary factor 2 (TIF2). Protease sensitivity, antibody interaction, and DNA pull-down assays demonstrated that ERbeta undergoes ERE-dependent changes in conformation resulting in differential recruitment of AIB1 and TIF2 to the DNA-bound receptor. Overexpression of TIF2 or AIB1 in transient transfection assays differentially enhanced ERbeta-mediated transcription of reporter plasmids containing the A2, pS2, B1, and OT EREs. Our studies demonstrate that individual ERE sequences induce changes in conformation of the DNA-bound receptor and influence coactivator recruitment. DNA-induced modulation of receptor conformation may contribute to the ability of ERbeta to differentially activate transcription of genes containing divergent ERE sequences.
Collapse
Affiliation(s)
- M A Loven
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
176
|
Azorsa DO, Cunliffe HE, Meltzer PS. Association of steroid receptor coactivator AIB1 with estrogen receptor-alpha in breast cancer cells. Breast Cancer Res Treat 2001; 70:89-101. [PMID: 11768608 DOI: 10.1023/a:1012972808558] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The steroid receptor coactivator AIB1 (amplified in breast cancer-1) is a transcriptional coactivator which has been found to be amplified in breast cancer. We have now investigated the role of the AIB1 protein in breast cancer cell lines. Although detectable levels of AIB1 were present in most cell lines, high levels of AIB1 expression were observed only in the ER-positive cell lines MCF-7 and BT-474 by western blot analysis. Newly developed monoclonal antibodies (mAbs) were used in several assays to show an association between AIBI and estrogen receptor-alpha (ER). AIB1 and ER co-localized to the nucleus of ER positive cell lines as shown by immunofluorescence microscopy, and a functional association of native AIB1 and ER in MCF-7 nuclear extracts was shown by EMSA. Recombinant ER also recruited AIB1 protein from nuclear extracts, shown by EMSA and by precipitation of ER-complex proteins bound to a biotinylated-ERE DNA target. Additionally, anti-AIB1 mAbs were able to immunoprecipitate ER from nuclear extracts of chemically cross-linked cells but not from uncross-linked cells. Both immunoprecipitation and oligonucleotide precipitation studies demonstrated the presence of p300 and CBP as part of the ER transcriptional complex. These results suggest that AIB1 and ER do associate physically in ER-positive breast cancer cell lines. We propose that in AIB1 amplified breast cancers, a heightened AIB1/ER association may play a crucial role in the progression of these tumors.
Collapse
Affiliation(s)
- D O Azorsa
- Cancer Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, MD 20892-4470, USA
| | | | | |
Collapse
|
177
|
Hall JM, Couse JF, Korach KS. The multifaceted mechanisms of estradiol and estrogen receptor signaling. J Biol Chem 2001; 276:36869-72. [PMID: 11459850 DOI: 10.1074/jbc.r100029200] [Citation(s) in RCA: 832] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- J M Hall
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.
| | | | | |
Collapse
|
178
|
Nilsson S, Mäkelä S, Treuter E, Tujague M, Thomsen J, Andersson G, Enmark E, Pettersson K, Warner M, Gustafsson JA. Mechanisms of estrogen action. Physiol Rev 2001; 81:1535-65. [PMID: 11581496 DOI: 10.1152/physrev.2001.81.4.1535] [Citation(s) in RCA: 1349] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Our appreciation of the physiological functions of estrogens and the mechanisms through which estrogens bring about these functions has changed during the past decade. Just as transgenic mice were produced in which estrogen receptors had been inactivated and we thought that we were about to understand the role of estrogen receptors in physiology and pathology, it was found that there was not one but two distinct and functional estrogen receptors, now called ER alpha and ER beta. Transgenic mice in which each of the receptors or both the receptors are inactive have revealed a much broader role for estrogens in the body than was previously thought. This decade also saw the description of a male patient who had no functional ER alpha and whose continued bone growth clearly revealed an important function of estrogen in men. The importance of estrogen in both males and females was also demonstrated in the laboratory in transgenic mice in which the aromatase gene was inactivated. Finally, crystal structures of the estrogen receptors with agonists and antagonists have revealed much about how ligand binding influences receptor conformation and how this conformation influences interaction of the receptor with coactivators or corepressors and hence determines cellular response to ligands.
Collapse
Affiliation(s)
- S Nilsson
- KaroBio AB and Department of Biosciences, Karolinska Institute, NOVUM, Huddinge, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Weatherman RV, Clegg NJ, Scanlan TS. Differential SERM activation of the estrogen receptors (ERalpha and ERbeta) at AP-1 sites. ACTA ACUST UNITED AC 2001; 8:427-36. [PMID: 11358690 DOI: 10.1016/s1074-5521(01)00025-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND The selective estrogen receptor modulators (SERMs) raloxifene and tamoxifen are triphenylethylene derivatives that affect transcriptional regulation by the estrogen receptors (ERalpha and ERbeta) but show different effects in different tissues. A third triphenylethylene derivative, GW-5638, displays tissue selectivity in rats identical to that of raloxifene, suggesting that GW-5638 and raloxifene share a mechanism of action that is different from that of tamoxifen. RESULTS Both GW-5638 and its hydroxylated analog GW-7604 were tested for their ability to bind to ERalpha and ERbeta and their ability to affect transcription of ERalpha and ERbeta at a consensus estrogen response element and an ER/AP-1 response element. The drugs were found to have the same affinity for ERalpha and ERbeta, although they were also found to activate transcription from an AP-1 promoter element more potently with ERbeta than with ERalpha. Derivatives of GW-5638 with alterations at the carboxylic acid still showed increased ERbeta potency compared to ERalpha, but the magnitude of the activation with ERalpha was much higher than with ERbeta. CONCLUSIONS Despite similar binding affinities to isolated ERalpha and ERbeta, GW-5638 and GW-7604 show markedly lower EC(50) values with ERbeta at an AP-1-driven promoter as compared to ERalpha. This suggests that the two compounds produce a more active ER/AP-1 conformation of the ER/AP-1 transcription factor complex when bound to ERbeta than when bound to ERalpha.
