151
|
Imokawa Y, Yoshizato K. Expression of Sonic hedgehog gene in regenerating newt limb blastemas recapitulates that in developing limb buds. Proc Natl Acad Sci U S A 1997; 94:9159-64. [PMID: 9256452 PMCID: PMC23086 DOI: 10.1073/pnas.94.17.9159] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/1997] [Indexed: 02/05/2023] Open
Abstract
This study aimed at characterizing the Sonic hedgehog (shh) gene in newt limbs, which encodes a signaling molecule of the zone of polarizing activity (ZPA) responsible for determining the anterior-posterior axis of the embryonic chicken and mouse limbs. The reverse transcription-PCR showed that adult newt regenerating limbs express shh genes. In situ hybridization experiments demonstrated that shh genes were expressed in mesenchymal cells of the posterior region of both embryonic buds and regenerating blastemas of newt limbs, strongly suggesting the presence of ZPA in these tissues. Experiments of the axial reversal graft of blastemas further supported this suggestion. The grafted blastemas regenerated supernumerary limbs, and this has been explained by three models: the polar coordinate model, the boundary model, and the polarizing zone model. In favor of the third model, the shh gene was expressed not only in the original region (new anterior region) of the graft, but also ectopically in the other region (new posterior region) of the same graft. This study implies that the regenerating limb blastema produces ZPA as the signaling center of the AP patterning as in the developing limb bud and, therefore, supports the notion that the limb regeneration recapitulates the limb development.
Collapse
Affiliation(s)
- Y Imokawa
- Yoshizato MorphoMatrix Project, Exploratory Research for Advanced Technology, JST, 5-9-6, Tohkohdai, Tsukuba, Ibaraki 300-26, Japan
| | | |
Collapse
|
152
|
Koster R, Stick R, Loosli F, Wittbrodt J. Medaka spalt acts as a target gene of hedgehog signaling. Development 1997; 124:3147-56. [PMID: 9272955 DOI: 10.1242/dev.124.16.3147] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In vertebrates, pattern formation in the eye, central nervous system, somites, and limb depends on hedgehog activity, but a general target gene controlled by hedgehog in all these signaling centers has remained largely elusive. The medaka fish gene spalt encodes a zinc-finger transcription factor, which is expressed in all known hedgehog signaling centers of the embryo and in the organizer region at the midbrain-hindbrain boundary. We show that the spalt expression domains expand in response to ectopic hedgehog activity and narrow in the presence of protein kinase A activity, an antagonist of hedgehog signaling, indicating that spalt is a hedgehog target gene. Our results also suggest a signaling mechanism for anterior-posterior patterning of the vertebrate brain that controls spalt expression at the midbrain-hindbrain boundary in a protein kinase A dependent manner likely to involve an unknown member of the hedgehog family.
Collapse
Affiliation(s)
- R Koster
- SFB 271 Junior Group, c/o Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | |
Collapse
|
153
|
Abstract
The morphological and functional evolution of appendages has played a crucial role in the adaptive radiation of tetrapods, arthropods and winged insects. The origin and diversification of fins, wings and other structures, long a focus of palaeontology, can now be approached through developmental genetics. Modifications of appendage number and architecture in each phylum are correlated with regulatory changes in specific patterning genes. Although their respective evolutionary histories are unique, vertebrate, insect and other animal appendages are organized by a similar genetic regulatory system that may have been established in a common ancestor.
Collapse
Affiliation(s)
- N Shubin
- Department of Biology, University of Pennsylvania, Philadelphia 19104, USA.
| | | | | |
Collapse
|
154
|
Robbins DJ, Nybakken KE, Kobayashi R, Sisson JC, Bishop JM, Thérond PP. Hedgehog elicits signal transduction by means of a large complex containing the kinesin-related protein costal2. Cell 1997; 90:225-34. [PMID: 9244297 DOI: 10.1016/s0092-8674(00)80331-1] [Citation(s) in RCA: 313] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The hedgehog gene of Drosophila melanogaster encodes a secreted protein (HH) that plays a vital role in cell fate and patterning. Here we describe a protein complex that mediates signal transduction from HH. The complex includes the products of at least three genes: fused (a protein-serine/threonine kinase), cubitus interruptus (a transcription factor), and costal2 (a kinesin-like protein). The complex binds with great affinity to microtubules in the absence of HH, but binding is reversed by HH. Mutations in the extracatalytic domain of FU abolish both the biological function of the protein and its association with COS2. We conclude that the complex may facilitate signaling from HH by governing access of the cubitus interruptus protein to the nucleus.
Collapse
Affiliation(s)
- D J Robbins
- G.W. Hooper Foundation and Department of Microbiology and Immunology, University of California, San Francisco, 94143-0552, USA
| | | | | | | | | | | |
Collapse
|
155
|
Becker S, Wang ZJ, Massey H, Arauz A, Labosky P, Hammerschmidt M, St-Jacques B, Bumcrot D, McMahon A, Grabel L. A role for Indian hedgehog in extraembryonic endoderm differentiation in F9 cells and the early mouse embryo. Dev Biol 1997; 187:298-310. [PMID: 9242425 DOI: 10.1006/dbio.1997.8616] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hedgehog genes in Drosophila and vertebrates control patterning of a number of different structures during embryogenesis. They code for secreted signaling proteins that are cleaved into an active aminopeptide and a carboxypeptide. The aminopeptide can mediate local and long range events and can act as a morphogen, inducing differentiation of distinct cell types in a concentration-dependent manner. We demonstrate here that the expression of Indian hedgehog mRNA and protein is upregulated dramatically as F9 cells differentiate in response to retinoic acid, into either parietal endoderm or embryoid bodies, containing an outer visceral endoderm layer. The ES cell line D3 forms embryoid bodies in suspension culture without addition of retinoic acid and also upregulates Indian hedgehog expression. RT-PCR analysis of blastocyst outgrowth cultures demonstrates that whereas little or no Indian hedgehog message is present in blastocysts, significant levels appear upon subsequent days of culture, coincident with the emergence of parietal endoderm cells. In situ hybridization analysis for Indian hedgehog mRNA expression demonstrates the presence of elevated levels of message in the outer visceral endoderm cells relative to the core cells in mature embryoid bodies and in the visceral endoderm of Day 6.5 embryos. Whole-mount in situ hybridization analysis of Day 7.5 and 8.5 embryos indicates that Indian hedgehog expression is highest in the visceral yolk sac at this stage. F9 cell lines expressing a full length Indian hedgehog cDNA express a number of characteristics of differentiated cells, in the absence of retinoic acid. Taken together, these data suggest that Indian hedgehog is involved in mediating differentiation of extraembryonic endoderm during early mouse embryogenesis.
Collapse
Affiliation(s)
- S Becker
- Department of Biology, Wesleyan University, Middletown, Connecticut 06559-0170, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Lee J, Platt KA, Censullo P, Ruiz i Altaba A. Gli1 is a target of Sonic hedgehog that induces ventral neural tube development. Development 1997; 124:2537-52. [PMID: 9216996 DOI: 10.1242/dev.124.13.2537] [Citation(s) in RCA: 407] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The vertebrate zinc finger genes of the Gli family are homologs of the Drosophila gene cubitus interruptus. In frog embryos, Gli1 is expressed transiently in the prospective floor plate during gastrulation and in cells lateral to the midline during late gastrula and neurula stages. In contrast, Gli2 and Gli3 are absent from the neural plate midline with Gli2 expressed widely and Gli3 in a graded fashion with highest levels in lateral regions. In mouse embryos, the three Gli genes show a similar pattern of expression in the neural tube but are coexpressed throughout the early neural plate. Because Gli1 is the only Gli gene expressed in prospective floor plate cells of frog embryos, we have investigated a possible involvement of this gene in ventral neural tube development. Here we show that Shh signaling activates Gli1 transcription and that widespread expression of endogenous frog or human glioma Gli1, but not Gli3, in developing frog embryos results in the ectopic differentiation of floor plate cells and ventral neurons within the neural tube. Floor-plate-inducing ability is retained when cytoplasmic Gli1 proteins are forced into the nucleus or are fused to the VP16 transactivating domain. Thus, our results identify Gli1 as a midline target of Shh and suggest that it mediates the induction of floor plate cells and ventral neurons by Shh acting as a transcriptional regulator.
