151
|
Maguire S, Lohman GJS, Guan S. A low-bias and sensitive small RNA library preparation method using randomized splint ligation. Nucleic Acids Res 2020; 48:e80. [PMID: 32496547 PMCID: PMC7641310 DOI: 10.1093/nar/gkaa480] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/22/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022] Open
Abstract
Small RNAs are important regulators of gene expression and are involved in human development and disease. Next generation sequencing (NGS) allows for scalable, genome-wide studies of small RNA; however, current methods are challenged by low sensitivity and high bias, limiting their ability to capture an accurate representation of the cellular small RNA population. Several studies have shown that this bias primarily arises during the ligation of single-strand adapters during library preparation, and that this ligation bias is magnified by 2′-O-methyl modifications (2′OMe) on the 3′ terminal nucleotide. In this study, we developed a novel library preparation process using randomized splint ligation with a cleavable adapter, a design which resolves previous challenges associated with this ligation strategy. We show that a randomized splint ligation based workflow can reduce bias and increase the sensitivity of small RNA sequencing for a wide variety of small RNAs, including microRNA (miRNA) and tRNA fragments as well as 2′OMe modified RNA, including Piwi-interacting RNA and plant miRNA. Finally, we demonstrate that this workflow detects more differentially expressed miRNA between tumorous and matched normal tissues. Overall, this library preparation process allows for highly accurate small RNA sequencing and will enable studies of 2′OMe modified RNA with new levels of detail.
Collapse
Affiliation(s)
- Sean Maguire
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | | | - Shengxi Guan
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| |
Collapse
|
152
|
Systematic analysis of long intergenic non-coding RNAs in C. elegans germline uncovers roles in somatic growth. RNA Biol 2020; 18:435-445. [PMID: 32892705 DOI: 10.1080/15476286.2020.1814549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Long intergenic non-coding RNAs (lincRNAs) are transcripts longer than 200 nucleotides that are transcribed from non-coding loci yet undergo biosynthesis similar to coding mRNAs. The disproportional number of lincRNAs expressed in testes suggests that lincRNAs are important during gametogenesis, but experimental evidence has implicated very few lincRNAs in this process. We took advantage of the relatively limited number of lincRNAs in the genome of the nematode Caenorhabditis elegans to systematically analyse the functions of lincRNAs during meiosis. We deleted six lincRNA genes that are highly and dynamically expressed in the C. elegans gonad and tested the effects on central meiotic processes. Surprisingly, whereas the lincRNA deletions did not strongly impact fertility, germline apoptosis, crossovers, or synapsis, linc-4 was required for somatic growth. Slower growth was observed in linc-4-deletion mutants and in worms depleted of linc-4 using RNAi, indicating that linc-4 transcripts are required for this post-embryonic process. Unexpectedly, analysis of worms depleted of linc-4 in soma versus germline showed that the somatic role stems from linc-4 expression in germline cells. This unique feature suggests that some lincRNAs, like some small non-coding RNAs, are required for germ-soma interactions.
Collapse
|
153
|
Habermann K, Tiwari B, Krantz M, Adler SO, Klipp E, Arif MA, Frank W. Identification of small non-coding RNAs responsive to GUN1 and GUN5 related retrograde signals in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:138-155. [PMID: 32639635 DOI: 10.1111/tpj.14912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 06/10/2020] [Accepted: 06/17/2020] [Indexed: 05/03/2023]
Abstract
Chloroplast perturbations activate retrograde signalling pathways, causing dynamic changes of gene expression. Besides transcriptional control of gene expression, different classes of small non-coding RNAs (sRNAs) act in gene expression control, but comprehensive analyses regarding their role in retrograde signalling are lacking. We performed sRNA profiling in response to norflurazon (NF), which provokes retrograde signals, in Arabidopsis thaliana wild type (WT) and the two retrograde signalling mutants gun1 and gun5. The RNA samples were also used for mRNA and long non-coding RNA profiling to link altered sRNA levels to changes in the expression of their cognate target RNAs. We identified 122 sRNAs from all known sRNA classes that were responsive to NF in the WT. Strikingly, 142 and 213 sRNAs were found to be differentially regulated in both mutants, indicating a retrograde control of these sRNAs. Concomitant with the changes in sRNA expression, we detected about 1500 differentially expressed mRNAs in the NF-treated WT and around 900 and 1400 mRNAs that were differentially regulated in the gun1 and gun5 mutants, with a high proportion (~30%) of genes encoding plastid proteins. Furthermore, around 20% of predicted miRNA targets code for plastid-localised proteins. Among the sRNA-target pairs, we identified pairs with an anticorrelated expression as well pairs showing other expressional relations, pointing to a role of sRNAs in balancing transcriptional changes upon retrograde signals. Based on the comprehensive changes in sRNA expression, we assume a considerable impact of sRNAs in retrograde-dependent transcriptional changes to adjust plastidic and nuclear gene expression.
Collapse
Affiliation(s)
- Kristin Habermann
- Plant Molecular Cell Biology, Department Biology I, Ludwig-Maximilians-Universität München, LMU Biocenter, Planegg-Martinsried, 82152, Germany
| | - Bhavika Tiwari
- Plant Molecular Cell Biology, Department Biology I, Ludwig-Maximilians-Universität München, LMU Biocenter, Planegg-Martinsried, 82152, Germany
| | - Maria Krantz
- Department Biologie, Bereich Theoretische Biophysik, Humboldt-Universität Berlin, Berlin, 10115, Germany
| | - Stephan O Adler
- Department Biologie, Bereich Theoretische Biophysik, Humboldt-Universität Berlin, Berlin, 10115, Germany
| | - Edda Klipp
- Department Biologie, Bereich Theoretische Biophysik, Humboldt-Universität Berlin, Berlin, 10115, Germany
| | - M Asif Arif
- Plant Molecular Cell Biology, Department Biology I, Ludwig-Maximilians-Universität München, LMU Biocenter, Planegg-Martinsried, 82152, Germany
| | - Wolfgang Frank
- Plant Molecular Cell Biology, Department Biology I, Ludwig-Maximilians-Universität München, LMU Biocenter, Planegg-Martinsried, 82152, Germany
| |
Collapse
|
154
|
Panda K, Slotkin RK. Long-Read cDNA Sequencing Enables a "Gene-Like" Transcript Annotation of Transposable Elements. THE PLANT CELL 2020; 32:2687-2698. [PMID: 32647069 PMCID: PMC7474280 DOI: 10.1105/tpc.20.00115] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/11/2020] [Accepted: 06/25/2020] [Indexed: 05/05/2023]
Abstract
Transcript-based annotations of genes facilitate both genome-wide analyses and detailed single-locus research. In contrast, transposable element (TE) annotations are rudimentary, consisting of information only on TE location and type. The repetitiveness and limited annotation of TEs prevent the ability to distinguish between potentially functional expressed elements and degraded copies. To improve genome-wide TE bioinformatics, we performed long-read sequencing of cDNAs from Arabidopsis (Arabidopsis thaliana) lines deficient in multiple layers of TE repression. These uniquely mapping transcripts were used to identify the set of TEs able to generate polyadenylated RNAs and create a new transcript-based annotation of TEs that we have layered upon the existing high-quality community standard annotation. We used this annotation to reduce the bioinformatic complexity associated with multimapping reads from short-read RNA sequencing experiments, and we show that this improvement is expanded in a TE-rich genome such as maize (Zea mays). Our TE annotation also enables the testing of specific standing hypotheses in the TE field. We demonstrate that inaccurate TE splicing does not trigger small RNA production, and the cell more strongly targets DNA methylation to TEs that have the potential to make mRNAs. This work provides a transcript-based TE annotation for Arabidopsis and maize, which serves as a blueprint to reduce the bioinformatic complexity associated with repetitive TEs in any organism.
Collapse
Affiliation(s)
- Kaushik Panda
- Donald Danforth Plant Science Center, St. Louis, 63132 Missouri
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, St. Louis, 63132 Missouri
- Division of Biological Sciences, University of Missouri, Columbia, 63132 Missouri
| |
Collapse
|
155
|
Wang R, Liu C, Li Q, Chen Z, Sun S, Wang X. Spatiotemporal Resolved Leaf Angle Establishment Improves Rice Grain Yield via Controlling Population Density. iScience 2020; 23:101489. [PMID: 32898833 PMCID: PMC7486458 DOI: 10.1016/j.isci.2020.101489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/10/2020] [Accepted: 08/18/2020] [Indexed: 11/15/2022] Open
Abstract
Leaf angle is mainly determined by the lamina joint (LJ) and contributes to ideal crop architecture for high yield. Here, we dissected five successive stages with distinct cytological features of LJs spanning organogenesis to leaf angle formation and obtained the underlying stage-specific mRNAs and small RNAs, which well explained the cytological dynamics during LJ organogenesis and leaf angle plasticity. Combining the gene coexpression correlation with high-throughput promoter analysis, we identified a set of transcription factors (TFs) determining the stage- and/or cytological structure-specific profiles. The functional studies of these TFs demonstrated that cytological dynamics determined leaf angle and that the knockout rice of these TFs with erect leaves significantly enhanced yield by maintaining the proper tiller number under dense planting. This work revealed the high-resolution mechanisms of how the cytological dynamics of LJ determined leaf erectness and served as a valuable resource to remodel rice architecture for high yield by controlling population density.
Collapse
Affiliation(s)
- Rongna Wang
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Science, Henan University, Kaifeng 475004, China
| | - Chang Liu
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Science, Henan University, Kaifeng 475004, China
| | - Qinzhong Li
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhina Chen
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shiyong Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Science, Henan University, Kaifeng 475004, China.
| | - Xuelu Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Science, Henan University, Kaifeng 475004, China.
| |
Collapse
|
156
|
White R, Kumar S, Chow FWN, Robertson E, Hayes KS, Grencis RK, Duque-Correa MA, Buck AH. Extracellular vesicles from Heligmosomoides bakeri and Trichuris muris contain distinct microRNA families and small RNAs that could underpin different functions in the host. Int J Parasitol 2020; 50:719-729. [PMID: 32659276 PMCID: PMC7435682 DOI: 10.1016/j.ijpara.2020.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 01/07/2023]
Abstract
Extracellular vesicles (EVs) have emerged as a ubiquitous component of helminth excretory-secretory products that can deliver parasite molecules to host cells to elicit immunomodulatory effects. RNAs are one type of cargo molecule that can underpin EV functions, hence there is extensive interest in characterising the RNAs that are present in EVs from different helminth species. Here we outline methods for identifying all of the small RNAs (sRNA) in helminth EVs and address how different methodologies may influence the sRNAs detected. We show that different EV purification methods introduce relatively little variation in the sRNAs that are detected, and that different RNA library preparation methods yielded larger differences. We compared the EV sRNAs in the gastrointestinal nematode Heligmosomoides bakeri with those in EVs from the distantly related gastrointestinal nematode Trichuris muris, and found that many of the sRNAs in both organisms derive from repetitive elements or intergenic regions. However, only in H. bakeri do these RNAs contain a 5' triphosphate, and Guanine (G) starting nucleotide, consistent with their biogenesis by RNA-dependent RNA polymerases (RdRPs). Distinct microRNA (miRNA) families are carried in EVs from each parasite, with H. bakeri EVs specific for miR-71, miR-49, miR-63, miR-259 and miR-240 gene families, and T. muris EVs specific for miR-1, miR-1822 and miR-252, and enriched for miR-59, miR-72 and miR-44 families, with the miR-9, miR-10, miR-80 and let-7 families abundant in both. We found a larger proportion of miRNA reads derive from the mouse host in T. muris EVs, compared with H. bakeri EVs. Our report underscores potential biases in the sRNAs sequenced based on library preparation methods, suggests specific nematode lineages have evolved distinct sRNA synthesis/export pathways, and highlights specific differences in EV miRNAs from H. bakeri and T. muris that may underpin functional adaptation to their host niches.
Collapse
Affiliation(s)
- Ruby White
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sujai Kumar
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Franklin Wang-Ngai Chow
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Elaine Robertson
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Kelly S Hayes
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell Matrix Research and Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Richard K Grencis
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell Matrix Research and Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Amy H Buck
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.
| |
Collapse
|
157
|
Liu Y, Du H, Li P, Shen Y, Peng H, Liu S, Zhou GA, Zhang H, Liu Z, Shi M, Huang X, Li Y, Zhang M, Wang Z, Zhu B, Han B, Liang C, Tian Z. Pan-Genome of Wild and Cultivated Soybeans. Cell 2020; 182:162-176.e13. [PMID: 32553274 DOI: 10.1016/j.cell.2020.05.023] [Citation(s) in RCA: 427] [Impact Index Per Article: 106.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/07/2020] [Accepted: 05/12/2020] [Indexed: 12/21/2022]
Abstract
Soybean is one of the most important vegetable oil and protein feed crops. To capture the entire genomic diversity, it is needed to construct a complete high-quality pan-genome from diverse soybean accessions. In this study, we performed individual de novo genome assemblies for 26 representative soybeans that were selected from 2,898 deeply sequenced accessions. Using these assembled genomes together with three previously reported genomes, we constructed a graph-based genome and performed pan-genome analysis, which identified numerous genetic variations that cannot be detected by direct mapping of short sequence reads onto a single reference genome. The structural variations from the 2,898 accessions that were genotyped based on the graph-based genome and the RNA sequencing (RNA-seq) data from the representative 26 accessions helped to link genetic variations to candidate genes that are responsible for important traits. This pan-genome resource will promote evolutionary and functional genomics studies in soybean.