Collapse
Affiliation(s)
- R V Weatherman
- Departments of Pharmaceutical Chemistry and Cellular and Molecular Pharmacology, University of California, San Francisco 94143-0446, USA
| | | | | |
Collapse
|
180
|
Slagsvold T, Kraus I, Frønsdal K, Saatcioglu F. DNA binding-independent transcriptional activation by the androgen receptor through triggering of coactivators. J Biol Chem 2001; 276:31030-6. [PMID: 11429409 DOI: 10.1074/jbc.m104310200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Androgens have critical roles in the development and maintenance of the male reproductive system and are important for progression of prostate cancer. The effects of androgens are mediated by the androgen receptor (AR), which is a ligand-modulated transcription factor that belongs to the nuclear receptor superfamily. In the presence of androgens, AR binds to androgen response elements in the vicinity of androgen receptor target genes and activates transcription. In addition, liganded AR can interfere with the activity of other transcription factors, such as activator protein-1 and nuclear factor kappaB, for which DNA binding by AR is not necessary. In this study, we describe a novel ligand-dependent transactivation function for AR that is independent of its DNA binding ability. AR dramatically increased the intrinsic transcriptional activity of the nuclear receptor coactivators glucocorticoid receptor-interacting protein-1 (GRIP1), cAMP response element-binding protein-binding protein, and p300 that are tethered to DNA. This "triggering" phenomenon required both similar and distinctly different regions of AR compared with those needed for ligand-dependent transactivation from androgen-responsive elements. Furthermore, the domains of GRIP1 required for triggering by AR are different from those required when GRIP1 serves as a coactivator for AR at androgen-responsive promoters. These data suggest that triggering may constitute an important part of the mechanism by which AR regulates transcription.
Collapse
Affiliation(s)
- T Slagsvold
- Biotechnology Centre of Oslo, Department of Biochemistry, University of Oslo, Gaustadalleen 21, 0349 Oslo, Norway
| | | | | | | |
Collapse
|
181
|
Song LN, Huse B, Rusconi S, Simons SS. Transactivation specificity of glucocorticoid versus progesterone receptors. Role of functionally different interactions of transcription factors with amino- and carboxyl-terminal receptor domains. J Biol Chem 2001; 276:24806-16. [PMID: 11333273 DOI: 10.1074/jbc.m102610200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A major unanswered question of glucocorticoid and progesterone action is how different whole cell responses arise when both of the cognate receptors can bind to, and activate, the same hormone response elements. We have documented previously that the EC(50) of agonist complexes, and the partial agonist activity of antagonist complexes, of both glucocorticoid receptors (GRs) and progesterone receptors (PRs) are modulated by increased amounts of homologous receptor and of coregulators. We now ask whether these components can differentially alter GR and PR transcriptional properties. To remove possible cell-specific differences, we have examined both receptors in the common environment of a line of mouse mammary adenocarcinoma (1470.2) cells. In order to segregate the responses that might be due to unequal nucleosome reorganization by the two receptors from those reflecting interactions with other components, we chose a transiently transfected reporter containing a simple glucocorticoid response element (i.e. GREtkLUC). No significant differences are found with elevated levels of either receptor. However, major, qualitative differences are seen with the corepressors SMRT and NCoR, which afford opposite responses with GR and PR. Studies with chimeric GR/PR receptors indicate that no one segment of PR or GR is responsible for these properties and that the composite response likely involves interactions with both the amino and carboxyl termini of receptors. Collectively, the data suggest that GR and PR induction of responsive genes in a given cell can be differentially controlled, in part, by unequal interactions of multiple receptor domains with assorted nuclear cofactors.
Collapse
Affiliation(s)
- L N Song
- Steroid Hormones Section, NIDDK/LMCB, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
182
|
Yang Z, Privalsky ML. Isoform-specific transcriptional regulation by thyroid hormone receptors: hormone-independent activation operates through a steroid receptor mode of co-activator interaction. Mol Endocrinol 2001; 15:1170-85. [PMID: 11435616 DOI: 10.1210/mend.15.7.0656] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Thyroid hormone receptors (T3Rs) are hormone-regulated transcription factors that play important roles in vertebrate homeostasis, differentiation, and development. T3Rs are synthesized as multiple isoforms that display tissue-specific expression patterns and distinct transcriptional properties. Most T3R isoforms associate with co-activator proteins and mediate transcriptional activation only in the presence of thyroid hormone. The pituitary-specific T3Rbeta-2 isoform departs from this general rule and is able to interact with p160 co-activators, and to mediate transcriptional activation in both the absence and presence of hormone. We report here that this hormone-independent activation is mediated by contacts between the unique N terminus of T3Rbeta-2 and an internal interaction domain in the SRC-1 (steroid receptor co-activator-1) and GRIP-1 (glucocorticoid receptor interacting protein 1) co-activators. These hormone-independent contacts between T3Rbeta-2 and the p160 co-activators are distinct in sequence and function from the LXXLL motifs that mediate hormone-dependent transcriptional activation and resemble instead a mode of co-activator recruitment previously observed only for the steroid hormone receptors and only in the presence of steroid hormone. Our results suggest that the transcriptional properties of the different T3R isoforms represent a combinatorial mixture of repression, antirepression, and hormone-independent and hormone-dependent activation functions that operate in conjunction to determine the ultimate transcriptional outcome.