Collapse
Affiliation(s)
- J Lee
- The Skirball Institute, Developmental Genetics Program and Department of Cell Biology, NYU Medical Center, New York, NY 10016, USA
| | | | | | | |
Collapse
|
157
|
Bruneau S, Mourrain P, Rosa FM. Expression of contact, a new zebrafish DVR member, marks mesenchymal cell lineages in the developing pectoral fins and head and is regulated by retinoic acid. Mech Dev 1997; 65:163-73. [PMID: 9256353 DOI: 10.1016/s0925-4773(97)00072-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Contact, a new zebrafish transforming growth factor-beta (TGF-beta) member is most closely related to mouse GDF5 and to human CDMP-1 responsible, when mutated, for limb brachypodism phenotype and Hunter-Thompson syndrome, respectively. Contact exhibits a dynamic spatial expression pattern in the pharyngeal arches and the pectoral fin buds that much prefigures cartilage formation. Within the fin buds, contact expression is detected in the proximal mesenchyme from which the endoskeleton will develop. Exogeneously applied retinoic acid (RA) induces duplication of the pectoral fin rudiment in zebrafish embryos as well as contact expression along the proximal margin of the fin mesenchyme showing that both endoskeleton and exoskeleton can be duplicated.
Collapse
Affiliation(s)
- S Bruneau
- U368 INSERM, Ecole Normale Supérieure, Paris, France
| | | | | |
Collapse
|
158
|
Ros MA, Sefton M, Nieto MA. Slug, a zinc finger gene previously implicated in the early patterning of the mesoderm and the neural crest, is also involved in chick limb development. Development 1997; 124:1821-9. [PMID: 9165129 DOI: 10.1242/dev.124.9.1821] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The great advances made over the last few years in the identification of signalling molecules that pattern the limb bud along the three axes make the limb an excellent model system with which to study developmental mechanisms in vertebrates. The understanding of the signalling networks and their mutual interactions during limb development requires the characterisation of the corresponding downstream genes. In this study we report the expression pattern of Slug, a zinc-finger-containing gene of the snail family, during the development of the limb, and its regulation by distinct axial signalling systems. Slug expression is highly dynamic, and at different stages of limb development can be correlated with the zone of polarizing activity, the progress zone and the interdigital areas. We show that the maintenance of its expression is dependent on signals from the apical ectodermal ridge and independent of Sonic Hedgehog. We also report that, in the interdigit, apoptotic cells lie outside of the domains of Slug expression. The correlation of Slug expression with areas of undifferentiated mesenchyme at stages of tissue differentiation is consistent with its role in early development, in maintaining the mesenchymal phenotype and repressing differentiation processes. We suggest that Slug is involved in the epithelial-mesenchymal interactions that lead to the maintenance of the progress zone.
Collapse
Affiliation(s)
- M A Ros
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria, Santander, Spain
| | | | | |
Collapse
|
159
|
Murakami S, Nifuji A, Noda M. Expression of Indian hedgehog in osteoblasts and its posttranscriptional regulation by transforming growth factor-beta. Endocrinology 1997; 138:1972-8. [PMID: 9112395 DOI: 10.1210/endo.138.5.5140] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Indian hedgehog (Ihh) was recently reported to be expressed in chondrocytes and to regulate chondrocyte differentiation. This report examined the expression of Ihh in osteoblastic cells and its regulation by calcitropic cytokines. We found that Ihh messenger RNA (mRNA) was expressed as a single 2.5-kilobase band at a modest level in rat osteoblastic osteosarcoma ROS17/2.8 cells. In sharp contrast to the previous observation of dpp regulation of hedgehog expression in Drosophila embryos, bone morphogenetic protein-2 did not affect Ihh expression in these cells. On the other hand, treatment with 2 ng/ml transforming growth factor-beta1 (TGFbeta1) increased the steady state level of Ihh mRNA 2- to 4-fold. Western blot analysis of the cell lysates using antisera also showed enhancement of the Ihh protein level by TGFbeta1 treatment. The effect of TGFbeta1 on Ihh mRNA abundance started within 3 h, peaked at 24 h and lasted at least 48 h after the initiation of the treatment. The effect of TGFbeta1 on the increase in Ihh mRNA was dose dependent, starting at 0.2 ng/ml and saturating at 2 ng/ml. Neither actinomycin D nor cycloheximide blocked this effect. Experiments using 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole showed an enhancement of Ihh mRNA stability by TGFbeta1, indicating the presence of posttranscriptional regulation. We then examined the effects of TGFbeta1 on Ihh mRNA in osteoblast-enriched cells isolated from neonatal rat calvariae. TGFbeta1 also enhanced Ihh mRNA expression in these cells. Our data indicate for the first time that Ihh is one of the members of the cytokines produced by osteoblastic cells and that the expression of Ihh is regulated posttranscriptionally by TGFbeta.
Collapse
Affiliation(s)
- S Murakami
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Chiyoda-ku, Japan
| | | | | |
Collapse
|
160
|
Ros MA, Piedra ME, Fallon JF, Hurle JM. Morphogenetic potential of the chick leg interdigital mesoderm when diverted from the cell death program. Dev Dyn 1997; 208:406-19. [PMID: 9056644 DOI: 10.1002/(sici)1097-0177(199703)208:3<406::aid-aja11>3.0.co;2-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
There is evidence that the interdigital mesoderm may be in an undifferentiated state. For example, under experimental manipulation in vivo it may be diverted from cell death to digit formation. In the present work we wanted to analyze the maximum morphogenetic potential of the interdigital cells. To do this we made recombinant limbs of three types, the first using dissociated-reaggregated leg interdigital mesoderm, the second using the same tissue but without dissociation and the third adding a piece of polarizing region to the dissociated interdigit. In all three the massive cell death of the interdigit failed to occur. The first type of recombinant formed a small nodule of cartilage while the other two formed a well-developed digit. Our data indicate that the maximum morphogenetic potential of the interdigital tissue appears constrained to form digits and that dissociation of the tissue decreased this ability; polarizing region restores the ability of dissociated cell recombinants to form a digit. We also analyzed in these recombinants the expression of a battery of genes implicated in interdigital cell death or in digital morphogenesis. The pattern of expression of each gene analyzed was identical in the three types of recombinant limbs. The expression of Msx1 and Msx2 genes was maintained under the ridge indicating a good interaction between the interdigital cells, both dissociated and undissociated, and the apical ridge. The expression of Hoxd-12, Hoxd-13 and Hoxa-13 genes was maintained in the recombinants, indicating that these cells carry information about their autopodial origin, and this correlates well with their distal restricted morphogenetic potential. Finally, the patterns of expression of the Bmp-2, Bmp-4 and Bmp-7 genes indicated that they are independently regulated in the recombinants and that Bmp-4 and Bmp-7 have wider expression domains than the areas of cell death that were only detected under the regressing apical ridge during day 3 of the experiment.
Collapse
Affiliation(s)
- M A Ros
- Department of Anatomy and Cellular Biology, University of Cantabria, Santander, Spain
| | | | | | | |
Collapse
|
161
|
Platt KA, Michaud J, Joyner AL. Expression of the mouse Gli and Ptc genes is adjacent to embryonic sources of hedgehog signals suggesting a conservation of pathways between flies and mice. Mech Dev 1997; 62:121-35. [PMID: 9152005 DOI: 10.1016/s0925-4773(96)00648-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The three mouse Gli genes are putative transcription factors which are the homologs of cubitus interruptus (ci) in Drosophila. Along with the gene patched (Ptc), ci has been implicated in the hedgehog (Hh) signal transduction pathway. To assess the role of Gli in embryogenesis, we compared its expression with that of Ptc and Hh family members in mouse. We found that Gli and Ptc are expressed in similar domains in diverse regions of the developing mouse embryo and these regions are adjacent to Hh signals. We also show that Gli is expressed ectopically along with Ptc and Shh in Strong's luxoid mutant mice. These results are consistent with conservation of the Hh signal transduction pathway in mice with Gli potentially mediating Hh signaling in multiple regions of the developing embryo.
Collapse
Affiliation(s)
- K A Platt
- The Skirball Institute of Biomolecular Medicine Developmental Genetics Program and Department of Cell Biology, Physiology and Neuroscience, New York University, NY 10016, USA
| | | | | |
Collapse
|
162
|
Büscher D, Bosse B, Heymer J, Rüther U. Evidence for genetic control of Sonic hedgehog by Gli3 in mouse limb development. Mech Dev 1997; 62:175-82. [PMID: 9152009 DOI: 10.1016/s0925-4773(97)00656-4] [Citation(s) in RCA: 162] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sonic hedgehog (Shh) expression in the developing limb is associated with the zone of polarising activity (ZPA), and both are restricted to the posterior part of the limb bud. We show that the expression patterns of Shh and Gli3, a member of the Gli-family believed to function in transcriptional control, appear to be mutually exclusive in limb buds of mouse embryos. In the polydactyly mouse mutant extra toes (Xt), possessing a null mutation of Gli3, Shh is additionally expressed in the anterior region of the limb bud. The transcript of Ptc, the putative receptor for Shh protein, can be detected anteriorly as well. Other genes known to be involved in limb outgrowth and patterning, like Fibroblast growth factor (Fgf), Bone morphogenetic protein (Bmp), and Hoxd are misexpressed in relation to the ectopic Shh expression domain in Xt limb buds. This data suggest that Gli3 is a regulator of Shh expression in mouse limb development.