Collapse
Affiliation(s)
- Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huilong Du
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengcheng Li
- Berry Genomics Corporation, Beijing 100015, China
| | - Yanting Shen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Hua Peng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Guo-An Zhou
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Zhi Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao Shi
- Berry Genomics Corporation, Beijing 100015, China
| | - Xuehui Huang
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yan Li
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Min Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zheng Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Baoge Zhu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Han
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chengzhi Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
158
|
Tiwari B, Habermann K, Arif MA, Weil HL, Garcia-Molina A, Kleine T, Mühlhaus T, Frank W. Identification of small RNAs during cold acclimation in Arabidopsis thaliana. BMC PLANT BIOLOGY 2020; 20:298. [PMID: 32600430 PMCID: PMC7325139 DOI: 10.1186/s12870-020-02511-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/22/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Cold stress causes dynamic changes in gene expression that are partially caused by small non-coding RNAs since they regulate protein coding transcripts and act in epigenetic gene silencing pathways. Thus, a detailed analysis of transcriptional changes of small RNAs (sRNAs) belonging to all known sRNA classes such as microRNAs (miRNA) and small interfering RNA (siRNAs) in response to cold contributes to an understanding of cold-related transcriptome changes. RESULT We subjected A. thaliana plants to cold acclimation conditions (4 °C) and analyzed the sRNA transcriptomes after 3 h, 6 h and 2 d. We found 93 cold responsive differentially expressed miRNAs and only 14 of these were previously shown to be cold responsive. We performed miRNA target prediction for all differentially expressed miRNAs and a GO analysis revealed the overrepresentation of miRNA-targeted transcripts that code for proteins acting in transcriptional regulation. We also identified a large number of differentially expressed cis- and trans-nat-siRNAs, as well as sRNAs that are derived from long non-coding RNAs. By combining the results of sRNA and mRNA profiling with miRNA target predictions and publicly available information on transcription factors, we reconstructed a cold-specific, miRNA and transcription factor dependent gene regulatory network. We verified the validity of links in the network by testing its ability to predict target gene expression under cold acclimation. CONCLUSION In A. thaliana, miRNAs and sRNAs derived from cis- and trans-NAT gene pairs and sRNAs derived from lncRNAs play an important role in regulating gene expression in cold acclimation conditions. This study provides a fundamental database to deepen our knowledge and understanding of regulatory networks in cold acclimation.
Collapse
Affiliation(s)
- Bhavika Tiwari
- Department of Biology I, Plant Molecular Cell Biology, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Kristin Habermann
- Department of Biology I, Plant Molecular Cell Biology, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - M. Asif Arif
- Department of Biology I, Plant Molecular Cell Biology, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Heinrich Lukas Weil
- Computational Systems Biology, Technische Universität Kaiserslautern, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany
| | - Antoni Garcia-Molina
- Department of Biology I, Plant Molecular Biology, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Department of Biology I, Plant Molecular Biology, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, Technische Universität Kaiserslautern, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany
| | - Wolfgang Frank
- Department of Biology I, Plant Molecular Cell Biology, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
159
|
Abundant expression of maternal siRNAs is a conserved feature of seed development. Proc Natl Acad Sci U S A 2020; 117:15305-15315. [PMID: 32541052 DOI: 10.1073/pnas.2001332117] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Small RNAs are abundant in plant reproductive tissues, especially 24-nucleotide (nt) small interfering RNAs (siRNAs). Most 24-nt siRNAs are dependent on RNA Pol IV and RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) and establish DNA methylation at thousands of genomic loci in a process called RNA-directed DNA methylation (RdDM). In Brassica rapa, RdDM is required in the maternal sporophyte for successful seed development. Here, we demonstrate that a small number of siRNA loci account for over 90% of siRNA expression during B. rapa seed development. These loci exhibit unique characteristics with regard to their copy number and association with genomic features, but they resemble canonical 24-nt siRNA loci in their dependence on RNA Pol IV/RDR2 and role in RdDM. These loci are expressed in ovules before fertilization and in the seed coat, embryo, and endosperm following fertilization. We observed a similar pattern of 24-nt siRNA expression in diverse angiosperms despite rapid sequence evolution at siren loci. In the endosperm, siren siRNAs show a marked maternal bias, and siren expression in maternal sporophytic tissues is required for siren siRNA accumulation. Together, these results demonstrate that seed development occurs under the influence of abundant maternal siRNAs that might be transported to, and function in, filial tissues.
Collapse
|
160
|
Dukowic-Schulze S, Sundararajan A, Ramaraj T, Kianian S, Pawlowski WP, Mudge J, Chen C. Corrigendum: Novel Meiotic miRNAs and Indications for a Role of PhasiRNAs in Meiosis. FRONTIERS IN PLANT SCIENCE 2020; 11:653. [PMID: 32582234 PMCID: PMC7290127 DOI: 10.3389/fpls.2020.00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
[This corrects the article DOI: 10.3389/fpls.2016.00762.].
Collapse
Affiliation(s)
| | | | | | - Shahryar Kianian
- Cereal Disease Laboratory, United States Department of Agriculture - Agricultural Research Service, St. Paul, MN, United States
| | - Wojciech P. Pawlowski
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Joann Mudge
- National Center for Genome Resources, Santa Fe, NM, United States
| | - Changbin Chen
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
161
|
Aparicio-Puerta E, Lebrón R, Rueda A, Gómez-Martín C, Giannoukakos S, Jaspez D, Medina JM, Zubkovic A, Jurak I, Fromm B, Marchal JA, Oliver J, Hackenberg M. sRNAbench and sRNAtoolbox 2019: intuitive fast small RNA profiling and differential expression. Nucleic Acids Res 2020; 47:W530-W535. [PMID: 31114926 PMCID: PMC6602500 DOI: 10.1093/nar/gkz415] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/28/2019] [Accepted: 05/14/2019] [Indexed: 01/08/2023] Open
Abstract
Since the original publication of sRNAtoolbox in 2015, small RNA research experienced notable advances in different directions. New protocols for small RNA sequencing have become available to address important issues such as adapter ligation bias, PCR amplification artefacts or to include internal controls such as spike-in sequences. New microRNA reference databases were developed with different foci, either prioritizing accuracy (low number of false positives) or completeness (low number of false negatives). Additionally, other small RNA molecules as well as microRNA sequence and length variants (isomiRs) have continued to gain importance. Finally, the number of microRNA sequencing studies deposited in GEO nearly triplicated from 2014 (280) to 2018 (764). These developments imply that fast and easy-to-use tools for expression profiling and subsequent downstream analysis of miRNA-seq data are essential to many researchers. Key features in this sRNAtoolbox release include addition of all major RNA library preparation protocols to sRNAbench and improvements in sRNAde, a tool that summarizes several aspects of small RNA sequencing studies including the detection of consensus differential expression. A special emphasis was put on the user-friendliness of the tools, for instance sRNAbench now supports parallel launching of several jobs to improve reproducibility and user time efficiency.
Collapse
Affiliation(s)
- Ernesto Aparicio-Puerta
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain.,Lab. de Bioinformática, Centro de Investigación Biomédica (CIBM), PTS, Avda. del Conocimiento s/n, 18100 Granada. Spain.,Department of Human Anatomy and Embryology, Institute of Biopathology and Regenerative Medicine, Excellence Research Unit 'Modeling Nature' (MNat), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Spain; Conocimiento s/n, 18100 Granada. Spain
| | - Ricardo Lebrón
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain.,Lab. de Bioinformática, Centro de Investigación Biomédica (CIBM), PTS, Avda. del Conocimiento s/n, 18100 Granada. Spain
| | - Antonio Rueda
- Genomics England, Charterhouse Square, London EC1M 6BQ, UK
| | - Cristina Gómez-Martín
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain.,Lab. de Bioinformática, Centro de Investigación Biomédica (CIBM), PTS, Avda. del Conocimiento s/n, 18100 Granada. Spain
| | - Stavros Giannoukakos
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain.,Lab. de Bioinformática, Centro de Investigación Biomédica (CIBM), PTS, Avda. del Conocimiento s/n, 18100 Granada. Spain
| | - David Jaspez
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - José María Medina
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain.,Lab. de Bioinformática, Centro de Investigación Biomédica (CIBM), PTS, Avda. del Conocimiento s/n, 18100 Granada. Spain
| | | | - Igor Jurak
- Department of Biotechnology, University of Rijeka, Croatia
| | - Bastian Fromm
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Juan Antonio Marchal
- Department of Human Anatomy and Embryology, Institute of Biopathology and Regenerative Medicine, Excellence Research Unit 'Modeling Nature' (MNat), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Spain; Conocimiento s/n, 18100 Granada. Spain
| | - José Oliver
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain.,Lab. de Bioinformática, Centro de Investigación Biomédica (CIBM), PTS, Avda. del Conocimiento s/n, 18100 Granada. Spain
| | - Michael Hackenberg
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain.,Lab. de Bioinformática, Centro de Investigación Biomédica (CIBM), PTS, Avda. del Conocimiento s/n, 18100 Granada. Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Spain; Conocimiento s/n, 18100 Granada. Spain
| |
Collapse
|
162
|
Glazinska P, Kulasek M, Glinkowski W, Wysocka M, Kosiński JG. LuluDB-The Database Created Based on Small RNA, Transcriptome, and Degradome Sequencing Shows the Wide Landscape of Non-coding and Coding RNA in Yellow Lupine ( Lupinus luteus L.) Flowers and Pods. Front Genet 2020; 11:455. [PMID: 32499815 PMCID: PMC7242762 DOI: 10.3389/fgene.2020.00455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/14/2020] [Indexed: 11/13/2022] Open
Abstract
Yellow lupine (Lupinus luteus L.) belongs to a legume family that benefits from symbiosis with nitrogen-fixing bacteria. Its seeds are rich in protein, which makes it a valuable food source for animals and humans. Yellow lupine is also the model plant for basic research on nodulation or abscission of organs. Nevertheless, the knowledge about the molecular regulatory mechanisms of its generative development is still incomplete. The RNA-Seq technique is becoming more prominent in high-throughput identification and expression profiling of both coding and non-coding RNA sequences. However, the huge amount of data generated with this method may discourage other scientific groups from making full use of them. To overcome this inconvenience, we have created a database containing analysis-ready information about non-coding and coding L. luteus RNA sequences (LuluDB). LuluDB was created on the basis of RNA-Seq analysis of small RNA, transcriptome, and degradome libraries obtained from yellow lupine cv. Taper flowers, pod walls, and seeds in various stages of development, flower pedicels, and pods undergoing abscission or maintained on the plant. It contains sequences of miRNAs and phased siRNAs identified in L. luteus, information about their expression in individual samples, and their target sequences. LuluDB also contains identified lncRNAs and protein-coding RNA sequences with their organ expression and annotations to widely used databases like GO, KEGG, NCBI, Rfam, Pfam, etc. The database also provides sequence homology search by BLAST using, e.g., an unknown sequence as a query. To present the full capabilities offered by our database, we performed a case study concerning transcripts annotated as DCL 1–4 (DICER LIKE 1–4) homologs involved in small non-coding RNA biogenesis and identified miRNAs that most likely regulate DCL1 and DCL2 expression in yellow lupine. LuluDB is available at http://luluseqdb.umk.pl/basic/web/index.php.
Collapse
Affiliation(s)
- Paulina Glazinska
- Department of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, Poland.,Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
| | - Milena Kulasek
- Department of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, Poland.,Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
| | - Wojciech Glinkowski
- Department of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, Poland.,Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
| | - Marta Wysocka
- Department of Computational Biology, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Jan Grzegorz Kosiński
- Department of Computational Biology, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
163
|
Plant 22-nt siRNAs mediate translational repression and stress adaptation. Nature 2020; 581:89-93. [PMID: 32376953 DOI: 10.1038/s41586-020-2231-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 02/25/2020] [Indexed: 11/08/2022]
Abstract
Small interfering RNAs (siRNAs) are essential for proper development and immunity in eukaryotes1. Plants produce siRNAs with lengths of 21, 22 or 24 nucleotides. The 21- and 24-nucleotide species mediate cleavage of messenger RNAs and DNA methylation2,3, respectively, but the biological functions of the 22-nucleotide siRNAs remain unknown. Here we report the identification and characterization of a group of endogenous 22-nucleotide siRNAs that are generated by the DICER-LIKE 2 (DCL2) protein in plants. When cytoplasmic RNA decay and DCL4 are deficient, the resulting massive accumulation of 22-nucleotide siRNAs causes pleiotropic growth disorders, including severe dwarfism, meristem defects and pigmentation. Notably, two genes that encode nitrate reductases-NIA1 and NIA2-produce nearly half of the 22-nucleotide siRNAs. Production of 22-nucleotide siRNAs triggers the amplification of gene silencing and induces translational repression both gene specifically and globally. Moreover, these 22-nucleotide siRNAs preferentially accumulate upon environmental stress, especially those siRNAs derived from NIA1/2, which act to restrain translation, inhibit plant growth and enhance stress responses. Thus, our research uncovers the unique properties of 22-nucleotide siRNAs, and reveals their importance in plant adaptation to environmental stresses.