Collapse
Affiliation(s)
- Z Yang
- Section of Microbiology Division of Biological Chemistry University of California at Davis Davis, California 95616, USA
| | | |
Collapse
|
183
|
Wu X, Li H, Chen JD. The human homologue of the yeast DNA repair and TFIIH regulator MMS19 is an AF-1-specific coactivator of estrogen receptor. J Biol Chem 2001; 276:23962-8. [PMID: 11279242 DOI: 10.1074/jbc.m101041200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Steroid/nuclear hormone receptors are ligand-dependent transcriptional regulators that control gene expression in a wide array of biological processes. The transcriptional activity of the receptors is mediated by an N-terminal ligand-independent transcriptional activation function AF-1 and a C-terminal ligand-dependent transcriptional activation function AF-2. The nuclear receptor coactivator RAC3 (also known as AIB1/ACTR/pCIP/TRAM-1/SRC-3) is amplified in breast cancer cells, where it forms a complex with estrogen receptor (ER) and enhances AF-2 activity of the receptor. Here, we identify a putative human homologue of the yeast DNA repair and transcriptional regulator MMS19 as a RAC3-interacting protein. The human MMS19 interacts with the N-terminal PAS-A/B domain of RAC3 in vivo and in vitro through a conserved C-terminal domain. Interestingly, the human MMS19 also interacts with estrogen receptors in a ligand-independent manner but not with retinoic acid receptor or thyroid hormone receptor. Overexpression of the interacting domain of hMMS19 strongly inhibits ER-mediated transcriptional activation, indicating a dominant negative activity. In contrast, over expression of the full-length hMMS19 enhances ER-mediated transcriptional activation. We find that hMMS19 stimulates the AF-1 activity of ERalpha, but not the AF-2 activity, suggesting that hMMS19 may be an AF-1-specific transcriptional coactivator of estrogen receptor.
Collapse
Affiliation(s)
- X Wu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | |
Collapse
|
184
|
Lopez GN, Turck CW, Schaufele F, Stallcup MR, Kushner PJ. Growth factors signal to steroid receptors through mitogen-activated protein kinase regulation of p160 coactivator activity. J Biol Chem 2001; 276:22177-82. [PMID: 11301320 DOI: 10.1074/jbc.m010718200] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Promoter-bound steroid receptors activate gene expression by recruiting members of the p160 family of coactivators. Many steroid receptors, most notably the progesterone and estrogen receptors, are regulated both by cognate hormone and independently by growth factors. Here we show that epidermal growth factor regulates the activities of the p160 GRIP1 through the extracellular signal-regulated kinase (ERK) family of mitogen-activated protein kinases. ERKs phosphorylate GRIP1 at a specific site, Ser-736, the integrity of which is required for full growth factor induction of GRIP1 transcriptional activation and coactivator function. We propose that growth factors signal to nuclear receptors in part by targeting the p160 coactivators.
Collapse
Affiliation(s)
- G N Lopez
- Metabolic Research Unit, Department of Medicine, and Howard Hughes Medical Institute, University of California, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
185
|
Kobayashi S, Ito Y, Ando Y, Omoto Y, Toyama T, Iwase H. Comparison of five different antibodies in the immunohistochemical assay of estrogen receptor alpha in human breast cancer. Breast Cancer 2001; 7:136-41. [PMID: 11029785 DOI: 10.1007/bf02967445] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Estrogen receptor alpha (ER) expression is the best prognostic and predictive factor of hormone dependency of human breast cancers. Unlike enzyme immunoassay (EIA), which has been widely used to evaluate ER status in breast cancer, immunohistochemical assay (IHC) can detect ER in a small amounts of tissue with detailed localization. Although there is a sufficient number of ER antibodies against various regions of the protein, the reliability of IHC staining is only well understood for a few. IHC and EIA for the evaluation of the ER status of human breast cancer, therefore, should be compared using the same breast cancer tissues. METHODS Five different ER antibodies (1D-5, C-314, G-20, C-311 and HC-20) that identify different amino acid sequences were used. The evaluation of ER status by IHC using these antibodies was compared with EIA concomitantly in 97 primary human breast cancer tissues RESULTS The positivity rate for EIA was 68%. That of IHC for antibodies 1D-5, C-314, G-20, C-311 and HC-20 was 50.5%, 47.4%, 46.4%, 44.3% and 57.7%, respectively. The concordance between EIA was 76.3% for 1D-5 and 77.3% for HC-20, which is statistically highly significant (p<0.0001); Other antibodies were not. CONCLUSIONS HC-20 is most suitable in the evaluation of the ER status of human breast cancers using the IHC method. Although antibody 1D-5 is also available, C-314, G20 and C-311 are unreliable in such an evaluation.