Collapse
Affiliation(s)
- D Büscher
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Germany
| | | | | | | |
Collapse
|
163
|
Ohuchi H, Shibusawa M, Nakagawa T, Ohata T, Yoshioka H, Hirai Y, Nohno T, Noji S, Kondo N. A chick wingless mutation causes abnormality in maintenance of Fgf8 expression in the wing apical ridge, resulting in loss of the dorsoventral boundary. Mech Dev 1997; 62:3-13. [PMID: 9106162 DOI: 10.1016/s0925-4773(96)00634-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We analyzed a Japanese chick wingless mutant (Jwg) to know a molecular mechanism underlying wing development. We observed expression patterns of eleven marker genes to characterize the mutant. Expressions of dorsoventral (DV) and mesenchymal marker genes were intact in nascent Jwg limb buds. However, expression of Fgf8, a marker gene for the apical ectodermal ridge (AER), was delayed and shortly disappeared in the wing regressing AER. Later on, ventral expression of dorsal marker genes of Wnt7a and Lmx1 indicated that the wing bud without the AER became bi-dorsal. In addition, the posterior mesoderm became defective, as deduced from the impaired expression patterns of Sonic hedgehog (Shh), Msx1, and Prx1. We attempted to rescue a wing by implanting Fgf8-expressing cells into the Jwg wing bud. We found that FGF8 can rescue outgrowth of the wing bud by maintaining Shh expression. Thus, the Jwg gene seems to be involved in maintenance of the Fgf8 expression in the wing bud. Further, it is suggested that the AER is required for maintenance of the DV boundary and the polarizing activity of the established wing bud.
Collapse
Affiliation(s)
- H Ohuchi
- Department of Biological Science and Technology, Faculty of Engineering, University of Tokushima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Mo R, Freer AM, Zinyk DL, Crackower MA, Michaud J, Heng HH, Chik KW, Shi XM, Tsui LC, Cheng SH, Joyner AL, Hui C. Specific and redundant functions of Gli2 and Gli3 zinc finger genes in skeletal patterning and development. Development 1997; 124:113-23. [PMID: 9006072 DOI: 10.1242/dev.124.1.113] [Citation(s) in RCA: 418] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The correct patterning of vertebrate skeletal elements is controlled by inductive interactions. Two vertebrate hedgehog proteins, Sonic hedgehog and Indian hedgehog, have been implicated in skeletal development. During somite differentiation and limb development, Sonic hedgehog functions as an inductive signal from the notochord, floor plate and zone of polarizing activity. Later in skeletogenesis, Indian hedgehog functions as a regulator of chondrogenesis during endochondral ossification. The vertebrate Gli zinc finger proteins are putative transcription factors that respond to Hedgehog signaling. In Drosophila, the Gli homolog cubitus interruptus is required for the activation of hedgehog targets and also functions as a repressor of hedgehog expression. We show here that Gli2 mutant mice exhibit severe skeletal abnormalities including cleft palate, tooth defects, absence of vertebral body and intervertebral discs, and shortened limbs and sternum. Interestingly, Gli2 and Gli3 (C.-c. Hui and A. L. Joyner (1993). Nature Genet. 3, 241–246) mutant mice exhibit different subsets of skeletal defects indicating that they implement specific functions in the development of the neural crest, somite and lateral plate mesoderm derivatives. Although Gli2 and Gli3 are not functionally equivalent, double mutant analysis indicates that, in addition to their specific roles, they also serve redundant functions during skeletal development. The role of Gli2 and Gli3 in Hedgehog signaling during skeletal development is discussed.
Collapse
Affiliation(s)
- R Mo
- Program in Developmental Biology and Division of Endocrinology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Abstract
Members of the Hedgehog family of signaling molecules mediate many important short- and long-range patterning processes during invertebrate and vertebrate development. In the fly, a single hedgehog gene regulates segmental and imaginal disc patterning. In contrast, in vertebrates a hedgehog gene family is involved in the control of left-right asymmetry, polarity in the central nervous system (CNS), somites and limb, organogenesis, chondrogenesis and spermatogenesis. Here, we review recent experiments addressing the function of the various Hedgehog members during invertebrate and vertebrate development.
Collapse
|
166
|
Grieshammer U, Minowada G, Pisenti JM, Abbott UK, Martin GR. The chick limbless mutation causes abnormalities in limb bud dorsal-ventral patterning: implications for the mechanism of apical ridge formation. Development 1996; 122:3851-61. [PMID: 9012506 DOI: 10.1242/dev.122.12.3851] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In chick embryos homozygous for the limbless mutation, limb bud outgrowth is initiated, but a morphologically distinct apical ridge does not develop and limbs do not form. Here we report the results of an analysis of gene expression in limbless mutant limb buds. Fgf4, Fgf8, Bmp2 and Msx2, genes that are expressed in the apical ridge of normal limb buds, are not expressed in the mutant limb bud ectoderm, providing molecular support for the hypothesis that limb development fails in the limbless embryo because of the inability of the ectoderm to form a functional ridge. Moreover, Fgf8 expression is not detected in the ectoderm of the prospective limb territory or the early limb bud of limbless embryos. Since the early stages of limb bud outgrowth occur normally in the mutant embryos, this indicates that FGF8 is not required to promote initial limb bud outgrowth. In the absence of FGF8, Shh is also not expressed in the mutant limb buds, although its expression can be induced by application of FGF8-soaked beads. These observations support the hypothesis that Fgf8 is required for the induction of Shh expression during normal limb development. Bmp2 expression was also not detected in mutant limb mesoderm, consistent with the hypothesis that SHH induces its expression. In contrast, SHH is not required for the induction of Hoxd11 or Hoxd13 expression, since expression of both these genes was detected in the mutant limb buds. Thus, some aspects of mesoderm A-P patterning can occur in the absence of SHH and factors normally expressed in the apical ridge. Intriguingly, mutant limbs rescued by local application of FGF displayed a dorsalized feather pattern. Furthermore, the expression of Wnt7a, Lmx1 and En1, genes involved in limb D-V patterning, was found to be abnormal in mutant limb buds. These data suggest that D-V patterning and apical ridge formation are linked, since they show that the limbless mutation affects both processes. We present a model that explains the potential link between D-V positional information and apical ridge formation, and discuss the possible function of the limbless gene in terms of this model.
Collapse
Affiliation(s)
- U Grieshammer
- Department of Anatomy and Program in Developmental Biology, School of Medicine, University of California, San Francisco 94143-0452, USA
| | | | | | | | | |
Collapse
|
167
|
Uchiyama K, Yanazawa M, Kuroiwa A, Kitamura K. Feather buds exert a polarizing activity when transplanted to chick limb buds. Dev Growth Differ 1996. [DOI: 10.1046/j.1440-169x.1996.t01-5-00007.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
168
|
Abstract
The generation of distinct neuronal cell types in appropriate numbers and at precise positions underlies the assembly of neural circuits that encode animal behavior. Despite the complexity of the vertebrate central nervous system, advances have been made in defining the principles that control the diversification and patterning of its component cells. A combination of molecular genetic, biochemical, and embryological assays has begun to reveal the identity and mechanism of action of molecules that induce and pattern neural tissue and the role of transcription factors in establishing generic and specific neuronal fates. Some of these advances are discussed here, focusing on the spinal cord as a model system for analyzing the molecular control of central nervous system development in vertebrates.