Collapse
|
164
|
Morgado L, Johannes F. Computational tools for plant small RNA detection and categorization. Brief Bioinform 2020; 20:1181-1192. [PMID: 29059285 PMCID: PMC6781577 DOI: 10.1093/bib/bbx136] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/09/2017] [Indexed: 01/06/2023] Open
Abstract
Small RNAs (sRNAs) are important short-length molecules with regulatory functions essential for plant development and plasticity. High-throughput sequencing of total sRNA populations has revealed that the largest share of sRNA remains uncategorized. To better understand the role of sRNA-mediated cellular regulation, it is necessary to create accurate and comprehensive catalogues of sRNA and their sequence features, a task that currently relies on nontrivial bioinformatic approaches. Although a large number of computational tools have been developed to predict features of sRNA sequences, these tools are mostly dedicated to microRNAs and none integrates the functionalities necessary to describe units from all sRNA pathways thus far discovered in plants. Here, we review the different classes of sRNA found in plants and describe available bioinformatics tools that can help in their detection and categorization.
Collapse
Affiliation(s)
- Lionel Morgado
- Corresponding author: Lionel Morgado, Groningen Bioinformatics Centre, University of Groningen, Nijenborgh 25 7, 9747 AG Groningen, The Netherlands. Tel.: +31 685 585 827; E-mail:
| | | |
Collapse
|
165
|
Lee SC, Ernst E, Berube B, Borges F, Parent JS, Ledon P, Schorn A, Martienssen RA. Arabidopsis retrotransposon virus-like particles and their regulation by epigenetically activated small RNA. Genome Res 2020; 30:576-588. [PMID: 32303559 PMCID: PMC7197481 DOI: 10.1101/gr.259044.119] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
In Arabidopsis, LTR retrotransposons are activated by mutations in the chromatin gene DECREASE in DNA METHYLATION 1 (DDM1), giving rise to 21- to 22-nt epigenetically activated siRNA (easiRNA) that depend on RNA DEPENDENT RNA POLYMERASE 6 (RDR6). We purified virus-like particles (VLPs) from ddm1 and ddm1rdr6 mutants in which genomic RNA is reverse transcribed into complementary DNA. High-throughput short-read and long-read sequencing of VLP DNA (VLP DNA-seq) revealed a comprehensive catalog of active LTR retrotransposons without the need for mapping transposition, as well as independent of genomic copy number. Linear replication intermediates of the functionally intact COPIA element EVADE revealed multiple central polypurine tracts (cPPTs), a feature shared with HIV in which cPPTs promote nuclear localization. For one member of the ATCOPIA52 subfamily (SISYPHUS), cPPT intermediates were not observed, but abundant circular DNA indicated transposon "suicide" by auto-integration within the VLP. easiRNA targeted EVADE genomic RNA, polysome association of GYPSY (ATHILA) subgenomic RNA, and transcription via histone H3 lysine-9 dimethylation. VLP DNA-seq provides a comprehensive landscape of LTR retrotransposons and their control at transcriptional, post-transcriptional, and reverse transcriptional levels.
Collapse
Affiliation(s)
- Seung Cho Lee
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Evan Ernst
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Benjamin Berube
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Filipe Borges
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Jean-Sebastien Parent
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Paul Ledon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Andrea Schorn
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Robert A Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
166
|
Patil PG, Singh NV, Parashuram S, Bohra A, Mundewadikar DM, Sangnure VR, Babu KD, Sharma J. Genome wide identification, characterization and validation of novel miRNA-based SSR markers in pomegranate ( Punica granatum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:683-696. [PMID: 32255932 PMCID: PMC7113349 DOI: 10.1007/s12298-020-00790-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/13/2020] [Accepted: 02/25/2020] [Indexed: 05/21/2023]
Abstract
A total of 17,439 mature miRNAs (~ 21 nt) earlier generated through RNA seq in the pomegranate were used for in silico analysis. After complexity reduction, a total of 1922 representative mature miRNAs were selected and used as query sequences against pomegranate genome to retrieve 2540 homologous contigs with flanking regions (~ 800). By using pre-miRNA prediction web server, a total of 1028 true contigs harbouring pri-miRNAs encoding 1162 pre-miRNAs were identified. Survey of these sequences for SSRs yielded a total of 1358 and 238 SSRs specific to pri-miRNA and pre-miRNAs, respectively. Of these, primer pairs were designed for 897 pri-miRNA and 168 pre-miRNA SSRs. In pri-miRNA sequences, hexa-nucleotides repeats were found to be most abundant (44.18%) followed by mono- (18.41%) and di-nucleotide (17.01%), which is also observed in pre-miRNA sequences. Further, a set of 51 randomly selected pre-miRNA-SSRs was examined for marker polymorphism. The experimental validation of these markers on eight pomegranate genotypes demonstrated 92.15% polymorphism. Utility of these functional markers was confirmed via examination of genetic diversity of 18 pomegranate genotypes using 15 miRNA-SSRs. Further, potential application of miRNA-SSRs for discovery of trait specific candidate genes was showed by validating 51 mature miRNA against publically available 2047 EST sequences of pomegranate by target and network analysis. In summary, the current study offers novel functional molecular markers for pomegranate genetic improvement.
Collapse
Affiliation(s)
- Prakash G. Patil
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 Maharashtra India
| | - N. V. Singh
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 Maharashtra India
| | - Shilpa Parashuram
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 Maharashtra India
| | - Abhishek Bohra
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024 Uttar Pradesh India
| | | | - Vipul R. Sangnure
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 Maharashtra India
| | - K. Dhinesh Babu
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 Maharashtra India
| | - Jyotsana Sharma
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, 413255 Maharashtra India
| |
Collapse
|
167
|
O'Neill K, Brocks D, Hammell MG. Mobile genomics: tools and techniques for tackling transposons. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190345. [PMID: 32075565 PMCID: PMC7061981 DOI: 10.1098/rstb.2019.0345] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2019] [Indexed: 12/22/2022] Open
Abstract
Next-generation sequencing approaches have fundamentally changed the types of questions that can be asked about gene function and regulation. With the goal of approaching truly genome-wide quantifications of all the interaction partners and downstream effects of particular genes, these quantitative assays have allowed for an unprecedented level of detail in exploring biological interactions. However, many challenges remain in our ability to accurately describe and quantify the interactions that take place in those hard to reach and extremely repetitive regions of our genome comprised mostly of transposable elements (TEs). Tools dedicated to TE-derived sequences have lagged behind, making the inclusion of these sequences in genome-wide analyses difficult. Recent improvements, both computational and experimental, allow for the better inclusion of TE sequences in genomic assays and a renewed appreciation for the importance of TE biology. This review will discuss the recent improvements that have been made in the computational analysis of TE-derived sequences as well as the areas where such analysis still proves difficult. This article is part of a discussion meeting issue 'Crossroads between transposons and gene regulation'.
Collapse
Affiliation(s)
- Kathryn O'Neill
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David Brocks
- Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel
| | - Molly Gale Hammell
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
168
|
Ellison CE, Cao W. Nanopore sequencing and Hi-C scaffolding provide insight into the evolutionary dynamics of transposable elements and piRNA production in wild strains of Drosophila melanogaster. Nucleic Acids Res 2020; 48:290-303. [PMID: 31754714 PMCID: PMC6943127 DOI: 10.1093/nar/gkz1080] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 01/29/2023] Open
Abstract
Illumina sequencing has allowed for population-level surveys of transposable element (TE) polymorphism via split alignment approaches, which has provided important insight into the population dynamics of TEs. However, such approaches are not able to identify insertions of uncharacterized TEs, nor can they assemble the full sequence of inserted elements. Here, we use nanopore sequencing and Hi-C scaffolding to produce de novo genome assemblies for two wild strains of Drosophila melanogaster from the Drosophila Genetic Reference Panel (DGRP). Ovarian piRNA populations and Illumina split-read TE insertion profiles have been previously produced for both strains. We find that nanopore sequencing with Hi-C scaffolding produces highly contiguous, chromosome-length scaffolds, and we identify hundreds of TE insertions that were missed by Illumina-based methods, including a novel micropia-like element that has recently invaded the DGRP population. We also find hundreds of piRNA-producing loci that are specific to each strain. Some of these loci are created by strain-specific TE insertions, while others appear to be epigenetically controlled. Our results suggest that Illumina approaches reveal only a portion of the repetitive sequence landscape of eukaryotic genomes and that population-level resequencing using long reads is likely to provide novel insight into the evolutionary dynamics of repetitive elements.
Collapse
Affiliation(s)
- Christopher E Ellison
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Weihuan Cao
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
169
|
Lunardon A, Johnson NR, Hagerott E, Phifer T, Polydore S, Coruh C, Axtell MJ. Integrated annotations and analyses of small RNA-producing loci from 47 diverse plants. Genome Res 2020; 30:497-513. [PMID: 32179590 PMCID: PMC7111516 DOI: 10.1101/gr.256750.119] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/27/2020] [Indexed: 01/25/2023]
Abstract
Plant endogenous small RNAs (sRNAs) are important regulators of gene expression. There are two broad categories of plant sRNAs: microRNAs (miRNAs) and endogenous short interfering RNAs (siRNAs). MicroRNA loci are relatively well-annotated but compose only a small minority of the total sRNA pool; siRNA locus annotations have lagged far behind. Here, we used a large data set of published and newly generated sRNA sequencing data (1333 sRNA-seq libraries containing more than 20 billion reads) and a uniform bioinformatic pipeline to produce comprehensive sRNA locus annotations of 47 diverse plants, yielding more than 2.7 million sRNA loci. The two most numerous classes of siRNA loci produced mainly 24- and 21-nucleotide (nt) siRNAs, respectively. Most often, 24-nt-dominated siRNA loci occurred in intergenic regions, especially at the 5′-flanking regions of protein-coding genes. In contrast, 21-nt-dominated siRNA loci were most often derived from double-stranded RNA precursors copied from spliced mRNAs. Genic 21-nt-dominated loci were especially common from disease resistance genes, including from a large number of monocots. Individual siRNA sequences of all types showed very little conservation across species, whereas mature miRNAs were more likely to be conserved. We developed a web server where our data and several search and analysis tools are freely accessible.
Collapse
Affiliation(s)
- Alice Lunardon
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Nathan R Johnson
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Emily Hagerott
- Department of Biology, Knox College, Galesburg, Illinois 61401, USA
| | - Tamia Phifer
- Department of Biology, Knox College, Galesburg, Illinois 61401, USA
| | - Seth Polydore
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ceyda Coruh
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Michael J Axtell
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
170
|
Zhang R, Huang S, Li S, Song G, Li Y, Li W, Li J, Gao J, Gu T, Li D, Zhang S, Li G. Evolution of PHAS loci in the young spike of Allohexaploid wheat. BMC Genomics 2020; 21:200. [PMID: 32131726 PMCID: PMC7057497 DOI: 10.1186/s12864-020-6582-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND PhasiRNAs (phased secondary siRNAs) play important regulatory roles in the development processes and biotic or abiotic stresses in plants. Some of phasiRNAs involve in the reproductive development in grasses, which include two categories, 21-nt (nucleotide) and 24-nt phasiRNAs. They are triggered by miR2118 and miR2275 respectively, in premeiotic and meiotic anthers of rice, maize and other grass species. Wheat (Triticum aestivum) with three closely related subgenomes (subA, subB and subD), is a model of allopolyploid in plants. Knowledge about the role of phasiRNAs in the inflorescence development of wheat is absent until now, and the evolution of PHAS loci in polyploid plants is also unavailable. RESULTS Using 261 small RNA expression datasets from various tissues, a batch of PHAS (phasiRNA precursors) loci were identified in the young spike of wheat, most of which were regulated by miR2118 and miR2275 in their target site regions. Dissection of PHAS and their trigger miRNAs among the diploid (AA and DD), tetraploid (AABB) and hexaploid (AABBDD) genomes of Triticum indicated that distribution of PHAS loci were dominant randomly in local chromosomes, while miR2118 was dominant only in the subB genome. The diversity of PHAS loci in the three subgenomes of wheat and their progenitor genomes (AA, DD and AABB) suggested that they originated or diverged at least before the occurrence of the tetraploid AABB genome. The positive correlation between the PHAS loci or the trigger miRNAs and the ploidy of genome indicated the expansion of genome was the major drive force for the increase of PHAS loci and their trigger miRNAs in Triticum. In addition, the expression profiles of the PHAS transcripts suggested they responded to abiotic stresses such as cold stress in wheat. CONCLUSIONS Altogether, non-coding phasiRNAs are conserved transcriptional regulators that display quick plasticity in Triticum genome. They may be involved in reproductive development and abiotic stress in wheat. It could be referred to molecular research on male reproductive development in Triticum.