Collapse
Affiliation(s)
- S Kobayashi
- Department of Surgery, Hiagashi Municipal Hospital of Nagoya, 1-2-23 Wakamizu, Chikusa-ku, Nagoya 464-8547, Japan
| | | | | | | | | | | |
Collapse
|
186
|
An J, Tzagarakis-Foster C, Scharschmidt TC, Lomri N, Leitman DC. Estrogen receptor beta-selective transcriptional activity and recruitment of coregulators by phytoestrogens. J Biol Chem 2001; 276:17808-14. [PMID: 11279159 DOI: 10.1074/jbc.m100953200] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Estrogens used in hormone replacement therapy regimens may increase the risk of developing breast cancer. Paradoxically, high consumption of plant-derived phytoestrogens, particularly soybean isoflavones, is associated with a low incidence of breast cancer. To explore the molecular basis for these potential different clinical outcomes, we investigated whether soybean isoflavones elicit distinct transcriptional actions from estrogens. Our results demonstrate that the estrogen 17beta-estradiol effectively triggers the transcriptional activation and repression pathways with both estrogen receptors (ERs) ERalpha and ERbeta. In contrast, soybean isoflavones (genistein, daidzein, and biochanin A) are ERbeta-selective agonists of transcriptional repression and activation at physiological levels. The molecular mechanism for ERbeta selectivity by isoflavones involves their capacity to create an activation function-2 surface of ERbeta that has a greater affinity for coregulators than ERalpha. Phytoestrogens may act as natural selective estrogen receptor modulators that elicit distinct clinical effects from estrogens used for hormone replacement by selectively recruiting coregulatory proteins to ERbeta that trigger transcriptional pathways.
Collapse
Affiliation(s)
- J An
- Department of Obstetrics, Center for Reproductive Sciences, Gastroenterology Division and Liver Center, University of California, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
187
|
Wang C, Fu M, Angeletti RH, Siconolfi-Baez L, Reutens AT, Albanese C, Lisanti MP, Katzenellenbogen BS, Kato S, Hopp T, Fuqua SA, Lopez GN, Kushner PJ, Pestell RG. Direct acetylation of the estrogen receptor alpha hinge region by p300 regulates transactivation and hormone sensitivity. J Biol Chem 2001; 276:18375-83. [PMID: 11279135 DOI: 10.1074/jbc.m100800200] [Citation(s) in RCA: 261] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of nuclear receptor gene expression involves dynamic and coordinated interactions with histone acetyl transferase (HAT) and deacetylase complexes. The estrogen receptor (ERalpha) contains two transactivation domains regulating ligand-independent and -dependent gene transcription (AF-1 and AF-2 (activation functions 1 and 2)). ERalpha-regulated gene expression involves interactions with cointegrators (e.g. p300/CBP, P/CAF) that have the capacity to modify core histone acetyl groups. Here we show that the ERalpha is acetylated in vivo. p300, but not P/CAF, selectively and directly acetylated the ERalpha at lysine residues within the ERalpha hinge/ligand binding domain. Substitution of these residues with charged or polar residues dramatically enhanced ERalpha hormone sensitivity without affecting induction by MAPK signaling, suggesting that direct ERalpha acetylation normally suppresses ligand sensitivity. These ERalpha lysine residues also regulated transcriptional activation by histone deacetylase inhibitors and p300. The conservation of the ERalpha acetylation motif in a phylogenetic subset of nuclear receptors suggests that direct acetylation of nuclear receptors may contribute to additional signaling pathways involved in metabolism and development.
Collapse
Affiliation(s)
- C Wang
- Department of Developmental and Molecular Biology, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Weatherman RV, Scanlan TS. Unique protein determinants of the subtype-selective ligand responses of the estrogen receptors (ERalpha and ERbeta ) at AP-1 sites. J Biol Chem 2001; 276:3827-32. [PMID: 11060287 DOI: 10.1074/jbc.m005414200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The two subtypes of human estrogen receptor, alpha (hERalpha) and beta (hERbeta), regulate transcription at an AP-1 response element differently in response to estradiol and the anti-estrogens tamoxifen and raloxifene. To better understand the protein determinants of these differences, chimeric and deletional mutants of the N-terminal domain and the F region of ERalpha and ERbeta were made and tested in transient transfection assays at the classical estrogen response element (ERE) site as well as at an AP-1 site. Although the same regions on each receptor subtype appeared to be primarily responsible for estradiol activation at an ERE and in HeLa cells, major differences between ERalpha and ERbeta mutants were seen in the estrogen and anti-estrogen responses at an AP-1 site. This differential ligand response maps to the N-terminal domain and the F region. These results suggest that different estrogenic and anti-estrogenic ligands use different mechanisms of activation and inhibition at the AP-1 site. In contrast to previous studies, this work also shows that many of subtype-specific responses are not transferred to the other subtype by swapping the N-terminal domain of the receptor. This implies that there are other unique surfaces presented by each subtype outside of the N-terminal domain, and these surfaces can play a role in subtype-selective signaling. Together, these data suggest a complex interface between ligand, response element, and receptor that underlies ligand activation in estrogen signaling pathways.