Collapse
Affiliation(s)
- Y Tanabe
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Center for Neurobiology and Behavior, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
169
|
Zardoya R, Abouheif E, Meyer A. Evolutionary analyses of hedgehog and Hoxd-10 genes in fish species closely related to the zebrafish. Proc Natl Acad Sci U S A 1996; 93:13036-41. [PMID: 8917540 PMCID: PMC24042 DOI: 10.1073/pnas.93.23.13036] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The study of development has relied primarily on the isolation of mutations in genes with specific functions in development and on the comparison of their expression patterns in normal and mutant phenotypes. Comparative evolutionary analyses can complement these approaches. Phylogenetic analyses of Sonic hedgehog (Shh) and Hoxd-10 genes from 18 cyprinid fish species closely related to the zebrafish provide novel insights into the functional constraints acting on Shh. Our results confirm and extend those gained from expression and crystalline structure analyses of this gene. Unexpectedly, exon 1 of Shh is found to be almost invariant even in third codon positions among these morphologically divergent species suggesting that this exon encodes for a functionally important domain of the hedgehog protein. This is surprising because the main functional domain of Shh had been thought to be that encoded by exon 2. Comparisons of Shh and Hoxd-10 gene sequences and of resulting gene trees document higher evolutionary constraints on the former than on the latter. This might be indicative of more general evolutionary patterns in networks of developmental regulatory genes interacting in a hierarchical fashion. The presence of four members of the hedgehog gene family in cyprinid fishes was documented and their homologies to known hedgehog genes in other vertebrates were established.
Collapse
Affiliation(s)
- R Zardoya
- Department of Ecology and Evolution, State University of New York, Stony Brook 11794-5245, USA
| | | | | |
Collapse
|
170
|
Porter JA, Young KE, Beachy PA. Cholesterol modification of hedgehog signaling proteins in animal development. Science 1996; 274:255-9. [PMID: 8824192 DOI: 10.1126/science.274.5285.255] [Citation(s) in RCA: 1006] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hedgehog (Hh) proteins comprise a family of secreted signaling molecules essential for patterning a variety of structures in animal embryogenesis. During biosynthesis, Hh undergoes an autocleavage reaction, mediated by its carboxyl-terminal domain, that produces a lipid-modified amino-terminal fragment responsible for all known Hh signaling activity. Here it is reported that cholesterol is the lipophilic moiety covalently attached to the amino-terminal signaling domain during autoprocessing and that the carboxyl-terminal domain acts as an intramolecular cholesterol transferase. This use of cholesterol to modify embryonic signaling proteins may account for some of the effects of perturbed cholesterol biosynthesis on animal development.
Collapse
Affiliation(s)
- J A Porter
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
171
|
Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, Beachy PA. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 1996; 383:407-13. [PMID: 8837770 DOI: 10.1038/383407a0] [Citation(s) in RCA: 2298] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Targeted gene disruption in the mouse shows that the Sonic hedgehog (Shh) gene plays a critical role in patterning of vertebrate embryonic tissues, including the brain and spinal cord, the axial skeleton and the limbs. Early defects are observed in the establishment or maintenance of midline structures, such as the notochord and the floorplate, and later defects include absence of distal limb structures, cyclopia, absence of ventral cell types within the neural tube, and absence of the spinal column and most of the ribs. Defects in all tissues extend beyond the normal sites of Shh transcription, confirming the proposed role of Shh proteins as an extracellular signal required for the tissue-organizing properties of several vertebrate patterning centres.
Collapse
Affiliation(s)
- C Chiang
- Laboratory of Mammalian Genes and Development, National Institute of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
172
|
Ting-Berreth SA, Chuong CM. Sonic Hedgehog in feather morphogenesis: induction of mesenchymal condensation and association with cell death. Dev Dyn 1996; 207:157-70. [PMID: 8906419 DOI: 10.1002/(sici)1097-0177(199610)207:2<157::aid-aja4>3.0.co;2-g] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Sonic hedgehog is involved in vertebrate tissue interactions during development. During early feather development, Sonic hedgehog appears very early in epithelial placodes. During late feather development, Sonic hedgehog expression precedes the development of the marginal plates and is specifically localized in the marginal plate epithelium, which will later undergo cell death. By using retroviral vectors, exogenous Sonic hedgehog overexpression in developing feathers induced enlarged feather buds that have either lost their anterior-posterior polarity or exhibited reverse orientation. The enlarged dermal condensations may be mediated through broader TGF-beta 2 expression and reduced protein kinase C (PKC) expression. Reciprocal mesenchymal interaction is required for the induction and maintenance of Sonic hedgehog in the epithelial placodes. In scaleless mutant, Sonic hedgehog is absent in the apteric region and aberrantly expressed in the mesenchyme of the abnormal feather ridge. These findings suggest that Sonic hedgehog mediates key interactions between the epithelium and mesenchyme during feather morphogenesis.
Collapse
Affiliation(s)
- S A Ting-Berreth
- Department of Pathology, University of Southern California, Los Angeles 90033, USA
| | | |
Collapse
|
173
|
Concordet JP, Lewis KE, Moore JW, Goodrich LV, Johnson RL, Scott MP, Ingham PW. Spatial regulation of a zebrafish patched homologue reflects the roles of sonic hedgehog and protein kinase A in neural tube and somite patterning. Development 1996; 122:2835-46. [PMID: 8787757 DOI: 10.1242/dev.122.9.2835] [Citation(s) in RCA: 211] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Signalling by members of the Hedgehog family of secreted proteins plays a central role in the development of vertebrate and invertebrate embryos. In Drosophila, transduction of the Hedgehog signal is intimately associated with the activity of protein kinase A and the product of the segment polarity gene patched. We have cloned a homologue of patched from the zebrafish Danio rerio and analysed the spatiotemporal regulation of its transcription during embryonic development in both wild-type and mutant animals. We find a striking correlation between the accumulation of patched1 transcripts and cells responding to sonic hedgehog activity both in the neurectoderm and mesoderm, suggesting that like its Drosophila counterpart, patched1 is regulated by sonic hedgehog activity. Consistent with this interpretation, mis-expression of sonic hedgehog results in ectopic activation of patched1 transcription. Using dominant negative and constitutively active forms of the protein kinase A subunits, we also show that expression of patched1 as well as of other sonic hedgehog targets, is regulated by protein kinase A activity. Taken together, our findings suggest that the mechanism of signalling by Hedgehog family proteins has been highly conserved during evolution.
Collapse
Affiliation(s)
- J P Concordet
- Molecular Embryology Laboratory, Imperial Cancer Research Fund, London, UK
| | | | | | | | | | | | | |
Collapse
|
174
|
Ros MA, López-Martínez A, Simandl BK, Rodriguez C, Izpisúa Belmonte JC, Dahn R, Fallon JF. The limb field mesoderm determines initial limb bud anteroposterior asymmetry and budding independent of sonic hedgehog or apical ectodermal gene expressions. Development 1996; 122:2319-30. [PMID: 8756277 DOI: 10.1242/dev.122.8.2319] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have analyzed the pattern of expression of several genes implicated in limb initiation and outgrowth using limbless chicken embryos. We demonstrate that the expressions of the apical ridge associated genes, Fgf-8, Fgf-4, Bmp-2 and Bmp-4, are undetectable in limbless limb bud ectoderm; however, FGF2 protein is present in the limb bud ectoderm. Shh expression is undetectable in limbless limb bud mesoderm. Nevertheless, limbless limb bud mesoderm shows polarization manifested by the asymmetric expression of Hoxd-11, −12 and −13, Wnt-5a and Bmp-4 genes. The posterior limbless limb bud mesoderm, although not actually expressing Shh, is competent to express it if supplied with exogenous FGF or transplanted to a normal apical ridge environment, providing further evidence of mesodermal asymmetry. Exogenous FGF applied to limbless limb buds permits further growth and determination of recognizable skeletal elements, without the development of an apical ridge. However, the cells competent to express Shh do so at reduced levels; nevertheless, Bmp-2 is then rapidly expressed in the posterior limbless mesoderm. limbless limb buds appear as bi-dorsal structures, as the entire limb bud ectoderm expresses Wnt-7a, a marker for dorsal limb bud ectoderm; the ectoderm fails to express En-1, a marker of ventral ectoderm. As expected, C-Lmx1, which is downstream of Wnt-7a, is expressed in the entire limbless limb bud mesoderm. We conclude that anteroposterior polarity is established in the initial limb bud prior to Shh expression, apical ridge gene expression or dorsal-ventral asymmetry. We propose that the initial pattern of gene expressions in the emergent limb bud is established by axial influences on the limb field. These permit the bud to emerge with asymmetric gene expression before Shh and the apical ridge appear. We report that expression of Fgf-8 by the limb ectoderm is not required for the initiation of the limb bud. The gene expressions in the pre-ridge limb bud mesoderm, as in the limb bud itself, are unstable without stimulation from the apical ridge and the polarizing region (Shh) after budding is initiated. We propose that the defect in limbless limb buds is the lack of a dorsal-ventral interface in the limb bud ectoderm where the apical ridge induction signal would be received and an apical ridge formed. These observations provide evidence for the hypothesis that the dorsal-ventral ectoderm interface is a precondition for apical ridge formation.