Collapse
Affiliation(s)
- Rongzhi Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China. .,Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan, 250100, Shandong, China. .,National Engineering Laboratory for Wheat and Maize, Jinan, 250100, Shandong, China.
| | - Siyuan Huang
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Shiming Li
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Guoqi Song
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China.,Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan, 250100, Shandong, China.,National Engineering Laboratory for Wheat and Maize, Jinan, 250100, Shandong, China
| | - Yulian Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China.,Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan, 250100, Shandong, China.,National Engineering Laboratory for Wheat and Maize, Jinan, 250100, Shandong, China
| | - Wei Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China.,Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan, 250100, Shandong, China.,National Engineering Laboratory for Wheat and Maize, Jinan, 250100, Shandong, China
| | - Jihu Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China.,Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan, 250100, Shandong, China.,National Engineering Laboratory for Wheat and Maize, Jinan, 250100, Shandong, China
| | - Jie Gao
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China.,Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan, 250100, Shandong, China.,National Engineering Laboratory for Wheat and Maize, Jinan, 250100, Shandong, China
| | - Tiantian Gu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China.,Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan, 250100, Shandong, China.,National Engineering Laboratory for Wheat and Maize, Jinan, 250100, Shandong, China
| | - Dandan Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China.,Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan, 250100, Shandong, China.,National Engineering Laboratory for Wheat and Maize, Jinan, 250100, Shandong, China
| | - Shujuan Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China. .,Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan, 250100, Shandong, China. .,National Engineering Laboratory for Wheat and Maize, Jinan, 250100, Shandong, China.
| | - Genying Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China. .,Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan, 250100, Shandong, China. .,National Engineering Laboratory for Wheat and Maize, Jinan, 250100, Shandong, China.
| |
Collapse
|
171
|
Kurihara Y, Makita Y, Shimohira H, Fujita T, Iwasaki S, Matsui M. Translational Landscape of Protein-Coding and Non-Protein-Coding RNAs upon Light Exposure in Arabidopsis. PLANT & CELL PHYSIOLOGY 2020; 61:536-545. [PMID: 31794029 DOI: 10.1093/pcp/pcz219] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Light is one of the most essential environmental clues for plant growth and morphogenesis. Exposure to blue monochromatic light from darkness is a turning point for plant biological activity, and as a result dramatic changes in gene expression occur. To understand the translational impacts of blue light, we have performed ribosome profiling analysis and called translated open reading frames (ORFs) de novo within not only mRNAs but also non-coding RNAs (ncRNAs). Translation efficiency of 3,823 protein-coding ORFs, such as nuclear chloroplast-related genes, was up-regulated by blue light exposure. Moreover, the translational activation of the microRNA biogenesis-related genes, DCL1 and HYL1, was induced by blue light. Considering the 3-nucleotide codon periodicity of ribosome footprints, a few hundred short ORFs lying on ncRNAs and upstream ORFs (uORFs) on mRNAs were found that had differential translation status between blue light and dark. uORFs are known to have a negative effect on the expression of the main ORFs (mORFs) on the same mRNAs. Our analysis suggests that the translation of uORFs is likely to be more stimulated than that of the corresponding mORFs, and uORF-mediated translational repression of the mORFs in five genes was alleviated by blue light exposure. With data-based annotation of the ORFs, our analysis provides insights into the translatome in response to environmental changes, such as those involving light.
Collapse
Affiliation(s)
- Yukio Kurihara
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| | - Yuko Makita
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| | - Haruka Shimohira
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
- Graduate School of Nanobioscience Department of Life and Environmental System Science, Yokohama City University, Yokohama, Kanagawa, 236-0027 Japan
| | - Tomoya Fujita
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198 Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8503 Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198 Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561 Japan
| | - Minami Matsui
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| |
Collapse
|
172
|
Das S, Swetha C, Pachamuthu K, Nair A, Shivaprasad PV. Loss of function of Oryza sativa Argonaute 18 induces male sterility and reduction in phased small RNAs. PLANT REPRODUCTION 2020; 33:59-73. [PMID: 32157461 DOI: 10.1007/s00497-020-00386-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/03/2020] [Indexed: 05/14/2023]
Abstract
In this manuscript, we show that Oryza sativa indica Argonaute protein AGO18 is required for male gametophyte development likely to through a small RNA-mediated mechanism. Monocots have evolved unique gene silencing pathways due to the presence of unique members of Dicer-like and Argonaute (AGO) family members. Among the monocot AGO homologs, AGO18 occupies a unique position. Previous reports have implicated this protein in viral resistance as well as in gametogenesis, likely through its competition with AGO1 clade members for micro(mi)RNAs and other small (s)RNAs. Although expression of rice AGO18 in specific stages of male gametogenesis has been documented, its major functions in plant development remain poorly understood. Here, we show that Oryza sativa indica AGO18 is involved in male gametophyte development. Knockdown (KD) of AGO18 in transgenic rice lines resulted in stunted plants that are male sterile, whereas their carpels were functional. Transcriptome analysis revealed downregulation of several pollen development-associated genes in KD lines. sRNA sequencing in vegetative and reproductive tissues of KD lines indicated reduction of miRNAs and phased secondary sRNAs implicated in male gametophyte development. Our results indicate a distinct role for rice AGO18 in male fertility.
Collapse
Affiliation(s)
- Soumita Das
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - Chenna Swetha
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - Kannan Pachamuthu
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - Ashwin Nair
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - P V Shivaprasad
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India.
| |
Collapse
|
173
|
Panda K, McCue AD, Slotkin RK. Arabidopsis RNA Polymerase IV generates 21-22 nucleotide small RNAs that can participate in RNA-directed DNA methylation and may regulate genes. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190417. [PMID: 32075560 DOI: 10.1098/rstb.2019.0417] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The plant-specific RNA Polymerase IV (Pol IV) transcribes heterochromatic regions, including many transposable elements (TEs), with the well-described role of generating 24 nucleotide (nt) small interfering RNAs (siRNAs). These siRNAs target DNA methylation back to TEs to reinforce the boundary between heterochromatin and euchromatin. In the male gametophytic phase of the plant life cycle, pollen, Pol IV switches to generating primarily 21-22 nt siRNAs, but the biogenesis and function of these siRNAs have been enigmatic. In contrast to being pollen-specific, we identified that Pol IV generates these 21-22 nt siRNAs in sporophytic tissues, likely from the same transcripts that are processed into the more abundant 24 nt siRNAs. The 21-22 nt forms are specifically generated by the combined activities of DICER proteins DCL2/DCL4 and can participate in RNA-directed DNA methylation. These 21-22 nt siRNAs are also loaded into ARGONAUTE1 (AGO1), which is known to function in post-transcriptional gene regulation. Like other plant siRNAs and microRNAs incorporated into AGO1, we find a signature of genic mRNA cleavage at the predicted target site of these siRNAs, suggesting that Pol IV-generated 21-22 nt siRNAs may function to regulate gene transcript abundance. Our data provide support for the existing model that in pollen Pol IV functions in gene regulation. This article is part of a discussion meeting issue 'Crossroads between transposons and gene regulation'.
Collapse
Affiliation(s)
- Kaushik Panda
- Donald Danforth Plant Science Center, St. Louis, MO 63132-2918, USA
| | - Andrea D McCue
- Donald Danforth Plant Science Center, St. Louis, MO 63132-2918, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210-1214, USA
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, St. Louis, MO 63132-2918, USA.,Division of Biological Sciences, University of Missouri, Columbia, MO 65211-7400, USA
| |
Collapse
|
174
|
Abstract
There are many short-read aligners that can map short reads to a reference genome/sequence, and most of them can directly accept a FASTQ file as the input query file. However, the raw data usually need to be pre-processed. Few software programs specialize in pre-processing raw data generated by a variety of next-generation sequencing (NGS) technologies. Here, we present AUSPP, a Perl script-based pipeline for pre-processing and automatic mapping of NGS short reads. This pipeline encompasses quality control, adaptor trimming, collapsing of reads, structural RNA removal, length selection, read mapping, and normalized wiggle file creation. It facilitates the processing from raw data to genome mapping and is therefore a powerful tool for the steps before meta-analysis. Most importantly, since AUSPP has default processing pipeline settings for many types of NGS data, most of the time, users will simply need to provide the raw data and genome. AUSPP is portable and easy to install, and the source codes are freely available at https://github.com/highlei/AUSPP.
Collapse
Affiliation(s)
- Lei Gao
- The Key Laboratory of Plant Epigenetics of Guangdong Province, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
| | - Cong Wu
- The Key Laboratory of Plant Epigenetics of Guangdong Province, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
| | - Lin Liu
- The Key Laboratory of Plant Epigenetics of Guangdong Province, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
| |
Collapse
|
175
|
Esposito S, Aversano R, Bradeen JM, Di Matteo A, Villano C, Carputo D. Deep-sequencing of Solanum commersonii small RNA libraries reveals riboregulators involved in cold stress response. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22 Suppl 1:133-142. [PMID: 30597710 DOI: 10.1111/plb.12955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
Among wild species used in potato breeding, Solanum commersonii displays the highest tolerance to low temperatures under both acclimated (ACC) and non-acclimated (NACC) conditions. It is also the first wild potato relative with a known whole genome sequence. Recent studies have shown that abiotic stresses induce changes in the expression of many small non-coding RNA (sncRNA). We determined the small non-coding RNA (sncRNAome) of two clones of S. commersonii contrasting in their cold response phenotypes via smRNAseq. Differential analysis provided evidence that expression of several miRNAs changed in response to cold stress conditions. Conserved miR408a and miR408b changed their expression under NACC conditions, whereas miR156 and miR169 were differentially expressed only under ACC conditions. We also report changes in tasiRNA and secondary siRNA expression under both stress conditions. Our results reveal possible roles of sncRNA in the regulatory networks associated with tolerance to low temperatures and provide useful information for a more strategic use of genomic resources in potato breeding.
Collapse
Affiliation(s)
- S Esposito
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - R Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - J M Bradeen
- Department of Plant Pathology and The Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, MN, USA
| | - A Di Matteo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - C Villano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - D Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
176
|
Böhrer M, Rymen B, Himber C, Gerbaud A, Pflieger D, Laudencia-Chingcuanco D, Cartwright A, Vogel J, Sibout R, Blevins T. Integrated Genome-Scale Analysis and Northern Blot Detection of Retrotransposon siRNAs Across Plant Species. Methods Mol Biol 2020; 2166:387-411. [PMID: 32710422 DOI: 10.1007/978-1-0716-0712-1_23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Cells have sophisticated RNA-directed mechanisms to regulate genes, destroy viruses, or silence transposable elements (TEs). In terrestrial plants, a specialized non-coding RNA machinery involving RNA polymerase IV (Pol IV) and small interfering RNAs (siRNAs) targets DNA methylation and silencing to TEs. Here, we present a bioinformatics protocol for annotating and quantifying siRNAs that derive from long terminal repeat (LTR) retrotransposons. The approach was validated using small RNA northern blot analyses, comparing the species Arabidopsis thaliana and Brachypodium distachyon. To assist hybridization probe design, we configured a genome browser to show small RNA-seq mappings in distinct colors and shades according to their nucleotide lengths and abundances, respectively. Samples from wild-type and pol IV mutant plants, cross-species negative controls, and a conserved microRNA control validated the detected siRNA signals, confirming their origin from specific TEs and their Pol IV-dependent biogenesis. Moreover, an optimized labeling method yielded probes that could detect low-abundance siRNAs from B. distachyon TEs. The integration of de novo TE annotation, small RNA-seq profiling, and northern blotting, as outlined here, will facilitate the comparative genomic analysis of RNA silencing in crop plants and non-model species.