Collapse
Affiliation(s)
- R V Weatherman
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143-0446, USA
| | | |
Collapse
|
189
|
Koh SS, Chen D, Lee YH, Stallcup MR. Synergistic enhancement of nuclear receptor function by p160 coactivators and two coactivators with protein methyltransferase activities. J Biol Chem 2001; 276:1089-98. [PMID: 11050077 DOI: 10.1074/jbc.m004228200] [Citation(s) in RCA: 268] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear receptors (NRs) activate gene transcription by binding to specific enhancer elements and recruiting coactivators of the p160 family to promoters of target genes. The p160 coactivators in turn enhance transcription by recruiting secondary coactivators, including histone acetyltransferases such as CREB-binding protein (CBP) and p300/CBP-associated factor (p/CAF), as well as the recently identified protein methyltransferase, coactivator-associated arginine methyltransferase 1 (CARM1). In the current study, protein arginine methyltransferase 1 (PRMT1), another arginine-specific protein methyltransferase that shares a region of high homology with CARM1, was also found to act as a coactivator for NRs. PRMT1, like CARM1, bound to the C-terminal AD2 activation domain of p160 coactivators and thereby enhanced the activity of NRs in transient transfection assays. The shape of the graphs of reporter gene activity versus the amounts of CARM1 or PRMT1 expression vector indicated a cooperative relationship between coactivator concentration and activity. Moreover, CARM1 and PRMT1 acted in a synergistic manner to enhance reporter gene activation by both hormone-dependent and orphan NRs. The synergy was most evident at low levels of transfected NR expression vectors, where activation of reporter genes was almost completely dependent on the presence of NR and all three exogenously supplied coactivators, i.e. GRIP1, CARM1, and PRMT1. In contrast, with the higher levels of NR expression vectors typically used in transient transfection assays, NR activity was much less dependent on the combination of coactivators, suggesting that target gene activation occurs by different mechanisms at high versus low cellular concentrations of NR. Because multiple coactivators are presumably required to mediate transcriptional activation of native genes in vivo, the low-NR conditions may provide a more physiologically relevant assay for coactivator function.
Collapse
Affiliation(s)
- S S Koh
- Department of Pathology, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | |
Collapse
|
190
|
Fan S, Ma YX, Wang C, Yuan RQ, Meng Q, Wang JA, Erdos M, Goldberg ID, Webb P, Kushner PJ, Pestell RG, Rosen EM. Role of direct interaction in BRCA1 inhibition of estrogen receptor activity. Oncogene 2001; 20:77-87. [PMID: 11244506 DOI: 10.1038/sj.onc.1204073] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2000] [Revised: 10/25/2000] [Accepted: 11/01/2000] [Indexed: 01/27/2023]
Abstract
The BRCA1 gene was previously found to inhibit the transcriptional activity of the estrogen receptor [ER-alpha] in human breast and prostate cancer cell lines. In this study, we found that breast cancer-associated mutations of BRCA1 abolish or reduce its ability to inhibit ER-alpha activity and that domains within the amino- and carboxyl-termini of the BRCA1 protein are required for the inhibition. BRCA1 inhibition of ER-alpha activity was demonstrated under conditions in which a BRCA1 transgene was transiently or stably over-expressed in cell lines with endogenous wild-type BRCA1 and in a breast cancer cell line that lacks endogenous functional BRCA1 (HCC1937). In addition, BRCA1 blocked the expression of two endogenous estrogen-regulated gene products in human breast cancer cells: pS2 and cathepsin D. The BRCA1 protein was found to associate with ER-alpha in vivo and to bind to ER-alpha in vitro, by an estrogen-independent interaction that mapped to the amino-terminal region of BRCA1 (ca. amino acid 1-300) and the conserved carboxyl-terminal activation function [AF-2] domain of ER-alpha. Furthermore, several truncated BRCA1 proteins containing the amino-terminal ER-alpha binding region blocked the ability of the full-length BRCA1 protein to inhibit ER-alpha activity. Our findings suggest that the amino-terminus of BRCA1 interacts with ER-alpha, while the carboxyl-terminus of BRCA1 may function as a transcriptional repression domain. Oncogene (2001) 20, 77 - 87.
Collapse
Affiliation(s)
- S Fan
- Department of Radiation Oncology, Long Island Jewish Medical Center, The Long Island Campus for the Albert Einstein College of Medicine, 270-05 76th Avenue, New Hyde Park, New York, NY 11040, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Sheppard HM, Harries JC, Hussain S, Bevan C, Heery DM. Analysis of the steroid receptor coactivator 1 (SRC1)-CREB binding protein interaction interface and its importance for the function of SRC1. Mol Cell Biol 2001; 21:39-50. [PMID: 11113179 PMCID: PMC86566 DOI: 10.1128/mcb.21.1.39-50.2001] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2000] [Accepted: 09/28/2000] [Indexed: 11/20/2022] Open
Abstract
The transcriptional activity of nuclear receptors is mediated by coactivator proteins, including steroid receptor coactivator 1 (SRC1) and its homologues and the general coactivators CREB binding protein (CBP) and p300. SRC1 contains an activation domain (AD1) which functions via recruitment of CBP and and p300. In this study, we have used yeast two-hybrid and in vitro interaction-peptide inhibition experiments to map the AD1 domain of SRC1 to a 35-residue sequence potentially containing two alpha-helices. We also define a 72-amino-acid sequence in CBP necessary for SRC1 binding, designated the SRC1 interaction domain (SID). We show that in contrast to SRC1, direct binding of CBP to the estrogen receptor is weak, suggesting that SRC1 functions primarily as an adaptor to recruit CBP and p300. In support of this, we show that the ability of SRC1 to enhance ligand-dependent nuclear receptor activity in transiently transfected cells is dependent upon the integrity of the AD1 region. In contrast, the putative histone acetyltransferase domain, the Per-Arnt-Sim basic helix-loop-helix domain, the glutamine-rich domain, and AD2 can each be removed without loss of ligand-induced activity. Remarkably, a construct corresponding to residues 631 to 970, which contains only the LXXLL motifs and the AD1 region of SRC1, retained strong coactivator activity in our assays.