Collapse
Affiliation(s)
- M A Ros
- Departamento de Anatomia y Biologia Celular, Universidad de Cantabria, Santander, Spain
| | | | | | | | | | | | | |
Collapse
|
175
|
Johnson RL, Rothman AL, Xie J, Goodrich LV, Bare JW, Bonifas JM, Quinn AG, Myers RM, Cox DR, Epstein EH, Scott MP. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 1996; 272:1668-71. [PMID: 8658145 DOI: 10.1126/science.272.5268.1668] [Citation(s) in RCA: 1320] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The basal cell nevus syndrome (BCNS) is characterized by developmental abnormalities and by the postnatal occurrence of cancers, especially basal cell carcinomas (BCCs), the most common human cancer. Heritable mutations in BCNS patients and a somatic mutation in a sporadic BCC were identified in a human homolog of the Drosophila patched (ptc) gene. The ptc gene encodes a transmembrane protein that in Drosophila acts in opposition to the Hedgehog signaling protein, controlling cell fates, patterning, and growth in numerous tissues. The human PTC gene appears to be crucial for proper embryonic development and for tumor suppression.
Collapse
Affiliation(s)
- R L Johnson
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, California 94305-5427, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Kronmiller JE, Nguyen T. Spatial and temporal distribution of Indian hedgehog mRNA in the embryonic mouse mandible. Arch Oral Biol 1996; 41:577-83. [PMID: 8937649 DOI: 10.1016/0003-9969(96)00013-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Hedgehog genes are involved in pattern formation during embryonic development. A recent report showed that Sonic hedgehog is expressed in the mouse mandible in the presumptive incisor region. In the present study, Indian hedgehog (Ihh) transcripts were present from gestational day 9 to 14 in the mouse mandible (reverse transcription/polymerase chain reaction analysis). Ihh mRNA was present in the dental lamina in both incisor and molar regions and in the developing whiskers (in-situ hybridization). Ihh may be involved in the site-specific proliferation of mandibular epithelium during the formation of the dental lamina. This is consistent with the observation that endogenous synthesis of retinoic acid is necessary for the initiation of odontogenesis and that retinoic acid induces hedgehog expression.
Collapse
Affiliation(s)
- J E Kronmiller
- Department of Orthodontics, School of Dentistry, Oregon Health Sciences University, Portland 97201, USA
| | | |
Collapse
|
177
|
Vogel A, Rodriguez C, Izpisúa-Belmonte JC. Involvement of FGF-8 in initiation, outgrowth and patterning of the vertebrate limb. Development 1996; 122:1737-50. [PMID: 8674413 DOI: 10.1242/dev.122.6.1737] [Citation(s) in RCA: 246] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Fibroblast Growth Factors (FGFs) are signaling molecules that are important in patterning and growth control during vertebrate limb development. Beads soaked in FGF-1, FGF-2 and FGF-4 are able to induce additional limbs when applied to the flank of young chick embryos (Cohn, M.J., Izpisua-Belmonte, J-C., Abud, H., Heath, J. K., Tickle, C. (1995) Cell 80, 739–746). However, biochemical and expression studies suggest that none of these FGFs is the endogenous signal that initiates limb development. During chick limb development, Fgf-8 transcripts are detected in the intermediate mesoderm and subsequently in the prelimb field ectoderm prior to the formation of the apical ectodermal ridge, structures required for limb initiation and outgrowth, respectively. Later on, Fgf-8 expression is restricted to the ridge cells and expression disappears when the ridge regresses. Application of FGF-8 protein to the flank induces the development of additional limbs. Moreover, we show that FGF-8 can replace the apical ectodermal ridge to maintain Shh expression and outgrowth and patterning of the developing chick limb. Furthermore, continuous and widespread misexpression of FGF-8 causes limb truncations and skeletal alterations with phocomelic or achondroplasia phenotype. Thus, FGF-8 appears to be a key signal involved in initiation, outgrowth and patterning of the developing vertebrate limb.
Collapse
Affiliation(s)
- A Vogel
- Gene expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
178
|
Collignon J, Varlet I, Robertson EJ. Relationship between asymmetric nodal expression and the direction of embryonic turning. Nature 1996; 381:155-8. [PMID: 8610012 DOI: 10.1038/381155a0] [Citation(s) in RCA: 440] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Growth factors related to TGF-beta provide important signals for patterning the vertebrate body plan. One such family member, nodal, is required for formation of the primitive streak during mouse gastrulation. Here we have used a nodal-lacZ reporter allele to demonstrate asymmetric nodal expression in the mouse node, a structure thought to be the functional equivalent of the frog and chick 'organizer', and in lateral place mesoderm cells. We have also identified two additional genes acting with nodal in a pathway determining the left-right body axis. Thus we observe in inv mutant embryos that the sidedness of nodal expression correlates with the direction of heart looping and embryonic turning. In contrast, HNF3-beta(+/-) nodal(lacZ/+) double-heterozygous embryos display LacZ staining on both left and right sides, and frequently exhibit defects in body situs. Taken together, these experiments, along with similar findings in chick, demonstrate that elements of the genetic pathway that establish the left-right body axis are conserved in vertebrates.
Collapse
Affiliation(s)
- J Collignon
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
179
|
Hammerschmidt M, Bitgood MJ, McMahon AP. Protein kinase A is a common negative regulator of Hedgehog signaling in the vertebrate embryo. Genes Dev 1996; 10:647-58. [PMID: 8598293 DOI: 10.1101/gad.10.6.647] [Citation(s) in RCA: 294] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Midline signaling by Hedgehog (Hh) family members has been implicated in patterning the vertebrate embryo. We have explored the potential regulatory role of cAMP-dependent protein kinase A (PKA) in these events. Zebrafish embryos injected with RNAs encoding Sonic hedgehog (Shh), Indian hedgehog (Ihh), or a dominant-negative regulatory subunit of PKA, PKI, have equivalent phenotypes. These include the expansion of proximal fates in the eye, ventral fates in the brain, and adaxial fates in somites and head mesenchyme. Moreover, ectopic expression of PKI partially rescues somite and optic stalk defects in no tail and cyclops mutants that lack midline structures that normally synthesize Shh. Conversely, all cell types promoted by ectopic expression of hhs and PKI are suppressed in embryos injected with RNA encoding a constitutively active catalytic subunit of PKA (PKA*). These results, together with epistasis studies on the block of ectopic Hh signaling by PKA*, indicate that PKA acts in target cells as a common negative regulator of Hedgehog signaling.
Collapse
Affiliation(s)
- M Hammerschmidt
- Department of Molecular and Cellular Biology, The Biolabs, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
180
|
Abstract
Signals from the axial tissues, neural tube and notochord play a crucial role in patterning cell fates in adjacent somitic tissue. Work over the past four decades has indicated how signals from the axial tissues, as well as the surface ectoderm and lateral plate mesoderm, together act to pattern somitic cell fate. Furthermore, recent results have shed light on how some of these molecules control the specification and migratory behaviour of somitic cells.
Collapse
Affiliation(s)
- A B Lassar
- Department of Biological Chemistry, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
181
|
Roelink H. Tripartite signaling of pattern: interactions between Hedgehogs, BMPs and Wnts in the control of vertebrate development. Curr Opin Neurobiol 1996; 6:33-40. [PMID: 8794053 DOI: 10.1016/s0959-4388(96)80006-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A central issue in embryonic development is the resolution of how groups of equivalent cells are transformed into orderly and patterned arrays of distinct cell types. Recent studies suggest the involvement of the Hedgehog, Wnt and bone morphogenetic protein families in the patterning of different tissue types in vertebrate embryos. The integrated actions of members of these three families of signaling proteins appear to have been recruited in the patterning of neural tissue in addition to several different tissues. Over the past year, a clearer picture of the diverse roles of these signaling proteins in embryonic development has begun to emerge.
Collapse
Affiliation(s)
- H Roelink
- Department of Biological Structure, University of Washington School of Medicine, Seattle 98195, USA.
| |
Collapse
|
182
|
Goodrich LV, Johnson RL, Milenkovic L, McMahon JA, Scott MP. Conservation of the hedgehog/patched signaling pathway from flies to mice: induction of a mouse patched gene by Hedgehog. Genes Dev 1996; 10:301-12. [PMID: 8595881 DOI: 10.1101/gad.10.3.301] [Citation(s) in RCA: 654] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The signaling protein Hedgehog (Hh) controls cell fate and polarizes tissues in both flies and vertebrates. In flies, Hh exerts its effects by opposing the function of a novel transmembrane protein, Patched, while also locally inducing patched (ptc) transcription. We have identified a mouse homolog of ptc which in many tissues is transcribed near cells making either Sonic or Indian hedgehog. In addition, ectopic Sonic hedgehog expression in the mouse central nervous system induces ptc transcription. As in flies, mouse ptc transcription appears to be indicative of hedgehog signal reception. The results support the existence of a conserved signaling pathway used for pattern formation in insects and mammals.