Collapse
Affiliation(s)
- Marcel Böhrer
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, France
| | - Bart Rymen
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, France
| | - Christophe Himber
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, France
| | - Aude Gerbaud
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, France
| | - David Pflieger
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, France
| | | | - Amy Cartwright
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - John Vogel
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Richard Sibout
- INRAE, UR BIA, Nantes, France.,Institut Jean-Pierre Bourgin, UMR 1318, INRAE, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Todd Blevins
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
177
|
Liu Q, Ding C, Lang X, Guo G, Chen J, Su X. Small noncoding RNA discovery and profiling with sRNAtools based on high-throughput sequencing. Brief Bioinform 2019; 22:463-473. [PMID: 31885040 PMCID: PMC7820841 DOI: 10.1093/bib/bbz151] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/24/2019] [Accepted: 11/01/2019] [Indexed: 02/05/2023] Open
Abstract
Small noncoding RNAs (sRNA/sncRNAs) are generated from different genomic loci and play important roles in biological processes, such as cell proliferation and the regulation of gene expression. Next-generation sequencing (NGS) has provided an unprecedented opportunity to discover and quantify diverse kinds of sncRNA, such as tRFs (tRNA-derived small RNA fragments), phasiRNAs (phased, secondary, small-interfering RNAs), Piwi-interacting RNA (piRNAs) and plant-specific 24-nt short interfering RNAs (siRNAs). However, currently available web-based tools do not provide approaches to comprehensively analyze all of these diverse sncRNAs. This study presents a novel integrated platform, sRNAtools (https://bioinformatics.caf.ac.cn/sRNAtools), that can be used in conjunction with high-throughput sequencing to identify and functionally annotate sncRNAs, including profiling microRNAss, piRNAs, tRNAs, small nuclear RNAs, small nucleolar RNAs and rRNAs and discovering isomiRs, tRFs, phasiRNAs and plant-specific 24-nt siRNAs for up to 21 model organisms. Different modules, including single case, batch case, group case and target case, are developed to provide users with flexible ways of studying sncRNA. In addition, sRNAtools supports different ways of uploading small RNA sequencing data in a very interactive queue system, while local versions based on the program package/Docker/virtureBox are also available. We believe that sRNAtools will greatly benefit the scientific community as an integrated tool for studying sncRNAs.
Collapse
Affiliation(s)
- Qi Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Beijing 10091, China
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Beijing 10091, China
| | - Xiaoqiang Lang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Ganggang Guo
- Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China 610041
| | - Jiafei Chen
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Beijing 10091, China
| | - Xiaohua Su
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
178
|
Nakamura M, Köhler C, Hennig L. Tissue-specific transposon-associated small RNAs in the gymnosperm tree, Norway spruce. BMC Genomics 2019; 20:997. [PMID: 31856707 PMCID: PMC6923980 DOI: 10.1186/s12864-019-6385-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/11/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Small RNAs (sRNAs) are regulatory molecules impacting on gene expression and transposon activity. MicroRNAs (miRNAs) are responsible for tissue-specific and environmentally-induced gene repression. Short interfering RNAs (siRNA) are constitutively involved in transposon silencing across different type of tissues. The male gametophyte in angiosperms has a unique set of sRNAs compared to vegetative tissues, including phased siRNAs from intergenic or genic regions, or epigenetically activated siRNAs. This is contrasted by a lack of knowledge about the sRNA profile of the male gametophyte of gymnosperms. RESULTS Here, we isolated mature pollen from male cones of Norway spruce and investigated its sRNA profiles. While 21-nt sRNAs is the major size class of sRNAs in needles, in pollen 21-nt and 24-nt sRNAs are the most abundant size classes. Although the 24-nt sRNAs were exclusively derived from TEs in pollen, both 21-nt and 24-nt sRNAs were associated with TEs. We also investigated sRNAs from somatic embryonic callus, which has been reported to contain 24-nt sRNAs. Our data show that the 24-nt sRNA profiles are tissue-specific and differ between pollen and cell culture. CONCLUSION Our data reveal that gymnosperm pollen, like angiosperm pollen, has a unique sRNA profile, differing from vegetative leaf tissue. Thus, our results reveal that angiosperm and gymnosperm pollen produce new size classes not present in vegetative tissues; while in angiosperm pollen 21-nt sRNAs are generated, in the gymnosperm Norway spruce 24-nt sRNAs are generated. The tissue-specific production of distinct TE-derived sRNAs in angiosperms and gymnosperms provides insights into the diversification process of sRNAs in TE silencing pathways between the two groups of seed plants.
Collapse
Affiliation(s)
- Miyuki Nakamura
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden.
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Lars Hennig
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|
179
|
Integrated Analysis of Small RNA, Transcriptome and Degradome Sequencing Provides New Insights into Floral Development and Abscission in Yellow Lupine ( Lupinus luteus L.). Int J Mol Sci 2019; 20:ijms20205122. [PMID: 31623090 PMCID: PMC6854478 DOI: 10.3390/ijms20205122] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/03/2019] [Accepted: 10/14/2019] [Indexed: 01/09/2023] Open
Abstract
The floral development in an important legume crop yellow lupine (Lupinus luteus L., Taper cv.) is often affected by the abscission of flowers leading to significant economic losses. Small non-coding RNAs (sncRNAs), which have a proven effect on almost all developmental processes in other plants, might be of key players in a complex net of molecular interactions regulating flower development and abscission. This study represents the first comprehensive sncRNA identification and analysis of small RNA, transcriptome and degradome sequencing data in lupine flowers to elucidate their role in the regulation of lupine generative development. As shedding in lupine primarily concerns flowers formed at the upper part of the inflorescence, we analyzed samples from extreme parts of raceme separately and conducted an additional analysis of pedicels from abscising and non-abscising flowers where abscission zone forms. A total of 394 known and 28 novel miRNAs and 316 phased siRNAs were identified. In flowers at different stages of development 59 miRNAs displayed differential expression (DE) and 46 DE miRNAs were found while comparing the upper and lower flowers. Identified tasiR-ARFs were DE in developing flowers and were strongly expressed in flower pedicels. The DEmiR-targeted genes were preferentially enriched in the functional categories related to carbohydrate metabolism and plant hormone transduction pathways. This study not only contributes to the current understanding of how lupine flowers develop or undergo abscission but also holds potential for research aimed at crop improvement.
Collapse
|
180
|
Chow FWN, Koutsovoulos G, Ovando-Vázquez C, Neophytou K, Bermúdez-Barrientos JR, Laetsch DR, Robertson E, Kumar S, Claycomb JM, Blaxter M, Abreu-Goodger C, Buck AH. Secretion of an Argonaute protein by a parasitic nematode and the evolution of its siRNA guides. Nucleic Acids Res 2019; 47:3594-3606. [PMID: 30820541 PMCID: PMC6468290 DOI: 10.1093/nar/gkz142] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 02/16/2019] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
Extracellular RNA has been proposed to mediate communication between cells and organisms however relatively little is understood regarding how specific sequences are selected for export. Here, we describe a specific Argonaute protein (exWAGO) that is secreted in extracellular vesicles (EVs) released by the gastrointestinal nematode Heligmosomoides bakeri, at multiple copies per EV. Phylogenetic and gene expression analyses demonstrate exWAGO orthologues are highly conserved and abundantly expressed in related parasites but highly diverged in free-living genus Caenorhabditis. We show that the most abundant small RNAs released from the nematode parasite are not microRNAs as previously thought, but rather secondary small interfering RNAs (siRNAs) that are produced by RNA-dependent RNA Polymerases. The siRNAs that are released in EVs have distinct evolutionary properties compared to those resident in free-living or parasitic nematodes. Immunoprecipitation of exWAGO demonstrates that it specifically associates with siRNAs from transposons and newly evolved repetitive elements that are packaged in EVs and released into the host environment. Together this work demonstrates molecular and evolutionary selectivity in the small RNA sequences that are released in EVs into the host environment and identifies a novel Argonaute protein as the mediator of this.
Collapse
Affiliation(s)
- Franklin Wang-Ngai Chow
- Institute of Immunology and Infection Research, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Georgios Koutsovoulos
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Cesaré Ovando-Vázquez
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato 36824, México
| | - Kyriaki Neophytou
- Institute of Immunology and Infection Research, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Jose R Bermúdez-Barrientos
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato 36824, México
| | - Dominik R Laetsch
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Elaine Robertson
- Institute of Immunology and Infection Research, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Sujai Kumar
- Institute of Immunology and Infection Research, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Julie M Claycomb
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Mark Blaxter
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JT, UK.,Centre for Immunity, Infection and Evolution, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Cei Abreu-Goodger
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato 36824, México
| | - Amy H Buck
- Institute of Immunology and Infection Research, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JT, UK.,Centre for Immunity, Infection and Evolution, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JT, UK
| |
Collapse
|
181
|
Abstract
Genome-wide gene expression studies have become a routine approach due to the advances in sequencing technologies, their ease of use, and increasing affordability. Simultaneous investigation of small RNA expression adds further valuable information but is not adopted as widely yet. Both RNA-seq and small RNA-seq benefit from the use of specific cell types. Here, we describe a protocol for the isolation of male meiotic cells from maize or wheat plants, along with the application of downstream RNA sequencing, extendable to other -omics approaches.
Collapse
|
182
|
Lev I, Toker IA, Mor Y, Nitzan A, Weintraub G, Antonova O, Bhonkar O, Ben Shushan I, Seroussi U, Claycomb JM, Anava S, Gingold H, Zaidel-Bar R, Rechavi O. Germ Granules Govern Small RNA Inheritance. Curr Biol 2019; 29:2880-2891.e4. [PMID: 31378614 PMCID: PMC6739422 DOI: 10.1016/j.cub.2019.07.054] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/01/2019] [Accepted: 07/17/2019] [Indexed: 02/04/2023]
Abstract
In C. elegans nematodes, components of liquid-like germ granules were shown to be required for transgenerational small RNA inheritance. Surprisingly, we show here that mutants with defective germ granules can nevertheless inherit potent small RNA-based silencing responses, but some of the mutants lose this ability after many generations of homozygosity. Animals mutated in pptr-1, which is required for stabilization of P granules in the early embryo, display extraordinarily strong heritable RNAi responses, lasting for tens of generations. Intriguingly, the RNAi capacity of descendants derived from mutants defective in the core germ granule proteins MEG-3 and MEG-4 is determined by the genotype of the ancestors and changes transgenerationally. Further, whether the meg-3/4 mutant alleles were present in the paternal or maternal lineages leads to different transgenerational consequences. Small RNA inheritance, rather than maternal contribution of the germ granules themselves, mediates the transgenerational defects in RNAi of meg-3/4 mutants and their progeny. Accordingly, germ granule defects lead to heritable genome-wide mis-expression of endogenous small RNAs. Upon disruption of germ granules, hrde-1 mutants can inherit RNAi, although HRDE-1 was previously thought to be absolutely required for RNAi inheritance. We propose that germ granules sort and shape the RNA pool, and that small RNA inheritance maintains this activity for multiple generations.
Collapse
Affiliation(s)
- Itamar Lev
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Itai Antoine Toker
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Yael Mor
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Anat Nitzan
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Guy Weintraub
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Olga Antonova
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ornit Bhonkar
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Itay Ben Shushan
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Uri Seroussi
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Julie M Claycomb
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Sarit Anava
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hila Gingold
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ronen Zaidel-Bar
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
183
|
Kuksa PP, Amlie-Wolf A, Katanic Ž, Valladares O, Wang LS, Leung YY. SPAR: small RNA-seq portal for analysis of sequencing experiments. Nucleic Acids Res 2019; 46:W36-W42. [PMID: 29733404 PMCID: PMC6030839 DOI: 10.1093/nar/gky330] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/17/2018] [Indexed: 02/01/2023] Open
Abstract
The introduction of new high-throughput small RNA sequencing protocols that generate large-scale genomics datasets along with increasing evidence of the significant regulatory roles of small non-coding RNAs (sncRNAs) have highlighted the urgent need for tools to analyze and interpret large amounts of small RNA sequencing data. However, it remains challenging to systematically and comprehensively discover and characterize sncRNA genes and specifically-processed sncRNA products from these datasets. To fill this gap, we present Small RNA-seq Portal for Analysis of sequencing expeRiments (SPAR), a user-friendly web server for interactive processing, analysis, annotation and visualization of small RNA sequencing data. SPAR supports sequencing data generated from various experimental protocols, including smRNA-seq, short total RNA sequencing, microRNA-seq, and single-cell small RNA-seq. Additionally, SPAR includes publicly available reference sncRNA datasets from our DASHR database and from ENCODE across 185 human tissues and cell types to produce highly informative small RNA annotations across all major small RNA types and other features such as co-localization with various genomic features, precursor transcript cleavage patterns, and conservation. SPAR allows the user to compare the input experiment against reference ENCODE/DASHR datasets. SPAR currently supports analyses of human (hg19, hg38) and mouse (mm10) sequencing data. SPAR is freely available at https://www.lisanwanglab.org/SPAR.