Collapse
Affiliation(s)
- H M Sheppard
- Department of Biochemistry, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | | | | | | | | |
Collapse
|
192
|
Chen D, Huang SM, Stallcup MR. Synergistic, p160 coactivator-dependent enhancement of estrogen receptor function by CARM1 and p300. J Biol Chem 2000; 275:40810-6. [PMID: 11010967 DOI: 10.1074/jbc.m005459200] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the p160 coactivator family (steroid receptor coactivator-1 (SRC-1), glucocorticoid receptor interacting protein 1 (GRIP1), and activator of thyroid and retinoic acid receptors (ACTR)) mediate transcriptional activation by nuclear receptors. After being recruited to the promoter by nuclear receptors, the p160 coactivator transmits the activating signal via two C-terminal activation domains, AD1 and AD2. AD1 is a binding site for the related coactivators cAMP-response element binding protein binding protein (CBP) and p300, whereas AD2 binds to another coactivator, coactivator-associated arginine methyltransferase 1 (CARM1), a protein-arginine methyltransferase. The current study explored the cooperative functional and mechanistic relationships among GRIP1, CARM1, and p300 in transient transfection assays, where they enhanced the ability of the estrogen receptor (ER) to activate transcription of a reporter gene. The coactivator functions of p300 and CARM1 depended on the co-expression of GRIP1. Simultaneous co-expression of all three coactivators caused a synergistic enhancement of ER function. Deletion of the AD1 domain of GRIP1 abolished the ability of p300 to potentiate ER activity but had no effect on CARM1-mediated stimulation. In contrast, when the AD2 domain of GRIP1 was deleted, p300 still stimulated ER function through the mutant GRIP1, but CARM1 failed to do so. Thus, both binding of p300 to AD1 and binding of CARM1 to AD2 are required for their respective coactivator functions and for their synergy. Furthermore, CARM1 and p300 function independently through different activating domains of GRIP1, and their synergy suggests that they enhance transcription by different, complementary mechanisms.
Collapse
Affiliation(s)
- D Chen
- Departments of Pathology and Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California 90089, USA
| | | | | |
Collapse
|
193
|
Webb P, Nguyen P, Valentine C, Weatherman RV, Scanlan TS, Kushner PJ. An antiestrogen-responsive estrogen receptor-alpha mutant (D351Y) shows weak AF-2 activity in the presence of tamoxifen. J Biol Chem 2000; 275:37552-8. [PMID: 10986290 DOI: 10.1074/jbc.m007435200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antiestrogens, including tamoxifen and raloxifene, block estrogen receptor (ER) action by blocking the interactions of an estrogen-dependent activation function (AF-2) with p160 coactivators. Although tamoxifen does show some agonist activity in the presence of ERalpha, this stems from a distinct constitutive activation function (AF-1) that lies within the ERalpha N terminus. Previous studies identified a naturally occurring mutation (D351Y) that allows ERalpha to perceive tamoxifen and raloxifene as estrogens. Here, we examine the contributions of ERalpha activation functions to the D351Y phenotype. We find that the AF-2 function of ERalpha D351Y lacks detectable tamoxifen-dependent activity when tested in isolation but does synergize with AF-1 to allow enhanced tamoxifen response. Weak tamoxifen-dependent interactions between the ERalpha D351Y AF-2 function and GRIP1, a representative p160, can be detected in glutathione S-transferase binding assays and mammalian two-hybrid assays. Furthermore, tamoxifen-dependent AF-2 activity can be detected in the presence of ERalpha D351Y and high levels of overexpressed GRIP1. We therefore propose that the D351Y mutation allows weak tamoxifen-dependent AF-2 activity but that this activity is only detectable when AF-1 is strong, and AF-1 and AF-2 synergize, or when p160s are overexpressed. We discuss the possible structural basis of this effect.
Collapse
Affiliation(s)
- P Webb
- Metabolic Research Unit, University of California, San Francisco, California 94143-0540, USA.
| | | | | | | | | | | |
Collapse
|
194
|
Schaufele F, Chang CY, Liu W, Baxter JD, Nordeen SK, Wan Y, Day RN, McDonnell DP. Temporally distinct and ligand-specific recruitment of nuclear receptor-interacting peptides and cofactors to subnuclear domains containing the estrogen receptor. Mol Endocrinol 2000; 14:2024-39. [PMID: 11117532 DOI: 10.1210/mend.14.12.0572] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Ligand binding to estrogen receptor (ER) is presumed to regulate the type and timing of ER interactions with different cofactors. Using fluorescence microscopy in living cells, we characterized the recruitment of five different green fluorescent protein (GFP)-labeled ER-interacting peptides to the distinct subnuclear compartment occupied by blue fluorescent protein (BFP)-labeled ER alpha. Different ligands promoted the recruitment of different peptides. One peptide was recruited in response to estradiol (E2), tamoxifen, raloxifene, or ICI 182,780 incubation whereas other peptides were recruited specifically by E2 or tamoxifen. Peptides containing different sequences surrounding the ER-interacting motif LXXLL were recruited with different time courses after E2 addition. Complex temporal kinetics also were observed for recruitment of the full-length, ER cofactor glucocorticoid receptor-interacting protein 1 (GRIP1); rapid, E2-dependent recruitment of GRIP1 was blocked by mutation of the GRIP1 LXXLL motifs to LXXAA whereas slower E2 recruitment persisted for the GRIP1 LXXAA mutant. This suggested the presence of multiple, temporally distinct GRIP 1 recruitment mechanisms. E2 recruitment of GRIP1 and LXXLL peptides was blocked by coincubation with excess ICI 182,780. In contrast, preformed E2/ER/GRIP1 and E2/ER/LXXLL complexes were resistant to subsequent ICI 182,780 addition whereas ICI 182,780 dispersed preformed complexes containing the GRIP1 LXXAA mutant. This suggested that E2-induced LXXLL binding altered subsequent ligand/ER interactions. Thus, alternative, ligand-selective recruitment and dissociation mechanisms with distinct temporal sequences are available for ER alpha action in vivo.