Collapse
Affiliation(s)
- L V Goodrich
- Department of Developmental biology, Howard Hughes Medical Institute (HHMI), Stanford University School of Medicine, California 94305-5427, USA
| | | | | | | | | |
Collapse
|
183
|
Ogura T, Alvarez IS, Vogel A, Rodríguez C, Evans RM, Izpisúa Belmonte JC. Evidence that Shh cooperates with a retinoic acid inducible co-factor to establish ZPA-like activity. Development 1996; 122:537-42. [PMID: 8625805 DOI: 10.1242/dev.122.2.537] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Patterning across the anteroposterior axis of the vertebrate limb bud involves a signal from the polarizing region, a small group of cells at the posterior margin of the bud. Retinoic acid (RA; Tickle, C., Alberts, B., Wolpert, L. and Lee, J. (1982) Nature 296, 554–566) and Sonic hedgehog (Shh; Riddle, R. D. Johnson, R. L., Laufer, E. and Tabin, C. J. (1993) Cell 25, 1401–1416; Chang, D. T., Lopez, A., von Kessler, D. P., Chiang, C., Simandl, B. K., Zhao, R., Seldin, M. F., Fallon, J. F. and Beachy, P. A. (1994 Development 120, 3339–3353) have been independently postulated as such signals because they can mimic the mirror image digit duplication obtained after grafting polarizing cells to the anterior of limb buds. Here we show that a embryonal carcinoma cell line, P19, transfected with a Shh expression vector shows low polarizing activity, but when cultured with retinoic acid, duplications like those induced by the polarizing region (ZPA) arise. Complete duplications are also obtained by cotransfecting P19 Shh cells with a constitutively active human retinoic acid receptor (VP16-hRARalpha). These data suggest that Shh and RA cooperate in generating ZPA activity and that Shh, while essential, may not act alone in this process.
Collapse
Affiliation(s)
- T Ogura
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
184
|
Rodriguez C, Kos R, Macias D, Abbott UK, Izpisúa Belmonte JC. Shh, HoxD, Bmp-2, and Fgf-4 gene expression during development of the polydactylous talpid2, diplopodia1, and diplopodia4 mutant chick limb buds. DEVELOPMENTAL GENETICS 1996; 19:26-32. [PMID: 8792606 DOI: 10.1002/(sici)1520-6408(1996)19:1<26::aid-dvg3>3.0.co;2-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Several polydactylous mutants affect the pattern of asymmetry along the anteroposterior axis of the vertebrate limb. In talpid2, diplopodia1, and diplopodia4 chick limb mutants, there is a preaxial extension that results in broader limb buds. Talpid2 shows reduction of the long bones and 9-10 syndactylous digits, none of which are specifically recognizable as members of the normal digit complement. In diplopodia1 and diplopodia4 extra digits are present preaxially in addition to the normal digits. This phenotype resembles the duplications obtained by grafting a polarizing region to the anterior margin of the limb bud. The abnormal skeletal pattern along the anteroposterior limb axis in both mutants suggests alterations in the signaling pathways that mediate growth and patterning of the limb. In situ hybridization studies reveal that whereas shh transcripts are restricted to the posterior limb margins, HoxD, Bmp-2, and Fgf-4 genes are ectopically expressed in the anterior region of the talpid2, diplopodia1, and diplopodia4 limb buds. The results obtained give insights into the molecular basis of talpid2 and diplopodia mutations and also into the possible roles of shh, Bmp-2, HoxD, and Fgf-4 genes in vertebrate limb morphogenesis.
Collapse
Affiliation(s)
- C Rodriguez
- Gene Expression Laboratories, Salk Institute, La Jolla, California 92307, USA
| | | | | | | | | |
Collapse
|
185
|
|
186
|
Abstract
The study of limb development has provided insight into pattern formation during vertebrate embryogenesis. Genetic approaches offer powerful ways to identify the critical molecules and their pathways of action required to execute a complex morphogenetic program. We have applied genetic analysis to the process of limb development by studying two mouse mutants, limb deformity (ld) and Strong's luxoid (lst). These mutations confer contrasting phenotypic alterations to the anteroposterior limb pattern. The six mutant ld alleles are fully recessive and result in oligosyndactyly of all four limbs. By contrast, the two mutant lst alleles result in a mirror-image polydactylous limb phenotype inherited in a semidominant fashion. Morphological and molecular analysis of embryonic limbs has shown that the ld and lst alleles affect the extent and distribution of two key signaling centers differentially: the apical ectodermal ridge and the zone of polarizing activity. Molecular characterization of the ld gene has defined a new family of evolutionarily conserved proteins termed the formins. The underlying molecular defect in the lst mutation has not been identified; however, both loci are tightly linked on mouse chromosome 2, suggesting the possibility that they may be allelic. In this study, we have used genetic analysis to examine the epistatic and allelic relationships of ld and lst. We observed that in + ld/lst + double heterozygotes, a single mutant ld allele is able to suppress the semi-dominant polydactylous lst limb phenotype. By segregating the lst and ld loci in a backcross, we observed that these loci recombine and are separated by a genetic distance of approximately 6 cM. Therefore, while our observations demonstrate a genetic interaction between ld and lst, it is probable that ld and lst are not allelic. Instead, lst and ld may be operating either in a linear or in a parallel (bypass) genetic pathway to affect the limb signaling centers.
Collapse
Affiliation(s)
- T F Vogt
- Department of Molecular Biology, Princeton University, New Jersey
| | | |
Collapse
|
187
|
Münsterberg AE, Kitajewski J, Bumcrot DA, McMahon AP, Lassar AB. Combinatorial signaling by Sonic hedgehog and Wnt family members induces myogenic bHLH gene expression in the somite. Genes Dev 1995; 9:2911-22. [PMID: 7498788 DOI: 10.1101/gad.9.23.2911] [Citation(s) in RCA: 396] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have demonstrated previously that a combination of signals from the neural tube and the floor plate/notochord complex synergistically induce the expression of myogenic bHLH genes and myogenic differentiation markers in unspecified somites. In this study we demonstrate that Sonic hedgehog (Shh), which is expressed in the floor plate/notochord, and a subset of Wnt family members (Wnt-1, Wnt-3, and Wnt-4), which are expressed in dorsal regions of the neural tube, mimic the muscle inducing activity of these tissues. In combination, Shh and either Wnt-1 or Wnt-3 are sufficient to induce myogenesis in somitic tissue in vitro. Therefore, we propose that myotome formation in vivo may be directed by the combinatorial activity of Shh secreted by ventral midline tissues (floor plate and notochord) and Wnt ligands secreted by the dorsal neural tube.
Collapse
Affiliation(s)
- A E Münsterberg
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
188
|
Johnson RL, Grenier JK, Scott MP. patched overexpression alters wing disc size and pattern: transcriptional and post-transcriptional effects on hedgehog targets. Development 1995; 121:4161-70. [PMID: 8575316 DOI: 10.1242/dev.121.12.4161] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The membrane protein, Patched, plays a critical role in patterning embryonic and imaginal tissues in Drosophila. patched constitutively inactivates the transcription of target genes such as wingless, decapentaplegic, and patched itself. The secreted protein, Hedgehog, induces transcription of target genes by opposing the Patched signaling pathway. Using the Gal4 UAS system we have overexpressed patched in wing imaginal discs and found that high Patched levels, expressed in either normal or ectopic patterns, result in loss of wing vein patterning in both compartments centering at the anterior/posterior border. In addition, patched inhibits the formation of the mechanosensory neurons, the campaniform sensilla, in the wing blade. The patched wing vein phenotype is modulated by mutations in hedgehog and cubitus interruptus (ci). Patched overexpression inhibits transcription of patched and decapentaplegic and post-transcriptionally decreases the amount of Ci protein at the anterior/posterior boundary. In hedgehogMrt wing discs, which express ectopic hedgehog, Ci levels are correspondingly elevated, suggesting that hedgehog relieves patched repression of Ci accumulation. Protein kinase A also regulates Ci; protein kinase A mutant clones in the anterior compartment have increased levels of Ci protein. Thus patched influences wing disc patterning by decreasing Ci protein levels and inactivating hedgehog target genes in the anterior compartment.