Collapse
Affiliation(s)
- Pavel P Kuksa
- Penn Neurodegeneration Genomics Center, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexandre Amlie-Wolf
- Penn Neurodegeneration Genomics Center, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Živadin Katanic
- Penn Neurodegeneration Genomics Center, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Otto Valladares
- Penn Neurodegeneration Genomics Center, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Li-San Wang
- Penn Neurodegeneration Genomics Center, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute on Aging, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuk Yee Leung
- Penn Neurodegeneration Genomics Center, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
184
|
Neupane A, Feng C, Mochama PK, Saleem H, Lee Marzano SY. Roles of Argonautes and Dicers on Sclerotinia sclerotiorum Antiviral RNA Silencing. FRONTIERS IN PLANT SCIENCE 2019; 10:976. [PMID: 31440265 PMCID: PMC6694225 DOI: 10.3389/fpls.2019.00976] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/11/2019] [Indexed: 05/30/2023]
Abstract
RNA silencing or RNA interference (RNAi) is an essential mechanism in animals, fungi, and plants that functions in gene regulation and defense against foreign nucleic acids. In fungi, RNA silencing has been shown to function primarily in defense against invasive nucleic acids. We previously determined that mycoviruses are triggers and targets of RNA silencing in Sclerotinia sclerotiorum. However, recent progresses in RNAi or dsRNA-based pest control requires more detailed characterization of the RNA silencing pathways in S. sclerotiorum to investigate the utility of dsRNA-based strategy for white mold control. This study elucidates the roles of argonaute enzymes, agl-2 and agl-4, in small RNA metabolism in S. sclerotiorum. Gene disruption mutants of agl-2 and agl-4 were compared for changes in phenotype, virulence, viral susceptibility, and small RNA profiles. The Δagl-2 mutant but not the Δagl-4 mutant had significantly slower growth and virulence prior to virus infection. Similarly, the Δagl-2 mutant but not the Δagl-4 mutant, showed greater debilitation under virus infection compared to uninfected strains. The responses were confirmed in complementation studies and revealed the antiviral role of agl-2. Gene disruption mutants of agl-2, agl-4, Dicer-like (dcl)-1, and dcl-2 did not change the stability of the most abundant endogenous small RNAs, which suggests the existence of alternative enzymes/pathways for small RNA biogenesis in S. sclerotiorum. Furthermore, in vitro synthesized dsRNA targeting agl-2 showed a significantly reduced average lesion diameter (P < 0.05) on canola leaves with agl-2 down-regulated compared to controls. This is the first report describing the effectiveness of RNA pesticides targeting S. sclerotiorum RNA silencing pathway for the control of the economically important pathogen.
Collapse
Affiliation(s)
- Achal Neupane
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, United States
| | - Chenchen Feng
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Pauline K. Mochama
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, United States
| | - Huma Saleem
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, United States
| | - Shin-Yi Lee Marzano
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, United States
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, United States
| |
Collapse
|
185
|
Hunt M, Banerjee S, Surana P, Liu M, Fuerst G, Mathioni S, Meyers BC, Nettleton D, Wise RP. Small RNA discovery in the interaction between barley and the powdery mildew pathogen. BMC Genomics 2019; 20:610. [PMID: 31345162 PMCID: PMC6657096 DOI: 10.1186/s12864-019-5947-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/30/2019] [Indexed: 01/04/2023] Open
Abstract
Background Plants encounter pathogenic and non-pathogenic microorganisms on a nearly constant basis. Small RNAs such as siRNAs and miRNAs/milRNAs influence pathogen virulence and host defense responses. We exploited the biotrophic interaction between the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh), and its diploid host plant, barley (Hordeum vulgare) to explore fungal and plant sRNAs expressed during Bgh infection of barley leaf epidermal cells. Results RNA was isolated from four fast-neutron immune-signaling mutants and their progenitor over a time course representing key stages of Bgh infection, including appressorium formation, penetration of epidermal cells, and development of haustorial feeding structures. The Cereal Introduction (CI) 16151 progenitor carries the resistance allele Mla6, while Bgh isolate 5874 harbors the AVRa6 avirulence effector, resulting in an incompatible interaction. Parallel Analysis of RNA Ends (PARE) was used to verify sRNAs with likely transcript targets in both barley and Bgh. Bgh sRNAs are predicted to regulate effectors, metabolic genes, and translation-related genes. Barley sRNAs are predicted to influence the accumulation of transcripts that encode auxin response factors, NAC transcription factors, homeodomain transcription factors, and several splicing factors. We also identified phasing small interfering RNAs (phasiRNAs) in barley that overlap transcripts that encode receptor-like kinases (RLKs) and nucleotide-binding, leucine-rich domain proteins (NLRs). Conclusions These data suggest that Bgh sRNAs regulate gene expression in metabolism, translation-related, and pathogen effectors. PARE-validated targets of predicted Bgh milRNAs include both EKA (effectors homologous to AVRk1 and AVRa10) and CSEP (candidate secreted effector protein) families. We also identified barley phasiRNAs and miRNAs in response to Bgh infection. These include phasiRNA loci that overlap with a significant proportion of receptor-like kinases, suggesting an additional sRNA control mechanism may be active in barley leaves as opposed to predominant R-gene phasiRNA overlap in many eudicots. In addition, we identified conserved miRNAs, novel miRNA candidates, and barley genome mapped sRNAs that have PARE validated transcript targets in barley. The miRNA target transcripts are enriched in transcription factors, signaling-related proteins, and photosynthesis-related proteins. Together these results suggest both barley and Bgh control metabolism and infection-related responses via the specific accumulation and targeting of genes via sRNAs. Electronic supplementary material The online version of this article (10.1186/s12864-019-5947-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matt Hunt
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, Iowa, 50011, USA.,Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa, 50011, USA
| | - Sagnik Banerjee
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa, 50011, USA.,Interdepartmental Bioinformatics & Computational Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Priyanka Surana
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa, 50011, USA.,Interdepartmental Bioinformatics & Computational Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Meiling Liu
- Interdepartmental Bioinformatics & Computational Biology, Iowa State University, Ames, Iowa, 50011, USA.,Department of Statistics, Iowa State University, Ames, Iowa, 50011, USA
| | - Greg Fuerst
- Corn Insects and Crop Genetics Research, USDA-Agricultural Research Service, Iowa State University, Ames, Iowa, 50011, USA
| | - Sandra Mathioni
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA.,Division of Plant Sciences, University of Missouri - Columbia, 52 Agriculture Lab, Columbia, MO, 65211, USA
| | - Dan Nettleton
- Interdepartmental Bioinformatics & Computational Biology, Iowa State University, Ames, Iowa, 50011, USA.,Department of Statistics, Iowa State University, Ames, Iowa, 50011, USA
| | - Roger P Wise
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, Iowa, 50011, USA. .,Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa, 50011, USA. .,Interdepartmental Bioinformatics & Computational Biology, Iowa State University, Ames, Iowa, 50011, USA. .,Corn Insects and Crop Genetics Research, USDA-Agricultural Research Service, Iowa State University, Ames, Iowa, 50011, USA.
| |
Collapse
|
186
|
Ortiz JPA, Leblanc O, Rohr C, Grisolia M, Siena LA, Podio M, Colono C, Azzaro C, Pessino SC. Small RNA-seq reveals novel regulatory components for apomixis in Paspalum notatum. BMC Genomics 2019; 20:487. [PMID: 31195966 PMCID: PMC6567921 DOI: 10.1186/s12864-019-5881-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/04/2019] [Indexed: 12/31/2022] Open
Abstract
Background Apomixis is considered an evolutionary deviation of the sexual reproductive pathway leading to the generation of clonal maternal progenies by seeds. Recent evidence from model and non-model species suggested that this trait could be modulated by epigenetic mechanisms involving small RNAs (sRNAs). Here we profiled floral sRNAs originated from apomictic and sexual Paspalum notatum genotypes in order to identify molecular pathways under epigenetic control that might be involved in the transition from sexuality to agamospermy. Results The mining of genes participating in sRNA-directed pathways from floral Paspalum transcriptomic resources showed these routes are functional during reproductive development, with several members differentially expressed in apomictic and sexual plants. Triplicate floral sRNA libraries derived from apomictic and a sexual genotypes were characterized by using high-throughput sequencing technology. EdgeR was apply to compare the number of sRNA reads between sexual and apomictic libraries that map over all Paspalum floral transcripts. A total of 1525 transcripts showed differential sRNA representation, including genes related to meiosis, plant hormone signaling, biomolecules transport, transcription control and cell cycle. Survey for miRNA precursors on transcriptome and genome references allowed the discovery of 124 entities, including 40 conserved and 8 novel ones. Fifty-six clusters were differentially represented in apomictic and sexual plants. All differentially expressed miRNAs were up-regulated in apomictic libraries but miR2275, which showed different family members with opposed representation. Examination of predicted miRNAs targets detected 374 potential candidates. Considering sRNA, miRNAs and target surveys together, 14 genes previously described as related with auxin metabolism, transport and signaling were detected, including AMINO ACID/AUXIN PERMEASE 15, IAA-AMIDO SYNTHETASE GH3–8, IAA30, miR160, miR167, miR164, miR319, ARF2, ARF8, ARF10, ARF12, AFB2, PROLIFERATING CELL FACTOR 6 and NITRATE TRANSPORTER 1.1. Conclusions This work provides a comprehensive survey of the sRNA differential representation in flowers of sexual and apomictic Paspalum notatum plants. An integration of the small RNA profiling data presented here and previous transcriptomic information suggests that sRNA-mediated regulation of auxin pathways is pivotal in promoting apomixis. These results will underlie future functional characterization of the molecular components mediating the switch from sexuality to apomixis. Electronic supplementary material The online version of this article (10.1186/s12864-019-5881-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan Pablo A Ortiz
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR, CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Olivier Leblanc
- Institut de Recherche pour le Développement (IRD), Université de Montpellier, Montpellier, France
| | - Cristian Rohr
- Instituto de Agrobiotecnología de Rosario (INDEAR), Rosario, Argentina
| | - Mauricio Grisolia
- Instituto de Agrobiotecnología de Rosario (INDEAR), Rosario, Argentina
| | - Lorena A Siena
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR, CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Maricel Podio
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR, CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Carolina Colono
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR, CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Celeste Azzaro
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR, CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Silvina C Pessino
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR, CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina.
| |
Collapse
|
187
|
Posner R, Toker IA, Antonova O, Star E, Anava S, Azmon E, Hendricks M, Bracha S, Gingold H, Rechavi O. Neuronal Small RNAs Control Behavior Transgenerationally. Cell 2019; 177:1814-1826.e15. [PMID: 31178120 PMCID: PMC6579485 DOI: 10.1016/j.cell.2019.04.029] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/18/2019] [Accepted: 04/13/2019] [Indexed: 12/21/2022]
Abstract
It is unknown whether the activity of the nervous system can be inherited. In Caenorhabditis elegans nematodes, parental responses can transmit heritable small RNAs that regulate gene expression transgenerationally. In this study, we show that a neuronal process can impact the next generations. Neurons-specific synthesis of RDE-4-dependent small RNAs regulates germline amplified endogenous small interfering RNAs (siRNAs) and germline gene expression for multiple generations. Further, the production of small RNAs in neurons controls the chemotaxis behavior of the progeny for at least three generations via the germline Argonaute HRDE-1. Among the targets of these small RNAs, we identified the conserved gene saeg-2, which is transgenerationally downregulated in the germline. Silencing of saeg-2 following neuronal small RNA biogenesis is required for chemotaxis under stress. Thus, we propose a small-RNA-based mechanism for communication of neuronal processes transgenerationally. C. elegans neuronal small RNAs are characterized by RNA sequencing RDE-4-dependent neuronal endogenous small RNAs communicate with the germline Germline HRDE-1 mediates transgenerational regulation by neuronal small RNAs Neuronal small RNAs regulate germline genes to control behavior transgenerationally
Collapse
Affiliation(s)
- Rachel Posner
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Itai Antoine Toker
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Olga Antonova
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ekaterina Star
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sarit Anava
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eran Azmon
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Michael Hendricks
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Shahar Bracha
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Hila Gingold
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
188
|
Wang C, Yang ZZ, Guo FH, Shi S, Han XS, Zeng A, Lin H, Jing Q. Heat shock protein DNAJA1 stabilizes PIWI proteins to support regeneration and homeostasis of planarian Schmidtea mediterranea. J Biol Chem 2019; 294:9873-9887. [PMID: 31076507 DOI: 10.1074/jbc.ra118.004445] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 04/25/2019] [Indexed: 12/16/2022] Open
Abstract
PIWI proteins are key regulators of germline and somatic stem cells throughout different evolutionary lineages. However, how PIWI proteins themselves are regulated remains largely unknown. To identify candidate proteins that interact with PIWI proteins and regulate their stability, here we established a yeast two-hybrid (Y2H) assay in the planarian species Schmidtea mediterranea We show that DNAJA1, a heat shock protein 40 family member, interacts with the PIWI protein SMEDWI-2, as validated by the Y2H screen and co-immunoprecipitation assays. We found that DNAJA1 is enriched in planarian adult stem cells, the nervous system, and intestinal tissues. DNAJA1-knockdown abolished planarian regeneration and homeostasis, compromised stem cell maintenance and PIWI-interacting RNA (piRNA) biogenesis, and deregulated SMEDWI-1/2 target genes. Mechanistically, we observed that DNAJA1 is required for the stability of SMEDWI-1 and SMEDWI-2 proteins. Furthermore, we noted that human DNAJA1 binds to Piwi-like RNA-mediated gene silencing 1 (PIWIL1) and is required for PIWIL1 stability in human gastric cancer cells. In summary, our results reveal not only an evolutionarily conserved functional link between PIWI and DNAJA1 that is essential for PIWI protein stability and piRNA biogenesis, but also an important role of DNAJA1 in the control of proteins involved in stem cell regulation.