Collapse
Affiliation(s)
- F Schaufele
- Department of Medicine, University of California San Francisco, 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|
195
|
Tolón RM, Castillo AI, Jiménez-Lara AM, Aranda A. Association with Ets-1 causes ligand- and AF2-independent activation of nuclear receptors. Mol Cell Biol 2000; 20:8793-802. [PMID: 11073980 PMCID: PMC86515 DOI: 10.1128/mcb.20.23.8793-8802.2000] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vitamin D receptor (VDR) normally functions as a ligand-dependent transcriptional activator. Here we show that, in the presence of Ets-1, VDR stimulates the prolactin promoter in a ligand-independent manner, behaving as a constitutive activator. Mutations in the AF2 domain abolish vitamin D-dependent transactivation but do not affect constitutive activation by Ets-1. Therefore, in contrast with the actions of vitamin D, activation by Ets-1 is independent of the AF2 domain. Ets-1 also conferred a ligand-independent activation to the estrogen receptor and to peroxisome proliferator-activated receptor alpha. In addition, Ets-1 cooperated with the unliganded receptors to stimulate the activity of reporter constructs containing consensus response elements fused to the thymidine kinase promoter. There is a direct interaction of the receptors with Ets-1 which requires the DNA binding domains of both proteins. Interaction with Ets-1 induces a conformational change in VDR which can be detected by an increased resistance to proteolytic digestion. Furthermore, a retinoid X receptor-VDR heterodimer in which both receptors lack the core C-terminal AF2 domain can recruit coactivators in the presence, but not in the absence, of Ets-1. This suggests that Ets-1 induces a conformational change in the receptor which creates an active interaction surface with coactivators even in the AF2-defective mutants. These results demonstrate the existence of a novel mechanism, alternative to ligand binding, which can convert an unliganded receptor from an inactive state into a competent transcriptional activator.
Collapse
Affiliation(s)
- R M Tolón
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | | | | | | |
Collapse
|
196
|
Pettersson K, Delaunay F, Gustafsson JA. Estrogen receptor beta acts as a dominant regulator of estrogen signaling. Oncogene 2000; 19:4970-8. [PMID: 11042684 DOI: 10.1038/sj.onc.1203828] [Citation(s) in RCA: 260] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The physiological effects of estrogens are mediated by two intracellular transcription factors, the estrogen receptors (ERs), that regulate transcription of target genes through binding to specific DNA target sequences. Here we describe alterations in cellular responses to different ER agonists and to the anti-estrogenic compound tamoxifen resulting from co-expression of the two ERs in transient co-transfection experiments. Our results demonstrate that ERbeta can act as a negative or positive dominant regulator of ER activity. This is manifested through reduced transcriptional activity at low concentrations of estradiol (E2); increased antagonistic effects of tamoxifen on E2 stimulated activity; and enhanced agonistic action of the phytoestrogenic compound genistein. Furthermore, using chimeric proteins lacking the N-terminal activation function 1 (AF-1), we show that the differential responses of ERalpha and ERbeta to different agonists and antagonists are primarily dictated by inherent differences in the C-terminal ligand-binding domains of the receptors, whereas the magnitude of transcriptional activity is influenced by ERalpha AF-1, but not ERbeta AF-1. The ERalpha AF-1 activity appears to be modulated upon co-expression of both ERs. The alterations in transcriptional activity resulting from co-expression of ERalpha and ERbeta are probably due to the formation of alpha/beta heterodimeric complexes. This study demonstrates that co-localization and subsequent heterodimerization of ERalpha and ERbeta may result in receptor activity distinct from that of ER homodimers.
Collapse
Affiliation(s)
- K Pettersson
- Department of Medical Nutrition, Karolinska Institute, Novum, S-141 86 Huddinge, Sweden
| | | | | |
Collapse
|
197
|
Graham JD, Bain DL, Richer JK, Jackson TA, Tung L, Horwitz KB. Nuclear receptor conformation, coregulators, and tamoxifen-resistant breast cancer. Steroids 2000; 65:579-84. [PMID: 11108862 DOI: 10.1016/s0039-128x(00)00116-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The development of tamoxifen resistance and consequent disease progression are common occurrences in breast cancers, often despite the continuing expression of estrogen receptors (ER). Tamoxifen is a mixed antagonist, having both agonist and antagonist properties. We have suggested that the development of tamoxifen resistance is associated with an increase in its agonist-like properties, resulting in loss of antagonist effects or even inappropriate tumor stimulation. Nuclear receptor function is influenced by a family of transcriptional coregulators, that either enhance or suppress transcriptional activity. Using a mixed antagonist-biased two-hybrid screening strategy, we identified two such proteins: the human homolog of the nuclear receptor corepressor, N-CoR, and a novel coactivator, L7/SPA (Switch Protein for Antagonists). In transcriptional studies, N-CoR suppressed the agonist properties of tamoxifen and RU486, and L7/SPA increased agonist effects. We speculated that the relative levels of these coactivators and corepressors may determine the balance of agonist and antagonist properties of mixed antagonists, such as tamoxifen. Using quantitative RT-PCR, we, therefore, measured the levels of transcripts encoding these coregulators, as well as the corepressor SMRT, and the coactivator SRC-1, in a small cohort of tamoxifen-resistant and sensitive breast tumors. The results suggest that tumor sensitivity to mixed antagonists may be governed by a complex set of transcription factors, which we are only now beginning to understand.