Collapse
Affiliation(s)
- R L Johnson
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, CA 94305-5427, USA
| | | | | |
Collapse
|
189
|
Hall TM, Porter JA, Beachy PA, Leahy DJ. A potential catalytic site revealed by the 1.7-A crystal structure of the amino-terminal signalling domain of Sonic hedgehog. Nature 1995; 378:212-6. [PMID: 7477329 DOI: 10.1038/378212a0] [Citation(s) in RCA: 148] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Within the past few years, members of the hedgehog (hh) family of secreted signalling proteins have emerged as the primary signals generated by certain embryonic patterning centres. In vertebrate embryos, for example, sonic hedgehog expression in the notochord appears to be responsible for the local and long-range induction of ventral cell types within the neural tube and somites (reviewed in refs 1, 2). Protein products encoded by hh family members are synthesized as precursors that undergo autoprocessing to generate an amino-terminal domain that appears to be responsible for both local and long-range signalling activities, and a carboxy-terminal domain that contains the autoprocessing activity. As part of an effort to understand how hh family members participate in cell-to-cell signalling, we have determined and report here the crystal structure at 1.7 A of the amino-terminal domain of murine Sonic hedgehog (Shh-N). The structure revealed a tetrahedrally coordinated zinc ion that appears to be structurally analogous to the zinc coordination sites of zinc hydrolases, such as thermolysin and carboxypeptidase A. This previously unsuspected catalytic site represents a distinct activity from the autoprocessing activity that resides in the carboxy-terminal domain.
Collapse
Affiliation(s)
- T M Hall
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
190
|
Wang MZ, Jin P, Bumcrot DA, Marigo V, McMahon AP, Wang EA, Woolf T, Pang K. Induction of dopaminergic neuron phenotype in the midbrain by Sonic hedgehog protein. Nat Med 1995; 1:1184-8. [PMID: 7584992 DOI: 10.1038/nm1195-1184] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Loss of substantia nigra dopaminergic neurons, which develop from the ventral region of the midbrain, is associated with Parkinson's disease. During embryogenesis, induction of these and other ventral neurons is influenced by interactions with the induction of mesoderm of the notochord and the floor plate, which lies at the ventral midline of the developing CNS. Sonic hedgehog encodes a secreted peptide, which is expressed in notochord and floor plate cells and can induce appropriate ventral cell types in the basal forebrain and spinal cord. Here we demonstrate that Sonic hedgehog is sufficient to induce dopaminergic and other neuronal phenotypes in chick mesencephalic explants in vitro. We find that Sonic hedgehog is a general ventralizing signal in the CNS, the specific response being determined by the receiving cells. These results suggest that Sonic hedgehog may have utility in the induction of clinically important cell types.
Collapse
Affiliation(s)
- M Z Wang
- Ontogeny, Inc., Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
191
|
Chan DC, Wynshaw-Boris A, Leder P. Formin isoforms are differentially expressed in the mouse embryo and are required for normal expression of fgf-4 and shh in the limb bud. Development 1995; 121:3151-62. [PMID: 7588050 DOI: 10.1242/dev.121.10.3151] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mice homozygous for the recessive limb deformity (ld) mutation display both limb and renal defects. The limb defects, oligodactyly and syndactyly, have been traced to improper differentiation of the apical ectodermal ridge (AER) and shortening of the anteroposterior limb axis. The renal defects, usually aplasia, are thought to result from failure of ureteric bud outgrowth. Since the ld locus gives rise to multiple RNA isoforms encoding several different proteins (termed formins), we wished to understand their role in the formation of these organs. Therefore, we first examined the embryonic expression patterns of the four major ld mRNA isoforms. Isoforms I, II and III (all containing a basic amino terminus) are expressed in dorsal root ganglia, cranial ganglia and the developing kidney including the ureteric bud. Isoform IV (containing an acidic amino terminus) is expressed in the notochord, the somites, the apical ectodermal ridge (AER) of the limb bud and the developing kidney including the ureteric bud. Using a lacZ reporter assay in transgenic mice, we show that this differential expression of isoform IV results from distinct regulatory sequences upstream of its first exon. These expression patterns suggest that all four isoforms may be involved in ureteric bud outgrowth, while isoform IV may be involved in AER differentiation. To define further the developmental consequences of the ld limb defect, we analyzed the expression of a number of genes thought to play a role in limb development. Most significantly, we find that although the AERs of ld limb buds express several AER markers, they do not express detectable levels of fibroblast growth factor 4 (fgf-4), which has been proposed to be the AER signal to the mesoderm. Thus we conclude that one or more formins are necessary to initiate and/or maintain fgf-4 production in the distal limb. Since ld limbs form distal structures such as digits, we further conclude that while fgf-4 is capable of supporting distal limb outgrowth in manipulated limbs, it is not essential for distal outgrowth in normal limb development. In addition, ld limbs show a severe decrease in the expression of several mesodermal markers, including sonic hedgehog (shh), a marker for the polarizing region and Hoxd-12, a marker for posterior mesoderm. We propose that incomplete differentiation of the AER in ld limb buds leads to reduction of polarizing activity and defects along the anteroposterior axis.
Collapse
Affiliation(s)
- D C Chan
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
192
|
Kronmiller JE, Nguyen T, Berndt W, Wickson A. Spatial and temporal distribution of sonic hedgehog mRNA in the embryonic mouse mandible by reverse transcription/polymerase chain reaction and in situ hybridization analysis. Arch Oral Biol 1995; 40:831-8. [PMID: 8651887 DOI: 10.1016/0003-9969(95)00053-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Hedgehog genes have recently been implicated in the control of pattern formation in many developing organ system. Vertebrate homologues of the Drosophila hedgehog have been identified in mouse and rate embryos. The temporal regulation of sonic hedgehog (mouse homologue) has previously been studied by Northern analysis of whole embryos with varying results. Sonic hedgehog transcript expression in the mouse mandibular process was now characterized using polymerase chain reaction (PCR) an in situ hybridization techniques. PCR analysis revealed transcripts at gestational days 10 and 11, before the formation of the dental lamina, but not at days 12-14, after tooth buds have formed. Transcripts were localized to, primarily, the epithelium in the presumptive incisor region of the mandibular midline at gestational day 10. No mRNA was detected by in situ hybridization techniques in the presumptive molar regions of odontogenic epithelium. Sonic hedgehog expression may be involved in the regulation of pattern formation through establishment of an incisor-molar axis of polarity.
Collapse
Affiliation(s)
- J E Kronmiller
- Department of Orthodontics, School of Dentistry, Oregon Health Sciences University, Portland 97201, USA
| | | | | | | |
Collapse
|
193
|
Ekker SC, McGrew LL, Lai CJ, Lee JJ, von Kessler DP, Moon RT, Beachy PA. Distinct expression and shared activities of members of the hedgehog gene family of Xenopus laevis. Development 1995; 121:2337-47. [PMID: 7671800 DOI: 10.1242/dev.121.8.2337] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The hedgehog family of signaling proteins is associated with a variety of spatial patterning activities in insects and vertebrates. Here we show that new members of this family isolated from Xenopus laevis are expressed embryonically in patterns suggestive of roles in patterning in the ectoderm, nervous system and somites. Banded hedgehog is expressed throughout the neural plate and subsequently in both the nervous system and in the dermatome of somites. Cephalic hedgehog is expressed in anterior ectoderm and endodermal structures, and sonic hedgehog is expressed in patterns which parallel those in other species. Injection of RNAs encoding Xenopus hedgehogs induces ectopic cement gland formation in embryos. Similar to reported activities of noggin and follistatin, Xenopus hedgehogs share a common ability to induce cement glands in animal cap explants. However, hedgehog activities in naive ectoderm appear capable of acting independently of noggin and follistatin since, although all three are induced by activin in animal cap explants, X-hh expression does not induce noggin or follistatin.
Collapse
Affiliation(s)
- S C Ekker
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
194
|
Abstract
Members of the hedgehog gene family encode a novel class of secreted proteins and are expressed in embryonic cells known to possess important signalling activities in organisms as diverse as flies and chickens. Proteins of the hedgehog family act in these different developmental contexts as both permissive and instructive signals. How this signalling activity is transduced is (as yet) poorly understood, but recent studies point to the involvement of protein kinase A in both Drosophila and vertebrates.