Collapse
Affiliation(s)
- Chen Wang
- From the Shanghai Institute of Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.,the CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Zhen-Zhen Yang
- From the Shanghai Institute of Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Fang-Hao Guo
- the CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Shuo Shi
- From the Shanghai Institute of Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Xiao-Shuai Han
- the CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China, and
| | - An Zeng
- the CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Haifan Lin
- From the Shanghai Institute of Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China, .,the Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut 06511
| | - Qing Jing
- the CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China, and
| |
Collapse
|
189
|
Small RNA-Seq Analysis Reveals miRNA Expression Dynamics Across Tissues in the Malaria Vector, Anopheles gambiae. G3-GENES GENOMES GENETICS 2019; 9:1507-1517. [PMID: 30846481 PMCID: PMC6505144 DOI: 10.1534/g3.119.400104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Malaria continues to be a major global health problem, where disease transmission is deeply linked to the repeated blood feeding nature of the anautogenous mosquito. Given the tight link between blood feeding and disease transmission, understanding basic biology behind mosquito physiology is a requirement for developing effective vector-borne disease control strategies. In the mosquito, numerous loss of function studies with notable phenotypes demonstrate microRNAs (miRNAs) play significant roles in mosquito physiology. While the field appreciates the importance of a handful of miRNAs, we still need global mosquito tissue miRNA transcriptome studies. To address this need, our goal was to determine the miRNA transcriptome for multiple tissues of the pre-vitellogenic mosquito. To this end, by using small RNA-Seq analysis, we determined miRNA transcriptomes in tissues critical for mosquito reproduction and immunity including (i) fat body-abdominal wall enriched tissues, (ii) midguts, (iii) ovaries, and (iv) remaining tissues comprised of the head and thorax. We found numerous examples of miRNAs exhibiting pan-tissue high- or low- expression, tissue exclusion, and tissue enrichment. We also updated and consolidated the miRNA catalog and provided a detailed genome architecture map for the malaria vector, Anopheles gambiae. This study aims to build a foundation for future research on how miRNAs and potentially other small RNAs regulate mosquito physiology as it relates to vector-borne disease transmission.
Collapse
|
190
|
Karunanithi S, Simon M, Schulz MH. Automated analysis of small RNA datasets with RAPID. PeerJ 2019; 7:e6710. [PMID: 30993044 PMCID: PMC6462184 DOI: 10.7717/peerj.6710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/01/2019] [Indexed: 02/06/2023] Open
Abstract
Understanding the role of short-interfering RNA (siRNA) in diverse biological processes is of current interest and often approached through small RNA sequencing. However, analysis of these datasets is difficult due to the complexity of biological RNA processing pathways, which differ between species. Several properties like strand specificity, length distribution, and distribution of soft-clipped bases are few parameters known to guide researchers in understanding the role of siRNAs. We present RAPID, a generic eukaryotic siRNA analysis pipeline, which captures information inherent in the datasets and automatically produces numerous visualizations as user-friendly HTML reports, covering multiple categories required for siRNA analysis. RAPID also facilitates an automated comparison of multiple datasets, with one of the normalization techniques dedicated for siRNA knockdown analysis, and integrates differential expression analysis using DESeq2.
Collapse
Affiliation(s)
- Sivarajan Karunanithi
- Cluster of Excellence for Multimodal Computing and Interaction, and Department for Computational Biology & Applied Algorithms, Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany.,Graduate School of Computer Science, Saarland Informatics Campus, Universität des Saarlandes, Saarbrücken, Germany.,Institute for Cardiovascular Regeneration, Goethe University Hospital, Frankfurt am Main, Germany
| | - Martin Simon
- Molecular Cell Biology and Microbiology, Wuppertal University, Wuppertal, Germany
| | - Marcel H Schulz
- Cluster of Excellence for Multimodal Computing and Interaction, and Department for Computational Biology & Applied Algorithms, Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany.,Institute for Cardiovascular Regeneration, Goethe University Hospital, Frankfurt am Main, Germany.,German Centre for Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| |
Collapse
|
191
|
Fridrich A, Hazan Y, Moran Y. Too Many False Targets for MicroRNAs: Challenges and Pitfalls in Prediction of miRNA Targets and Their Gene Ontology in Model and Non-model Organisms. Bioessays 2019; 41:e1800169. [PMID: 30919506 PMCID: PMC6701991 DOI: 10.1002/bies.201800169] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 01/28/2019] [Indexed: 12/20/2022]
Abstract
Short ("seed") or extended base pairing between microRNAs (miRNAs) and their target RNAs enables post-transcriptional silencing in many organisms. These interactions allow the computational prediction of potential targets. In model organisms, predicted targets are frequently validated experimentally; hence meaningful miRNA-regulated processes are reported. However, in non-models, these reports mostly rely on computational prediction alone. Many times, further bioinformatic analyses such as Gene Ontology (GO) enrichment are based on these in silico projections. Here such approaches are reviewed, their caveats are highlighted and the ease of picking false targets from predicted lists is demonstrated. Discoveries that shed new light on how miRNAs evolved to regulate targets in various phyletic groups are discussed, in addition to the pitfalls of target identification in non-model organisms. The goal is to prevent the misuse of bioinformatic tools, as they cannot bypass the biological understanding of miRNA-target regulation.
Collapse
Affiliation(s)
- Arie Fridrich
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Yael Hazan
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| |
Collapse
|
192
|
Lev I, Gingold H, Rechavi O. H3K9me3 is required for inheritance of small RNAs that target a unique subset of newly evolved genes. eLife 2019; 8:e40448. [PMID: 30869075 PMCID: PMC6417860 DOI: 10.7554/elife.40448] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/26/2019] [Indexed: 12/17/2022] Open
Abstract
In Caenorhabditis elegans, RNA interference (RNAi) responses can transmit across generations via small RNAs. RNAi inheritance is associated with Histone-3-Lysine-9 tri-methylation (H3K9me3) of the targeted genes. In other organisms, maintenance of silencing requires a feed-forward loop between H3K9me3 and small RNAs. Here, we show that in C. elegans not only is H3K9me3 unnecessary for inheritance, the modification's function depends on the identity of the RNAi-targeted gene. We found an asymmetry in the requirement for H3K9me3 and the main worm H3K9me3 methyltransferases, SET-25 and SET-32. Both methyltransferases promote heritable silencing of the foreign gene gfp, but are dispensable for silencing of the endogenous gene oma-1. Genome-wide examination of heritable endogenous small interfering RNAs (endo-siRNAs) revealed that endo-siRNAs that depend on SET-25 and SET-32 target newly acquired and highly H3K9me3 marked genes. Thus, 'repressive' chromatin marks could be important specifically for heritable silencing of genes which are flagged as 'foreign', such as gfp. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Itamar Lev
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| | - Hila Gingold
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
193
|
Zheng J, Zeng E, Du Y, He C, Hu Y, Jiao Z, Wang K, Li W, Ludens M, Fu J, Wang H, White FF, Wang G, Liu S. Temporal Small RNA Expression Profiling under Drought Reveals a Potential Regulatory Role of Small Nucleolar RNAs in the Drought Responses of Maize. THE PLANT GENOME 2019; 12:180058. [PMID: 30951096 DOI: 10.3835/plantgenome2018.08.0058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Small RNAs (sRNAs) are short noncoding RNAs that play roles in many biological processes, including drought responses in plants. However, how the expression of sRNAs dynamically changes with the gradual imposition of drought stress in plants is largely unknown. We generated time-series sRNA sequence data from maize ( L.) seedlings under drought stress (DS) and under well-watered (WW) conditions at the same time points. Analyses of length, functional annotation, and abundance of 736,372 nonredundant sRNAs from both DS and WW data, as well as genome copy numbers at the corresponding genomic regions, revealed distinct patterns of abundance and genome organization for different sRNA classes. The analysis identified 6646 sRNAs whose regulation was altered in response to drought stress. Among drought-responsive sRNAs, 1325 showed transient downregulation by the seventh day, coinciding with visible symptoms of drought stress. The profiles revealed drought-responsive microRNAs, as well as other sRNAs that originated from ribosomal RNAs (rRNAs), splicing small nuclear RNAs, and small nucleolar RNAs (snoRNA). Expression profiles of their sRNA derivers indicated that snoRNAs might play a regulatory role through regulating the stability of rRNAs and splicing small nuclear RNAs under drought condition.
Collapse
|
194
|
DeBoer K, Melser S, Sperschneider J, Kamphuis LG, Garg G, Gao LL, Frick K, Singh KB. Identification and profiling of narrow-leafed lupin (Lupinus angustifolius) microRNAs during seed development. BMC Genomics 2019; 20:135. [PMID: 30764773 PMCID: PMC6376761 DOI: 10.1186/s12864-019-5521-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 02/07/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Whilst information regarding small RNAs within agricultural crops is increasing, the miRNA composition of the nutritionally valuable pulse narrow-leafed lupin (Lupinus angustifolius) remains unknown. RESULTS By conducting a genome- and transcriptome-wide survey we identified 7 Dicer-like and 16 Argonaute narrow-leafed lupin genes, which were highly homologous to their legume counterparts. We identified 43 conserved miRNAs belonging to 16 families, and 13 novel narrow-leafed lupin-specific miRNAs using high-throughput sequencing of small RNAs from foliar and root and five seed development stages. We observed up-regulation of members of the miRNA families miR167, miR399, miR156, miR319 and miR164 in narrow-leafed lupin seeds, and confirmed expression of miR156, miR166, miR164, miR1507 and miR396 using quantitative RT-PCR during five narrow-leafed lupin seed development stages. We identified potential targets for the conserved and novel miRNAs and were able to validate targets of miR399 and miR159 using 5' RLM-RACE. The conserved miRNAs are predicted to predominately target transcription factors and 93% of the conserved miRNAs originate from intergenic regions. In contrast, only 43% of the novel miRNAs originate from intergenic regions and their predicted targets were more functionally diverse. CONCLUSION This study provides important insights into the miRNA gene regulatory networks during narrow-leafed lupin seed development.
Collapse
Affiliation(s)
- Kathleen DeBoer
- The UWA Institute of Agriculture, University of Western Australia, Crawley, WA 6009 Australia
| | - Su Melser
- CSIRO Agriculture and Food, Private Bag 5, Wembley, WA 6913 Australia
- Present address: INSERM U1215, Neurocentre Magendie, Bordeaux, France
| | - Jana Sperschneider
- Centre for Genomics, Metabolomics and Bioinformatics (CGMB), The Australian National University, Canberra, ACT 2601 Australia
| | - Lars G. Kamphuis
- The UWA Institute of Agriculture, University of Western Australia, Crawley, WA 6009 Australia
- CSIRO Agriculture and Food, Private Bag 5, Wembley, WA 6913 Australia
- Curtin University, Centre for Crop and Disease Management, Department of Environment and Agriculture, Bentley, WA 6102 Australia
| | - Gagan Garg
- CSIRO Agriculture and Food, Private Bag 5, Wembley, WA 6913 Australia
| | - Ling-Ling Gao
- CSIRO Agriculture and Food, Private Bag 5, Wembley, WA 6913 Australia
| | - Karen Frick
- The UWA Institute of Agriculture, University of Western Australia, Crawley, WA 6009 Australia
- CSIRO Agriculture and Food, Private Bag 5, Wembley, WA 6913 Australia
- The School of Plant Biology, University of Western Australia, Crawley, WA 6009 Australia
| | - Karam B. Singh
- The UWA Institute of Agriculture, University of Western Australia, Crawley, WA 6009 Australia
- CSIRO Agriculture and Food, Private Bag 5, Wembley, WA 6913 Australia
- Curtin University, Centre for Crop and Disease Management, Department of Environment and Agriculture, Bentley, WA 6102 Australia
| |
Collapse
|
195
|
Huang J, Wang C, Wang H, Lu P, Zheng B, Ma H, Copenhaver GP, Wang Y. Meiocyte-Specific and AtSPO11-1-Dependent Small RNAs and Their Association with Meiotic Gene Expression and Recombination. THE PLANT CELL 2019; 31:444-464. [PMID: 30674694 PMCID: PMC6447014 DOI: 10.1105/tpc.18.00511] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/21/2018] [Accepted: 01/18/2019] [Indexed: 05/04/2023]
Abstract
Meiotic recombination ensures accurate chromosome segregation and results in genetic diversity in sexually reproducing eukaryotes. Over the last few decades, the genetic regulation of meiotic recombination has been extensively studied in many organisms. However, the role of endogenous meiocyte-specific small RNAs (ms-sRNAs; 21-24 nucleotide [nt]) and their involvement in meiotic recombination are unclear. Here, we sequenced the total small RNA (sRNA) and messenger RNA populations from meiocytes and leaves of wild type Arabidopsis (Arabidopsis thaliana) and meiocytes of spo11-1, a mutant defective in double-strand break formation, and we discovered 2,409 ms-sRNA clusters, 1,660 of which areSPORULATION 11-1 (AtSPO11-1)-dependent. Unlike mitotic small interfering RNAs that are enriched in intergenic regions and associated with gene silencing, ms-sRNAs are significantly enriched in genic regions and exhibit a positive correlation with genes that are preferentially expressed in meiocytes (i.e. Arabidopsis SKP1-LIKE1 and RAD51), in a fashion unrelated to DNA methylation. We also found that AtSPO11-1-dependent sRNAs have distinct characteristics compared with ms-sRNAs and tend to be associated with two known types of meiotic recombination hotspot motifs (i.e. CTT-repeat and A-rich motifs). These results reveal different meiotic and mitotic sRNA landscapes and provide new insights into how sRNAs relate to gene expression in meiocytes and meiotic recombination.