Collapse
Affiliation(s)
- J D Graham
- Department of Medicine, University of Colorado School of Medicine, Denver, CO 80262, USA.
| | | | | | | | | | | |
Collapse
|
198
|
Abstract
Steroid hormones influence a variety of neuroendocrine events, including brain development, sexual differentiation and reproduction. Hormones elicit many of these effects by binding to neuronal steroid receptors, which are members of a nuclear receptor superfamily of transcriptional activators. However, the mechanisms by which activated steroid receptors regulate gene expression in brain are not well understood. Recently, a new class of proteins, known as nuclear receptor coactivators, have been found to dramatically enhance steroid receptor mediated transactivation of genes in vitro. Here, the proposed molecular mechanisms of how these coactivators enhance the transcriptional activity of steroid receptors are summarized. While much is known about the mechanisms of these coactivators in vitro, it is unclear how these cofactors function in hormone action in vivo or in the brain. This paper discusses some of the initial and enticing investigations into the role of these important coregulatory proteins in neuroendocrine events. Finally, some of the critical issues and future directions in nuclear receptor coactivator function in neuroendocrinology are highlighted.
Collapse
Affiliation(s)
- M J Tetel
- Center for Neuroendocrine Studies and, Neuroscience and Behaviour Program, University of Massachusetts, Amherst 01003, USA.
| |
Collapse
|
199
|
Benecke A, Chambon P, Gronemeyer H. Synergy between estrogen receptor alpha activation functions AF1 and AF2 mediated by transcription intermediary factor TIF2. EMBO Rep 2000; 1:151-7. [PMID: 11265755 PMCID: PMC1084260 DOI: 10.1093/embo-reports/kvd028] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2000] [Revised: 06/21/2000] [Accepted: 06/26/2000] [Indexed: 01/12/2023] Open
Abstract
The activation function AF2 in the ligand-binding domain of estrogen receptors ER alpha and ER beta signals through the recruitment of nuclear receptor coactivators. Recent evidence indicates that coactivators, such as the transcription intermediary factor TIF2, also bind to and transactivate the N-terminal AF1 function of the two ERs. We have generated TIF2 mutant proteins that are deficient in either AF1 or AF2 interaction and use these mutants to investigate the relative contribution of both AFs to TIF2 recruitment and transactivation. We observe that TIF2 is capable of interacting simultaneously with both the isolated N- and C-terminus of ER alpha in transfected mammalian cells and in vitro, indicating that TIF2 can bridge both receptor domains. The concomitant interaction of TIF2 with both AFs results in synergistic activation of transcription. Thus, synergy between ER alpha AF1 and AF2 is a result of the cooperative recruitment of TIF2 and/or other members of the p160 coactivator family.
Collapse
Affiliation(s)
- A Benecke
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Collège de France, Illkirch, France
| | | | | |
Collapse
|
200
|
Nephew KP, Ray S, Hlaing M, Ahluwalia A, Wu SD, Long X, Hyder SM, Bigsby RM. Expression of estrogen receptor coactivators in the rat uterus. Biol Reprod 2000; 63:361-7. [PMID: 10906038 DOI: 10.1095/biolreprod63.2.361] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Nuclear receptor coactivators associate in a ligand-dependent manner with estrogen receptors (ER) and other nuclear receptors, and they enhance ligand-dependent transcriptional activation. This study examined basal coactivator expression in rat uterus to investigate if expression of these genes is regulated by estradiol-17 beta or tamoxifen. Ovariectomized mature and immature rats were injected with estradiol-17 beta, tamoxifen, or vehicle (i.e., sesame oil) alone. Uteri were collected and analyzed for changes in coactivator mRNA expression using Northern blot and in situ hybridization analyses. Constitutive uterine mRNA expression of switch protein for antagonist (SPA), SRC-1, GRIP1, RAC3, RIP140, and p300 mRNAs was observed in control uteri, and treatment with ER ligands did not alter coactivator mRNA levels. The data suggest that expression of these coactivator genes is not sensitive to estradiol or tamoxifen in the rat uterus. No cell type-specific pattern of expression was apparent in uterine sections from mature and immature rats; however, silver grains were more abundant in luminal and glandular epithelial cells compared with the stroma and myometrium, indicating that coactivator mRNA levels vary among the uterine compartments. Thus, to our knowledge, we show for the first time that there is constitutive expression of several uterine nuclear receptor coactivators in a physiological setting that remains insensitive to estrogenic regulation. Furthermore, we speculate that higher constitutive levels of coactivator expression in glandular and luminal epithelial cells may be associated with increased hormonal responsiveness by these uterine compartments.
Collapse
Affiliation(s)
- K P Nephew
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana 47405-4401, USA.
| | | | | | | | | | | | | | | |
Collapse
|