Collapse
Affiliation(s)
- P W Ingham
- Molecular Embryology Laboratory, Imperial Cancer Research Fund, London, UK
| |
Collapse
|
195
|
Abstract
The recent identification of Wnt-7a as a signalling molecule in dorsal/ventral patterning means that we now have a known signal for control of each of the three limb axes. Fibroblast growth factors can allow proximal/distal patterning and Sonic hedgehog gene expression signals anterior/posterior patterning. Networks of these signals not only coordinate cell responses, but also mutually maintain each other. A positive feedback loop is established which coordinates expression of Sonic hedgehog in mesenchyme cells of the polarizing region and Fgf-4 expression in overlying apical ridge ectoderm. Wnt-7a expression in dorsal ectoderm also influences Sonic hedgehog expression in the polarizing region. Initiation of development of a complete limb can be achieved with just one signal, a growth factor.
Collapse
Affiliation(s)
- C Tickle
- Department of Anatomy and Developmental Biology, University College and Middlesex School of Medicine, University College London, UK
| |
Collapse
|
196
|
Ekker SC, Ungar AR, Greenstein P, von Kessler DP, Porter JA, Moon RT, Beachy PA. Patterning activities of vertebrate hedgehog proteins in the developing eye and brain. Curr Biol 1995; 5:944-55. [PMID: 7583153 DOI: 10.1016/s0960-9822(95)00185-0] [Citation(s) in RCA: 457] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The hedgehog (hh) family of secreted signaling proteins is responsible for developmental patterning in a variety of systems, including the neural tube, limbs and somites. Within the neural tube, at the level of the spinal cord, products of the vertebrate gene sonic hedgehog (shh) are proposed to function as a ventral patterning influence, with the capability of inducing floor plate and motor neurons. RESULTS We report the isolation of tiggy-winkle hedgehog (twhh), a novel member of the zebrafish hh gene family. Both twhh and shh are expressed in the ventral midline of the embryonic zebrafish neural tube and brain, but twhh expression becomes limited to the neural tube, whereas shh is also expressed in the notochord. Both genes are expressed in the developing brain, in domains that include a discrete region in the floor of the diencephalon, located between the sites of the future optic stalks. Using pax-2 and pax-6 as markers of proximo-distal fate within the developing eye, we found that ectopic expression of either hh gene promoted proximal fates and suppressed distal fates. In contrast, proximal fates were lost in cyclops mutant embryos, which lack twhh- and shh-expressing forebrain cells. Both twhh and shh proteins undergo autoproteolytic processing in vivo; a fragment corresponding to the amino-terminal cleavage product was sufficient to carry out all signaling activities associated with twhh in eye and brain development. CONCLUSIONS These findings suggest that secreted signals encoded by members of the hedgehog gene family, emanating from the ventral midline of the neural tube, not only play important roles in dorso-ventral patterning of the brain but also appear to constitute an early patterning activity along the proximo-distal axis of the developing eyes.
Collapse
Affiliation(s)
- S C Ekker
- Johns Hopkins University School of Medicine, Department of Molecular Biology and Genetics, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
197
|
Martí E, Takada R, Bumcrot DA, Sasaki H, McMahon AP. Distribution of Sonic hedgehog peptides in the developing chick and mouse embryo. Development 1995; 121:2537-47. [PMID: 7671817 DOI: 10.1242/dev.121.8.2537] [Citation(s) in RCA: 270] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sonic hedgehog (Shh) encodes a signal that is implicated in both short- and long-range interactions that pattern the vertebrate central nervous system (CNS), somite and limb. Studies in vitro indicate that Shh protein undergoes an internal cleavage to generate two secreted peptides. We have investigated the distribution of Shh peptides with respect to these patterning events using peptide-specific antibodies. Immunostaining of chick and mouse embryos indicates that Shh peptides are expressed in the notochord, floor plate and posterior mesenchyme of the limb at the appropriate times for their postulated patterning functions. The amino peptide that is implicated in intercellular signaling is secreted but remains tightly associated with expressing cells. The distribution of peptides in the ventral CNS is polarized with the highest levels of protein accumulating towards the luminal surface. Interestingly, Shh expression extends beyond the floor plate, into ventrolateral regions from which some motor neuron precursors are emerging. In the limb bud, peptides are restricted to a small region of posterior-distal mesenchyme in close association with the apical ectodermal ridge; a region that extends 50–75 microns along the anterior-posterior axis. Temporal expression of Shh peptides is consistent with induction of sclerotome in somites and floor plate and motor neurons in the CNS, as well as the regulation of anterior-posterior polarity in the limb. However, we can find no direct evidence for long-range diffusion of the 19 × 10(3) Mr peptide which is thought to mediate both short- and long-range cell interactions. Thus, either long-range signaling is mediated indirectly by the activation of other signals, or alternatively the low levels of diffusing peptide are undetectable using available techniques.
Collapse
Affiliation(s)
- E Martí
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
198
|
Lai CJ, Ekker SC, Beachy PA, Moon RT. Patterning of the neural ectoderm of Xenopus laevis by the amino-terminal product of hedgehog autoproteolytic cleavage. Development 1995; 121:2349-60. [PMID: 7671801 DOI: 10.1242/dev.121.8.2349] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The patterns of embryonic expression and the activities of Xenopus members of the hedgehog gene family are suggestive of role in neural induction and patterning. We report that these hedgehog polypeptides undergo autoproteolytic cleavage. Injection into embryos of mRNAs encoding Xenopus banded-hedgehog (X-bhh) or the amino-terminal domain (N) demonstrates that the direct inductive activities of X-bhh are encoded by N. In addition, both N and X-bhh pattern neural tissue by elevating expression of anterior neural genes. Unexpectedly, an internal deletion of X-bhh (delta N-C) was found to block the activity of X-bhh and N in explants and to reduce dorsoanterior structures in embryos. As elevated hedgehog activity increases the expression of anterior neural genes, and as delta N-C reduces dorsoanterior structures, these complementary data support a role for hedgehog in neural induction and anteroposterior patterning.
Collapse
Affiliation(s)
- C J Lai
- Department of Pharmacology, University of Washington School of Medicine, Seattle 98195, USA
| | | | | | | |
Collapse
|
199
|
Chan DC, Laufer E, Tabin C, Leder P. Polydactylous limbs in Strong's Luxoid mice result from ectopic polarizing activity. Development 1995; 121:1971-8. [PMID: 7635045 DOI: 10.1242/dev.121.7.1971] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Strong's Luxoid (1stD) is a semidominant mouse mutation in which heterozygotes show preaxial hindlimb polydactyly, and homozygotes show fore- and hindlimb polydactyly. The digit patterns of these polydactylous limbs resemble those caused by polarizing grafts, since additional digits with posterior character are present at the anterior side of the limb. Such observations suggest that 1stD limb buds might contain a genetically determined ectopic region of polarizing activity. Accordingly, we show that mutant embryos ectopically express the pattern-determining genes fibroblast growth factor 4 (fgf-4), sonic hedgehog (shh), and Hoxd-12 in the anterior region of the limb. Further, we show that anterior mesoderm from mutant limbs exhibits polarizing activity when grafted into host chicken limbs. In contrast to an experimentally derived polydactylous transgenic mouse, forelimbs of homozygotes show a normal pattern of Hoxb-8 expression, indicating that the duplication of polarizing tissue here occurs downstream or independently of Hoxb-8. We suggest that the 1st gene product is involved in anteroposterior axis formation during normal limb development.
Collapse
Affiliation(s)
- D C Chan
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
200
|
Masuya H, Sagai T, Wakana S, Moriwaki K, Shiroishi T. A duplicated zone of polarizing activity in polydactylous mouse mutants. Genes Dev 1995; 9:1645-53. [PMID: 7628698 DOI: 10.1101/gad.9.13.1645] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The positional signaling along the anteroposterior axis of the developing vertebrate limb is provided by the zone of polarizing activity (ZPA) located at the posterior margin. Recently, it was established that the Sonic hedgehog (Shh) mediates ZPA activity. Here we report that a new mouse mutant, Recombination induced mutant 4 (Rim4), and two old mutants, Hemimelic extra toes (Hx) and Extra toes (Xt), exhibit mirror-image duplications of the skeletal pattern of the digits. In situ hybridization of the embryos of these mutants revealed ectopic expression of Shh and fibroblast growth factor-4 (Fgf-4) genes at the anterior margin of limb buds. The new mutation, Rim4, was mapped to chromosome 6 with linkage to HoxAbut segregated from HoxA. No linkage to other known polydactylous mutations was detected. In this mutant, ectopic expression of the Hoxd-11 gene, thought to be downstream of ZPA, was also observed at the anterior margin of the limb buds. All results indicate the presence of an additional ZPA at the anterior margin of limb buds in these mutants. Thus, it appears that multiple endogenous genes regulate the spatial localization of the ZPA in the developing mouse limb bud.
Collapse
Affiliation(s)
- H Masuya
- Mammalian Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| | | | | | | | | |
Collapse
|