Collapse
Affiliation(s)
- Jiyue Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
- University of North Carolina at Chapel Hill Department of Biology and the Integrative Program for Biological and Genome Sciences, Chapel Hill, North Carolina 27599-3280
| | - Cong Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Haifeng Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, 530005, Nanning, Guangxi, China
| | - Pingli Lu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Binglian Zheng
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
- Department of Biology, the Pennsylvania State University, University Park, Pennsylvania 16802
| | - Gregory P Copenhaver
- University of North Carolina at Chapel Hill Department of Biology and the Integrative Program for Biological and Genome Sciences, Chapel Hill, North Carolina 27599-3280
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
196
|
Panzade G, Gangwar I, Awasthi S, Sharma N, Shankar R. Plant Regulomics Portal (PRP): a comprehensive integrated regulatory information and analysis portal for plant genomes. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2019; 2019:5650983. [PMID: 31796964 PMCID: PMC6891001 DOI: 10.1093/database/baz130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/20/2022]
Abstract
Gene regulation is a highly complex and networked phenomenon where multiple tiers of control determine the cell state in a spatio-temporal manner. Among these, the transcription factors, DNA and histone modifications, and post-transcriptional control by small RNAs like miRNAs serve as major regulators. An understanding of the integrative and spatio-temporal impact of these regulatory factors can provide better insights into the state of a ‘cell system’. Yet, there are limited resources available to this effect. Therefore, we hereby report an integrative information portal (Plant Regulomics Portal; PRP) for plants for the first time. The portal has been developed by integrating a huge amount of curated data from published sources, RNA-, methylome- and sRNA/miRNA sequencing, histone modifications and repeats, gene ontology, digital gene expression and characterized pathways. The key features of the portal include a regulatory search engine for fetching numerous analytical outputs and tracks of the abovementioned regulators and also a genome browser for integrated visualization of the search results. It also has numerous analytical features for analyses of transcription factors (TFs) and sRNA/miRNA, spot-specific methylation, gene expression and interactions and details of pathways for any given genomic element. It can also provide information on potential RdDM regulation, while facilitating enrichment analysis, generation of visually rich plots and downloading of data in a selective manner. Visualization of intricate biological networks is an important feature which utilizes the Neo4j Graph database making analysis of relationships and long-range system viewing possible. Till date, PRP hosts 571-GB processed data for four plant species namely Arabidopsis thaliana, Oryza sativa subsp. japonica, Zea mays and Glycine max. Database URL: https://scbb.ihbt.res.in/PRP
Collapse
Affiliation(s)
- Ganesh Panzade
- Studio of Computational Biology & Bioinformatics, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Kangra, Himachal Pradesh 176061, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India.,Division of Biology, Kansas State University, Zinovyeva Lab, 28 Ackert Hall, Manhattan, KS, USA, 66506
| | - Indu Gangwar
- Studio of Computational Biology & Bioinformatics, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Kangra, Himachal Pradesh 176061, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Supriya Awasthi
- Studio of Computational Biology & Bioinformatics, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Kangra, Himachal Pradesh 176061, India
| | - Nitesh Sharma
- Studio of Computational Biology & Bioinformatics, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Kangra, Himachal Pradesh 176061, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Ravi Shankar
- Studio of Computational Biology & Bioinformatics, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Kangra, Himachal Pradesh 176061, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
197
|
Medina C, da Rocha M, Magliano M, Raptopoulo A, Marteu N, Lebrigand K, Abad P, Favery B, Jaubert-Possamai S. Characterization of siRNAs clusters in Arabidopsis thaliana galls induced by the root-knot nematode Meloidogyne incognita. BMC Genomics 2018; 19:943. [PMID: 30563458 PMCID: PMC6297998 DOI: 10.1186/s12864-018-5296-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 11/21/2018] [Indexed: 12/19/2022] Open
Abstract
Background Root-knot nematodes (RKN), genus Meloidogyne, are plant parasitic worms that have the ability to transform root vascular cylinder cells into hypertrophied, multinucleate and metabolically over-active feeding cells. Redifferentiation into feeding cells is the result of a massive transcriptional reprogramming of root cells targeted by RKN. Since RKN are able to induce similar feeding cells in roots of thousands of plant species, these worms are thought to manipulate essential and conserved plant molecular pathways. Results Small non-coding RNAs of uninfected roots and infected root galls induced by M. incognita from Arabidopsis thaliana were sequenced by high throughput sequencing. SiRNA populations were analysed by using the Shortstack algorithm. We identified siRNA clusters that are differentially expressed in infected roots and evidenced an over-representation of the 23–24 nt siRNAs in infected tissue. This size corresponds to heterochromatic siRNAs (hc-siRNAs) which are known to regulate expression of transposons and genes at the transcriptional level, mainly by inducing DNA methylation. Conclusions Correlation of siRNA clusters expression profile with transcriptomic data identified several protein coding genes that are candidates to be regulated by siRNAs at the transcriptional level by RNA directed DNA methylation (RdDM) pathway either directly or indirectly via silencing of neighbouring transposable elements. Electronic supplementary material The online version of this article (10.1186/s12864-018-5296-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Marc Magliano
- INRA, Université Côte d'Azur, CNRS, ISA, Paris, France
| | | | | | - Kevin Lebrigand
- UCA Genomix, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR6097, Sophia Antipolis, Nice, France
| | - Pierre Abad
- INRA, Université Côte d'Azur, CNRS, ISA, Paris, France
| | - Bruno Favery
- INRA, Université Côte d'Azur, CNRS, ISA, Paris, France
| | | |
Collapse
|
198
|
Huen A, Bally J, Smith P. Identification and characterisation of microRNAs and their target genes in phosphate-starved Nicotiana benthamiana by small RNA deep sequencing and 5'RACE analysis. BMC Genomics 2018; 19:940. [PMID: 30558535 PMCID: PMC6296076 DOI: 10.1186/s12864-018-5258-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/16/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Phosphorus is an important macronutrient that is severely lacking in soils. In plants, specific microRNAs (miRNAs) essential for nutrient management and the regulation of stress responses are responsible for the control of many phosphate starvation responses. Further understanding of conserved and species-specific microRNA species has potential implications for the development of crops tolerant to soils with low phosphate. RESULTS This study identified and characterised phosphate starvation-responsive miRNAs in the native Australian tobacco Nicotiana benthamiana. Small RNA libraries were constructed and sequenced from phosphate-starved plant leaves, stems and roots. Twenty-four conserved miRNA families and 36 species-specific miRNAs were identified. The majority of highly phosphate starvation-responsive miRNAs were highly conserved, comprising of members from the miR399, miR827, and miR2111 families. In addition, two miRNA-star species were identified to be phosphate starvation-responsive. A total of seven miRNA targets were confirmed using RLM-5'RACE to be cleaved by five miRNA families, including two confirmed cleavage targets for Nbe-miR399 species, one for Nbe-miR2111, and two for Nbe-miR398. A number of N. benthamiana-specific features for conserved miRNAs were identified, including species-specific miRNA targets predicted or confirmed for miR399, miR827, and miR398. CONCLUSIONS Our results give an insight into the phosphate starvation-responsive miRNAs of Nicotiana benthamiana, and indicate that the phosphate starvation response pathways in N. benthamiana contain both highly conserved and species-specific components.
Collapse
Affiliation(s)
- Amanda Huen
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Julia Bally
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, QLD, Brisbane, 4000, Australia
| | - Penelope Smith
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
199
|
Lee Marzano SY, Neupane A, Domier L. Transcriptional and Small RNA Responses of the White Mold Fungus Sclerotinia sclerotiorum to Infection by a Virulence-Attenuating Hypovirus. Viruses 2018; 10:E713. [PMID: 30558121 PMCID: PMC6315951 DOI: 10.3390/v10120713] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022] Open
Abstract
Mycoviruses belonging to the family Hypoviridae cause persistent infection of many different host fungi. We previously determined that the white mold fungus, Sclerotiniasclerotiorum, infected with Sclerotinia sclerotiorum hypovirus 2-L (SsHV2-L) exhibits reduced virulence, delayed/reduced sclerotial formation, and enhanced production of aerial mycelia. To gain better insight into the cellular basis for these changes, we characterized changes in mRNA and small RNA (sRNA) accumulation in S.sclerotiorum to infection by SsHV2-L. A total of 958 mRNAs and 835 sRNA-producing loci were altered after infection by SsHV2-L, among which >100 mRNAs were predicted to encode proteins involved in the metabolism and trafficking of carbohydrates and lipids. Both S. sclerotiorum endogenous and virus-derived sRNAs were predominantly 22 nt in length suggesting one dicer-like enzyme cleaves both. Novel classes of endogenous small RNAs were predicted, including phasiRNAs and tRNA-derived small RNAs. Moreover, S. sclerotiorum phasiRNAs, which were derived from noncoding RNAs and have the potential to regulate mRNA abundance in trans, showed differential accumulation due to virus infection. tRNA fragments did not accumulate differentially after hypovirus infection. Hence, in-depth analysis showed that infection of S. sclerotiorum by a hypovirulence-inducing hypovirus produced selective, large-scale reprogramming of mRNA and sRNA production.
Collapse
Affiliation(s)
- Shin-Yi Lee Marzano
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA.
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD 57006, USA.
| | - Achal Neupane
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA.
| | - Leslie Domier
- United States Department of Agriculture, Agricultural Research Service, Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|
200
|
Cheng J, Niu Q, Zhang B, Chen K, Yang R, Zhu JK, Zhang Y, Lang Z. Downregulation of RdDM during strawberry fruit ripening. Genome Biol 2018; 19:212. [PMID: 30514401 PMCID: PMC6280534 DOI: 10.1186/s13059-018-1587-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/15/2018] [Indexed: 01/09/2023] Open
Abstract
Background Recently, DNA methylation was proposed to regulate fleshy fruit ripening. Fleshy fruits can be distinguished by their ripening process as climacteric fruits, such as tomatoes, or non-climacteric fruits, such as strawberries. Tomatoes undergo a global decrease in DNA methylation during ripening, due to increased expression of a DNA demethylase gene. The dynamics and biological relevance of DNA methylation during the ripening of non-climacteric fruits are unknown. Results Here, we generate single-base resolution maps of the DNA methylome in immature and ripe strawberry. We observe an overall loss of DNA methylation during strawberry fruit ripening. Thus, ripening-induced DNA hypomethylation occurs not only in climacteric fruit, but also in non-climacteric fruit. Application of a DNA methylation inhibitor causes an early ripening phenotype, suggesting that DNA hypomethylation is important for strawberry fruit ripening. The mechanisms underlying DNA hypomethylation during the ripening of tomato and strawberry are distinct. Unlike in tomatoes, DNA demethylase genes are not upregulated during the ripening of strawberries. Instead, genes involved in RNA-directed DNA methylation are downregulated during strawberry ripening. Further, ripening-induced DNA hypomethylation is associated with decreased siRNA levels, consistent with reduced RdDM activity. Therefore, we propose that a downregulation of RdDM contributes to DNA hypomethylation during strawberry ripening. Conclusions Our findings provide new insight into the DNA methylation dynamics during the ripening of non-climacteric fruit and suggest a novel function of RdDM in regulating an important process in plant development. Electronic supplementary material The online version of this article (10.1186/s13059-018-1587-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingfei Cheng
- National Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingfeng Niu
- University of the Chinese Academy of Sciences, Beijing, 100049, China.,Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Bo Zhang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Kunsong Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Ruihua Yang
- Horticultural Department, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Jian-Kang Zhu
- University of the Chinese Academy of Sciences, Beijing, 100049, China.,Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.,Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Yijing Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China. .,University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhaobo Lang
- University of the Chinese Academy of Sciences, Beijing, 100049, China. .,Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|